TW201946382A - 階層式網絡信號傳送路由安排設備及方法 - Google Patents

階層式網絡信號傳送路由安排設備及方法 Download PDF

Info

Publication number
TW201946382A
TW201946382A TW108104978A TW108104978A TW201946382A TW 201946382 A TW201946382 A TW 201946382A TW 108104978 A TW108104978 A TW 108104978A TW 108104978 A TW108104978 A TW 108104978A TW 201946382 A TW201946382 A TW 201946382A
Authority
TW
Taiwan
Prior art keywords
layer
signal
combiner
conductive trace
conductive
Prior art date
Application number
TW108104978A
Other languages
English (en)
Inventor
索倫 尚席奈杰德
賈維爾 羅德里茲迪路易斯
尼爾 亞佩汀
阿里雷札 馬漢法
Original Assignee
美商太空探索科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商太空探索科技公司 filed Critical 美商太空探索科技公司
Publication of TW201946382A publication Critical patent/TW201946382A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

在實施例中,一種功率分裂器/組合器包括:一第一導電跡線,其包括於一第一層中;第二導電跡線及第三導電跡線,其包括於一第二層中;一第一通路,其電氣耦接至該第一導電跡線及該第二導電跡線;及一第二通路,其電氣耦接至該第一導電跡線及該第三導電跡線。該第一導電跡線之一第一部分包含該功率分裂器/組合器之一第一埠。該第一導電跡線之一第二部分、該第一通路及該第二導電跡線包含該功率分裂器/組合器之一第二埠。該第一導電跡線之一第三部分、該第二通路及該第三導電跡線包含該功率分裂器/組合器之一第三埠。

Description

階層式網絡信號傳送路由安排設備及方法
相關申請案之交叉參考
本申請案主張2018年2月17日申請之美國臨時申請案第62/631,694號及2018年2月15日申請之美國臨時專利申請案第62/631,195號之權益,該二個臨時申請案之揭露內容之全文特此以引用之方式併入本文中。
發明領域
本發明的領域為階層式網路信號路由設備及方法。
發明背景
天線(諸如偶極天線)通常以具有較佳方向之場型產生輻射。舉例而言,所產生之輻射場型在一些方向上較強且在其他方向上較弱。同樣地,當接收電磁信號時,天線具有相同較佳方向。信號品質(例如,信號雜訊比或SNR),無論在傳輸抑或接收情境中,均可藉由將天線之較佳方向與信號之目標或源之方向對準來改良。然而,常常不切實際的是在實體上使天線相對於信號之目標或源重新定向。另外,可能不知道源/目標之確切位置。為了克服天線之以上缺點中之一些,可由一組天線元件形成相控陣列天線系統以模擬大的方向天線。相控陣列天線系統之優勢係其能夠在較佳方向上傳輸及/或接收信號(例如,天線之波束成形能力)而無需實體重新定位或重新定向。
將有利的是組配具有增加的頻寬之相控陣列天線系統,同時維持主瓣功率對旁瓣功率之高比率。同樣地,將有利的是組配具有縮減的重量、縮減的大小、較低的製造成本及/或較低的功率要求之相控陣列天線系統。因此,本揭露內容之實施例係有關相控陣列天線系統或其部分之此等及其他改良。
發明概要
提供此發明內容來以簡化形式介紹下文在實施方式中進一步描述之一系列概念。此發明內容並不意欲識別所主張之主題之關鍵特徵,亦不意欲用作輔助來判定所主張之主題之範疇。
在實施例中,一種功率分裂器/組合器包括:一第一導電跡線,其包括於一第一層中;第二導電跡線及第三導電跡線,其包括於一第二層中;一第一通路,其電氣耦接至該第一導電跡線及該第二導電跡線;及一第二通路,其電氣耦接至該第一導電跡線及該第三導電跡線。該第一導電跡線之一第一部分包含該功率分裂器/組合器之一第一埠。該第一導電跡線之一第二部分、該第一通路及該第二導電跡線包含該功率分裂器/組合器之一第二埠。該第一導電跡線之一第三部分、該第二通路及該第三導電跡線包含該功率分裂器/組合器之一第三埠。
在一些實施例中,一種設備包括:一第一電氣信號路徑分支,其包括於一第一層中;一第二電氣信號路徑分支,其包括於該第一層及一第二層中;及一第三電氣信號路徑分支,其包括於該第一層及該第二層中。該第一電氣信號路徑分支、該第二電氣信號路徑分支及該第三電氣信號路徑分支在該第一層中彼此電氣耦接。與該第二電氣信號路徑分支及該第三電氣信號路徑分支相關聯的信號路徑長度為四分之一波長信號路徑長度。
在一些實施例中,一種路由信號之方法包括:回應於在一第一層中接收到一第一信號,將該第一信號分裂成第二信號及第三信號;致使將該第二信號自該第一層傳播至安置在該第一層上方或下方之一第二層;及致使將該第三信號自該第一層傳播至該第二層。該第二信號及該第三信號中之每一者具有該第一信號之功率的一半功率。
在一些實施例中,一種設備包括:一第一層,其具有包含多個階層式網路之一第一部分的第一多個導電跡線;一第二層,其具有包含該多個階層式網路之一第二部分的第二多個導電跡線;及多個通路,其將該第一層之該等第一多個導電跡線電氣連接至該第二層之該各別第二多個導電跡線以界定該多個階層式網路。該等第一多個導電跡線定向在一第一方向上,且該等第二多個導電跡線定向在不同於該第一方向之一第二方向上。
在一些實施例中,一種設備包括:一第一導電跡線,其具有一第一定向、包括於一第一層中;一第二導電跡線,其具有不同於該第一定向之一第二定向、包括於一第二層中;及一功率分裂器/組合器,其包括於該第一層及該第二層中。該功率分裂器/組合器之包括於該第一層中的一第一部分電氣連接至該第一導電跡線。該功率分裂器/組合器之包括於該第二層中的一第二部分電氣連接至該第二導電跡線。該功率分裂器/組合器之一第三部分包含在該第一層與該第二層之間延伸的一通路。
在一些實施例中,一種用於路由信號之方法包括:經由一第一階層式網路將一第一信號路由至第一多個電氣組件;及經由一第二階層式網路將一第二信號路由至第二多個電氣組件。經由該第一階層式網路路由該第一信號包括經由一第一層中定向於一第一方向上的一第一導電跡線、位於該第一層與一第二層之間的一第一通路及該第二層中定向於不同於該第一方向的一第二方向上的一第二導電跡線路由該第一信號。經由該第二階層式網路路由該第二信號包括經由該第一層中定向於該第一方向的一第三導電跡線、位於該第一層與該第二層之間的一第二通路及該第二層中定向於該第二方向上的一第四導電跡線路由該第二信號。該第一導電跡線與該第三導電跡線在該第一層中自彼此偏移,且該第二導電跡線與該第四導電跡線在該第二層中自彼此偏移。
較佳實施例之詳細說明
本文中描述與階層式網路信號路由及功率分裂器/組合器相關的設備及方法之實施例。在實施例中,一種用於相控陣列天線之基體包括:一第一層,其具有多個階層式網路之一第一部分之第一多個導電跡線;及一第二層,其具有該多個階層式網路之一第二部分之第二多個導電跡線。該第一多個跡線定向在一第一方向上,且該第二多個跡線定向在不同於該第一方向之一第二方向上。多個通路將該第一層之該第一多個跡線電氣連接至該第二層之該各別第二多個跡線以界定該多個階層式網路。下文將較全面描述本發明之此等及其他態樣。
