WO2011052694A1 - モード偏波変換器 - Google Patents

モード偏波変換器 Download PDF

Info

Publication number
WO2011052694A1
WO2011052694A1 PCT/JP2010/069211 JP2010069211W WO2011052694A1 WO 2011052694 A1 WO2011052694 A1 WO 2011052694A1 JP 2010069211 W JP2010069211 W JP 2010069211W WO 2011052694 A1 WO2011052694 A1 WO 2011052694A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide structure
conductor
frequency signal
pair
polarization converter
Prior art date
Application number
PCT/JP2010/069211
Other languages
English (en)
French (fr)
Inventor
和樹 早田
健 竹之下
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2011538485A priority Critical patent/JP5343134B2/ja
Publication of WO2011052694A1 publication Critical patent/WO2011052694A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate

Definitions

  • the present invention relates to a mode polarization converter.
  • the TE10 mode waveguide has a rectangular cross section and is limited in the length of the long and short sides.
  • polarization conversion that freely changes the long side and the short side of the waveguide is desired.
  • the narrow tube walls of the two second rectangular waveguides are symmetrically connected to both wide tube walls of the first rectangular waveguide.
  • the configuration is disclosed in, for example, Japanese Patent Publication No. 34-10718.
  • the structure of the conversion part becomes large.
  • the mode polarization converter according to the embodiment of the present invention includes a short side whose cross-sectional shape extends in the first direction and a second direction orthogonal to the first direction in a plane direction orthogonal to the transmission direction of the high-frequency signal.
  • a rectangular first waveguide structure formed with a long side extending in the direction of the first waveguide structure, the first waveguide structure located in the transmission direction of the first waveguide structure, and a short cross-sectional shape extending in the third direction in the plane direction
  • a rectangular second waveguide structure formed by a side and a long side extending in a fourth direction orthogonal to the third direction, and the rectangle and the second of the first waveguide structure And is connected between the first waveguide structure and the second waveguide structure, and in the plane direction, the first waveguide structure
  • a conversion structure having a rectangular coupling hole having a short side extending in a fifth direction between one direction and the third direction.
  • a small mode polarization converter can be provided.
  • FIG. 2 is an exploded perspective view of the mode polarization converter shown in FIG. 1. It is a figure which shows schematic structure of the conversion structure with which the mode polarization converter shown in FIG. 1 is provided. It is a figure which shows the electromagnetic field analysis result of the mode polarized-wave converter shown in FIG. It is a diagram which shows the frequency characteristic of the mode polarized-wave converter shown in FIG. It is a perspective view which shows schematic structure of 2nd Embodiment of the mode polarization converter of this invention.
  • FIG. 7 is a cross-sectional view taken along the line IIV-IIV shown in FIG. FIG.
  • FIG. 7 is a cross-sectional view taken along line IIIV-IIIV shown in FIG.
  • FIG. 7 is a cross-sectional view taken along the line IX-IX shown in FIG. It is a figure which shows the electromagnetic field analysis result of the mode polarized-wave converter shown in FIG.
  • FIG. 7 is a diagram showing frequency characteristics of the mode polarization converter shown in FIG. 6.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII shown in FIG. It is the figure which abbreviate
  • FIG. 13 is a sectional view taken along line XV-XV shown in FIG.
  • FIG. 13 is a cross-sectional view taken along the line XVII-XVII shown in FIG. It is the figure which abbreviate
  • FIGS. 1 to 4 are diagrams showing a first embodiment as an example of a mode polarization converter of the present invention.
  • the mode polarization converter 10 shown in FIGS. 1 to 4 includes a first waveguide structure 20, a second waveguide structure 30, and a conversion structure 40.
  • waveguides are employed as the first waveguide structure 20 and the second waveguide structure.
  • the first waveguide structure 20, the second waveguide structure 30, and the conversion structure 40 are connected in a line along the transmission direction for transmitting a high-frequency signal.
  • the second waveguide structure 30 is located on an extension line in the transmission direction of the first waveguide structure.
  • the conversion structure 40 is connected between the first waveguide structure 20 and the second waveguide structure 30.
  • the transmission direction of the high frequency signal is illustrated as a forward direction of an arrow Z.
  • the first waveguide structure 20 has a function of transmitting a high-frequency signal.
  • the first waveguide structure 20 extends in the direction in which a high-frequency signal is transmitted.
  • the first waveguide structure 20 has a propagation part through which a high-frequency signal propagates. This propagation part has a rectangular cross-sectional shape in a plane direction orthogonal to the transmission direction of the high-frequency signal.
  • a waveguide that transmits electromagnetic waves in the TE10 mode is employed as the first waveguide structure 20.
  • the first direction corresponds to the electric field direction
  • the second direction corresponds to the magnetic field direction
  • the first direction and the second direction are orthogonal to each other.
  • the length a of the side 20a along the first direction is shorter than the length b of the side 20b along the second direction.
  • the side 20a is a short side and the side 20b is a long side.
  • the first direction is illustrated as the forward direction of the arrow X
  • the second direction is illustrated as the forward direction of the arrow Y.
  • the first direction and the second direction are orthogonal to the transmission direction of the high-frequency signal.
  • the plane direction orthogonal to the transmission direction is the XY plane direction defined by the first direction and the second direction.
  • the second waveguide structure 30 has a function of transmitting a high-frequency signal.
  • the first waveguide structure 20 extends in the high-frequency signal transmission direction.
  • the second waveguide structure 30 has a propagation part through which a high-frequency signal propagates. This propagation part has a rectangular cross-sectional shape in a plane direction orthogonal to the transmission direction of the high-frequency signal.
  • a waveguide that transmits electromagnetic waves in the TE10 mode is employed as the second waveguide structure 30.
  • the third direction corresponds to the electric field direction
  • the fourth direction corresponds to the magnetic field direction.
  • the length a of the side 30a along the fourth direction is longer than the length b of the side 30b along the third direction.
  • the side 30a is a long side
  • the side 30b is a short side.
  • the first waveguide structure 20 and the second waveguide structure 30 are disposed so that the polarization directions of the electromagnetic waves are orthogonal to each other.
  • the third direction is orthogonal to the first direction and is along the second direction
  • the fourth direction is orthogonal to the second direction and is along the first direction. If the first waveguide structure 20 is wide when viewed in the XY plane, the second waveguide structure 30 is arranged to be narrow.
  • the conversion structure 40 contributes to conversion of the polarization direction of the high-frequency signal.
  • the conversion structure 40 is connected between the first waveguide structure 20 and the second waveguide structure 30.
  • one end on the opposite side of the arrow Z is connected to one end 20c of the first waveguide structure 20, and one end on the forward direction side of the arrow Z is the second waveguide structure.
  • 30 is connected to one end 30c. These one ends 20c and 30c are orthogonal to the transmission direction of the high-frequency signal and spread in the XY plane direction.
  • the conversion structure 40 has a coupling hole 40a.
  • the coupling hole 40 a is electromagnetically coupled to the first waveguide structure 20 and the second waveguide structure 30.
  • the center of the propagation part of the first waveguide structure 20, the center of the propagation part of the second waveguide structure 30, and the conversion structure 40 of the coupling hole 40a are centered. It is arranged to match.
  • the center refers to the center in the XY plane direction.
  • the coupling hole 40a is a region 40d where a propagation part facing one end 30c of the first waveguide structure 20 and one end 30c of the second waveguide structure 30 overlaps when viewed in the direction opposite to the arrow Z. Is provided.
  • the region 40d has a square shape in which each side is along the first direction or the second direction, and the length of each side is a.
  • the square region 40d is located at the center of the coupling hole 40a in the XY plane direction.
  • an angle of 45 ° with respect to each side of the square region 40d The coupling hole 40a is formed at an inclination. That is, the length of the coupling hole 40a is shorter than a ⁇ ⁇ 2, which is the length of the diagonal line of the square region 40d.
  • This square shape is indicated by a broken line in FIG.
  • the coupling hole 2a only needs to be opened electromagnetically so that a high-frequency signal can pass therethrough.
  • a dielectric may be provided in the coupling hole 40a. By providing the dielectric in the coupling hole 40a, the width of the coupling hole 40a can be shortened.
  • the coupling hole 40a has a rectangular shape, and the length of the side 40b along the fifth direction is shorter than the length of the side 40c along the sixth direction.
  • the side 40b is a short side and the side 40c is a long side.
  • the short side 40b of the coupling hole 40a is inclined with respect to the first direction in which the short side 20a of the first waveguide structure 20 extends and the third direction in which the short side 20b of the second waveguide structure 30 extends. ing.
  • the fifth direction in which the short side 40b of the coupling hole 40a extends is in the direction between the first direction and the third direction.
  • the “direction between” refers to any direction that is turned in the process of rotation when rotating the direction of the direction from the first direction to the third direction about an arbitrary point as an axis.
  • the conversion structure 40 of the present embodiment has a square cross section in the plane direction orthogonal to the transmission direction of the high frequency signal.
  • the two sets of opposite sides of the square extend in the first direction and the second direction.
  • the length of the outer peripheral portion of the long side portion of the first waveguide structure 20 is employed. By setting it as such a shape, it can suppress that a high frequency signal leaks through the conversion structure 40.
  • FIG. since the conversion structure 40 has the same size as the long side 20b of the first waveguide structure 20 and the long side 20a of the second waveguide structure 30, the conversion structure 40 protrudes in the plane direction. Can be suppressed. Thus, it is possible to reduce the size while suppressing loss.
  • the length of the conversion structure 40 in the transmission direction of the high frequency signal is not limited.
  • the loss fluctuates in the vicinity of the occurrence of the standing wave by making the length of the conversion structure 40 shorter than 1/2 of the shortest wave length of the high-frequency signal transmitted through the conversion structure 40. Can be prevented.
  • the conversion structure 40 is disposed between the first waveguide structure 20 and the second waveguide structure 30.
  • the high-frequency signal that has propagated through the propagation part of the first waveguide structure 20 has its plane of polarization converted when entering the coupling hole 40a of the conversion structure 40 from the propagation part.
  • the high-frequency signal whose polarization plane has been changed in the coupling hole 40 a is converted when it passes through the coupling hole 40 a and enters the propagation portion of the second waveguide structure 30.
  • the plane of polarization of the high-frequency signal propagating through the first waveguide structure 20 is converted through the conversion structure 40 and propagates through the second waveguide structure 30.
