WO2011054793A1 - Procédé pour produire des supports holographiques - Google Patents

Procédé pour produire des supports holographiques Download PDF

Info

Publication number
WO2011054793A1
WO2011054793A1 PCT/EP2010/066589 EP2010066589W WO2011054793A1 WO 2011054793 A1 WO2011054793 A1 WO 2011054793A1 EP 2010066589 W EP2010066589 W EP 2010066589W WO 2011054793 A1 WO2011054793 A1 WO 2011054793A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
photopolymer formulation
photopolymer
temperature
isocyanate
Prior art date
Application number
PCT/EP2010/066589
Other languages
German (de)
English (en)
Inventor
Marc-Stephan Weiser
Thomas RÖLLE
Dennis Hönel
Friedrich-Karl Bruder
Thomas Fäcke
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to US13/505,154 priority Critical patent/US8771904B2/en
Priority to EP10771478.4A priority patent/EP2497081B1/fr
Priority to JP2012537364A priority patent/JP5925687B2/ja
Priority to CN201080060490.4A priority patent/CN102667936B/zh
Priority to KR1020127014265A priority patent/KR101746886B1/ko
Priority to RU2012122591/04A priority patent/RU2542981C9/ru
Publication of WO2011054793A1 publication Critical patent/WO2011054793A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/2885Compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/715Monoisocyanates or monoisothiocyanates containing sulfur in addition to isothiocyanate sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/776Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/035Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyurethanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2227/00Mechanical components or mechanical aspects not otherwise provided for
    • G03H2227/04Production line for mass production
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/12Photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/50Reactivity or recording processes
    • G03H2260/54Photorefractive reactivity wherein light induces photo-generation, redistribution and trapping of charges then a modification of refractive index, e.g. photorefractive polymer