雖然本揭露內容之概念容許各種修改及替代形式,但該等概念之特定實施例已在圖式中作為實例予以展示且將在本文中予以詳細地描述。然而,應理解,並不意圖將本揭露內容之概念限於所揭露之特定形式,而是相反地,意圖涵蓋與本揭露內容及所附申請專利範圍一致之所有修改、等效方案及替代方案。
本說明書對「一個實施例」、「一實施例」、「一說明性實施例」等等之參考指示所描述之實施例可包括特定特徵、結構或特性,但每個實施例可或可能未必包括彼特定特徵、結構或特性。此外,此類片語未必係指同一實施例。此外,當結合一實施例來描述一特定特徵、結構或特性時,應認為,無論是否予以明確地描述,結合其他實施例來實現此類特徵、結構或特性係在熟習此項技術者之認識範圍內。另外,應瞭解,以「至少一個A、B及C」之形式包括於清單中的項目可意謂(A);(B);(C);(A及B);(B及C);(A及C);或(A、B及C)。類似地,以「A、B或C中之至少一者」之形式列出的項目可意謂(A);(B);(C);(A及B);(B及C);(A及C);或(A、B及C)。
本揭露內容中的諸如「頂部表面」、「底部表面」、「豎直」、「水平」及「橫向」之語言意謂參考圖式為讀者提供定向,且並不意欲為組件之所需定向或將定向限制賦予至申請專利範圍中。
在圖式中,可以特定配置及/或排序來展示一些結構或方法特徵。然而,應瞭解,可能不需要此類特定配置及/或排序。確切而言,在一些實施例中,可以不同於說明性圖中所展示之方式及/或次序的方式及/或次序來配置此類特徵。另外,在特定圖中包括結構或方法特徵並不意謂暗示在所有實施例中需要此類特徵,且在一些實施例中,可能不包括此類特徵或可將此類特徵與其他特徵組合。
本文中所描述之技術之許多實施例可呈電腦或控制器可執行指令之形式,該等電腦或控制器可執行指令包括由可程式化電腦或控制器執行之常式。熟習相關技術者將瞭解,可在除了上文所展示及描述之電腦/控制器系統之外的電腦/控制器系統上實踐該技術。該技術可體現於特殊用途電腦、控制器或資料處理器中,該特殊用途電腦、控制器或資料處理器經特定地程式化、組配或建構以執行上文所描述之電腦可執行指令中之一者或多者。因此,如本文中通常所使用之術語「電腦」及「控制器」係指任何資料處理器,且可包括網際網路器具及手持式裝置(包括掌上型電腦、可穿戴式電腦、蜂巢式或行動電話、多處理器系統、基於處理器或可程式化之消費型電子裝置、網路電腦、迷你電腦等等)。由此等電腦處置之資訊可呈現於任何合適顯示媒體處,包括陰極射線管(CRT)顯示器或液晶顯示器(LCD)。
圖1A為根據本揭露內容之實施例之相控陣列天線系統100的示意性繪示。相控陣列天線系統100經設計及組配以在較佳方向D上自天線孔口110接收由信號S (亦被稱作電磁信號、波前等等)構成之組合波束B或將組合波束B傳輸至天線孔口110。(亦參見圖1B中之組合波束B及天線孔口110)。波束B之方向D可垂直於天線孔口110或與法線成角度θ。
參看圖1A,所繪示之相控陣列天線系統100包括天線格組120、對映系統130、波束成形器格組140、多工饋送網路150 (或階層式網路或H網路)、組合器或分配器160 (用於接收信號之組合器或用於傳輸信號之分配器),及調變器或解調變器170。天線格組120經組配以自天線孔口110接收具有輻射場型之射頻信號S之組合波束B或將組合波束B傳輸至天線孔口110。
根據本揭露內容之實施例,相控陣列天線系統100可為多波束相控陣列天線系統,其中多個波束中之每一波束可經組配為處於不同角度、不同頻率及/或不同偏振。
在所繪示之實施例中,天線格組120包括多個天線元件122i。對應多個放大器124i耦接至多個天線元件122i。放大器124i可為在接收方向RX上之低雜訊放大器(LNA)或在傳輸方向TX上之功率放大器(PA)。多個放大器124i可與多個天線元件122i在例如天線模組或天線封裝中組合。在一些實施例中,多個放大器124i可位於與天線格組120分離之另一格組中。
天線格組120中之多個天線元件122i經組配用於傳輸信號(參見圖1A中用於傳輸信號之箭頭方向TX)或用於接收信號(參見圖1A中用於接收信號之箭頭方向RX)。參看圖1B,相控陣列天線系統100之天線孔口110為功率被輻射或接收所通過的區域。根據本揭露內容之一個實施例,圖1B中提供u/v平面中來自相控陣列天線系統100之例示性相控陣列天線輻射場型。根據自諸如聯邦通訊委員會(FCC)或國際電信聯盟(ITU)之組織發佈之法規,天線孔口具有所要指向角度D及最佳化波束B,例如縮減的旁瓣Ls,以最佳化可用於主瓣Lm之功率預算或以符合干擾法規準則。(參見圖1F的關於旁瓣Ls及主瓣Lm之描述。)
參看圖1C,在一些實施例中(參見實施例120A、120B、120C、120D),界定天線孔口110之天線格組120可包括以特定組配而配置於印刷電路板(PCB)、陶瓷、塑膠、玻璃或其他合適基體、基底、載體、面板等等(在本文中被描述為載體112)上之多個天線元件122i。舉例而言,多個天線元件122i可以同心圓、以圓形配置、以呈直線配置之行及列、以徑向配置、以彼此之間的相等或均一間隔、以彼此之間的非均一間隔或以任何其他配置而配置。圖1C中之各別載體112A、112B、112C及112D上無限制地展示界定天線孔口(110A、110B、110C及110D)的天線格組120中之多個天線元件122i之各種實例配置。
波束成形器格組140包括多個波束成形器142i,多個波束成形器142i包括多個移相器145i。在接收方向RX上,波束成形器功能係延遲自每一天線元件到達之信號,因此信號均同時到達組合網路。在傳輸方向TX上,波束成形器功能係延遲發送至每一天線元件之信號,使得所有信號均同時到達目標位置。可藉由使用「真時延遲(true time delay)」或在特定頻率下之相移來實現此延遲。
遵循圖1A之示意性繪示中之箭頭傳輸方向TX,在傳輸相控陣列天線系統100中,傳出的射頻(RF)信號經由分配器160自調變器170路由至波束成形器格組140中之多個個別移相器145i。RF信號由移相器145i相位偏移不同相位,該等不同相位在一個移相器與另一移相器之間變化預定量。每一頻率需要被相控特定量以便維持波束效能。若應用於不同頻率之相移遵循線性行為,則相移被稱作「真時延遲」。然而,共同移相器針對所有頻率應用恆定相位偏移。
舉例而言,共同RF信號之相位可在圖1A中之底部移相器145i處移位0º、在行中之下一移相器145i處移位Δα、在下一移相器處移位2Δα,等等。因此,到達放大器124i (當傳輸時,該等放大器為功率放大器「PA」)之RF信號分別自彼此相位偏移。PA 124i放大此等相位偏移RF信號,且天線元件122i發射RF信號S作為電磁波。
由於相位偏移,來自個別天線元件122i之RF信號組合成傳出的波前,該等波前自由天線元件122i之格組形成之天線孔口110傾斜角度ϕ。角度ϕ被稱作到達角度(AoA)或波束成形角度。因此,相位偏移Δα之選擇判定了界定波前之組合信號S之輻射場型。在圖1B中,提供根據本揭露內容之一個實施例的來自天線孔口110之信號S之例示性相控陣列天線輻射場型。