  • the polarization plane of the high-frequency signal propagating in the TE10 mode is 90 ° polarized by the conversion structure 40 with a low conversion loss.
  • first waveguide structure 20, the second waveguide structure 30, and the conversion structure 40 are not particularly limited as long as they can transmit a high-frequency signal to be transmitted.
  • a dielectric may be provided.
  • the propagation portion of the first waveguide structure 20 and the second waveguide structure 30 and the conversion structure 40 can reduce leakage of high-frequency signals to the outside by surrounding the periphery with metal. it can.
  • the simulation result of the electromagnetic field distribution of the mode polarization converter employing the above-described configuration is shown in FIG. From the results shown in FIG. 4, it was confirmed that the electromagnetic field distribution of the high-frequency signal to be transmitted can be converted by 90 ° between the first waveguide structure 20 and the second waveguide structure 30.
  • the length of the short sides 20a, 30b is 0.45 mm
  • the length of the long sides 20b, 30a is 0.9 mm
  • the length of the conversion structure 40 in the high-frequency signal transmission direction is 0.4 mm.
  • the width of the coupling hole 40a was 0.3 mm
  • the length was 0.9 mm.
  • a dielectric was provided in the propagation part of the first waveguide structure 20 and the second waveguide structure 30 and in the coupling hole 40 a of the conversion structure 40.
  • the relative permittivity of this dielectric was 9.4, and the relative permeability was 1.
  • the frequency of the high-frequency signal to be transmitted was 76.5 GHz.
  • the wavelength ⁇ g when the high-frequency signal propagates through the dielectric is about 1.8 mm.
  • the length of the conversion structure 40 in the transmission direction of the high frequency signal is 0.22 times ⁇ g. That is, it was confirmed that the mode polarization converter of this example can be polarized even if the length is shorter than one wavelength of the high-frequency signal.
  • the vertical axis represents the transmission loss (unit: dB) of the high frequency signal
  • the horizontal axis represents the frequency.
  • the solid line indicates the transmission characteristic
  • the broken line indicates the reflection characteristic.
  • the first waveguide structure 20 side in the conversion structure 40 is a port 1
  • the second waveguide structure 30 side is a port 2.
  • this mode polarization converter has a transmission characteristic with a wide band with little loss with respect to a high frequency signal of 77 to 78 GHz.
  • FIGS. 6 to 9 are diagrams showing a second embodiment as another example of the mode polarization converter of the present invention.
  • the mode polarization converter 10A shown in FIGS. 6 to 9 employs the first waveguide structure 20A instead of the first waveguide structure 20, and replaces the second waveguide structure 30 with the first waveguide structure 20A.
  • the second waveguide structure 30A is employed, and the conversion structure 40A is employed instead of the conversion structure 40.
  • Each configuration of the mode polarization converter 10A is arranged at the same position as each configuration of the mode polarization converter 10 shown in FIG.
  • a laminated waveguide structure is employed as the first waveguide structure 20A, the second waveguide structure 30A, and the conversion structure 40A of the present embodiment.
  • each configuration of the mode polarization converter 10A will be described.
  • the first waveguide structure 20A has a first dielectric 21, a pair of first conductor layers 22, 23, and first conductor groups 24, 25.
  • the first conductor layers 22 and 23 and the first through conductor groups 24 and 25 function as equivalent to the tube wall of the waveguide.
  • the first dielectric 21 of the present embodiment is formed by sequentially laminating a plurality of first dielectric layers 211 to 216 in the first direction.
  • a pair of first conductor layers 22 and 23 are disposed between the first dielectric layers 211 to 216.
  • the pair of first conductor layers 22 and 23 function as a tube wall of the waveguide in the X direction.
  • the one located on the forward direction side of the arrow X is the first conductor layer 22, and the one located on the opposite direction side of the arrow X is the first conductor layer 23.
  • the first conductor layer 22 is disposed between the first dielectric layer 211 and the first dielectric layer 212
  • the first conductor layer 23 is disposed between the first dielectric layer 215 and the first dielectric layer 216. Has been.
  • a pair of 1st conductor layers 22 and 23 are long along the transmission direction, and are spaced apart by the length a in the X direction.
  • the distance between the pair of first conductor layers 22 and 23 is the length along the first direction of the propagation portion of the first waveguide structure 20A.
  • the pair of first conductor layers 22 and 23 are electrically connected via the first conductor groups 24 and 25.
  • the first conductor groups 24 and 25 function as equivalent to the tube wall of the waveguide in the Y direction.
  • the one located on the forward direction side of the arrow Y is the first conductor group 24, and the one located on the opposite direction side of the arrow Y is the second conductor group 35. Yes.
  • Each of the first conductor groups 24 and 25 is configured by arranging the first conductors along the Z direction.
  • the first conductors constituting the first conductor groups 24 and 25 are arranged with an interval of 1 ⁇ 2 or less of the shortest wave length among the high-frequency signals transmitted through the first waveguide structure 20A.
  • Each of the first conductors constituting the two rows of the first conductor groups 24 and 25 is provided in the through holes of the first dielectric layers 212 to 215, and penetrates the first dielectric layers 212 to 215. Yes.
  • the two rows of first conductor groups 24 and 25 are separated by a length b in the Y direction.
  • the distance between the pair of first through conductor groups 22 and 23 is the length along the second direction of the propagation portion of the first waveguide structure 20A.
  • the second waveguide structure 30A includes a second dielectric 31, a pair of second conductor layers 32 and 33, and second conductor groups 34 and 35.
  • the second conductor layers 32 and 33 and the second through conductor groups 34 and 35 function as equivalent to the tube wall of the waveguide.
  • the second dielectric 31 of this embodiment is formed by sequentially stacking a plurality of second dielectric layers 311 to 316 in the first direction.
  • a pair of second conductor layers 32 and 33 are disposed on the upper surface of the second dielectric layer 311 and the lower surface of the second dielectric layer 316.
  • the pair of second conductor layers 32 and 33 function as a tube wall of the waveguide in the X direction.
  • the one located on the forward direction side of the arrow X is the second conductor layer 32
  • the one located on the opposite direction side of the arrow X is the second conductor layer 33.
  • the second conductor layer 32 is disposed on the upper surface of the second dielectric layer 311, and the second conductor layer 33 is disposed on the lower surface of the second dielectric layer 316.
  • a pair of 2nd conductor layers 32 and 33 are long along the transmission direction, and are spaced apart by the length b in the X direction.
  • the distance between the pair of second conductor layers 32 and 33 is the length b along the first direction of the propagation portion of the second waveguide structure 30A.
  • the pair of second conductor layers 32 and 33 are electrically connected via the second conductor groups 34 and 35.
  • the second conductor groups 34 and 35 function as equivalent to the tube wall of the waveguide in the Y direction.
  • the one located on the forward direction side of the arrow Y is the second conductor group 34
  • the one located on the opposite direction side of the arrow Y is the second conductor group 35. Yes.
  • Each of the second conductor groups 34 and 35 is configured by arranging the second conductors along the Z direction.
  • the second conductors constituting the second conductor groups 34 and 35 are arranged with an interval of 1/2 or less of the shortest wave length among the high-frequency signals transmitted through the second waveguide structure 30A.
  • Each of the second conductors constituting the second row of second conductor groups 34 and 35 is provided in the through hole of the second dielectric layer 311 to 316, and penetrates through the second dielectric layer 311 to 316. Yes.
  • the two rows of second conductor groups 34 and 35 are separated by a length b in the Y direction.
  • the distance between the pair of second through conductor groups 32 and 33 is the length along the second direction of the propagation portion of the second waveguide structure 30A.
  • the conversion structure 40A includes a third dielectric 41, a pair of third conductor layers 42 and 43, third conductor groups 44 and 45, and a fourth conductor group 46.
  • the third conductor layers 42 and 43 and the third through conductor groups 44 and 45 function as equivalent to the tube wall of the waveguide.
  • the fourth conductor group 46 functions as one corresponding to the coupling hole 40a.
  • the third dielectric 41 of this embodiment is formed by sequentially stacking a plurality of third dielectric layers 411 to 416 in the first direction.
  • a pair of third conductor layers 42 and 43 are disposed on the upper surface of the third dielectric layer 411 and the lower surface of the third dielectric layer 416.
  • the pair of third conductor layers 42 and 43 function as a tube wall of the waveguide in the X direction.
  • the one located on the forward direction side of the arrow X is the third conductor layer 42
  • the one located on the opposite direction side of the arrow X is the third conductor layer 43.
  • the third conductor layer 44 is disposed on the upper surface of the second dielectric layer 311, and the third conductor layer 43 is disposed on the lower surface of the third dielectric layer 416.
  • a pair of 3rd conductor layers 42 and 43 are long along the transmission direction, and are spaced apart by the length b in the X direction.
  • the third conductor layer 42 is connected to the second conductor layer 32, and the third conductor layer 43 is connected to the second conductor layer 33.
  • the third conductor layer 42 is electrically connected to the first conductor layer 22 via the third conductor groups 44 and 45, and the third conductor layer 43 is connected to the first conductor layer 23 with the third conductor groups 44 and 45. It is electrically connected via.
  • the pair of third conductor layers 42 and 43 are electrically connected via third conductor groups 44 and 45.
  • the third conductor groups 44 and 45 function as equivalent to the tube wall of the waveguide in the Y direction.
  • the one located on the forward direction side of the arrow Y is the third conductor group 44
  • the one located on the opposite direction side of the arrow Y is the third conductor group 45. Yes.
  • Each of the third conductor groups 44 and 45 is configured by arranging the third conductors along the Z direction.
  • the 3rd conductor which comprises the 3rd conductor groups 44 and 45 is arrange
  • Each of the third conductors constituting the second row of third conductor groups 44 and 45 is provided in the through hole of the third dielectric layer 411 to 416, and penetrates through the third dielectric layer 411 to 416. Yes. Two rows of third conductor groups 44 and 45 are spaced apart by a length b in the Y direction.
  • a fourth conductor group 46 is provided between the two rows of third conductor groups 44 and 45.
  • Each of the fourth conductors constituting the fourth conductor group 46 is arranged in two rows shifted stepwise for each of the third dielectric layers 411 to 416.
  • Each of the fourth conductors in each column is arranged shifted in the second direction.
  • the fourth conductor group 46 and the third conductor groups 44 and 45 that are arranged in a staircase pattern are caused to function as corresponding to the coupling hole 40a in the conversion structure 40. That is, in this conversion structure 40A, the region surrounded by the two rows of the fourth conductors and the two rows of the third conductors functions as an equivalent of the coupling hole 40a.
  • the fourth conductors in each row are arranged with an interval of 1 ⁇ 2 wavelength or less of the high-frequency signal to be transmitted. By setting the interval between the fourth conductors to 1 ⁇ 2 wavelength or less of the high-frequency signal to be transmitted, leakage of the high-frequency signal can be reduced.