Definitions

  • the invention relates to a method for producing holographic media and holographic media obtainable by the method.
  • Holographic media can be made, for example, with the aid of special photopolymer formulations.
  • WO 2008/125199 A1 describes a photopolymer formulation which contains polyurethane-based matrix polymers, an acrylate-based writing monomer and photoinitiators. If the photopolymer formulation is cured, the writing monomer and the photoinitiators are spatially distributed isotropically in the polyurethane matrix formed thereby. In this way you get a medium in which holograms can be imprinted.
  • holograms which can also be described as diffractive optical elements. It depends on the specific exposure, which optical functions such a hologram forms.
  • the refractive index modulation produced by holographic exposure in the photopolymer plays a crucial role.
  • the interference field of signal and reference light beam (in the simplest case that of two plane waves) is converted by local photopolymerization of e.g. high refractive acrylates are imaged into a refractive index grating at high intensity locations in the interference field.
  • the refractive index grating in the photopolymer (the hologram) contains all the information of the signal light beam. By illuminating the hologram only with the reference light beam, the signal can then be reconstructed. The strength of the thus reconstructed signal in proportion to the intensity of the incident reference light
  • Called diffraction efficiency hereinafter DE as diffraction efficiency.
  • DE Called diffraction efficiency.
  • the DE results from the quotient of the intensity of the light diffracted during the reconstruction and the sum of the intensities of the radiated reference light and the diffracted light.
  • High refractive index acrylates are capable of producing high amplitude refractive index gratings between low refractive index regions and high refractive index regions, thereby providing high DE and high on holograms in photopolymer formulations enable.
  • DE depends on the product of An and the photopolymer layer thickness d.
  • the width of the angular range at which the hologram is visible (reconstructed), for example, in monochromatic illumination depends only on the layer thickness d.
  • the width of the spectral region which contributes to the reconstruction of the hologram likewise depends only on the layer thickness d. In this case, the smaller the d the greater the acceptance widths.
  • a photopolymer formulation is applied to a substrate and then dried at elevated temperature. In this way, holographic media in the form of films can be obtained.
  • vapor pressure is a parameter by which the suitability of components for use in large scale production of holographic media can not be tested.
  • vapor pressure of a chemical compound is a substance constant that describes how a pure substance or a substance mixture is in thermodynamic equilibrium with its liquid or solid phase.
  • the vapor pressure does not give any clues.
  • the vapor pressure does not describe the situation, as it prevails, for example, in a continuously operated coating plant.
  • the applied with a small layer thickness surface on a carrier film photopolymer formulation is dried by air circulation.
  • the air circulation ensures that the gaseous phase is constantly discharged. A thermodynamic equilibrium thus does not occur under these conditions.
  • the object of the present invention was therefore to provide a (large-scale) process by means of which holographic media can be produced with a high level of activity.
  • TGA 95 value of a component is understood to mean the temperature at which a mass loss of 5% by weight, based on the originally weighed quantity of the component, has occurred for the respective component.
  • the TGA 95 value of each component can be measured by thermogravimetric analysis, which determines this temperature.
  • the TGA 95 values of the individual components can be determined by weighing an amount of the sample of the respective component of about 10 mg into an aluminum pan with a volume of 70 ⁇ , the aluminum pan into an oven of a thermobalance, preferably a thermobalance TG50 from the company Mettler-Toledo and measured at a constant heating rate of the oven of 20 K / min, the mass loss of the sample in the open aluminum pan, the starting temperature 30 ° C and the final temperature 600 ° C of the furnace, the furnace during the determination with a Flushed nitrogen flow of a strength of 200 ml / min and determined as TGA 95 value of the respective component, the temperature at which a mass loss of the sample of 5 wt .-%, based on the originally weighed amount of the sample occurred.
  • the photopolymer formulation may be dried at a temperature 70 ⁇ T ⁇ 100 ° C.
  • the matrix polymers used may preferably be polyurethanes obtainable in particular by reaction of an isocyanate component a) with an isocyanate-reactive component b).
  • the isocyanate component a) preferably comprises polyisocyanates.
  • polyisocyanates it is possible to use all compounds known per se to the person skilled in the art or mixtures thereof which on average have two or more NCO functions per molecule. These may be aromatic, araliphatic, aliphatic or cycloaliphatic. In subordinate quantities It is also possible to use monoisocyanates with or without unsaturated groups containing polyisocyanates.
  • the polyisocyanates of component a) are particularly preferably di- or oligomerized aliphatic and / or cycloaliphatic di- or triisocyanates.
  • NCO-functional prepolymers with urethane, allophanate, biuret and / or amide groups are obtained in a manner well-known to the person skilled in the art by reacting monomeric, oligomeric or polyisocyanates a1) with isocyanate-reactive compounds a2) in suitable stoichiometry with the optional use of catalysts and solvents.
  • Suitable polyisocyanates a1) are all aliphatic, cycloaliphatic, aromatic or araliphatic di- and triisocyanates known to the person skilled in the art, it being immaterial whether these were obtained by phosgenation or by phosgene-free processes.
  • the relatively high molecular weight derivatives of monomeric di- and / or triisocyanates with urethane, urea, carbodiimide, acylurea, isocyanurate, allophanate, biuret, oxadiazinetrione, uretdione, iminooxadiazinedione structure, which are well known per se, can also be used individually or be used in any mixtures with each other.
  • Suitable monomeric di- or triisocyanates which can be used as component al) are butylene diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), trimethylhexamethylene diisocyanate (TMDI), 1,8-diisocyanato-4- (isocyanatomethyl) octane, isocyanatomethyl-l, 8-octane diisocyanate (TIN), 2,4- and / or 2,6-toluene diisocyanate.
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • TMDI trimethylhexamethylene diisocyanate
  • 1,8-diisocyanato-4- isocyanatomethyl octane
  • TIN 2,4- and / or 2,6-toluene diisocyanate
  • OH-functional compounds are preferably used. These are analogous to the OH-functional compounds as described below for component b).
  • Allophanates can also be used in a mixture with other prepolymers or oligomers of component al). In these cases, the use of OH-functional compounds with functionalities of 1 to 3.1 is advantageous. When monofunctional alcohols are used, those having 3 to 20 carbon atoms are preferred.
  • amines for prepolymer production.
  • suitable are ethylene diamine, diethylene triamine, triethylene tetramine, propylene diamine, diaminocyclohexane, diaminobenzene, Diaminobisphenyl, difunctional polyamines such as Jeffamine ®, amine-terminated polymers having number average molecular weights up to 10,000 g mol or any desired mixtures thereof with one another.
  • Isocyanate is reacted in excess with amine to produce prepolymers containing biuret phenomenon, resulting in a biuret.
  • Suitable amines in this case for the reaction with the di-, tri- and polyisocyanates mentioned are all oligomeric or polymeric primary or secondary difunctional amines of the abovementioned type. Examples are aliphatic biurets based on aliphatic amines and aliphatic isocyanates, in particular HDI and TMDI.
  • Preferred prepolymers are urethanes, allophanates or biurets of aliphatic isocyanate-functional compounds and oligomeric or polymeric isocyanate-reactive compounds having number average molecular weights of 200 to 10,000 g mol.
  • the prepolymers described above have residual contents of free monomeric isocyanate of less than 2 wt .-%, more preferably less than 1.0 wt .-%, most preferably less than 0.5 wt .-% to.
  • the isocyanate component may contain proportionate addition to the described prepolymers further isocyanate components. If appropriate, it is also possible that the isocyanate component a) contains proportionate isocyanates which are partially reacted with isocyanate-reactive ethylenically unsaturated compounds.
  • isocyanate component a) may comprise complete or proportionate isocyanates which have been completely or partially reacted with blocking agents known to the person skilled in the art from coating technology.
  • Blocking agents may be mentioned: alcohols, lactams, oximes, malonic esters, alkylacetoacetates, triazoles, phenols, imidazoles, pyrazoles and amines, such as butanone oxime, diisopropylamine, 1,2,4-triazole, dimethyl-l, 2,4-triazole, imidazole, Diethyl malonate, acetoacetic ester, acetone oxime, 3,5-dimethylpyrazole, ⁇ -caprolactam, N-tert-butylbenzylamine, cyclopentanonecarboxylic oxyethyl ester or any desired mixtures of these blocking agents.
  • all polyfunctional, isocyanate-reactive compounds can be used per se, which have on average at least 1.5 isocyanate-reactive groups per molecule.
  • Isocyanate-reactive groups in the context of the present invention are preferably hydroxy, amino or thio groups, particularly preferred are hydroxy compounds.
  • Suitable polyfunctional, isocyanate-reactive compounds are, for example, polyester, polyether, polycarbonate, poly (meth) acrylate and / or polyurethane polyols.
  • component b) as polyfunctional, isocyanate-reactive compounds and low molecular weight, i. with molecular weights less than 500 g / mol, short chain, i. 2 to 20 carbon atoms containing aliphatic, araliphatic or cycloaliphatic di, tri or polyfunctional alcohols suitable.
  • ethylene glycol diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 2-ethyl-2-butylpropanediol, trimethylpentanediol, positionally isomeric diethyloctanediols, 1 , 3-butylene glycol, cyclohexanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 1,2- and 1,4-cyclohexanediol, hydrogenated bisphenol A (2,2-bis (4-hydroxycyclohexyl) propane), 2,2 Dimethyl 3-hydroxypropionic acid (2,2-dimethyl-3-hydroxypropyl ester).
  • 1,2-propanediol 1,3-propanedi
  • triols examples are trimethylolethane, trimethylolpropane or glycerol.
  • Suitable higher-functionality alcohols are ditrimethylolpropane, pentaerythritol, dipentaerythritol or sorbitol.
  • polyester polyols for example, linear polyester diols or branched polyester polyols are suitable, as are obtained in a known manner from aliphatic, cycloaliphatic or aromatic di- or polycarboxylic acids or their anhydrides with polyhydric alcohols having an OH functionality> 2.
  • Preferred polyester polyols are based on aliphatic alcohols and mixtures of aliphatic and aromatic acids and have number average molecular weights between 500 and 10,000 g / mol and functionalities between 1.8 and 6.1.
  • the polyester polyols can also be based on natural raw materials such as castor oil. It is also possible that the polyester polyols are based on homo- or copolymers of lactones, as preferred by addition of lactones or lactone mixtures in a ring-opening lactone polymerization such as butyrolactone, ⁇ -caprolactone and / or methyl- ⁇ -caprolactone to hydroxy-functional compounds such as polyhydric alcohols having an OH functionality> 2 or polyols a functionality of greater than 1.8, for example of the type mentioned above can be obtained.
  • lactones such as butyrolactone, ⁇ -caprolactone and / or methyl- ⁇ -caprolactone
  • hydroxy-functional compounds such as polyhydric alcohols having an OH functionality> 2 or polyols a functionality of greater than 1.8, for example of the type mentioned above can be obtained.
  • polyols used here as initiators are polyether polyols having a functionality of 1.8 to 3.1 with number average molar masses of 200 to 4000 g mol, preferably poly (tetrahydrofurans) having a functionality of 1.9 to 2.2 and number average molecular weights of 500 to 2000 g / mol.
  • polyether polyols having a functionality of 1.8 to 3.1 with number average molar masses of 200 to 4000 g mol, preferably poly (tetrahydrofurans) having a functionality of 1.9 to 2.2 and number average molecular weights of 500 to 2000 g / mol.
  • poly (tetrahydrofurans) having a functionality of 1.9 to 2.2
  • number average molecular weights 500 to 2000 g / mol.
  • Suitable polycarbonate polyols are obtainable in a manner known per se by reacting organic carbonates or phosgene with diols or diol mixtures.
  • Suitable organic carbonates are dimethyl, diethyl and diphenyl carbonate.
  • Suitable diols or mixtures include the polyhydric alcohols of an OH functionality> 2, preferably 1,4-butanediol, 1,6-hexanediol and / or 3-methylpentanediol, which are per se within the scope of the polyester segments, or else polyester polyols can be worked into polycarbonate polyols ,
  • Suitable polyether polyols are optionally block-formed polyaddition of cyclic ethers to OH or NH-functional starter molecules.
  • Suitable cyclic ethers are, for example, styrene oxides, ethylene oxide, propylene oxide, tetrahydrofuran, butylene oxide, epichlorohydrin, and also any desired mixtures thereof.
  • the starter used may be the polyhydric alcohols of OH functionality> 2 mentioned in the context of the polyesterpolyols and also primary or secondary amines and amino alcohols.
  • Preferred polyether polyols are those of the aforementioned type based solely on propylene oxide or random or block copolymers based on propylene oxide with further 1-alkylene oxides, wherein the 1-Alykenoxidanteil is not higher than 80 wt .-%.