遵循圖1A之示意性繪示中之箭頭接收方向RX,在接收相控陣列天線系統100中,界定波前之信號S由個別天線元件122i偵測到,且由放大器124i (當接收信號時,該等放大器為低雜訊放大器「LNA」)放大。對於任何非零AoA,包含相同波前之信號S在不同時間到達不同天線元件122i。因此,經接收信號通常將包括自接收(RX)天線元件之一個天線元件至另一天線元件之相位偏移。類似於發射相控陣列天線狀況,此等相位偏移可由波束成形器格組140中之移相器145i調整。舉例而言,每一移相器145i (例如,移相器晶片)可經程式化以將信號之相位調整至相同參考,使得抵消個別天線元件122i當中之相位偏移,以便組合對應於相同波前之RF信號。由於信號之此相長組合,可對經接收信號實現較高信號雜訊比(SNR),此會引起通道容量增加。
仍參看圖1A,對映系統130可安置於天線格組120與波束成形器格組140之間以針對天線格組120之每一天線元件122i與波束成形器格組140中之移相器145i之間的等距電氣連接提供長度匹配,如下文將更詳細地所描述。多工饋送或階層式網路150可安置於波束成形器格組140與分配器/組合器160之間以將共同RF信號分配至波束成形器格組140之移相器145i以用於各別適當相移並提供至天線元件122i以供傳輸,且在由波束成形器142i進行適當相位調整之後組合由天線元件122i接收之RF信號。
根據本揭露內容之一些實施例,要由載體112攜載之天線模組中可含有相控陣列天線系統100之天線元件122i及其他組件。(參見例如圖2B中之天線模組226a及226b)。在圖2B所繪示之實施例中,每天線模組226a存在一個天線元件122i。然而,在本揭露內容之其他實施例中,天線模組226a可併有多於一個天線元件122i。
參看圖1D及圖1E,提供根據本揭露內容之一個實施例的用於天線孔口120之例示性組配。在圖1D及圖1E所繪示之實施例中,天線格組120中之多個天線元件122i以空間漸縮組配而分佈於載體112上。根據空間漸縮組配,天線元件122i之數目在其分佈上自載體112之中心點至載體112之周邊點改變。舉例而言,比較鄰近天線元件122i之間的間隔D1與D2,且比較鄰近天線元件122i之間的間隔d1、d2及d3。儘管被展示為以空間漸縮組配而分佈,但用於天線格組之其他組配亦在本揭露內容之範疇內。
系統100包括攜載天線格組120之第一部分及攜載波束成形器格組140之第二部分,波束成形器格組140包括多個波束成形器元件。如在圖1E之橫截面視圖中所見,載體112之多個層攜載相控陣列天線系統100之元件之間的電氣及電磁連接。在所繪示之實施例中,天線元件122i位於頂部層之頂部表面上,且波束成形器元件142i位於底部層之底部表面上。雖然天線元件122i可以諸如空間漸縮配置之第一配置而組配,但波束成形器元件142i可以不同於天線元件配置之第二配置而配置。舉例而言,天線元件122i之數目可大於波束成形器元件142i之數目,使得多個天線元件122i對應於一個波束成形器元件142i。作為另一實例,波束成形器元件142i可自載體112上之天線元件122i橫向地位移,如由圖1E中之距離M所指示。在本揭露內容之一個實施例中,波束成形器元件142i可以均勻隔開或經組織配置而配置,該均勻隔開或經組織配置例如對應於H網路或叢集網路或不均勻隔開網路,諸如不同於天線格組120之空間漸縮網路。在一些實施例中,一個或多個額外層可安置於載體112之頂部層與底部層之間。該等層中之每一者可包含一個或多個PCB層。
參看圖1F,提供根據本揭露內容之實施例的天線信號之主瓣Lm及旁瓣Ls的圖形。水平(亦為徑向)軸線展示以dB為單位之輻射功率。角度軸線展示以度為單位之RF場角度。主瓣Lm表示在較佳方向上由相控陣列天線系統100產生之最強RF場。在所繪示之狀況下,主瓣Lm之所要指向角度D對應於約20º。通常,主瓣Lm伴隨著多個旁瓣Ls。然而,旁瓣Ls通常係不良的,此係因為其自同一功率預算獲得其功率,藉此縮減了用於主瓣Lm之可用功率。此外,在一些情況下,旁瓣Ls可縮減天線孔口110之SNR。又,旁瓣縮減對於法規遵從性係重要的。
用於縮減旁瓣Ls之一種方法係將天線格組120中之元件122i配置成使天線元件122i相位偏移,使得相控陣列天線系統100在較佳方向D上發射具有縮減的旁瓣之波形。用於縮減旁瓣Ls之另一方法為功率漸縮。然而,功率漸縮通常係不良的,此係因為藉由縮減旁瓣Ls之功率,該系統增加了需要「可調諧及/或較低輸出」功率放大器之設計複雜性。
另外,相較於不可調諧放大器,用於輸出功率之可調諧放大器124i縮減了效率。替代地,設計具有不同增益之不同放大器會增加該系統之總體設計複雜性及成本。
根據本揭露內容之實施例的用於縮減旁瓣Ls之又一方法為用於天線格組120之天線元件122i之空間漸縮組配。(參見圖1C及圖1D中之天線元件122i組配。)空間漸縮可用以縮減對在天線元件122i當中分配功率之需要以縮減不良旁瓣Ls。然而,在本揭露內容之一些實施例中,空間漸縮分佈天線元件122i可進一步包括功率或相位分配以用於改良效能。
除了不良旁瓣縮減之外,根據本揭露內容之實施例亦可使用空間漸縮以縮減相控陣列天線系統100中之天線元件122i之數目,同時取決於系統100之應用而仍達成來自相控陣列天線系統100之可接受波束B。(舉例而言,在圖1C中比較載體112D上之空間漸縮天線元件122i之數目與由載體112B攜載之非空間漸縮天線元件122i之數目。)
圖1G描繪根據本揭露內容之實施例的被實施為鋪疊(lay-up) 180中之多個PCB層的相控陣列天線系統100之例示性組配。鋪疊180中之多個PCB層可包含PCB層堆疊,該PCB層堆疊包括天線層180a、對映層180b、多工饋送網路層180c及波束成形器層180d。在所繪示之實施例中,對映層180b安置於天線層180a與多工饋送網路層180c之間,且多工饋送網路層180c安置於對映層180b與波束成形器層180d之間。
儘管未展示,但一個或多個額外層可安置於層180a與層180b之間、安置於層180b與層180c之間、安置於層180c與層180d之間、安置於層180a上方,及/或安置於層180d下方。層180a、180b、180c及180d中之每一者可包含一個或多個PCB子層。在其他實施例中,層180a、180b、180c及180d相對於彼此之次序可能不同於圖1G中所展示之配置。舉例而言,在其他實施例中,波束成形器層180d可安置於對映層180b與多工饋送網路層180c之間。
層180a、180b、180c及180d可包括導電跡線(諸如由電氣隔離聚合物或陶瓷相互分離之金屬跡線)、電氣組件、機械組件、光學組件、無線組件、電氣耦接結構、電氣接地結構,及/或經組配以促進與相位陣列天線系統100相關聯之功能性的其他結構。位於諸如層180a之特定層上的結構可與豎直通路(例如,沿著笛卡爾座標系統之z方向延伸之通路)電氣互連,以與位於諸如層180d之另一層上的特定結構建立電氣連接。
天線層180a可包括但不限於多個天線元件122i,其以特定配置(例如,空間漸縮配置)而配置為載體112上之天線格組120。天線層180a亦可包括一個或多個其他組件,諸如對應放大器124i。替代地,對應放大器124i可組配於單獨層上。對映層180b可包括但不限於對映系統130以及關聯載體及電氣耦接結構。多工饋送網路層180c可包括但不限於多工饋送網路150以及關聯載體及電氣耦接結構。波束成形器層180d可包括但不限於多個移相器145i、波束成形器格組140之其他組件,以及關聯載體及電氣耦接結構。在一些實施例中,波束成形器層180d亦可包括調變器/解調變器170及/或耦接器結構。在圖1G所繪示之實施例中,波束成形器142i以假想線予以展示,此係因為其自波束成形器層180d之底面延伸。