  • the two rows of fourth conductors are provided apart by the width of the coupling hole 40a.
  • each of the fourth conductors constituting the fourth conductor group 46 is arranged in two rows shifted in a stepped manner having a 45 ° gradient.
  • “displaced in a staircase having a 45 ° gradient” means that the imaginary line connecting the centers of the bottom surfaces of the individual fourth conductors has an inclination of 45 °.
  • the distance between 32 and 33 is 0.9 mm
  • the length of the coupling structure 40A in the high-frequency signal transmission direction is 0.8 mm
  • the distance between the two rows of the fourth conductor group 46 is 0.29 mm
  • the length of each row was 0.77 mm
  • the diameters of the first to fourth conductors were 0.1 mm.
  • the relative permittivity of the first dielectric 21, the second dielectric 31, and the third dielectric 41 was set to 9.4 corresponding to alumina ceramics, and the relative permeability was set to 1.
  • the frequency of the high-frequency signal to be transmitted was 76.5 GHz. Under the above numerical conditions, the wavelength ⁇ g when the high-frequency signal propagates through the dielectric is about 1.8 mm.
  • the length of the conversion structure 40 in the transmission direction of the high frequency signal is 0.22 times ⁇ g. That is, it was confirmed that the mode polarization converter of this example can be polarized even if the length is shorter than one wavelength of the high-frequency signal.
  • the vertical axis represents the transmission loss (unit: dB) of the high-frequency signal
  • the horizontal axis represents the frequency.
  • the solid line indicates the pass characteristic
  • the broken line indicates the reflection characteristic.
  • the first waveguide structure 20A side of the conversion structure 40A is designated as port 1
  • the second waveguide structure 30A side is designated as port 2.
  • this mode polarization converter has a transmission characteristic with a wide band with little loss with respect to a high frequency signal of 77 to 78 GHz. Moreover, it has confirmed that it can be set as a filter with a wide pass band compared with the example shown in FIG.
  • FIGS. 12 to 18 are diagrams showing a second embodiment as another example of the mode polarization converter of the present invention.
  • the mode polarization converter 10B shown in FIGS. 12 to 18 employs the first waveguide structure 20B instead of the first waveguide structure 20, and replaces the second waveguide structure 30 with the first waveguide structure 20B.
  • the second waveguide structure 30B is employed, and the conversion structure 40B is employed instead of the conversion structure 40.
  • Each configuration of the mode polarization converter 10B is arranged at the same position as each configuration of the mode polarization converter 10 shown in FIG.
  • a laminated waveguide structure is employed as the first waveguide structure 20B, the second waveguide structure 30B, and the conversion structure 40B of the present embodiment.
  • each configuration of the mode polarization converter 10B will be described.
  • the first waveguide structure 20B includes a plurality of first dielectric bodies 21B, a plurality of first conductor layers 22B, and a plurality of first conductor groups 24B.
  • the first conductor layer 22B and the first through conductor group 24B function as equivalent to the tube wall of the waveguide.
  • a region surrounded by the first conductor layer 22B and the first through conductor group 24B is a propagation part.
  • the first dielectric 21B of the present embodiment is formed by sequentially laminating a plurality of first dielectric layers 21B in the high-frequency signal transmission direction.
  • a first conductor layer 22B is disposed between each of the plurality of first dielectric layers 21B.
  • Each of the plurality of first conductor layers 22B extends in the XY plane direction and is arranged in the transmission direction.
  • the plurality of first conductor layers 22B are arranged at intervals of 1/2 or less of the length of the shortest wave among the high-frequency signals transmitted through the first waveguide structure 20B. By setting the interval between the plurality of first conductor layers 22B to 1 ⁇ 2 wavelength or less of the high-frequency signal to be transmitted, leakage of the high-frequency signal can be reduced.
  • Each of the plurality of first conductor layers 22B is provided with a propagation hole 22Ba. In the propagation hole 22Ba, the length of the side along the first direction is shorter than the length of the side along the second direction.
  • the propagation holes 22Ba of the first conductor layers 22B are arranged side by side in the transmission direction.
  • Each of the plurality of first conductor layers 22B is electrically connected via the first conductor group 24B.
  • Each of the first conductors constituting the first conductor group 24B is provided in the through hole of the first dielectric layer 21B and penetrates through the first dielectric layer 21B.
  • the plurality of first conductors 241B are arranged so as to surround the periphery of the propagation hole 22Ba when viewed from the forward direction of the arrow Z.
  • the second waveguide structure 30B includes a plurality of second dielectric bodies 31B, a plurality of second conductor layers 32B, and a plurality of second conductor groups 34B.
  • the second conductor layer 32B and the second through conductor group 34B function as equivalent to the tube wall of the waveguide.
  • a region surrounded by the second conductor layer 32B and the second through conductor group 34B is a propagation part.
  • the second dielectric 31B of the present embodiment is formed by sequentially laminating a plurality of second dielectric layers 31B in the high-frequency signal transmission direction.
  • a second conductor layer 32B is disposed between each of the plurality of second dielectric layers 31B.
  • Each of the multiple second conductor layers 32B extends in the XY plane direction and is arranged in the transmission direction.
  • the plurality of second conductor layers 32B are arranged with an interval of 1/2 or less of the length of the shortest wave among the high-frequency signals transmitted through the second waveguide structure 30B. By setting the interval between the plurality of second conductor layers 32B to 1 ⁇ 2 wavelength or less of the high-frequency signal to be transmitted, leakage of the high-frequency signal can be reduced.
  • Each of the plurality of second conductor layers 32B is provided with a propagation hole 32Ba.
  • the propagation hole 32Ba has a side length along the second direction shorter than a side length along the first direction.
  • the propagation holes 32Ba of the second conductor layers 32B are arranged side by side in the transmission direction.
  • the plurality of second conductor layers 32B are electrically connected to each other through the second conductor group 34B.
  • Each of the second conductors constituting the second conductor group 34B is provided in the through hole of the second dielectric layer 31B and penetrates through the second dielectric layer 31B.
  • the plurality of second conductors 341 ⁇ / b> B are disposed so as to surround the propagation hole 32 ⁇ / b> Ba when viewed from the forward direction of the arrow Z.
  • the conversion structure 40B includes a third dielectric 41B, a pair of third conductor layers 42B and 43B, and a third conductor group 44B.
  • a pair of third conductor layers 42B and 43B are disposed on the upper and lower surfaces of the third dielectric layer 41B.
  • the pair of third conductor layers 42B and 43B the one located on the forward direction side of the arrow Z is the third conductor layer 42B, and the one located on the opposite direction side of the arrow X is the third conductor layer 43B.
  • Each of the pair of third conductor layers 42B and 43B extends in the XY plane direction and is aligned in the transmission direction.
  • the third conductor layer 42B is connected to the first conductor group 24B, and the third conductor layer 43B is connected to the second conductor group 34B.
  • the pair of first conductor layers 22B are arranged with an interval of 1/2 or less of the length of the shortest wave among the high-frequency signals transmitted through the conversion structure 40B.
  • Propagation holes 42Ba and 43Ba are provided in each of the pair of third conductor layers 42B and 43B.
  • the propagation holes 42Ba and 43Ba have a side length along the first direction shorter than a side length along the second direction.
  • the propagation holes 42Ba and 43Ba of the third conductor layers 42B and 43B are arranged side by side in the transmission direction.
  • the propagation holes 42Ba and 43Ba have a rectangular shape, and the length of the side along the fifth direction is shorter than the length b of the side along the sixth direction. In the following, the shorter side is the short side and the longer side is the long side.
  • the short sides of the propagation holes 42Ba and 43Ba are inclined with respect to the first direction in which the short side of the first waveguide structure 20B extends and the third direction in which the short side of the second waveguide structure 30B extends. Yes.
  • the fifth direction in which the short sides of the propagation holes 42Ba and 43Ba extend is in the direction between the first direction and the third direction.
  • the propagation hole 22Ba of the first waveguide structure 20B, the propagation hole 32Ba of the second waveguide structure 30B, and the propagation holes 42Ba and 43Ba of the conversion structure 40B are respectively It is arranged so that the centers are aligned.
  • the center refers to the center in the XY plane direction.
  • the propagation holes 42Ba and 43Ba are provided inside the region where the propagation part of the first waveguide structure 20B and the propagation part of the second waveguide structure 30 overlap when viewed in the direction opposite to the arrow Z. It has been.
  • This region has a square shape in which each side is along the first direction or the second direction, and the length of each side is a. This square shape is indicated by a broken line in FIG.
  • the pair of third conductor layers 42B and 43B are electrically connected via the third conductor group 44B.
  • Each of the third conductors 441B constituting the third conductor group 44B is provided in the through hole of the third dielectric 41B and penetrates through the third dielectric 41B.
  • the plurality of third conductors 441B are arranged so as to surround the periphery of the propagation hole 42Ba when viewed from the forward direction of the arrow Z.
  • a region surrounded by the third conductor group 44B and having the propagation holes 42Ba and 43Ba of the pair of third conductor layers 42B and 43B as both ends functions as a coupling hole.
  • the coupling hole is electromagnetically coupled to the propagation portion of the first waveguide structure 20B and the propagation portion of the second waveguide structure 30B.
  • the first dielectric 21B, the second dielectric 32B, and the third dielectric 42B have a square cross section in the XY plane direction.
  • the two sets of opposite sides of the square extend in the first direction and the second direction.
  • this conversion structure 40B is the same size as the 1st waveguide structure 20B and the 2nd waveguide structure 30B, it can suppress the protrusion to a surface direction. Thus, it is possible to reduce the size while suppressing loss.
  • the cross-sectional shape of the coupling holes 40a and 40Ba is rectangular, but it may not be a strict rectangle such as a rounded corner.
  • the first waveguide structure 20A, the second waveguide structure 30A, and the conversion structure 40A are configured separately. These structures 20A, 30A, and 40A may be partially integrally formed.
  • the first dielectric layers 211 to 216, the second dielectric layers 311 to 316, and the third dielectric layers 411 to 416 may be integrally formed.
  • the first conductor layers 22 and 23, the second conductor layers 32 and 33, and the third conductor layers 42 and 43 may be integrally formed.
  • each of the plurality of first conductors independently electrically connects the pair of first conductor layers 22 and 23, and each of the plurality of second conductors independently includes a pair of second conductors.
  • the layers 32 and 33 are electrically connected, and each of the plurality of third conductors independently connects the pair of third conductor layers 42 and 43. These first to third conductors may be electrically connected to each other.