  • Particular preference is given to propylene oxide homopolymers and also random or block copolymers which contain oxyethylene, oxypropylene and / or oxybutylene units, the proportion of oxypropylene units, based on the total amount of all oxyethylene, oxypropylene and oxybutylene units, being at least 20% by weight at least 45% by weight.
  • Oxypropylene and oxybutylene herein include all respective linear and branched C3 and C4 isomers.
  • R is a hydrogen, alkyl, or aryl radical, which may also be substituted or interrupted by heteroatoms (such as ether oxygens)
  • Y is the underlying starter and the proportion of the segments Xi based on the total amount of the segments Xi and Y at least 50 Wt .-% makes up.
  • R is preferably a hydrogen, a methyl, butyl, hexyl or octyl group or an ether group-containing alkyl radical.
  • Preferred ether group-containing alkyl radicals are those based on oxyalkylene units.
  • the multiblock copolymers Y (Xi-H) n preferably have number-average molecular weights of more than 1200 g / mol, particularly preferably more than 1950 g / mol, but preferably not more than 12000 g / mol, particularly preferably not more than 8000 g / mol.
  • Preferably used block copolymers of the structure Y (Xj-H) n consist of more than 50 weight percent of the blocks X described above ; and have a number average total molecular weight of greater than 1200 g mol.
  • Preferred combinations of component a) and b) in the preparation of the matrix polymers are:
  • polyether polyols having number average molecular weights of 500 to 8500 g / mol and OH functionalities of 1.8 to 3.2, based solely on propylene oxide or random or block copolyols based on propylene oxide and ethylene oxide, wherein the ethylene oxide not higher than 60 wt .-% is in connection with urethanes, allophanates or biurets aliphatic isocyanate-functional compounds and oligomeric or polymeric isocyanate-reactive compounds having number average molecular weights of 200 to 6000 g mol.
  • propylene oxide homopolymers having number average molecular weights of 1800 to 4500 g of moles and OH functionalities of 1.9 to 2.2 in conjunction with allophanates of HDI or TMDI and difunctional polyether polyols (in particular polypropylene glycols) having number-average molar masses of 200 to 2100 g / mol.
  • Component B) comprises one or more different compounds which, under the action of actinic radiation with ethylenically unsaturated compounds, undergo polymerization have reactive groups (radiation-curing groups) and are themselves free of NCO groups used.
  • the writing monomers are preferably acrylates and / or methacrylates.
  • component B) compounds such as ⁇ , ⁇ -unsaturated carboxylic acid derivatives such as acrylates, methacrylates, maleinates, fumarates, maleimides, acrylamides, furthermore vinyl ethers, propenyl ethers, allyl ethers and dicyclopentadienyl units containing compounds and olefinically unsaturated compounds such.
  • Acrylates or methacrylates are generally esters of acrylic acid or methacrylic acid.
  • useful acrylates and methacrylates are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, ethoxyethyl acrylate, ethoxyethyl methacrylate, n-butyl acrylate, n-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, hexyl acrylate, hexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, butoxyethyl acrylate, Butoxyethyl methacrylate, lauryl acrylate, lauryl methacrylate, isobornyl acrylate, isobornyl methacrylate, phenyl acrylate, phenyl methacrylate,
  • N-carbazolyl acrylates to mention only a selection of useful acrylates and methacrylates.
  • Urethane acrylates can also be used as component B).
  • Urethane acrylates are compounds having at least one acrylic acid ester group which additionally have at least one urethane bond. It is known that such compounds can be obtained by reacting a hydroxy-functional acrylic ester with an isocyanate-functional compound.
  • urethane acrylates and / or urethane methacrylates used as component B) are the addition products of aromatic triisocyanates (very particularly preferably tris (4-phenyl isocyanato) thiophosphate or trimers of aromatic diisocyanates such as tolylene diisocyanate) with hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate, the addition products of 3-thiomethyl-phenyl isocyanate with hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate and unsaturated Glycidyletheracrylaturethane (as described in the applications WO 2008/125229 AI and in the unpublished application EP 09009651.2) or any mixtures thereof.
  • aromatic triisocyanates very particularly preferably tris (4-phenyl isocyanato) thiophosphate or trimers of aromatic diisocyanates such as tolylene diisocyanate
  • n is a natural number from 2 to 6
  • R ' is a mono- or polynuclear aromatic group-containing organic radical having 4 to 36 carbon atoms
  • R is an olefinically unsaturated radical having 3 to 30 carbon atoms
  • R '" is an organic radical having 2 to 30 carbon atoms derived from an aliphatic or aromatic di- or polyisocyanate.
  • the unsaturated Glycidyletheracrylaturethan the formula IIa or üb can be prepared in a 2-step synthesis. In the first reaction, an unsaturated carboxylic acid is reacted with an epoxide to form a mixture of two alcohols. Of course, in this reaction step also unsaturated epoxides can be reacted with any carboxylic acids to the analogous intermediate. In a second reaction, an unsaturated carboxylic acid is reacted with an epoxide to form a mixture of two alcohols. Of course, in this reaction step also unsaturated epoxides can be reacted with any carboxylic acids to the analogous intermediate. In a second reaction, an unsaturated carboxylic acid is reacted with an epoxide to form a mixture of two alcohols. Of course, in this reaction step also unsaturated
  • this alcohol mixture is urethanized by means of a di- or polyisocyanate R '"(NCO) n the functionality n to Glycidyletheracrylaturethan (as described in the unpublished application EP 09002180.9.)
  • Methacrylic acid and acrylic acid or their derivatives or aromatic carboxylic acids for the Reaction with an unsaturated epoxide used as epoxides are preferably aromatic or unsaturated epoxides such as phenyl, dibromophenyl, naphthyl or Biphenylglycidether or glydidyl (meth) acrylate application and as the isocyanate component is preferably used toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI) or Triisocyanatononan ( ⁇ ).
  • a further preferred embodiment provides that a combination of a monofunctional and a multifunctional writing monomer is used as writing monomers.
  • the monofunctional writing monomer can in particular have the general formula ( ⁇ )
  • R 1 , R 2 , R 3 , R 4 , R 5 each independently represent a hydrogen or halogen atom or a C 1 -C 6 -alkyl, trifluoromethyl, C 1 -C 6 -alkylthio, C 1 -C 6 -alkylseleno -, Cl-C6-Alkyltelluro- or nitro group are, with the proviso that at least one substituent of the group R 1 , R 2 , R 3 , R 4 , R 5 is not hydrogen, R 6 , R 7 are each individually hydrogen or a Cl C6 alkyl group and A is a saturated or unsaturated or linear or branched C1-C6 alkyl radical or a polyethylene oxide radical or a polypropylene oxide radical having in each case 2-6 repeating units in the polymer chain, and the monofunctional writing monomer preferably has a glass transition temperature T. G ⁇ 0 ° C and preferably has a refractive index> 1.50 at 4
  • the multifunctional writing monomer can in particular the general formula ( ⁇ )
  • the multifunctional writing monomer may preferably have a refractive index> 1.50 at 405 nm.
  • the photoinitiator system used may preferably comprise an anionic, cationic or neutral dye and a coinitiator.
  • examples are mixtures of tetrabutylammonium triphenylhexylborate, tetrabutylammonium triphenylbutylborate, tetrabutylammonium trinapthylbutylborate, tetrabutylammonium tris (4-tert-butyl) -phenylbutylborate,
  • Tetrabutylammonium tris (3-fluorophenyl) hexyl borate and tetrabutylammonium tris (3-chloro-4-methylphenyl) hexyl borate with dyes such as Astrazon Orange G, Methylene Blue, New Methylene Blue, Azure A, Pyrillium I, Safranine O, Cyanine, Gallocyanine , Brilliant Green, Crystal Violet, Ethyl Violet and Thionin.
  • dyes such as Astrazon Orange G, Methylene Blue, New Methylene Blue, Azure A, Pyrillium I, Safranine O, Cyanine, Gallocyanine , Brilliant Green, Crystal Violet, Ethyl Violet and Thionin.
  • constituents of the photopolymer formulation may be (components E)): radical stabilizers, if appropriate catalysts or other auxiliaries and additives.
  • radical stabilizers are inhibitors and antioxidants as described e.g. in "Methods of Organic Chemistry” (Houben-Weyl), 4th Edition, Volume XTV71, p. 433ff, Georg Thieme Verlag, Stuttgart 1961, are suitable.
  • Suitable classes of substances are, for example, phenols, e.g. 2,6-di-tert-butyl-4-methylphenol, cresols, hydroquinones, benzyl alcohols, e.g. Benzhydrol, possibly quinones such. B. 2,5-di- / he /. - Butylchinon, possibly also aromatic amines such as diisopropylamine or phenothiazine.
  • catalysts for accelerating urethane formation.
  • Known catalysts for this purpose are, for example, tin octoate, zinc octoate, dibutyltin dilaurate, dimethylbis [(1-oxoneodecyl) oxy] stannane, dimethyltin dicarboxylate, zirconium bis (ethylhexanoate), zirconium acetylacetonate or tertiary amines such as, for example, 1,4-diazabicyclo [2.2.2] octane .
  • Diazabicyclononane diazabicycloundecane, 1,1,3,3-tetramethylguanidine, 1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido (1,2-a) pyrimidine.
  • dibutyltin dilaurate dimethylbis [(1-oxoneodecyl) oxy] stannane, dimethyltin dicarboxylate, 1,4-diazabicyclo [2.2.2] octane, diazabicyclononane, diazabicycloundecane, 1,1,3,3-tetramethylguanidine, 1, 3, 4, 6 , 7,8-Hexahydro-1-methyl-2H-pyrimido (1,2-a) pyrimidine.
  • auxiliaries or additives can be used. These may be, for example, additives customary in the field of coating technology, such as solvents, plasticizers, leveling agents or adhesion promoters. It may also be advantageous to simultaneously use several additives of one type. Of course, it may also be advantageous to use several additives of several types.
  • the photopolymer formulation contains special non-photopolymerizable additives (component D).
  • additives may in particular be urethanes and / or fluorinated urethanes.
  • the urethanes may preferably have the general formula (IV)
  • R 10 , R 11 , R 12 are hydrogen and / or independently of one another are linear, branched, cyclic or heterocyclic unsubstituted or optionally also substituted by hetero atoms organic radicals, preferably at least one of Radicals R 10 , R u , R 12 is substituted by at least one fluorine atom and more preferably R 10 is an organic radical having at least one fluorine atom.
  • the fluorourethanes may have a fluorine content of 10-80% by weight of fluorine, preferably of 13-70% by weight of fluorine and particularly preferably 17.5-65% by weight of fluorine.
  • a film of the photopolymer formulation can be applied to a carrier film by means of a roller coater.
  • a coating equipment e.g. Slit nozzles and doctor systems have, are suitable for the application of liquid photopolymer formulations on moving substrates and are characterized by a high accuracy in the application layer thickness.
  • the coating process of the carrier film comprises the following individual steps for the treatment of the abovementioned photopolymer formulations:
  • the metering of the starting materials takes place either by gear pumps or eccentric screw pumps.
  • centrifugal deaerator and for filtering plate filters are used for degassing the feedstock centrifugal deaerator and for filtering plate filters.
  • the mixture of the individual components takes place via a static mixer with correspondingly designed mixing geometries, such as length and diameter.
  • a slot nozzle is used as a preferred coating unit.
  • the coated material is dried over air dryers with the desired air temperature and moisture content over a defined period of time.
  • Figure 1 shows a schematic structure of a typical coating system, including arrangement of the pretreatment of the coating material (1-5), schematic profile of the carrier film (8 + 9), Be Anlagenungsseinrichrung for application to the carrier film (6) and subsequent drying process (7).
  • photopolymer formulations can be applied to moving support materials in a high layer thickness accuracy.
  • the holographic media may be film composites which may consist of one or more carrier films, one or more photopolymer layers and one or more protective films in any desired arrangement.
  • Preferred materials or composite materials of the carrier layer are based on polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene, polypropylene, cellulose acetate, cellulose hydrate, cellulose nitrate, cycloolefin polymers, polystyrene, polyepoxides, polysulfone, cellulose triacetate (CTA), polyamide, polymethyl methacrylate, polyvinyl chloride, polyvinyl butyral or polydicyclopentadiene or mixtures thereof.
  • material composites such as film laminates or coextrudates can be used as carrier film.
  • PC and PET are particularly preferably used as a carrier film.
  • cover layers on the photopolymer layer for the film composite in order to protect them from dirt and environmental influences.
  • plastic films or composite film systems, but also clearcoats can be used.
  • Another object of the invention is a holographic medium obtainable by the process according to the invention.
  • Photopolymer formulations comprising:
  • Three-dimensionally crosslinked matrix polymers A Particular preference is given to those three-dimensionally crosslinked organic polymers which are synthesized as precursors from an isocyanate component a) o and an isocyanate-reactive component b) and are crosslinked with the aid of a catalyst component E), which is generally added in solution.
  • Writing monomers B) which, on exposure to actinic radiation with ethylenically unsaturated compounds, exhibit polymerization-reactive groups (radiation-curing groups) and are dissolved or distributed in this matrix