儘管未展示,但層180a、180b、180c或180d中之一者或多者自身可包含多於一個層。舉例而言,對映層180b可包含二個或多於二個層,其以組合方式可經組配以提供上文所論述之路由功能性。作為另一實例,取決於包括於多工饋送網路150中之多工饋送網路之總數目,多工饋送網路層180c可包含二個或多於二個層。
根據本揭露內容之實施例,相控陣列天線系統100可為多波束相控陣列天線系統。在多波束相控陣列天線組配中,每一波束成形器142i可電氣耦接至多於一個天線元件122i。波束成形器142i之總數目可小於天線元件122i之總數目。舉例而言,每一波束成形器142i可電氣耦接至四個天線元件122i或電氣耦接至八個天線元件122i。圖2A繪示根據本揭露內容之一個實施例的例示性多波束相控陣列天線系統,其中八個天線元件222i電氣耦接至一個波束成形器242i。在其他實施例中,每一波束成形器142i可電氣耦接至多於八個天線元件122i。
圖2B描繪根據本揭露內容之實施例的被實施為多個PCB層280的圖2A之相控陣列天線系統200之例示性組配的部分、近距、橫截面視圖。如在圖1G中運用類似數字所使用而在圖2B中使用相似部件編號,但用200系列。
在圖2B所繪示之實施例中,相控陣列天線系統200呈接收組配(如由箭頭RX所指示)。儘管被繪示為呈接收組配,但圖2B之實施例之結構可被修改為亦適合用於傳輸組配。
信號由個別天線元件222a及222b偵測到,天線元件222a及222b在所繪示之實施例中被展示為由天線格組層280a之頂部表面上之天線模組226a及226b攜載。在由天線元件222a及222b接收到之後,信號由對應低雜訊放大器(LNA) 224a及224b放大,LNA 224a及224b亦在所繪示之實施例中被展示為由天線格組層280a之頂部表面上之天線模組226a及226b攜載。
在圖2B所繪示之實施例中,天線格組220中之多個天線元件222a及222b耦接至波束成形器格組240中之單一波束成形器242a (如參考圖2A所描述)。然而,被實施為具有天線元件對波束成形器元件之一比一比率或具有大於一比一比率之多個PCB層的相控陣列天線系統亦在本揭露內容之範疇內。在圖2B所繪示之實施例中,波束成形器242i耦接至波束成形器層280d之底部表面。
在所繪示之實施例中,天線元件222i及波束成形器元件242i經組配為在PCB層鋪疊280之相對表面上。在其他實施例中,波束成形器元件可與天線元件共置於鋪疊之同一表面上。在其他實施例中,波束成形器可位於天線模組或天線封裝內。
如先前所描述,將天線層280a上之天線格組220之天線元件222a及222b耦接至波束成形器層280d上之波束成形器格組240之波束成形器元件242a的電氣連接使用導電跡線佈線於一個或多個對映層280b1及280b2之表面上。圖1G之層130中提供用於對映層之例示性對映跡線組配。
在所繪示之實施例中,對映展示於二個對映層280b1及280b2之頂部表面上。然而,根據本揭露內容之實施例可使用任何數目之對映層,包括單一對映層。單一對映層上之對映跡線不能與其他對映跡線交叉。因此,使用多於一個對映層可有利於藉由允許水平平面中之對映跡線與垂直於對映層延伸通過鋪疊280之虛線交叉來縮減導電對映跡線之長度,且有利於選擇中間通路在對映跡線之間的置放。
除了層280b1及280b2之表面上之對映跡線之外,自天線格組220至波束成形器格組240之對映進一步包括垂直地延伸通過多個PCB層280中之一者或多者的一個或多個導電通路。
在圖2B所繪示之實施例中,第一天線元件222a與波束成形器元件242a之間的第一對映跡線232a形成於PCB層鋪疊280之第一對映層280b1上。第一天線元件222a與波束成形器元件242a之間的第二對映跡線234a形成於PCB層鋪疊280之第二對映層280b2上。導電通路238a將第一對映跡線232a連接至第二對映跡線234a。同樣地,導電通路228a將天線元件222a (被展示為連接包括天線元件222a及放大器224a之天線模組226a)連接至第一對映跡線232a。此外,導電通路248a將第二對映跡線234a連接至RF濾波器244a且接著連接至波束成形器元件242a,波束成形器元件242a接著連接至組合器260及RF解調變器270。
值得注意的是,通路248a對應於通路148a,且濾波器244a對應於濾波器144a,二者均在圖1G之先前實施例中展示於波束成形器層180d之表面上。在本揭露內容之一些實施例中,取決於該系統之設計,可省略濾波器。
類似對映將第二天線元件222b連接至RF濾波器244b且接著連接至波束成形器元件242a。第二天線元件222b可在與第一天線元件222a相同或不同之參數值下(例如在不同頻率下)操作。若第一天線元件222a及第二天線元件222b在相同參數值下操作,則RF濾波器244a及244b可相同。若第一天線元件222a及第二天線元件222b在不同值下操作,則RF濾波器244a及244b可能不同。
可根據任何合適方法形成對映跡線及通路。在本揭露內容之一個實施例中,在已形成多個個別層280a、280b、280c及280d之後形成PCB層鋪疊280。舉例而言,在層280a之製造期間,可通過層280a形成導電通路228a。同樣地,在層280d之製造期間,可通過層280d形成導電通路248a。當將多個個別層280a、280b、280c及280d組裝及層合在一起時,通過層280a之導電通路228a與層280b1之表面上之跡線232a電氣耦接,且通過層280d之導電通路248a與層280b2之表面上之跡線234a電氣耦接。
可在將多個個別層280a、280b、280c及280d組裝及層合在一起之後形成其他導電通路,諸如耦接層280b1之表面上之跡線232a及層280b2之表面上之跡線234a的通路238a。在此建構方法中,可通過整個鋪疊280鑽孔以形成通路,將金屬沈積於整個孔中,從而在跡線232a與跡線234a之間形成電氣連接。在本揭露內容之一些實施例中,在跡線232a與跡線234a之間形成電氣連接時所不需要的通路中之過量金屬可藉由在通路之頂部及/或底部部分處對該金屬進行反向鑽孔來移除。在一些實施例中,不完全地執行金屬之反向鑽孔,從而留下通路「殘端(stub)」。可針對具有剩餘通路「殘端」之鋪疊設計執行調諧。在其他實施例中,不同製造程序可產生不會跨越超過所需豎直方向之通路。
相較於使用一個對映層,如在圖2B所繪示之實施例中所見的使用由中間通路238a及238b分離之二個對映層280b1及280b2會允許選擇性地置放中間通路238a及238b。若此等通路係通過鋪疊280之所有層被鑽孔,則其可經選擇性地定位成與鋪疊280之頂部或底部表面上之其他組件隔開。
圖3A及圖3B係有關本揭露內容之另一實施例。圖3A繪示根據本揭露內容之一個實施例的例示性多波束相控陣列天線系統,其中八個天線元件322i電氣耦接至一個波束成形器342i,其中八個天線元件322i分成二個不同群組之穿插天線元件322a及322b。
圖3B描繪根據本揭露內容之實施例的被實施為多個PCB層380之層疊之相控陣列天線系統300之例示性組配的部分、近距、橫截面視圖。圖3B之實施例類似於圖2B之實施例,惟關於穿插天線元件、對映層之數目及信號之方向的差異除外,如下文將更詳細地所描述。如在圖3A中運用類似數字所使用而在圖3B中使用相似部件編號,但用300系列。
在圖3B所繪示之實施例中,相控陣列天線系統300呈傳輸組配(如由箭頭TX所指示)。儘管被繪示為呈傳輸組配,但圖3B之實施例之結構可被修改為亦適合用於接收組配。