Landscapes

  • Waveguides (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

 【課題】 小型のモード偏波変換器を提供する。 【解決手段】 高周波信号の伝送方向に対して直交する面方向において、断面形状が第1方向に延びる短辺と、前記第1方向に直交する第2方向に延びる長辺とで形成される矩形状の第1の導波構造体、該第1の導波構造体の前記伝送方向に位置し、前記面方向において、断面形状が第3方向に延びる短辺と、前記第3方向に直交する第4方向に延びる長辺とで形成される矩形状の第2の導波構造体、および、前記第1の導波構造体の前記矩形と前記第2の導波構造体の矩形とに中心を合わせて位置し、且つ前記第1の導波構造体と前記第2の導波構造体との間に接続されており、前記面方向において、前記第1方向と前記第3方向との間の第5方向に短辺が延びている矩形状の結合孔を有する変換構造体を含む、モード偏波変換器である。

Description

モード偏波変換器
 本発明は、モード偏波変換器に関する。
 高い周波数で使用される伝送路の1つにTE10モードの導波管がある。TE10モードの導波管は、断面が矩形状であり、長短辺の長さに制約がある。これに対して、設計の自由度を高めるため、導波管の長辺と短辺とを自由に変更する偏波変換が望まれている。
 このような90°偏波できるモード変換器として、第1の矩形導波管のうち幅広の両管壁に2個の第2の矩形導波管の幅の狭い管壁を左右対称に接続した構成が、例えば特公昭34-10718号公報に開示されている。しかしながら、この文献に記載されたモード変換器では、変換部分の構成が大きくなってしまう。
 そのため、変換部分の構成を小型にしたモード偏波変換器が望まれていた。
 本発明の実施形態に係るモード偏波変換器は、高周波信号の伝送方向に対して直交する面方向において、断面形状が第1方向に延びる短辺と、前記第1方向に直交する第2方向に延びる長辺とで形成される矩形状の第1の導波構造体、該第1の導波構造体の前記伝送方向に位置し、前記面方向において、断面形状が第3方向に延びる短辺と、前記第3方向に直交する第4方向に延びる長辺とで形成される矩形状の第2の導波構造体、および、前記第1の導波構造体の前記矩形と前記第2の導波構造体の矩形とに中心を合わせて位置し、且つ前記第1の導波構造体と前記第2の導波構造体との間に接続されており、前記面方向において、前記第1方向と前記第3方向との間の第5方向に短辺が延びている矩形状の結合孔を有する変換構造体を含む。
 本発明の実施形態によれば、小型のモード偏波変換器を提供することができる。
本発明のモード偏波変換器の第1の実施形態の概略構成を示す斜視図である。 図1に示したモード偏波変換器を分解し、斜視した図である。 図1に示したモード偏波変換器の備える変換構造体の概略構成を示す図である。 図1に示したモード偏波変換器の電磁界解析結果を示す図である。 図1に示したモード偏波変換器の周波数特性を示す線図である。 本発明のモード偏波変換器の第2の実施形態の概略構成を示す斜視図である。 図6に示したIIV-IIV線に沿った断面図である。 図6に示したIIIV-IIIV線に沿った断面図である。 図6に示したIX-IX線に沿った断面図である。 図6に示したモード偏波変換器の電磁界解析結果を示す図である。 図6に示したモード偏波変換器の周波数特性を示す線図である。 本発明のモード偏波変換器の第3の実施形態の概略構成を示す斜視図である。 図12に示したXIII-XIII線に沿った断面図である。 図13に示した図の一部構成を省略した図である。 図12に示したXV-XV線に沿った断面図である。 図15に示した図の一部構成を省略した図である。 図12に示したXVII-XVII線に沿った断面図である。 図17に示した図の一部構成を省略した図である。
 以下、本発明のモード偏波変換器の実施形態について図面を参照しつつ説明する。なお、図面において同様の箇所には同一の符号を付し、重複する説明を省略する。
 (第1の実施形態)
 図1~4は、本発明のモード偏波変換器の一例として第1の実施形態を示した図である。図1~4に示したモード偏波変換器10は、第1の導波構造体20と、第2の導波構造体30と、変換構造体40とを含んでいる。本実施形態では、第1の導波構造体20および第2の導波構造体として導波管を採用している。第1の導波構造体20、第2の導波構造体30、および変換構造体40は、高周波信号を伝送する伝送方向に沿って一列に接続されている。この第2の導波構造体30は、第1の導波構造体の伝送方向の延長線上に位置している。この変換構造体40は、第1の導波構造体20と、第2の導波構造体30との間に接続されている。ここでは、高周波信号の伝送方向を矢印Zの順方向として図示している。
 第1の導波構造体20は、高周波信号を伝送する機能を担っている。この第1の導波構造体20は、高周波信号の伝送する方向に延びている。この第1の導波構造体20は、内部に高周波信号が伝播する伝播部を有している。この伝播部は、高周波信号の伝送方向に対して直交する面方向における断面の形状が矩形状をしている。本実施形態では、第1の導波構造体20として、TE10モードで電磁波が伝送される導波管を採用している。このTE10モードの第1の導波構造体20では、第1方向が電界方向に対応し、第2方向が磁界方向に対応しており、第1方向と第2方向とが直交している。第1の導波構造体20は、第1方向に沿った辺20aの長さaが第2方向に沿った辺20bの長さbよりも短くなっている。以降では、辺20aを短辺とし、辺20bを長辺とする。ここでは、第1方向を矢印Xの順方向として図示し、第2方向を矢印Yの順方向として図示している。また、第1方向および第2方向は、高周波信号の伝送方向に直交している。ここで、伝送方向に対して直交する面方向とは、第1方向および第2方向で規定されるXY面方向である。
 第2の導波構造体30は、高周波信号を伝送する機能を担っている。この第1の導波構造体20は、高周波信号の伝送方向に延びている。この第2の導波構造体30は、内部に高周波信号が伝播する伝播部を有している。この伝播部は、高周波信号の伝送方向に対して直交する面方向における断面の形状が矩形状をしている。本実施形態では、第2の導波構造体30として、TE10モードで電磁波が伝送される導波管を採用している。このTE10モードの第2の導波構造体30は、第3方向が電界方向に対応し、第4方向が磁界方向に対応している。この第2の導波構造体30は、第4方向に沿った辺30aの長さaが第3方向に沿った辺30bの長さbよりも長くなっている。以降では、辺30aを長辺とし、辺30bを短辺とする。本実施形態では、第1の導波構造体20と第2の導波構造体30とで電磁波の偏波方向が直交するように配置されている。第3方向は第1方向と直交し、第2方向に沿っており、第4方向は第2方向と直交し、第1方向に沿っている。また、XY平面でみたときに、第1の導波構造体20が幅広であるとすると、第2の導波構造体30は幅狭となるように配置されている。
 変換構造体40は、高周波信号の偏波方向の変換に寄与する。この変換構造体40は、第1の導波構造体20と、第2の導波構造体30との間に接続されている。本実施形態の変換構造体40は、矢印Zの逆方向側の一端が第1の導波構造体20の一端20cに接続され、矢印Zの順方向側の一端が第2の導波構造体30の一端30cに接続されている。これらの一端20c,30cは、高周波信号の伝送方向に直交しており、XY面方向に広がっている。
 この変換構造体40は、結合孔40aを有している。この結合孔40aは、第1の導波構造体20および第2の導波構造体30と電磁気的に結合している。このモード偏波変換器10では、第1の導波構造体20の伝播部の中心、第2の導波構造体30の伝播部の中心、および結合孔40aの変換構造体40は、中心を合わせるように配置されている。ここで、中心とは、XY面方向における中心をいう。この結合孔40aは、矢印Zの逆方向に見て、第1の導波構造体20の一端30c、および第2の導波構造体30の一端30cに面した伝播部が重なっている領域40dの内に設けられている。この領域40dは、各辺が第1方向または第2方向に沿っており、各辺の長さがaの正方形状となっている。この正方形状の領域40dは、結合孔40aのXY面方向における中心に位置している。第1の導波構造体20の電界方向と、第2の導波構造体30の電界方向とが直交している本実施形態では、正方形状の領域40dの各辺に対して45°の角度で傾いて結合孔40aが形成されている。つまり、結合孔40aの長さは、正方形状の領域40dの対角線の長さであるa×√2よりも短くなっている。この正方形状を、図3では破線で示している。この結合孔2aは、高周波信号を通過させることができるように、電磁気的に開口していればよい。例えば、この結合孔40aに誘電体が設けられていてもよい。誘電体を結合孔40aに設けることによって、結合孔40aの幅を短くすることができる。