  • At least one photoinitiator system C At least one photoinitiator system C).
  • Isocyanate component 1 (component al) is a test product of Bayer MaterialScience AG, Leverkusen, DE, hexane diisocyanate-based polyisocyanate, proportion of iminooxadiazinedione at least 30%, NCO content: 23.5%
  • Isocyanate component 2 (component a2) is a test product of Bayer MaterialScience AG, Leverkusen, Germany, full allophanate of hexane diisocyanate on polypropylene glycol having a number average molecular weight of about 280 g mol, NCO content: 16.5 to 17.3%.
  • Isocyanate component 3 (component a3) is a commercial product of Bayer MaterialScience AG, Leverkusen, Germany, mixture of 29.4 mol% isocyanurate based on HDI with 70.6 mol%) of the urethane from poly (e-caprolactone) of the number average Molar mass 650 g mol with HDI, NCO content 10.5 - 11.5%.
  • Polyol 1 (component bl) is an experimental product of Bayer MaterialScience AG, Leverkusen, Germany, the preparation is described below.
  • Polyol 2 (component b2) is an experimental product of Bayer MaterialScience AG, Leverkusen, Germany, the preparation is described below.
  • Polyol 3 (component b3) is an experimental product of Bayer MaterialScience AG, Leverkusen, Germany, the preparation is described below.
  • Terathane ® 650 is a commercial product from. BASF SE, Ludwigshafen, Germany (poly-THF of the molecular weight 650 g mol).
  • Acrylate 1 (component Bl) is an experimental product of Bayer MaterialScience AG, Leverkusen, Germany, the preparation is described below.
  • Acrylate 2 (component B2) is an experimental product of Bayer MaterialScience AG, Leverkusen, Germany, the preparation is described below.
  • Acrylate 3 (component B3) is an experimental product of Bayer MaterialScience AG, Leverkusen, Germany, the preparation is described below.
  • Co-initiator 1 Tetrabutylammonium tris (3-chloro-4-methylphenyl) (hexyl) borate, [1 147315-11-4]) is a test product manufactured by Ciba Inc., Basel, Switzerland.
  • Dye 1 is Neu Methylene Blue (CAS 1934-16-3) and was obtained from SIGMA-ALDRICH CHEMIE GmbH, Steinheim, Germany.
  • Dye 2 is safranine O (CAS 477-73-6) and was purchased from SIGMA-ALDRICH CHEMIE GmbH, Steinheim, Germany.
  • Dye 3 is ethyl violet (CAS 2390-59-2) and was obtained in 80% purity from SIGMA-ALDRICH CHEMIE GmbH, Steinheim, Germany, and so used.
  • Dye 4 is Astrazon Orange G (CAS 3056-93-7) and was obtained from SIGMA-ALDRICH CHEMIE GmbH, Steinheim, Germany.
  • the non-photopolymerizable components are experimental products of Bayer MaterialScience AG, Leverkusen, Germany, whose preparation is described below.
  • Catalyst 1 (Component E1): urethanization catalyst, dimethylbis [(1-oxoneodecl) oxy] stannane, commercial product of Momentive Performance Chemicals, Wilton, CT, USA (used as a 10% solution in N-ethylpyrrolidone). Auxiliaries and additives used (component E)
  • BYK 310 silicone-based surface additive from BYK-Chemie GmbH, Wesel, Germany (component E2) (solution 25% strength in xylene)
  • DMC Catalyst Zinc hexacyanocobaltate (III) double metal cyanide catalyst, obtainable by the process described in EP-A 700,949.
  • Irganox 1076 is octadecyl 3,5-di- (tert) -butyl-4-hydroxyhydrocinnamate (CAS 2082-79-3).
  • NCO values (isocyanate contents) were determined in accordance with EN ISO 1 1909.
  • the component or mixture to be investigated was applied at 20 ° C. in a cone plate measuring system of a rheometer (Anton Paar Physica model MCR 51). The measurement is carried out under the following conditions:
  • the TGA 95 values of the individual components can be determined by weighing an amount of the sample of the respective component of about 10 mg into an aluminum pan with a volume of 70 ⁇ , the aluminum pan weighing a kiln of a thermobalance, preferably a thermobalance TG50 from the company Mettler.
  • Toledo is introduced and measured at a constant heating rate of the furnace of 20 K / min, the mass loss of the sample in the open aluminum pan, the starting temperature of 30 ° C and the final temperature 600 ° C of the furnace, the furnace during the determination with a nitrogen flow of a Strength of 200 ml / min rinsed and determined as TGA 95 value of the respective component the temperature at which a Mass loss of the sample of 5 wt .-%, based on the originally weighed amount of the sample occurred.
  • the protective film of the holographic film is peeled off and the holographic film with the photopolymer side is laminated on a 1 mm thick glass plate of suitable length and width with a rubber roller under slight pressure.
  • This sandwich of glass and photopolymer film can now be used to determine the holographic performance parameters DE and ⁇ .
  • the beam of a He-Ne laser (emission wavelength 633 nm) was converted into a parallel homogeneous beam by means of the spatial filter (SF) and together with the collimation lens (CL).
  • the final cross sections of the signal and reference beam are defined by the iris diaphragms (I).
  • the diameter of the iris aperture is 0.4 cm.
  • the polarization-dependent beam splitters (PBS) divide the laser beam into two coherent identically polarized beams.
  • the power of the reference beam was set to 0.5 mW and the power of the signal beam to 0.65 mW via the ⁇ 2 plates.
  • the performances were determined with the semiconductor detectors (D) with the sample removed.
  • the angle of incidence (ao) of the reference beam is -21.8 °
  • the angle of incidence ( ⁇ o) of the signal beam is 41.8 °.
  • the angles are measured from the sample standard to the beam direction. According to FIG. 3, therefore, ao has a negative sign and ⁇ 0 has a positive sign.
  • the interference field of the two overlapping beams produced a grid of bright and dark stripes perpendicular to the bisector of the two beams incident on the sample (reflection hologram).
  • the stripe distance ⁇ also called the grating period, in the medium is ⁇ 225 nm (the refractive index of the medium assumed to be -1504).
  • FIG. 3 shows the holographic experimental setup with which the diffraction efficiency (DE) of the media was measured.
  • the written holograms have now been read out in the following way.
  • the shutter of the signal beam remained closed.
  • the shutter of the reference beam was open.
  • the iris diaphragm of the reference beam was closed to a diameter ⁇ 1 mm. It was thus achieved that for all rotation angles ( ⁇ ) of the medium, the beam was always located completely in the previously written hologram.
  • the turntable computer controlled the angular range of up to Om a , with an angular increment of 0.05 °.
  • is measured from the sample standard to the reference direction of the turntable.
  • -31.8 °.
  • the powers of the beam transmitted in the zeroth order were measured by means of the corresponding detector D and the powers of the beam deflected to the first order by means of the detector D.
  • the diffraction efficiency was found at each approached angle ⁇ as the quotient of:
  • P D is the power in the detector of the diffracted beam and P T is the power in the detector of the transmitted beam.
  • Diffraction efficiency ⁇ is measured as a function of the rotation angle ⁇ of the written hologram and stored in a computer.
  • Diffraction efficiency ⁇ is measured as a function of the rotation angle ⁇ of the written hologram and stored in a computer.
  • transmitted intensity against the angle of rotation ⁇ recorded and stored in a computer.
  • the maximum diffraction efficiency (DE r
  • the refractive index contrast ⁇ and the thickness d of the photopolymer layer has now been measured by the Coupled Wave Theory (see H. Kogelnik, The Bell System Technical Journal, Volume 48, November 1969, Number 9 page 2909 - page 2947) to the measured Bragg curve and the angle profile the transmitted intensity determined.
  • the strip spacing ⁇ 'of the hologram and the orientation of the strips (slant) can deviate from the strip spacing ⁇ of the interference pattern and its orientation. Accordingly, the angle ⁇ o 'or the corresponding angle of the turntable ⁇ reconst rac t ion, in which maximum diffraction efficiency is achieved by cto and the corresponding differ. This changes the Bragg condition.
  • the still unknown angle ß 'can be calculated from the comparison of the Bragg condition of
  • Refractive index grating that was written ⁇ 'and ⁇ ' correspond to the angles cto and ⁇ o of the interference field when writing the hologram but measured in the medium and valid for the grating of the hologram (after thickness shrinkage), n is the average refractive index of the photopolymer and became 1.504 set, ⁇ is the wavelength of the laser light in vacuum.
  • cT is now adjusted until the angular positions of the first secondary minima of the theoretical Bragg curve coincide with the angular positions of the first secondary maxima of the transmitted intensity and also the full width at half height (FWHM) for the theoretical Bragg curve and for the transmitted intensity match.
  • the detector for the diffracted light can only detect a finite angular range
  • the Bragg curve is not fully detected by wide fetching patterns (small cT) in an ⁇ scan, but only the central area, with suitable detector positioning. Therefore, the complementary to the Bragg curve shape of the transmitted intensity to adjust the layer thickness d is additionally used.
  • FIG. 4 shows the representation of the Bragg curve ⁇ according to the Coupled Wave Theory (dashed line), the measured diffraction efficiency (filled circles) and the transmitted power (black solid line) against the angle tuning ⁇ .
  • this procedure may be repeated several times for different exposure times t on different media to determine at which average absorbed dose of the incident laser beam is going to saturate upon writing the hologram DE.
  • the maximum value in An is reported in each case, the doses used are between 4 and 64 mJ / cm 2 per arm.
  • the physical layer thickness was determined with commercially available white light interferometers, e.g. the device FTM-Lite NIR Coating Thickness Gauge from Ingenieurs Eck Fuchs.
  • the determination of the layer thickness is based in principle on interference phenomena on thin layers. In the process, light waves are superimposed, which have been reflected at two interfaces of different optical density. The undisturbed superposition of the reflected sub-beams now leads to periodic lightening and cancellation in the spectrum of a white continuum radiator (e.g., halogen lamp). This superposition is called the expert interference.
  • These interference spectra are measured and evaluated mathematically.
  • Preparation of Polyol 2 (component b2) :: In a equipped with an agitator 20 1 - reaction vessel 2475 g Terathane ® was weighed 650 mg and 452.6 DMC catalyst were added. Then, with stirring at about 70 U / min. heated to 105 ° C. By applying vacuum three times and relaxing with nitrogen, air was exchanged for nitrogen. After increasing the stirrer speed to 300 rpm, nitrogen was passed from below through the mixture for 57 minutes while the vacuum pump was running at a pressure of about 0.1 bar. Thereafter, a pressure of 0.5 bar was set by means of nitrogen and introduced 100 g of ethylene oxide (EO) and 150 g of PO in parallel to the start of the polymerization. Here, the pressure rose to 2.07 bar.
  • EO ethylene oxide
  • Desmorapid ® Z 11.7 g of 3- (methylthio) phenyl isocyanate and initially charged and heated to 60 ° C. Subsequently, 8.2 g of 2-hydroxyethyl acrylate were added dropwise and the mixture was kept at 60 ° C until the isocyanate content had dropped below 0.1%. It was then cooled. The product was obtained as a pale yellow liquid.
  • acrylate 3 (component B3 " ) (mixture of (4-methylbenzene-l, 3-diyl) bis [carbamoyloxy-3- (biphenyl-2-yloxy) propane-2,1-diyl] bisacrylate and (4-methylbenzene - 1, 3-diyl) bis [carbamoyloxy-3- (biphenyl-2-yloxy) propane-1,2-diyl] bisacrylate and analogous isomers):
  • TMDI 2,4,4-trimethylhexane-1,6-diisocyanate
  • Table 3 lists the investigated examples of the photopolymer formulations used for the continuous production of holographic films in their composition.
  • the formulation may be heated at 60 ° C for a short time to aid solubility of the feeds. Finally, the corresponding isocyanate component a is added at 30 ° C. and mixed again.
  • the liquid mass obtained is then applied by means of a doctor blade or slot die to a 36 .mu.m thick polyethylene terephthalate, and dried for 4.5 minutes at the corresponding drying temperature (see Example Table 6) in a circulating air dryer. Subsequently, the photopolymer layer is covered with a 40 ⁇ thick polyethylene film and wound up.
  • the desired target layer thickness of the dried photopolymers are preferably between 10 and 20 ⁇ m.
  • the layer thicknesses achieved for the holographic films produced are shown in Table 6.
  • the production rates are preferably in the range of 0.2 m / min to 300 m min and more preferably in the range of 1.0 m / min to 50 m / min.
  • This type of holographic film is particularly suitable for determining its performance according to the method described in the section "Measurement of the holographic properties DE" and ⁇ of the holographic media by means of two-beam interference in reflection arrangement.
  • the PU formulation is carried out under 15 kg weights over several hours (usually overnight). In some cases, the media are post-cured for 2 hours at 60 ° C in light-tight packaging.
  • the thickness d of the photopolymer layer results from the diameter of the glass spheres used to 20 ⁇ . Since different formulations with different initial viscosity and different curing rate of the matrix do not always lead to the same layer thicknesses d of the photopolymer layer, d is determined separately for each sample on the basis of the characteristics of the written holograms. Analogously to this procedure, the media of the comparative media prepared in the laboratory (see Table 4) were prepared.
  • Table 5 Holographic results Depending on various compositions and drying conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