在本揭露內容之一些實施例中,個別天線元件322a及322b可經組配以在一個或多個參數(例如,頻率、偏振、波束定向、資料串流、接收(RX)/傳輸(TX)功能、時間多工區段等等)之不同值下接收及/或傳輸資料。此等不同值可與不同群組之天線元件相關聯。舉例而言,由載體攜載之第一多個天線元件經組配以在第一參數值下傳輸及/或接收信號。由載體攜載之第二多個天線元件經組配以在不同於第一參數值之第二參數值下傳輸及/或接收信號,且第一多個天線元件中之個別天線元件被穿插有第二多個天線元件中之個別天線元件。
作為一非限制性實例,第一群組之天線元件可在頻率f1下接收資料,而第二群組之天線元件可在頻率f2下接收資料。
在一個參數值(例如,第一頻率或波長)下操作之天線元件連同在另一參數值(例如,第二頻率或波長)下操作之天線元件在同一載體上的置放在本文中被稱作「穿插」。在一些實施例中,在不同參數值下操作的該等群組之天線元件可置放於相控陣列天線中之載體的單獨區域上方。在一些實施例中,在至少一個參數之不同值下操作的該等群組之天線元件中之天線元件中之至少一些彼此鄰近或相鄰。在其他實施例中,在至少一個參數之不同值下操作的該等群組之天線元件中之天線元件中之大部分或全部彼此鄰近或相鄰。
在圖3A所繪示之實施例中,天線元件322a及322b為穿插天線元件,其中第一天線元件322a在第一參數值下通訊且第二天線元件322a在第二參數值下通訊。
儘管在圖3A中被展示為二個群組之穿插天線元件322a及322b與單一波束成形器342a通訊,但相控陣列天線系統300亦可經組配致使一個群組之穿插天線元件與一個波束成形器通訊且另一群組之穿插天線元件與另一波束成形器通訊。
在圖3B所繪示之實施例中,相較於在圖2B中使用二個對映層280b1及280b2,鋪疊380包括四個對映層380b1、380b2、380b3及380b4。對映層380b1及380b2由中間通路338a連接。對映層380b3及380b4由中間通路338b連接。如同圖2B之實施例,圖3B之實施例之鋪疊380可允許選擇性地置放中間通路338a及338b,例如以與鋪疊380之頂部或底部表面上之其他組件隔開。
相比於圖2B及圖3B中所展示之組配,對映層及通路可以許多其他其他組配而配置且配置於鋪疊180之其他子層上。使用二個或多於二個對映層可有利於藉由允許水平平面中之對映跡線與垂直於對映層延伸通過鋪疊之虛線交叉來縮減導電對映跡線之長度,且有利於選擇中間通路在對映跡線之間的置放。同樣地,對映層可經組配以與呈穿插組配的一群組之天線元件相關。藉由針對每一分組使用相同對映層來針對每一分組使通路長度維持恆定,跡線長度為針對每一分組用於每一天線至波束成形器對映之長度匹配中的唯一變數。
二層多工饋送網路
圖4A描繪根據本揭露內容之一些實施例之信號饋送網路400之實例。圖4B描繪根據本揭露內容之一些實施例之信號饋送網路400之部分402的額外細節。在圖4A之實例網路中,信號饋送網路400可包含具有經由各別多個跡線406彼此互連的多個襯墊408及多個信號組合器或分裂器404之單H網路。網路400可包括多個H網路部分402,其中在一第一方向(N)上的部分402之數目可與在垂直於該第一方向之一第二方向(M)上的部分402之數目相同或不同。
若將實施多個信號饋送網路,則該多個信號饋送網路中之每一信號饋送網路可設置於分離的基底或層上,如圖5中所描繪。圖5之組配可包含用於實施多個信號饋送網路之習知方案。
舉例而言,圖4B之網路400 (例如,單H網路)可設置於基底/層410上,H網路412可設置於基底/層414上,且H網路416可設置於基底/層418上。基底/層412可在垂直於基底/層412之主要平面的方向上安置在基底/層410與414之間。基底/層410、414、418可包含印刷電路板(PCB)。與網路400、412、416中之每一者相關聯的H網路部分(例如,部分402)之數目可彼此相同。
由於每一信號饋送器網路需要相異的基底或層,因此隨著此類網路之數目增大,形成網路所需的層之數目亦增大。舉例而言,若天線系統可需要16個信號饋送器網路,則信號饋送器網路PCB之16個層可包括於天線系統中。包括較大數目之PCB層引入信號劣化或損失可能、較高成本、較高製造時間、組裝複雜性、重量增大、大小增大、未對準可能,及/或其類似者。
替代每層組配單一信號饋送器網路,多個信號饋送器網路可設置於二個層上,其導致網路所需的層之總數目減少。信號饋送器網路亦可稱為多工饋送網路等。
在一些實施例中,圖1G中之多工饋送網路層180c可包含配置於多於一個層上的多個多工饋送網路。舉例而言,多工饋送網路層180c可包括四個、五個、八個或更多個多工饋送網路。該多個多工饋送網路中之每一多工饋送網路可包含但不限於配置或組配為以下網路之導電跡線:階層式網路、碎片網路、自類似碎片網路、樹網路、星形網路、雜合網路、直線式網路、曲線網路、H網路(亦稱為H樹網路)、直線式H網路、曲線H網路或其中輸入至網路之每一信號橫穿相同長度之跡線以避免由不同跡線長度造成的寄生信號延遲之其他網路。
在一些實施例中,對於包括於多工饋送網路層180c中之三個或更多個多工饋送網路,用以提供所有多工饋送網路之導電跡線(亦稱為跡線)的層之數目可等於該多個多工饋送網路之該等跡線之不同或獨特定向或方向之數目。包括於多工饋送網路層180c中之所有多工饋送網路可根據各別層中該等跡線之不同/獨特定向或方向而分解或解構。
作為一實例,若多工饋送網路層180c包含多個H網路,則H網路之所有跡線可形成於二個層上。因此,若多工饋送網路層180c包含例如四個H網路,則與該四個H網路相關聯的所有跡線可使用二個層而非如在習知方案中使用四個層(四個H網路中之每一者一個層)形成。類似地,若多工饋送網路層180c包含例如八個H網路,則與該八個H網路相關聯的所有跡線可使用二個層而非如在習知方案中使用八個層(八個H網路中之每一者一個層)形成。
圖6A描繪根據本揭露內容之一些實施例之多工饋送網路層180c的實例之俯視圖。多工饋送網路堆疊600可包含由四個H網路610、612、614及616構成的多工饋送網路層180c。H網路610、612、614、616可與彼此電氣隔離。在一些實施例中,射頻(RF)信號602可包含至多工饋送網路堆疊600之輸入信號。在多工饋送網路堆疊600包括於相位陣列天線系統之傳輸器面板中時,RF信號602可由調變器(例如,調變器170)提供。堆疊600可經組配以將所接收RF信號602提供或饋送至包括於相位陣列天線系統中的其他層或組件(例如,波束成形器層180d或波束成形器格組140、240或340)。RF信號602的頻率可彼此相同或不同。若多工饋送網路堆疊600組配於相位陣列天線系統之接收器面板中,則RF信號602可包含自波束成形器格組或層接收的待輸入至解調變器(例如,解調變器170)之輸出信號。RF信號602中每一RF信號可與不同波束或頻道相關聯。
與H網路610、612、614及616相關聯的所有跡線可包含配置於水平方向/定向之跡線(例如,笛卡爾座標系統之x方向上的跡線604)及配置於豎直方向/定向上的跡線(例如,在笛卡爾座標系統之y方向上的跡線606)。因為H網路610、612、614、616可包含直線式組配,因此跡線604、606之形狀可為線性或直線,且跡線604及606之方向/定向可在x-y平面上垂直於彼此。