 この結合孔40aは、矩形状をしており、第5方向に沿った辺40bの長さが第6方向に沿った辺40cの長さよりも短くなっている。以降では、辺40bを短辺とし、辺40cを長辺とする。この結合孔40aの短辺40bは、第1の導波構造体20の短辺20aの延びる第1方向、および第2の導波構造体30の短辺20bの延びる第3方向に対して傾いている。この結合孔40aの短辺40bが延びる第5方向は、第1方向と、第3方向との間の方向を向いている。ここで、「間の方向」とは、任意の点を軸にして、第1の方向から第3の方向へと方向の向きを回転させる際に、当該回転の過程で向く方向のいずれかをいう。
 本実施形態の変換構造体40は、高周波信号の伝送方向に対して直交する面方向における断面が正方形状になっている。この正方形の2組の対辺は、第1方向と第2方向とに延びている。この変換構造体40の4辺として、第1の導波構造体20の長辺部分の外周部の長さを採用している。このような形状とすることで、変換構造体40を介して高周波信号が漏れるのを抑えることができる。また、この変換構造体40は、第1の導波構造体20の長辺20bおよび第2の導波構造体30の長辺20aと同等の大きさであることから、面方向へのはみ出しを抑えることができる。これらにより、損失を抑えつつ、小型化を図ることができる。
 変換構造体40の高周波信号の伝送方向における長さに制限はない。この変換構造体40の中を伝送する高周波信号のうち最も短い波の長さの1/2よりも変換構造体40の長さを短くすることで、定在波の発生の近傍で損失が変動するのを防ぐことができる。
 このように、モード偏波変換器10では、第1の導波構造体20と第2の導波構造体30との間に変換構造体40を配置されている。第1の導波構造体20の伝播部を伝搬してきた高周波信号は、当該伝播部から変換構造体40の結合孔40aに入るときに偏波面が変換される。また、この結合孔40aで偏波面が変更された高周波信号は、結合孔40aを通過し、第2の導波構造体30の伝播部に入るときに変換される。このようにして、第1の導波構造体20を伝播する高周波信号は、変換構造体40を通じて偏波面が変換されて、第2の導波構造体30を伝播する。これによって、TE10モードで伝播する高周波信号の偏波面が、この変換構造体40によって変換損失が低い状態で90°偏波変換される。
 なお、第1の導波構造体20、第2の導波構造体30、および変換構造体40は、伝送する高周波信号を伝送できれば、特に限定されない。例えば、伝播部および結合孔40aが中空であっても、誘電体が設けられていてもよい。また、第1の導波構造体20および第2の導波構造体30の伝播部、ならびに変換構造体40は、周囲を金属で囲むことによって、高周波信号が外部に漏れるのを低減することができる。
 (第1の実施例)
 上述の構成を採用するモード偏波変換器の電磁界分布についてシミュレーションした結果を図4に示した。図4に示した結果から、伝送する高周波信号の電磁界分布を第1の導波構造体20と第2の導波構造体30とで90°変換できることが確認できた。このシミュレーションにおいては、短辺20a,30bの長さを0.45mmとし、長辺20b,30aの長さを0.9mmとし、変換構造体40の高周波信号の伝送方向における長さを0.4mmとし、結合孔40aの幅を0.3mm、長さを0.9mmとした。第1の導波構造体20および第2の導波構造体30の伝播部の内部、ならびに変換構造体40の結合孔40aの内部に誘電体を設けた。この誘電体の比誘電率を9.4とし、比透磁率を1とした。伝送する高周波信号の周波数を76.5GHzとした。上述の数値条件では、高周波信号が誘電体中を伝搬する際の波長λgが約1.8mmとなる。変換構造体40の高周波信号の伝送方向における長さは、λgの0.22倍である。つまり、本実施例のモード偏波変換器では、高周波信号の1波長よりも短い長さであっても偏波できることを確認できた。
 次に、上述と同様の数値条件で、周波数特性をシミュレーションした結果を図5に示した。図5において、縦軸は高周波信号の伝送損失(単位:dB)を示し、横軸は周波数を示している。また、実線は透過特性を示し、破線は反射特性を示している。図5に示した特性では、変換構造体40における第1の導波構造体20側をポート1とし、第2の導波構造体30側をポート2としている。この図5では、ポート1からポート2側への透過特性S21、ポート2からポート1側への透過特性S12、ポート1に入力されポート1で反射される反射特性S11、およびポート2に入力されポート2で反射されるS22について示している。
 図5に示した結果から、このモード偏波変換器は、77~78GHzの高周波信号に対して、損失が少なく、帯域の広い伝送特性を有することが確認できた。
 (第2の実施形態)
 図6~9は、本発明のモード偏波変換器の他の例として第2の実施形態を示した図である。図6~9に示したモード偏波変換器10Aは、第1の導波構造体20に代えて第1の導波構造体20Aを採用し、第2の導波構造体30に代えて第2の導波構造体30Aを採用し、変換構造体40に代えて変換構造体40Aを採用している。モード偏波変換器10Aの各構成は、図1に示したモード偏波変換器10の各構成と同様の位置に配置されている。本実施形態の第1の導波構造体20A、第2の導波構造体30A、および変換構造体40Aとして、積層型の導波構造体を採用している。以下、モード偏波変換器10Aの各構成について説明する。
 第1の導波構造体20Aは、第1誘電体21、一対の第1導体層22,23、および第1導体群24,25を有している。この第1の導波構造体20Aでは、第1導体層22,23および第1貫通導体群24,25が導波管の管壁に相当するものとして機能する。本実施形態の第1誘電体21は、複数の第1誘電体層211~216が第1方向に順次積層されて形成されている。
 この第1誘電体層211~216の間に一対の第1導体層22,23が配置されている。一対の第1導体層22,23は、X方向における導波管の管壁に相当するものとして機能する。ここでは、一対の第1導体層22,23のうち、矢印Xの順方向側に位置するものを第1導体層22とし、矢印Xの逆方向側に位置するものを第1導体層23とする。第1導体層22は第1誘電体層211と第1誘電体層212との間に配置され、第1導体層23は第1誘電体層215と第1誘電体層216との間に配置されている。一対の第1導体層22,23は、伝送方向に沿って長くなっており、X方向において長さaの間隔で離隔している。この一対の第1導体層22,23の距離が、第1の導波構造体20Aの伝播部の第1方向に沿った長さとなる。
 一対の第1導体層22,23は、第1導体群24,25を介して電気的に接続されている。この第1導体群24,25は、Y方向における導波管の管壁に相当するものとして機能する。ここでは、一対の第1導体群24,25のうち、矢印Yの順方向側に位置するものを第1導体群24とし、矢印Yの逆方向側に位置するものを第2導体群35としている。各第1導体群24,25は、第1導体がZ方向に沿って配列されて構成されている。第1導体群24,25を構成する第1導体は、第1の導波構造体20Aを伝送する高周波信号のうち最も短い波の長さの1/2以下の間隔をあけて配置される。第1導体の間隔を伝送する高周波信号の1/2波長以下にすることで、当該高周波信号が漏れるのを低減することができる。2列の第1導体群24,25を構成する第1導体の各々は、第1誘電体層212~215の貫通孔の内に設けられ、当該第1誘電体層212~215を貫通している。2列の第1導体群24,25は、Y方向において長さbの間隔で離隔している。この一対の第1貫通導体群22,23の距離が、第1の導波構造体20Aの伝播部の第2方向に沿った長さとなる。