L'invention concerne un procédé pour produire des supports holographiques, selon lequel : on utilise une formulation de photopolymères constituée de polymères matriciels, de monomères d'écriture, d'un système de photo-amorceurs et éventuellement d'agents auxiliaires et d'additifs; la formulation de photopolymères est appliquée à plat sous forme d'une couche sur un film support puis séchée à une température XX < T > YY °C, les constituants de la formulation de photopolymères sélectionnés étant uniquement des composés dont les valeurs TGA 95 sont supérieures à 100 °C et se situent au moins 30°C au-dessus de la température T. L'invention concerne également un support holographique obtenu selon le procédé de l'invention.
PCT/EP2010/066589 2009-11-03 2010-11-02 Procédé pour produire des supports holographiques WO2011054793A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/505,154 US8771904B2 (en) 2009-11-03 2010-11-02 Method for producing holographic media
EP10771478.4A EP2497081B1 (fr) 2009-11-03 2010-11-02 Procédé de fabrication de supports holographiques
JP2012537364A JP5925687B2 (ja) 2009-11-03 2010-11-02 ホログラフィック媒体の製造方法
CN201080060490.4A CN102667936B (zh) 2009-11-03 2010-11-02 生产全息介质的方法
KR1020127014265A KR101746886B1 (ko) 2009-11-03 2010-11-02 홀로그래픽 매체의 제조 방법
RU2012122591/04A RU2542981C9 (ru) 2009-11-03 2010-11-02 Способ изготовления голографических сред