自H網路610、612、614及616之最末/末端節點延伸之跡線可稱為端接跡線區段601。端接跡線區段601之與最末/末端節點相對的末端可包含端接跡線區段601之端接末端608。在一些實施例中,端接末端608可包括襯墊、端帽或其他結構以促進與在層之間延伸的通路(例如,在z方向上延伸的通路)之電氣及/或實體耦接。
替代地,H網路610、612、614、616可組配為曲線網路,其中跡線604及606之形狀可彎曲或非線性,且跡線604、606之方向/定向可在x-y平面上垂直於彼此。
在一些實施例中,H網路610、612、614、616之跡線606 (豎直跡線)可設置於層620上,如圖6B中所示,而H網路610、612、614、616之跡線604 (水平跡線)可設置於層630上,如圖6C中所示。層620可沿著笛卡爾座標系統之z方向安置在層630上方或之上,且經組配以使與各別H網路610、612、614及616相關聯的跡線604及606彼此對準。層620、630中之每一者除了各別跡線606、604之外亦可包括PCB、基體、基底、底板、載體或其他結構以促進分離層上的各別跡線606、604之製造、電氣隔離、結構支撐或完整性及/或接地。因此,與H網路610、612、614、616相關聯的跡線可使用少於四個層來製造。具有豎直定向/方向之跡線可與具有水平定向/方向之跡線在不同平面上製造。
儘管多工饋送網路堆疊600展示為具有安置在層630上方的層620,但在替代實施例中,層620可安置於層630下方。
注意,本文中提及「豎直」及「水平」僅用以輔助描述本揭露內容。若多工饋送網路堆疊600例如在x-y平面上旋轉90度,則「豎直」與「水平」之指定將反轉。
在一些實施例中,H網路610、612、614及/或616之節點之數目(或端接末端之數目)可與包括於天線層180a中的天線元件122i之數目及包括於波束成形器層180d中的波束成形器142i之數目中之一者或二者相同或不同。H網路610、612、614、616中之每一者之節點之數目可為2N,且因此,根據2之冪縮放,例如16、32、64、128、256等,其中N為H網路之級/層級之數目。在端接末端之數目超過H網路610、612、614及/或616至相位陣列天線系統之其他結構/組件之間的連接之數目的情況下,可端接未使用的端接末端(例如,端接至接地)以避免非所需的信號反射。
圖7A描繪根據本揭露內容之一些實施例之多工饋送網路層180c之另一實例的俯視圖。多工饋送網路堆疊700可包含由八個H網路710、712、714、716、718、720、722及724構成、使用二個層形成的多工饋送網路層180c。H網路710、712、714、716、718、720、722及724可彼此電氣隔離。多工饋送網路堆疊700可類似於多工饋送網路堆疊600,惟比堆疊600中可包括的H網路數目大除外。
在一些實施例中,射頻(RF)信號702可包含至多工饋送網路堆疊700之輸入/輸出信號。RF信號702的頻率可彼此相同或不同。與直線式H網路710、712、714、716、718、720、722及724相關聯之所有跡線可包含配置於水平方向/定向的跡線(例如,在笛卡爾座標系統之x方向上的跡線704)及配置於豎直方向/定向的跡線(例如,在笛卡爾座標系統之y方向上的跡線706)。包含H網路710、712、714、716、718、720、722及724之端接或末端區段(例如,端接跡線區段721)之跡線704中之每一者可包括端接末端708。
類似於上文針對H網路610、612、614、616之論述,H網路710、712、714、716、718、720、722及724可替代地組配為曲線網路,且跡線704、706可包含可在x-y平面上彼此垂直的彎曲或非線性形狀跡線。
圖7B描繪圖7A中所展示之H網路710、712、714、716、718、720、722、724之部分750之俯視圖。在一些實施例中,H網路710、712、714、716、718、720、722、724之跡線706可設置於層720上,如圖7C中所示,而H網路710、712、714、716、718、720、722、724之跡線704可設置於層730上,如圖7D中所示。層720可沿著笛卡爾座標系統之z方向安置在層730上方或之上,且經組配以使與各別H網路710、712、714、716、718、720、722、724相關聯的跡線704及706彼此對準。層720、730中之每一者除了各別跡線706、704之外亦可包括PCB、基體、基底、底板、載體或其他結構以促進分離層上的各別跡線706、704之製造、電氣隔離、結構支撐或完整性及/或接地。因此,與H網路710、712、714、716、718、720、722、724相關聯的跡線可使用少於八個層來製造。
在圖7A中,H網路710、712、714、716、718、720、722、724中之每一者包含五級/層級H網路。由於H網路之終止末端之數目為2N ,因此對於N=5級/層級,八個H網路中之每一者存在25 =32個終止末端(例如,端接末端708)。且,八個H網路總共存在組合的32*8=256個終止末端。因此,端接或末端跡線區段721可自H網路中之每一者之最末節點(例如,第5節點)延伸,且終止或結束於端接末端708處。在一些實施例中,端接末端708中之每一者可包括端帽、襯墊或其他結構以促進與在波束成形器層180d中的波束成形器142i之特定輸入之間延伸的通路之電氣及/或實體耦接。
儘管展示五個級/層級,但H網路710、712、714、716、718、720、722、724可包含少於或多於五個級/層級。H網路710、712、714、716、718、720、722、724可包含少於或多於八個網路。
H網路710、712、714、716、718、720、722、724中之每一者可包括輸入或輸出702。輸入/輸出702在H網路組配於接收器面板中時可包含輸入,且在H網路組配於傳輸器面板中時可包含輸出。每一輸入/輸出702可與具有特定參數之信號相關聯。舉例而言但不限於,各別信號的頻率可彼此不同。每一輸入/輸出702或對應信號可與不同波束或頻道相關聯。因此,包括八個H網路之相控天線陣列系統可能能夠進行高達八頻道操作。在圖7A中自左至右之信號S5、S6、S2、S1、S8、S7、S3、S4可與各別輸入/輸出702相關聯。
返回至圖7B,端接末端708可包含H網路710、712、714、716、718、720、722、724之輸出/輸入。舉例而言,若與信號S1相關聯的輸入/輸出702組配為用於與信號S1相關聯的特定H網路之輸入,則包括於此類H網路中之端接末端708可認為係此類H網路之輸出。相反,若與信號S1相關聯之輸入/輸出702組配為用於與信號S1相關聯的特定H網路之輸出,則包括於此類H網路中之端接末端708可認為係此類H網路之輸入。
儘管多工饋送網路堆疊700展示為具有安置在層730上方的層720,但在替代實施例中,層720可安置於層730下方。
在其中多工饋送網路可包括在多於二個不同定向/方向上的跡線之實施例中,可於其中製造跡線之不同層或平面之數目可根據跡線之不同定向/方向之數目。舉例而言,若多工饋送網路包含在三個不同定向/方向上之跡線,則可實施三個層以提供跡線。多工饋送網路之跡線亦無需為線性。非線性或彎曲跡線亦可自不同層中的多工饋送網路之跡線之其餘部分彼此分解。
圖8描繪根據本揭露內容之一些實施例之實例多工饋送網路堆疊800之橫截面圖。多工饋送網路堆疊800可包含多工饋送網路堆疊600或700。多工饋送網路堆疊800可包含層810、820、830及840,其中層830可安置在層820與840之間,且層820可安置在層810與830之間。層810可包含堆疊800之頂層,且層840可包含堆疊800之底層。