 第2の導波構造体30Aは、第2誘電体31、一対の第2導体層32,33、および第2導体群34,35を有している。この第2の導波構造体30Aでは、第2導体層32,33および第2貫通導体群34,35が導波管の管壁に相当するものとして機能する。本実施形態の第2誘電体31は、複数の第2誘電体層311~316が第1方向に順次積層されて形成されている。
 この第2誘電体層311の上面および第2誘電体層316の下面に、一対の第2導体層32,33が配置されている。一対の第2導体層32,33は、X方向における導波管の管壁に相当するものとして機能する。ここでは、一対の第2導体層32,33のうち、矢印Xの順方向側に位置するものを第2導体層32とし、矢印Xの逆方向側に位置するものを第2導体層33とする。第2導体層32は第2誘電体層311の上面に配置され、第2導体層33は第2誘電体層316の下面に配置されている。一対の第2導体層32,33は、伝送方向に沿って長くなっており、X方向において長さbの間隔で離隔している。この一対の第2導体層32,33の距離が、第2の導波構造体30Aの伝播部の第1方向に沿った長さbとなる。
 一対の第2導体層32,33は、第2導体群34,35を介して電気的に接続されている。この第2導体群34,35は、Y方向における導波管の管壁に相当するものとして機能する。ここでは、一対の第2導体群34,35のうち、矢印Yの順方向側に位置するものを第2導体群34とし、矢印Yの逆方向側に位置するものを第2導体群35としている。各第2導体群34,35は、第2導体がZ方向に沿って配列されて構成されている。第2導体群34,35を構成する第2導体は、第2の導波構造体30Aを伝送する高周波信号のうち最も短い波の長さの1/2以下の間隔をあけて配置される。第2導体の間隔を伝送する高周波信号の1/2波長以下にすることで、当該高周波信号が漏れるのを低減することができる。2列の第2導体群34,35を構成する第2導体の各々は、第2誘電体層311~316の貫通孔の内に設けられ、当該第2誘電体層311~316を貫通している。2列の第2導体群34,35は、Y方向において長さbの間隔で離隔している。この一対の第2貫通導体群32,33の距離が、第2の導波構造体30Aの伝播部の第2方向に沿った長さとなる。
 変換構造体40Aは、第3誘電体41、一対の第3導体層42,43、第3導体群44,45、および第4導体群46を有している。この変換構造体40Aでは、第3導体層42,43および第3貫通導体群44,45が導波管の管壁に相当するものとして機能する。また、この変換構造体40Aでは、第4導体群46が結合孔40aに相当するものとして機能する。本実施形態の第3誘電体41は、複数の第3誘電体層411~416が第1方向に順次積層されて形成されている。
 この第3誘電体層411の上面および第3誘電体層416の下面に、一対の第3導体層42,43が配置されている。一対の第3導体層42,43は、X方向における導波管の管壁に相当するものとして機能する。ここでは、一対の第3導体層42,43のうち、矢印Xの順方向側に位置するものを第3導体層42とし、矢印Xの逆方向側に位置するものを第3導体層43とする。第3導体層44は第2誘電体層311の上面に配置され、第3導体層43は第3誘電体層416の下面に配置されている。一対の第3導体層42,43は、伝送方向に沿って長くなっており、X方向において長さbの間隔で離隔している。第3導体層42は第2導体層32に接続され、第3導体層43は第2導体層33に接続されている。また、第3導体層42は第1導体層22に第3導体群44,45を介して電気的に接続され、第3導体層43は、第1導体層23に第3導体群44,45を介して電気的に接続されている。
 一対の第3導体層42,43は、第3導体群44,45を介して電気的に接続されている。この第3導体群44,45は、Y方向における導波管の管壁に相当するものとして機能する。ここでは、一対の第3導体群44,45のうち、矢印Yの順方向側に位置するものを第3導体群44とし、矢印Yの逆方向側に位置するものを第3導体群45としている。各第3導体群44,45は、第3導体がZ方向に沿って配列されて構成されている。第3導体群44,45を構成する第3導体は、変換構造体40Aを伝送する高周波信号のうち最も短い波の長さの1/2以下の間隔をあけて配置される。第3導体の間隔を伝送する高周波信号の1/2波長以下にすることで、当該高周波信号が漏れるのを低減することができる。2列の第3導体群44,45を構成する第3導体の各々は、第3誘電体層411~416の貫通孔の内に設けられ、当該第3誘電体層411~416を貫通している。2列の第3導体群44,45は、Y方向において長さbの間隔で離隔している。
 この2列の第3導体群44,45の間には、第4導体群46が設けられている。第4導体群46を構成する第4導体の各々は、第3誘電体層411~416の層ごとに階段状にずらして2列に配置されている。各列の第4導体の各々は、第2方向にずらして配置されている。この変換構造体40Aでは、階段状にずらして配置した第4導体群46および第3導体群44,45を、変換構造体40における結合孔40aに相当するものとして機能させている。つまり、この変換構造体40Aでは、2列の第4導体および2列の第3導体で囲まれる領域が結合孔40aに相当するものとして機能している。各列の第4導体は、伝送する高周波信号の1/2波長以下の間隔をあけて配置される。第4導体の間隔を伝送する高周波信号の1/2波長以下にすることで、当該高周波信号が漏れるのを低減することができる。この2列の第4導体は、結合孔40aの幅の分だけ離れて設けられている。
 この実施形態では、第1方向と第3方向とが直交しているので、第4導体群46を構成する第4導体の各々は、45°の勾配を有する階段状にずらして2列に配置されている。ここで、「45°の勾配を有する階段状にずらして配置する」とは、個々の第4導体の底面の中心を結んだ仮想線の傾きが45°となるように配置することをいう。
 (第2の実施例)
 上述の構成を採用するモード偏波変換器の電磁界分布についてシミュレーションした結果を図10に示した。図10に示した結果から、伝送する高周波信号の電磁界分布を第1の導波構造体20Aと第2の導波構造体30Aとで90°変換できることが確認できた。このシミュレーションにおいては、第1導体層22,23の間隔および第2導体群34,35の2列の間隔を0.45mmとし、第1導体群24,25の2列の間隔および第2導体層32,33の間隔を0.9mmとし、結合構造体40Aの高周波信号の伝送方向における長さを0.8mmとし、第4導体群46の2列の間隔を0.29mmとし、第4導体の各列の長さを0.77mmとし、第1~第4導体の直径を0.1mmとした。第1誘電体21および第2誘電体31、および第3誘電体41の比誘電率をアルミナセラミックスに相当する9.4とし、比透磁率を1とした。伝送する高周波信号の周波数を76.5GHzとした。上述の数値条件では、高周波信号が誘電体中を伝搬する際の波長λgが約1.8mmとなる。変換構造体40の高周波信号の伝送方向における長さは、λgの0.22倍である。つまり、本実施例のモード偏波変換器では、高周波信号の1波長よりも短い長さであっても偏波できることを確認できた。
 次に、上述と同様の数値条件で、周波数特性をシミュレーションした結果を図11に示した。図11において、縦軸は高周波信号の伝送損失(単位:dB)を示し、横軸は周波数を示している。また、実線は通過特性を示し、破線は反射特性を示している。変換構造体40Aにおける第1の導波構造体20A側をポート1とし、第2の導波構造体30A側をポート2としている。この図11では、ポート1からポート2側への透過特性S21、ポート2からポート1側への透過特性S12、ポート1に入力されポート1で反射される反射特性S11、およびポート2に入力されポート2で反射されるS22について示している。
 図11に示した結果から、このモード偏波変換器は、77~78GHzの高周波信号に対して、損失が少なく、帯域の広い伝送特性を有することを確認できた。また、図5に示した例に比べ、通過帯域が広いフィルタとすることができることを確認できた。
 (第3の実施形態)