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09013765.4 2009-11-03
EP09013765 2009-11-03

Publications (1)

Publication Number Publication Date
WO2011054793A1 true WO2011054793A1 (fr) 2011-05-12

Family

ID=41398930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/066589 WO2011054793A1 (fr) 2009-11-03 2010-11-02 Procédé pour produire des supports holographiques

Country Status (8)

Country Link
US (1) US8771904B2 (fr)
EP (1) EP2497081B1 (fr)
JP (1) JP5925687B2 (fr)
KR (1) KR101746886B1 (fr)
CN (1) CN102667936B (fr)
RU (1) RU2542981C9 (fr)
TW (1) TWI489204B (fr)
WO (1) WO2011054793A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198841A (zh) * 2012-01-05 2013-07-10 拜耳知识产权有限责任公司 包括保护层和经曝光的光聚合物层的层压结构
JP2015531886A (ja) * 2012-08-13 2015-11-05 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG 出力結合素子を有する導光板
EP4043961A1 (fr) * 2021-02-11 2022-08-17 Xetos AG Système 2k

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2011054791A1 (fr) * 2009-11-03 2011-05-12 Bayer Materialscience Ag Procédé de production d'un film holographique
US8877408B2 (en) * 2009-11-03 2014-11-04 Bayer Materialscience Ag Urethanes used as additives in a photopolymer formulation
EP2497085B1 (fr) * 2009-11-03 2014-02-12 Bayer Intellectual Property GmbH Procédé de fabrication d'un film holographique
US8808946B2 (en) * 2009-11-03 2014-08-19 Bayer Materialscience Ag Urethane acrylate having a high refractive index and reduced double bond density
WO2011054796A1 (fr) * 2009-11-03 2011-05-12 Bayer Materialscience Ag Procédé de sélection d'additifs dans des photopolymères
ATE548730T1 (de) * 2009-11-03 2012-03-15 Bayer Materialscience Ag Photopolymerformulierungen mit einstellbarem mechanischem modul guv
KR101782182B1 (ko) * 2009-11-03 2017-09-26 코베스트로 도이칠란드 아게 상이한 기록 공단량체를 갖는 광중합체 제제
RU2570662C9 (ru) * 2009-11-03 2016-07-20 Байер Матириальсайенс Аг Фторуретаны в качестве добавки в фотополимерной композиции
EP2531889B1 (fr) * 2010-02-02 2020-06-03 Covestro Deutschland AG Utilisation d'une formulation de photopolymère comprenant des monomères d'écriture à base d'ester pour la fabrication des médias holographiques
EP2372454A1 (fr) * 2010-03-29 2011-10-05 Bayer MaterialScience AG Formulation photopolymère destinée à la fabrication d'un hologramme visible
WO2012136970A1 (fr) 2011-04-07 2012-10-11 Milan Momcilo Popovich Dispositif d'élimination de la granularité laser basé sur une diversité angulaire
WO2016020630A2 (fr) 2014-08-08 2016-02-11 Milan Momcilo Popovich Illuminateur laser en guide d'ondes comprenant un dispositif de déchatoiement
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2013027004A1 (fr) 2011-08-24 2013-02-28 Milan Momcilo Popovich Affichage de données vestimentaire
WO2013102759A2 (fr) 2012-01-06 2013-07-11 Milan Momcilo Popovich Capteur d'image à contact utilisant des réseaux de bragg commutables
CN106125308B (zh) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 用于显示图像的装置和方法
US20140302425A1 (en) * 2012-04-30 2014-10-09 Bayer Intellectual Property Gmbh Method for producing holographic media
WO2013167864A1 (fr) 2012-05-11 2013-11-14 Milan Momcilo Popovich Dispositif de suivi d'un œil
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014188149A1 (fr) 2013-05-20 2014-11-27 Milan Momcilo Popovich Dispositif holographique de suivi d'un œil à guide d'onde
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
WO2016042283A1 (fr) 2014-09-19 2016-03-24 Milan Momcilo Popovich Procédé et appareil de production d'images d'entrée pour affichages à guides d'ondes holographiques
WO2016046514A1 (fr) 2014-09-26 2016-03-31 LOKOVIC, Kimberly, Sun Dispositif de poursuite optique à guide d'ondes holographique
EP3245444B1 (fr) 2015-01-12 2021-09-08 DigiLens Inc. Affichage à guide d'ondes isolé de l'environnement
EP3245551B1 (fr) 2015-01-12 2019-09-18 DigiLens Inc. Afficheurs à champ lumineux et à guide d'ondes
CN107533137A (zh) 2015-01-20 2018-01-02 迪吉伦斯公司 全息波导激光雷达
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
CN109073889B (zh) 2016-02-04 2021-04-27 迪吉伦斯公司 全息波导光学跟踪器
WO2017162999A1 (fr) 2016-03-24 2017-09-28 Popovich Milan Momcilo Procédé et appareil pour fournir un dispositif guide d'ondes holographique sélectif en polarisation
EP3433658B1 (fr) 2016-04-11 2023-08-09 DigiLens, Inc. Dispositif guide d'onde pour la projection de lumiere structuree
WO2018102834A2 (fr) 2016-12-02 2018-06-07 Digilens, Inc. Dispositif de guide d'ondes à éclairage de sortie uniforme
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
CN111386495B (zh) 2017-10-16 2022-12-09 迪吉伦斯公司 用于倍增像素化显示器的图像分辨率的系统和方法
CN108153133B (zh) * 2017-11-17 2020-04-03 昆明理工大学 一种光致聚合物全息记录材料的封装体及其封装方法
KR102244648B1 (ko) 2017-12-08 2021-04-26 주식회사 엘지화학 포토폴리머 조성물
WO2019112358A1 (fr) * 2017-12-08 2019-06-13 주식회사 엘지화학 Composition photopolymère
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
EP3710876A4 (fr) 2018-01-08 2022-02-09 DigiLens Inc. Systèmes et procédés de fabrication de cellules de guide d'ondes
WO2019135796A1 (fr) 2018-01-08 2019-07-11 Digilens, Inc. Systèmes et procédés d'enregistrement à haut débit de réseaux holographiques dans des cellules de guide d'ondes
WO2019178614A1 (fr) 2018-03-16 2019-09-19 Digilens Inc. Guides d'ondes holographiques incorporant une commande de biréfringence et procédés pour leur réalisation
WO2019237117A1 (fr) 2018-06-08 2019-12-12 The Regents Of The University Of Colorado, A Body Corporate Photopolymères à deux étages à plage dynamique élevée
WO2020023779A1 (fr) 2018-07-25 2020-01-30 Digilens Inc. Systèmes et procédés pour fabriquer une structure optique multicouches
JP2022520472A (ja) 2019-02-15 2022-03-30 ディジレンズ インコーポレイテッド 統合された格子を使用してホログラフィック導波管ディスプレイを提供するための方法および装置
WO2020172154A1 (fr) * 2019-02-18 2020-08-27 The Regents Of The University Of Colorado, A Body Corporate Polymères de réseau et leurs procédés de fabrication et d'utilisation
WO2020186113A1 (fr) 2019-03-12 2020-09-17 Digilens Inc. Rétroéclairage de guide d'ondes holographique et procédés de fabrication associés
US20200386947A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing
CN114341729A (zh) 2019-07-29 2022-04-12 迪吉伦斯公司 用于使像素化显示器的图像分辨率和视场倍增的方法和设备
WO2021041949A1 (fr) 2019-08-29 2021-03-04 Digilens Inc. Réseaux de bragg sous vide et procédés de fabrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700949A2 (fr) 1994-09-08 1996-03-13 ARCO Chemical Technology, L.P. Catalyseurs hautement actifs de cyanure de métal de double
WO2003014178A1 (fr) * 2001-08-07 2003-02-20 Inphase Technologies, Inc. Procede et composition pour la production de masse rapide d'articles d'enregistrement holographique
WO2008125199A1 (fr) 2007-04-11 2008-10-23 Bayer Materialscience Ag Acrylates d'uréthane aromatiques à indice de réfraction élevé
WO2008125229A1 (fr) 2007-04-11 2008-10-23 Bayer Materialscience Ag Supports d'enregistrement avantageux pour applications holographiques