在一些實施例中,層820可類似於層620或720,且層830可類似於層630或730。除了二個跡線層820、830之外,諸如通路824及826之多個通路可位於層820及830中及/或在其間延伸。通路824及826可包含經組配以將位於層820中之跡線電氣互連至位於層830中之跡線的導電通路。如下文更詳細地描述,多個通路中之至少一個通路可與包括於堆疊800中的H網路之豎直跡線與水平跡線之每一組合相關聯,其中若豎直跡線與水平跡線位於相同平面上,則可出現相交區。換言之,自層820之豎直跡線至層830之水平跡線的每一垂直路徑(例如,沿著z軸)可識別待由一個或多個通路提供的電氣互連或耦接位置。此類「相交」區域之實例在圖6A中描繪為相交區域650、652、654,且在圖7A中描繪為相交區域750、752。
層810及840中之每一者可包括接地層或平面、電氣隔離層、黏著層及/或其類似者。在一些實施例中,層810及/或840可包括諸如電氣隔離通路或法拉弟籠結構之結構。舉例而言,若無層可安置在堆疊800上方,則層810可為可選的。同樣,舉例而言,若無層可安置於堆疊800下方,則層840可為可選的。
除了上文所論述之結構/組件之外,層810、820、830及/或840亦可包括PCB、基體、基底、底板、載體或其他材料以促進包括於各別層中的各別結構/組件之製造、電氣隔離、結構支撐或完整性及/或接地。
儘管未展示,但在一些實施例中,堆疊800可包括一個或多個額外層。舉例而言,襯墊層包含經分佈以與端接區域或端帽608及/或708對準之多個導電襯墊。作為另一實例,一個或多個層包括路由及/或互連結構以與包括波束成形組件、相移組件等的層電氣耦接。
多層功率分裂器/組合器
圖9描繪根據本揭露內容之一些實施例之包括於堆疊800中的實例功率分裂器/組合器900之方塊圖。層820之跡線與層830之跡線之間的每一「相交區」或接面(例如,在相交區域650、652、654、750或752處)可與經組配以處置在不同層820與830之間的該位置處的RF信號之路由的功率分裂器/組合器900相關聯。因此,多個功率分裂器/組合器可包括於堆疊800中,該多個功率分裂器/組合器中之每一功率分裂器/組合器與多工饋送網路之豎直跡線與水平跡線之各別「相交區」相關聯。
在一些實施例中,功率分裂器/組合器900可經組配以將第一層中提供的傳入/輸入RF信號劃分或分裂成在不同於該第一層的第二層處輸出的二個輸出RF信號,其中該二個輸出RF信號中之每一者具有與傳入RF信號相關聯的功率之一半功率,該二個輸出RF信號中之每一者具有與輸入RF信號相同之頻率,阻抗匹配維持在功率分裂器/組合器900之所有三個線或埠(接收傳入RF信號之輸入線/埠及輸出二個輸出RF信號之二個輸出線/埠),且電氣隔離維持在該等線或埠之間。
如圖9中所示,包括於堆疊800之層820中之跡線902可將輸入RF信號提供至功率分裂器/組合器900。跡線902可電氣耦接至功率分裂器/組合器900之輸入線/埠/跡線。跡線902可包含例如單一跡線606或706。包括於堆疊800之層830中之跡線904、906可接收藉由功率分裂器/組合器900產生之各別第一及第二輸出RF信號。跡線904、906可電氣耦接至功率分裂器/組合器900之各別第一及第二輸出線/埠/跡線。跡線904及906一起可包含例如單一跡線604或704,其中包括隔離電阻器(如下文結合圖10所詳細描述)以確保第一與第二輸出RF信號彼此隔離。功率分裂器/組合器900可位於層820及830中,如下文所詳細描述。
在一些實施例中,功率分裂器/組合器900之總體尺寸可對稱,且功率分裂器/組合器900可相對於跡線902、904及906在x-y平面中居中。功率分裂器/組合器900之尺寸910 (d1)、912 (d2)、914 (d3)、916 (d4)、918 (d5)及920 (d6)可等於彼此。替代地,尺寸910至920中之一者或多者可彼此不同。在此組配中,功率分裂器/組合器900可略微較大,此係由於輸出線可包括(另一)曲率。在一些實施例中,功率分裂器/組合器900之總體尺寸或大小可判定多工饋送網路之鄰近跡線之間的距離,且因此判定多工饋送網路之密度。功率分裂器/組合器900之大小愈小,多工饋送網路密度可能愈大。
功率分裂器/組合器900亦可稱為功率分裂器、信號劃分器、信號分裂器、功率或信號組合器、功率劃分器/組合器、信號分裂器/組合器、信號劃分器/組合器、多輸入及多輸出(MIMO)功率分裂器/組合器/分裂器/組合器、威爾金森(Wilkinson)分裂器/劃分器或組合器,等。功率分裂器/組合器900可包含互逆組件,其中信號傳播亦可與上文所描述者反轉地發生,使得功率分裂器/組合器900可充當功率或信號組合器。二個輸入RF信號可由功率分裂器/組合器900 (自跡線904、906)接收,且功率分裂器/組合器900可產生輸出至跡線902之具有與該二個輸入RF信號相關聯的功率之組合功率的單一輸出RF信號,同時阻抗匹配及電氣隔離維持在功率分裂器/組合器900之所有線/埠/跡線之間。
圖10描繪根據本揭露內容之一些實施例之功率分裂器/組合器900及相關聯跡線之等角視圖。在圖10中,未展示環繞功率分裂器/組合器900的一種或多種材料、結構及/或層,以易於繪示功率分裂器/組合器900之結構。在一些實施例中,功率分裂器/組合器900可包含輸入線1001 (亦稱為輸入跡線或埠)、第一輸出線1004 (亦稱為第一輸出跡線、埠或分支)及第二輸出線1006 (亦稱為第二輸出跡線、埠或分支)。輸入線1001可位於層820中,且第一輸出線1004及第二輸出線1006中之每一者可位於層820及830中。輸入線1001可電氣耦接至跡線902。第一輸出線1004及第二輸出線1006可電氣耦接至輸入線1001之每一側且自其延伸,且亦分別電氣耦接至跡線904、906。
在所繪示之實施例中,第一輸出線1004與第二輸出線1006包含在輸入線1001之對置側上成鏡像的相同或對稱結構。在一些實施例中,第一輸出線1004可包括頂部部分1010、中間部分1012及底部部分1014。頂部部分1010可位於層820中。頂部部分1010可包含具有弧或彎曲形狀之跡線,其自輸入線1001之末端垂直地延伸且朝向輸入線1001彎曲回去。中間部分1012可位於層820及830中。中間部分1012可包含通路,諸如圖8中所展示之通路824或826。中間部分1012可經組配以與頂部部分1010之朝向輸入線1001彎曲回去的末端及底部部分1014之末端電氣互連。底部部分1014可位於層830中。底部部分1014可包含具有弧或彎曲形狀之跡線,其與跡線904 (垂直地)相交。頂部部分1010及底部部分1014可分別平行於層820、830之主表面而定向,且中間部分1012可至少部分地垂直於層820之主表面而定向。因此,由跡線902提供之輸入RF信號可藉由第一輸出線1004經由穿越信號路徑1000而轉換為第一輸出RF信號。
第二輸出線1006可類似於第一輸出線1004,惟圍繞輸入線1001之相對側成鏡像除外。第二輸出線1006可包括類似於頂部部分1010之頂部部分1020、類似於中間部分1012之中間部分1022及類似於底部部分1014之底部部分1024。由跡線902提供之輸入RF信號可藉由第二輸出線1006經由穿越信號路徑1002而轉換為第二輸出RF信號。