 図12~18は、本発明のモード偏波変換器の他の例として第2の実施形態を示した図である。図12~18に示したモード偏波変換器10Bは、第1の導波構造体20に代えて第1の導波構造体20Bを採用し、第2の導波構造体30に代えて第2の導波構造体30Bを採用し、変換構造体40に代えて変換構造体40Bを採用している。モード偏波変換器10Bの各構成は、図1に示したモード偏波変換器10の各構成と同様の位置に配置されている。本実施形態の第1の導波構造体20B、第2の導波構造体30B、および変換構造体40Bとして、積層型の導波構造体を採用している。以下、モード偏波変換器10Bの各構成について説明する。
 第1の導波構造体20Bは、複数の第1誘電体21B、複数の第1導体層22B、および複数の第1導体群24Bを有している。この第1の導波構造体20Bでは、第1導体層22Bおよび第1貫通導体群24Bが導波管の管壁に相当するものとして機能する。本実施形態では、第1導体層22Bおよび第1貫通導体群24Bで囲まれている領域が伝播部となる。本実施形態の第1誘電体21Bは、複数の第1誘電体層21Bが高周波信号の伝送方向に順次積層されて形成されている。
 複数の第1誘電体層21Bの各々の間には、第1導体層22Bが配置されている。複数の第1導体層22Bは、各々がXY面方向に広がっており、伝送方向に配列されている。この複数の第1導体層22Bは、第1の導波構造体20Bを伝送する高周波信号のうち最も短い波の長さの1/2以下の間隔をあけて配置されている。複数の第1導体層22Bの間隔を伝送する高周波信号の1/2波長以下にすることで、当該高周波信号が漏れるのを低減することができる。複数の第1導体層22Bの各々には、伝播孔22Baが設けられている。この伝播孔22Baは、第1方向に沿った辺の長さが第2方向に沿った辺の長さよりも短くなっている。各第1導体層22Bの伝播孔22Baは、伝送方向に並んで配置されている。
 複数の第1導体層22Bは、第1導体群24Bを介して各々が電気的に接続されている。第1導体群24Bを構成する第1導体の各々は、第1誘電体層21Bの貫通孔の内に設けられ、当該第1誘電体層21Bを貫通している。複数の第1導体241Bは、矢印Zの順方向から見て、伝播孔22Baの周囲を囲んで配置されている。
 第2の導波構造体30Bは、複数の第2誘電体31B、複数の第2導体層32B、および複数の第2導体群34Bを有している。この第2の導波構造体30Bでは、第2導体層32Bおよび第2貫通導体群34Bが導波管の管壁に相当するものとして機能する。本実施形態では、第2導体層32Bおよび第2貫通導体群34Bで囲まれている領域が伝播部となる。本実施形態の第2誘電体31Bは、複数の第2誘電体層31Bが高周波信号の伝送方向に順次積層されて形成されている。
 複数の第2誘電体層31Bの各々の間には、第2導体層32Bが配置されている。複数の第2導体層32Bは、各々がXY面方向に広がっており、伝送方向に配列されている。この複数の第2導体層32Bは、第2の導波構造体30Bを伝送する高周波信号のうち最も短い波の長さの1/2以下の間隔をあけて配置されている。複数の第2導体層32Bの間隔を伝送する高周波信号の1/2波長以下にすることで、当該高周波信号が漏れるのを低減することができる。複数の第2導体層32Bの各々には、伝播孔32Baが設けられている。この伝播孔32Baは、第2方向に沿った辺の長さが第1方向に沿った辺の長さよりも短くなっている。各第2導体層32Bの伝播孔32Baは、伝送方向に並んで配置されている。
 複数の第2導体層32Bは、第2導体群34Bを介して各々が電気的に接続されている。第2導体群34Bを構成する第2導体の各々は、第2誘電体層31Bの貫通孔の内に設けられ、当該第2誘電体層31Bを貫通している。複数の第2導体341Bは、矢印Zの順方向から見て、伝播孔32Baの周囲を囲んで配置されている。
 変換構造体40Bは、第3誘電体41B、一対の第3導体層42B,43B、および第3導体群44Bを有している。第3誘電体層41Bの上面および下面には、一対の第3導体層42B,43Bが配置されている。ここでは、一対の第3導体層42B,43Bのうち、矢印Zの順方向側に位置するものを第3導体層42Bとし、矢印Xの逆方向側に位置するものを第3導体層43Bとする。一対の第3導体層42B,43Bは、各々がXY面方向に広がっており、伝送方向に並んでいる。第3導体層42Bは第1導体群24Bに接続され、第3導体層43Bは第2導体群34Bに接続されている。一対の第1導体層22Bは、変換構造体40Bを伝送する高周波信号のうち最も短い波の長さの1/2以下の間隔をあけて配置されている。一対の第3導体層42Bの間隔を伝送する高周波信号の1/2波長以下にすることで、当該高周波信号が漏れるのを低減することができる。
 一対の第3導体層42B,43Bの各々には、伝播孔42Ba,43Baが設けられている。この伝播孔42Ba,43Baは、第1方向に沿った辺の長さが第2方向に沿った辺の長さよりも短くなっている。第3導体層42B,43Bの伝播孔42Ba,43Baは、伝送方向に並んで配置されている。この伝播孔42Ba,43Baは、矩形状をしており、第5方向に沿った辺の長さが第6方向に沿った辺の長さbよりも短くなっている。以降では、短い方の辺を短辺とし、長い方の辺を長辺とする。この伝播孔42Ba,43Baの短辺は、第1の導波構造体20Bの短辺の延びる第1方向、および第2の導波構造体30Bの短辺の延びる第3方向に対して傾いている。この伝播孔42Ba,43Baの短辺が延びる第5方向は、第1方向と、第3方向との間の方向を向いている。このモード偏波変換器10Bでは、第1の導波構造体20Bの伝播孔22Ba、第2の導波構造体30Bの伝播孔32Ba、および変換構造体40Bの伝播孔42Ba,43Baは、各々の中心を合わせるように配置されている。ここで、中心とは、XY面方向における中心をいう。この伝播孔42Ba,43Baは、矢印Zの逆方向に見て、第1の導波構造体20Bの伝播部、および第2の導波構造体30の伝播部が重なっている領域の内側に設けられている。この領域は、各辺が第1方向または第2方向に沿っており、各辺の長さがaの正方形状となっている。この正方形状を図3では、破線で示している。
 一対の第3導体層42B,43Bは、第3導体群44Bを介して電気的に接続されている。第3導体群44Bを構成する第3導体441Bの各々は、第3誘電体41Bの貫通孔の内に設けられ、当該第3誘電体41Bを貫通している。複数の第3導体441Bは、矢印Zの順方向から見て、伝播孔42Baの周囲を囲んで配置されている。
 この変換構造体40では、第3導体群44Bで囲まれ、一対の第3導体層42B,43Bの伝播孔42Ba,43Baを両端とする領域が結合孔として機能する。この結合孔は、第1の導波構造体20Bの伝播部および第2の導波構造体30Bの伝播部と電磁気的に結合している。
 本実施形態では、第1誘電体21B、第2誘電体32B、および第3誘電体42Bは、XY面方向における断面が正方形状になっている。この正方形の2組の対辺は、第1方向と第2方向とに延びている。このような形状とすることで、変換構造体40Bを介して高周波信号が漏れるのを抑えることができる。また、この変換構造体40Bは、第1の導波構造体20Bおよび第2の導波構造体30Bと同等の大きさであることから、面方向へのはみ出しを抑えることができる。これらにより、損失を抑えつつ、小型化を図ることができる。
 以上、本発明の具体的な実施形態を示したが、本発明はこれに限定されるものではなく、発明の要旨から逸脱しない範囲内で種々の変更が可能である。
 第1,3の実施形態では、結合孔40a,40Baの断面形状を矩形としているが、角に丸みを帯びた形状などのように、厳密な矩形でなくてもよい。
 第2の実施形態では、第1の導波構造体20Aと、第2の導波構造体30Aと、変換構造体40Aとが別体として構成されている。これらの構造体20A,30A,40Aは、部分的に一体的に形成されていてもよい。例えば第1誘電体層211~216、第2誘電体層311~316、および第3誘電体層411~416の各層が一体的に形成されていてもよい。また、第1導体層22,23、第2導体層32,33、および第3導体層42,43の各層が一体的に形成されていてもよい。
 第2の実施形態では、複数の第1導体は各々が独立して一対の第1導体層22,23を電気的に接続し、複数の第2導体は各々が独立して一対の第2導体層32,33を電気的に接続し、かつ複数の第3導体は各々が独立して一対の第3導体層42,43を電気的に接続している。これらの第1~第3導体は、各導体が互いに電気的に接続されていてもよい。