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3374869D1 (en) * 1983-09-22 1988-01-21 Toray Industries Resin material for plastic lens and lens composed thereof
RU2035762C1 (ru) * 1992-07-28 1995-05-20 Предприятие "Спекл" Способ изготовления голографических этикеток
GB9410578D0 (en) * 1994-05-26 1994-07-13 London Hospital Med Coll Novel (meth)acrylate monomers and denture base compositions prepared therefrom
US5679710A (en) * 1994-11-01 1997-10-21 London Hospital Medical College High refractive index and/or radio-opaque resins systems
US6765061B2 (en) * 2001-09-13 2004-07-20 Inphase Technologies, Inc. Environmentally durable, self-sealing optical articles
RU2222038C2 (ru) * 2002-01-08 2004-01-20 Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН Фотополимерная композиция для записи голограмм
JP4574971B2 (ja) 2003-09-26 2010-11-04 大日本印刷株式会社 光ラジカル重合開始剤、それを用いた感光性樹脂組成物及び物品
TW200532403A (en) * 2004-02-24 2005-10-01 Nippon Paint Co Ltd Volume hologram recording photosensitive composition and its use
JP4463649B2 (ja) 2004-03-30 2010-05-19 大日本印刷株式会社 光ラジカル重合開始剤、感光性樹脂組成物及び、物品
US7736818B2 (en) * 2004-12-27 2010-06-15 Inphase Technologies, Inc. Holographic recording medium and method of making it
TW200702954A (en) * 2005-07-11 2007-01-16 Toagosei Co Ltd Volume hologram recording material, the method of processing thereof and the recording medium
US20100039685A1 (en) * 2006-09-05 2010-02-18 Mitsubishi Chemical Corporation Volume hologram optical recording medium, composition for forming volume hologram recording layer, volume hologram recording material, and volume hologram optical recording method
JP5493262B2 (ja) 2006-10-25 2014-05-14 三菱化学株式会社 体積ホログラム光記録媒体、体積ホログラム記録層形成用組成物及び体積ホログラム記録材料
US8298726B2 (en) * 2007-02-05 2012-10-30 Nippon Steel Chemical Co., Ltd. Volume phase hologram recording material and optical information recording medium
JP5167668B2 (ja) * 2007-03-30 2013-03-21 大日本印刷株式会社 感光性樹脂組成物、及び物品
US8192898B2 (en) * 2007-03-30 2012-06-05 Daikin Industries, Ltd. Composition for fluorine-containing volume holographic data recording material and fluorine-containing volume holographic data recording media made of same
JP5115002B2 (ja) * 2007-03-30 2013-01-09 大日本印刷株式会社 重合性化合物、それを用いた高分子化合物、及び樹脂組成物
CN101034257B (zh) * 2007-04-06 2010-09-08 上海复旦天臣新技术有限公司 用于全息记录的感光薄膜及其制备方法
JP4874854B2 (ja) * 2007-04-10 2012-02-15 富士フイルム株式会社 ホログラフィック記録用組成物およびホログラフィック記録媒体
CN101657483A (zh) * 2007-04-11 2010-02-24 拜尔材料科学股份公司 基于聚(ε-己内酯)聚酯多元醇的辐射交联和热交联PU系统
RU2470953C2 (ru) * 2007-04-11 2012-12-27 Байер Матириальсайенс Аг Радиационно-сшиваемые и термически сшиваемые полиуретановые системы на основе блок-сополимеров, реагирующих с изоцианатами
WO2010011899A1 (fr) * 2008-07-24 2010-01-28 Inphase Technologies, Inc. Support de stockage holographique et procédé de diffusion commandée de monomère photoactif
EP2154128B1 (fr) * 2008-08-08 2010-12-29 Bayer MaterialScience AG Uréthane acrylates à base de phénylisocyanate ayant un index de rupture élevé
IL200996A0 (en) * 2008-10-01 2010-06-30 Bayer Materialscience Ag Photopolymer formulations having a low crosslinking density
CA2738835A1 (fr) * 2008-10-01 2010-04-08 Bayer Materialscience Ag Formulations de polyurethanne a base de prepolymeres pour la fabrication de supports holographiques
IL200995A0 (en) * 2008-10-01 2010-06-30 Bayer Materialscience Ag Polyether-based polyurethane formulations for the production of holographic media
IL200997A0 (en) * 2008-10-01 2010-06-30 Bayer Materialscience Ag Special polyether-based polyurethane formulations for the production of holographic media
IL200722A0 (en) * 2008-10-01 2010-06-30 Bayer Materialscience Ag Photopolymer compositions for optical elements and visual displays
EP2218744A1 (fr) 2009-02-12 2010-08-18 Bayer MaterialScience AG Procédé de fabrication de photopolymères holographiques sur des films polymères
EP2218743A1 (fr) * 2009-02-12 2010-08-18 Bayer MaterialScience AG Formules de polyuréthane à base de prépolymère pour la fabrication de films holographiques
EP2219073B1 (fr) 2009-02-17 2020-06-03 Covestro Deutschland AG Supports holographiques et compositions de photopolymère
RU2570662C9 (ru) * 2009-11-03 2016-07-20 Байер Матириальсайенс Аг Фторуретаны в качестве добавки в фотополимерной композиции
JP5793147B2 (ja) * 2009-11-03 2015-10-14 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG 新規な非結晶化メタクリレート、その製造方法およびその使用
KR101782182B1 (ko) * 2009-11-03 2017-09-26 코베스트로 도이칠란드 아게 상이한 기록 공단량체를 갖는 광중합체 제제
US8808946B2 (en) * 2009-11-03 2014-08-19 Bayer Materialscience Ag Urethane acrylate having a high refractive index and reduced double bond density
WO2011054791A1 (fr) * 2009-11-03 2011-05-12 Bayer Materialscience Ag Procédé de production d'un film holographique
ATE548730T1 (de) * 2009-11-03 2012-03-15 Bayer Materialscience Ag Photopolymerformulierungen mit einstellbarem mechanischem modul guv
US8877408B2 (en) * 2009-11-03 2014-11-04 Bayer Materialscience Ag Urethanes used as additives in a photopolymer formulation
WO2011054796A1 (fr) * 2009-11-03 2011-05-12 Bayer Materialscience Ag Procédé de sélection d'additifs dans des photopolymères
EP2497085B1 (fr) * 2009-11-03 2014-02-12 Bayer Intellectual Property GmbH Procédé de fabrication d'un film holographique
EP2531889B1 (fr) * 2010-02-02 2020-06-03 Covestro Deutschland AG Utilisation d'une formulation de photopolymère comprenant des monomères d'écriture à base d'ester pour la fabrication des médias holographiques
EP2531892B1 (fr) * 2010-02-02 2016-01-27 Covestro Deutschland AG Utilisation d'une composition de photopolymère contenant des monomères d'écriture à base de triazine
EP2372454A1 (fr) * 2010-03-29 2011-10-05 Bayer MaterialScience AG Formulation photopolymère destinée à la fabrication d'un hologramme visible
BR112013003243A2 (pt) * 2010-08-11 2017-06-13 Bayer Ip Gmbh monômeros de escrita de (metil) acrilato difuncionais
EP2450893A1 (fr) * 2010-11-08 2012-05-09 Bayer MaterialScience AG Formule photopolymère pour la fabrication de supports holographiques dotés de polymères à matrice hautement réticulés
ES2511215T3 (es) * 2012-01-05 2014-10-22 Bayer Intellectual Property Gmbh Estructura en capas con una capa protectora y una capa de fotopolímero expuesta a radiación

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700949A2 (fr) 1994-09-08 1996-03-13 ARCO Chemical Technology, L.P. Catalyseurs hautement actifs de cyanure de métal de double
WO2003014178A1 (fr) * 2001-08-07 2003-02-20 Inphase Technologies, Inc. Procede et composition pour la production de masse rapide d'articles d'enregistrement holographique
WO2008125199A1 (fr) 2007-04-11 2008-10-23 Bayer Materialscience Ag Acrylates d'uréthane aromatiques à indice de réfraction élevé
WO2008125229A1 (fr) 2007-04-11 2008-10-23 Bayer Materialscience Ag Supports d'enregistrement avantageux pour applications holographiques

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. KOGELNIK, THE BELL SYSTEM TECHNICAL JOURNAL, vol. 48, no. 9, November 1969 (1969-11-01), pages 2909,2947
HOUBEN-WEYL: "Methoden der organischen Chemie", vol. XIV/1, 1961, GEORG THIEME VERLAG, pages: 433FF
P. HARIHARAN: "Optical Holography", 1996, CAMBRIDGE UNIVERSITY PRESS

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198841A (zh) * 2012-01-05 2013-07-10 拜耳知识产权有限责任公司 包括保护层和经曝光的光聚合物层的层压结构
KR20130080810A (ko) * 2012-01-05 2013-07-15 바이엘 인텔렉쳐 프로퍼티 게엠베하 보호 층 및 노출된 광중합체 층을 포함하는 적층 구조물
JP2013140365A (ja) * 2012-01-05 2013-07-18 Bayer Intellectual Property Gmbh 保護層および露光感光性ポリマー層を含んでなる積層構造物
CN103198841B (zh) * 2012-01-05 2017-09-22 科思创德国股份有限公司 包括保护层和经曝光的光聚合物层的层压结构
KR102003564B1 (ko) * 2012-01-05 2019-07-24 바이엘 인텔렉쳐 프로퍼티 게엠베하 보호 층 및 노출된 광중합체 층을 포함하는 적층 구조물
JP2015531886A (ja) * 2012-08-13 2015-11-05 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG 出力結合素子を有する導光板
EP4043961A1 (fr) * 2021-02-11 2022-08-17 Xetos AG Système 2k
WO2022171814A1 (fr) * 2021-02-11 2022-08-18 Xetos Ag Système à deux composants

Also Published As

Publication number Publication date
RU2542981C9 (ru) 2015-12-10
RU2012122591A (ru) 2013-12-10
RU2542981C2 (ru) 2015-02-27
EP2497081B1 (fr) 2013-10-16
CN102667936A (zh) 2012-09-12
JP2013510335A (ja) 2013-03-21
TW201133138A (en) 2011-10-01
JP5925687B2 (ja) 2016-05-25
TWI489204B (zh) 2015-06-21
US20120214090A1 (en) 2012-08-23
KR101746886B1 (ko) 2017-06-27
KR20120101668A (ko) 2012-09-14
CN102667936B (zh) 2016-03-30
US8771904B2 (en) 2014-07-08
EP2497081A1 (fr) 2012-09-12

Similar Documents

Publication Publication Date Title
EP2497081B1 (fr) Procédé de fabrication de supports holographiques
EP2497085B1 (fr) Procédé de fabrication d&#39;un film holographique
EP2497080B1 (fr) Procédé de fabrication d&#39;un film holographique
EP2317511B1 (fr) Formules de photopolymères dotées d&#39;un module mécanique réglable Guv
EP2497083B1 (fr) Formule de photopolymères dotée de co-monomères d&#39;écriture différents
EP2172504B1 (fr) Formules de photopolymères ayant une densité de réseau réduite
EP2531889B1 (fr) Utilisation d&#39;une formulation de photopolymère comprenant des monomères d&#39;écriture à base d&#39;ester pour la fabrication des médias holographiques
EP2638089B1 (fr) Formulation de photopolymère pour la fabrication de supports holographiques
EP2496588B1 (fr) Uréthane-acrylates dotés d&#39;un indice de rupture et d&#39;une épaisseur à double liaison réduite
EP2531892B1 (fr) Utilisation d&#39;une composition de photopolymère contenant des monomères d&#39;écriture à base de triazine
EP2342249B1 (fr) Formules de polyuréthane à base de prépolymère pour la fabrication de supports holographiques
EP2218745B1 (fr) Formules de polyuréthane à base de prépolymère pour la fabrication de films holographiques
EP2497084B1 (fr) Procédé de sélection pour additifs dans des photopolymères
EP3230261B1 (fr) Acrylate naphtyle comme monomère d&#39;écriture pour photo-polymères
EP2372454A1 (fr) Formulation photopolymère destinée à la fabrication d&#39;un hologramme visible
EP2396359A1 (fr) Compositions photopolymériques en tant que formulations imprimables
EP2354845A1 (fr) Monomères d&#39;écriture à base de (méth)acrylate
EP2496617B1 (fr) Uréthanes utilisés comme additifs dans une formulation photopolymère
EP3313826A1 (fr) Triazines substituées et procédé pour leur production

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060490.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010771478

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13505154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3908/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012537364

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127014265

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012122591

Country of ref document: RU