Claims (11)

  1.  高周波信号の伝送方向に対して直交する断面の形状が、第1方向に延びる一対の短辺と、前記第1方向に直交する第2方向に延びる一対の長辺とで形成される第1伝搬部を有する第1の導波構造体、
    該第1の導波構造体の前記伝送方向の延長線上に位置し、前記断面の形状が、第3方向に延びる一対の短辺と、前記第3方向に直交する第4方向に延びる一対の長辺とで形成される第2伝搬部を有する第2の導波構造体、および、
    前記第1伝搬部と前記第2伝搬部とに中心を合わせて位置し、且つ前記第1の導波構造体と前記第2の導波構造体との間に接続されており、前記断面において前記第1方向と前記第3方向との間の第5方向に短辺が延びている矩形状の結合孔を有する変換構造体を具備する、モード偏波変換器。
  2.  前記変換構造体は、前記高周波信号の前記伝送方向における長さが、伝送する高周波信号の波長以下である、請求項1に記載のモード偏波変換器。
  3.  前記伝送方向に見たときに、前記変換構造体は、前記第1の導波構造体の前記一対の長辺および前記第2の導波構造体の前記一対の長辺で囲まれる領域内に位置している、請求項1または2に記載のモード偏波変換器。
  4.  前記伝送方向に見たときに、前記第1方向と前記第3方向とが直交している、請求項1から3のいずれかに記載のモード偏波変換器。
  5.  前記伝送方向に見たときに、前記第5方向が前記第1方向に45°の角度で交わっている、請求項4に記載のモード偏波変換器。
  6.  前記第1の導波構造体は、
    第1誘電体と、
    該第1誘電体を挟む一対の第1導体層と、
    該一対の第1導体層を電気的に接続する第1導体が、伝送する高周波信号の波長の1/2以下の間隔で前記伝送方向に配列されている2列の第1導体群とを含む、請求項1から5のいずれかに記載のモード偏波変換器。
  7.  前記第2の導波構造体は、
    第2誘電体と、
    該第2誘電体を挟む一対の第2導体層と、
    該一対の第2導体層を電気的に接続する第2導体が、伝送する高周波信号の波長の1/2以下の間隔で前記伝送方向に配列されている2列の第2導体群とを含む、請求項1から6のいずれかに記載のモード偏波変換器。
  8.  前記変換構造体は、
    複数の誘電体層が積層される第3誘電体と、
    該第3誘電体を挟む一対の第3導体層と、
    該一対の第3導体層を電気的に接続する第3導体が、伝送する高周波信号の波長の1/2以下の間隔で前記伝送方向に配列されている2列の第3導体群と、
    前記断面において前記2列の第3導体群の間に配置され、前記複数の誘電体層の層ごとに第4導体を階段状にずらして2列に配置されている第4導体群とを含む、請求項1から7のいずれかに記載のモード偏波変換器。
  9.  前記第1の導波構造体は、
    複数の第1誘電体と、
    伝送する高周波信号の波長の1/2以下の間隔で前記複数の第1誘電体を挟んで前記伝送方向に配列され、前記高周波信号が伝搬する伝搬孔を有する複数の第1導体層と、
    該複数の第1導体層を電気的に接続する第1導体群とを含む、請求項1から5のいずれかに記載のモード偏波変換器。
  10.  前記第2の導波構造体は、
    複数の第2誘電体と、
    伝送する高周波信号の波長の1/2以下の間隔で前記複数の第2誘電体を挟んで前記伝送方向に配列され、前記高周波信号が伝搬する伝搬孔を有する複数の第2導体層と、
    該複数の第2導体層を電気的に接続する第2導体群とを含む、請求項1から6のいずれかに記載のモード偏波変換器。
  11.  前記変換構造体は、
    複数の第3誘電体と、
    伝送する高周波信号の波長の1/2以下の間隔で前記複数の第1誘電体を挟んで前記伝送方向に配列され、前記結合孔を有する複数の第3導体層と、
    該複数の第1導体層を電気的に接続する第3導体群とを含む、請求項1から7のいずれかに記載のモード偏波変換器。
     
     
     
     
PCT/JP2010/069211 2009-10-29 2010-10-28 モード偏波変換器 WO2011052694A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011538485A JP5343134B2 (ja) 2009-10-29 2010-10-28 モード偏波変換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-249349 2009-10-29
JP2009249349 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052694A1 true WO2011052694A1 (ja) 2011-05-05

Family

ID=43922117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069211 WO2011052694A1 (ja) 2009-10-29 2010-10-28 モード偏波変換器

Country Status (2)

Country Link
JP (1) JP5343134B2 (ja)
WO (1) WO2011052694A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197375A (zh) * 2013-04-24 2013-07-10 中国电子科技集团公司第四十四研究所 在光波导器件中产生任意角度高偏振度线偏光的方法
CN103326129A (zh) * 2013-06-26 2013-09-25 武汉凡谷电子技术股份有限公司 一种波导极化装置及其合路器
JP2015076836A (ja) * 2013-10-11 2015-04-20 株式会社フジクラ 導波路基板
JP2015080100A (ja) * 2013-10-17 2015-04-23 株式会社フジクラ 導波管との接続構造
CN105633516A (zh) * 2016-02-23 2016-06-01 陕西天翌天线有限公司 波导极化方向转换装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613949B2 (ja) * 2016-02-16 2019-12-04 ウシオ電機株式会社 偏光素子ユニットおよび偏光光照射装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223201A (ja) * 1985-07-23 1987-01-31 New Japan Radio Co Ltd ひねり導波管
DE3632545A1 (de) * 1986-09-25 1988-03-31 Licentia Gmbh Polarisationsdrehglied fuer hohlleiter
JPH01156602U (ja) * 1988-04-18 1989-10-27
JP2000077912A (ja) * 1998-08-31 2000-03-14 Kyocera Corp 誘電体導波管線路の接続構造
JP2004363764A (ja) * 2003-06-03 2004-12-24 Mitsubishi Electric Corp 導波管装置
JP2005192038A (ja) * 2003-12-26 2005-07-14 Shimada Phys & Chem Ind Co Ltd 断熱導波管
JP2005269589A (ja) * 2004-03-19 2005-09-29 Ootsuka:Kk 導波管ステップツイスト

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223201A (ja) * 1985-07-23 1987-01-31 New Japan Radio Co Ltd ひねり導波管
DE3632545A1 (de) * 1986-09-25 1988-03-31 Licentia Gmbh Polarisationsdrehglied fuer hohlleiter
JPH01156602U (ja) * 1988-04-18 1989-10-27
JP2000077912A (ja) * 1998-08-31 2000-03-14 Kyocera Corp 誘電体導波管線路の接続構造
JP2004363764A (ja) * 2003-06-03 2004-12-24 Mitsubishi Electric Corp 導波管装置
JP2005192038A (ja) * 2003-12-26 2005-07-14 Shimada Phys & Chem Ind Co Ltd 断熱導波管
JP2005269589A (ja) * 2004-03-19 2005-09-29 Ootsuka:Kk 導波管ステップツイスト

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103197375A (zh) * 2013-04-24 2013-07-10 中国电子科技集团公司第四十四研究所 在光波导器件中产生任意角度高偏振度线偏光的方法
CN103326129A (zh) * 2013-06-26 2013-09-25 武汉凡谷电子技术股份有限公司 一种波导极化装置及其合路器
JP2015076836A (ja) * 2013-10-11 2015-04-20 株式会社フジクラ 導波路基板
JP2015080100A (ja) * 2013-10-17 2015-04-23 株式会社フジクラ 導波管との接続構造
CN105633516A (zh) * 2016-02-23 2016-06-01 陕西天翌天线有限公司 波导极化方向转换装置

Also Published As

Publication number Publication date
JP5343134B2 (ja) 2013-11-13
JPWO2011052694A1 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
JP3891918B2 (ja) 高周波モジュール
JP5343134B2 (ja) モード偏波変換器
CN110212274B (zh) 基于双层基片集成波导的平衡双模带通滤波器
TWI509886B (zh) 轉移裝置及用於製造轉移裝置之方法
JP6845118B2 (ja) 高周波伝送線路
US9214715B2 (en) Hybrid coupler device having plural transmission line structures with unwound-rewound geometry
JP6658704B2 (ja) アンテナモジュール
CN112018474A (zh) 一种具有固有共模抑制的siw双频双模平衡带通滤波器
CN114597616B (zh) 一种具有高共模抑制的siw平衡滤波器
JP4015938B2 (ja) 共振器
JP3891996B2 (ja) 導波管型導波路および高周波モジュール
JP4687731B2 (ja) 高周波装置
JP2009296491A (ja) 導波管接続構造及び半導体装置
US11394095B2 (en) Dielectric filter, array antenna device
JP2010074794A (ja) カプラ及び通信装置
JP2007329908A (ja) 誘電体基板、導波管、伝送線路変換器
TW201946382A (zh) 階層式網絡信號傳送路由安排設備及方法
JP5326931B2 (ja) 薄膜バラン
JPH11308025A (ja) 方向性結合器
JP6996948B2 (ja) 高周波伝送線路
JP5558225B2 (ja) 方向性結合器
JP5219856B2 (ja) 導波管型ラットレース回路
JP3512626B2 (ja) 誘電体導波管線路の分岐構造
JP5219857B2 (ja) 導波管型ラットレース回路
JP4803869B2 (ja) 誘電体導波管線路の接続構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538485

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826826

Country of ref document: EP

Kind code of ref document: A1