輸入線1001、頂部部分1010、1020及/或底部部分1014、1024可包含可與各別層820、830中的跡線902、904及/或906作為連續跡線同時製造的導電跡線。舉例而言,跡線902、輸入線1001、頂部部分1010及頂部部分1020可作為層820中之連續跡線同時形成。底部部分1014、底部部分1024、跡線904及跡線906可作為層830中之連續跡線同時形成。中間部分1012、1022可藉由選擇性地鑽孔或蝕刻層820及/或830之材料且用導電材料填充(或至少塗佈內部表面)以形成在層820與830之間延伸的通路而形成。
因此,功率分裂器/組合器900亦可稱為對稱雙曲線功率分裂器/組合器或對稱雙曲線多工功率分裂器/組合器。在一些實施例中,與第一輸出線1004及第二輸出線1006中之每一者相關聯的信號路徑長度可包含l/4,且因此,線1004、1006亦可稱為四分之一波線。與第一輸出線1004相關聯的信號路徑長度(亦稱為電氣路徑長度、信號長度、輸出長度,等)可自第一輸出線1004之一個末端自輸入線1001與層820中的第一輸出線1004及第二輸出線1006之相交區/接面延伸至第一輸出線1004之與層830中的跡線904相交的相對末端。亦可針對第二輸出線1006界定類似信號路徑長度。在一些實施例中,中間部分1012與1022之間的距離1026可大致為2.5 mm,且輸入線1001、跡線902、第一輸入線1004、第二輸入線1006、跡線904或跡線906之寬度可在0.4至1.5 mm的範圍內。
在一些實施例中,隔離電阻器1028可包括於層830中大致垂直地位於輸入線1001與第一輸出線1004及第二輸出線1006之相交區下方且與跡線904與906之相交區重合的區域中。如上文所提及,跡線904及906可包含單一跡線604或704。至少出於電氣隔離第一與第二輸出RF信號之目的,隔離電阻器1028可經組配以將單一跡線「切割」成二個跡線。替代地,跡線904、906可形成為分離的跡線,且隔離電阻器1028可形成於層830內的跡線904、906之間。作為另一替代,若跡線904、906可與彼此電氣隔離,隔離電阻器1028可為可選的。隔離電阻器1028可包含印刷於層830、具有與跡線904、906相同之寬度及/或100歐姆電阻之電阻式材料。
在一些實施例中,與輸入線1001以及第一輸出線1004及第二輸出線1006中之每一者相關聯的電阻可為50歐姆。
因此,功率分裂器/組合器900可包含包括於第一層中的第一導電跡線902、包括於安置於該第一層上方或下方的第二層中的第二導電跡線904及第三導電跡線906,以及第一導電通路1022及第二導電通路1012。功率分裂器/組合器900可包含三埠或分支結構,其中第一、第二與第三埠彼此相交。第一埠包含第一導電跡線902之第一部分 (例如,輸入線1001);第二埠包含第一導電跡線902 (例如,輸入線1001)、第二導電跡線906 (例如,第二輸出線1006)及第一導電通路1022之第二部分;且第三埠包含第一導電跡線902 (例如,輸入線1001)、第三導電跡線904 (例如,第一輸出線1004)及第二導電通路1012之第三部分。
以此方式,若功率分裂器/組合器900全部位於堆疊800之單層中,則與第一輸出線1004及第二輸出線1006中之每一者相關聯的信號長度可比給定與功率分裂器/組合器900相關聯的間距(鄰近跡線之間的距離)及/或頻率的情況下原本可能的信號長度長。第一輸出線1004及第二輸出線1006中之每一者之信號長度可大於與跡線902、904/906相關聯的間距。在層820與830之間延伸的第一輸出線1004及第二輸出線1006中之每一者之曲率、形狀或輪廓可根據特定間距、頻率及/或其他設計參數加以組配。橫跨多於一個層或平面的功率分裂器/組合器900之組配可促進緊湊設計及較高跡線密度。
若功率分裂器/組合器900之第二輸出線1004或第三輸出線1006組配於諸如圖11中之層1100 (L1)之單一層或平面中,則此類線中之任一者之長度的100%位於單一層/平面1100中。相比之下,因為第二輸出線1004及第三輸出線1006中之每一者設置於至少二個層/平面中,因此此類線中之任一者之全長可分佈或展佈於至少二個層/平面之間。圖11之右側繪示安置於層1104 (L2)之上的層1102 (L1),其中通路1106至少部分地安置於層1102、1104之間。層1102、1104中之每一者可承載此類線中之任一者之全長的小於100%。在一些實施例中,全長之大致25至60%可位於層1102中,全長之大致2至60%可位於層1104中,且全長之大致5至35%可位於通路1106中或由該通路定位。
因為線/埠/分支之全長之小於100%實施於任何層中,因此定位每一層中的線/埠/分支所需的對應平面面積可小於與實施於單一層1100中的全長之100%相關聯的平面面積。因此,功率分裂器/組合器900之多層組配包含小型化技術。可達成大小減小的功率分裂器/組合器及/或包括多層功率分裂器/組合器的H網路之減小的總體大小。
圖12描繪根據本揭露內容之一些實施例之在層820、822及830之上下文中展示的功率分裂器/組合器900之等角視圖。層822可包含介電或非導電材料,可包括該材料以至少提供可與其上形成及/或在製造之後支撐包括於層820中的功率分裂器/組合器900之至少部分的結構。層822可安置在堆疊800之層820與層830之間。在其中功率分裂器/組合器900之包括於層820中之部分可以其他方式形成及/或結構上穩定而無介電或非導電材料的替代實施例中,則此類介電或非導電材料可為可選的。作為又一替代,介電或非導電材料可包括於跡線902、輸入線1001以及第一輸出線1004及第二輸出線1006下方之層820中。
圖13A描繪根據本揭露內容之一些實施例之堆疊800之俯視圖,其展示功率分裂器/組合器900之頂層(例如,層820)及該層810的至少一部分。在一些實施例中,跡線902、輸入線1001、頂部部分1010及頂部部分1020可安置於介電或非導電材料1204上方。介電或非導電材料1204可形成為層,且接著選擇性地移除以具有略微寬於跡線902、輸入線1001、頂部部分1010及頂部部分1020之寬度的寬度,如圖12中所示。或,介電或非導電材料1204可印刷成具有所需形狀,且可省略選擇性移除。
在一些實施例中,一個或多個隔離通路可經組配以形成圍繞或電氣隔離功率分裂器/組合器900之一個或多個部分的法拉弟籠。隔離通路可與功率分裂器/組合器900之底層及頂層中之一者或二者相關聯。替代地,隔離通路可為可選的。
圖13B描繪根據本揭露內容之一些實施例之與四個H網路相關聯的多個功率分裂器/組合器之俯視圖。多個功率分裂器/組合器中之每一功率分裂器/組合器連同相關聯結構(共同地標示為區域1202)可對應於圖13A中所展示之俯視圖。四個功率分裂器/組合器可與各別H網路610、612、614及616之豎直跡線與水平跡線之各別「相交區」相關聯,其可標示為圖6A中之相交區域656。四個功率分裂器/組合器之此類集合可設置於H網路610、612、614及616之每一相交區域處。以此方式,信號可適當地分裂且在層820與830之間在每一相交位置處傳播。相反,對於每一相交位置,信號可適當地組合且在層820與830之間傳播。
圖14A至圖14B描繪根據本揭露內容之一些實施例之在堆疊800之各種層之上下文內展示的圖13B之四個功率分裂器/組合器之該集合的等角視圖。在圖14A至圖14B中,展示與各別功率分裂器/組合器相關聯的豎直跡線1402及水平跡線1404之位置。在一些實施例中,鄰近功率分裂器/組合器或豎直跡線之間的距離或間距1406可大致為3 mm (例如,2.99 mm至3.01 mm)。距離或間距1406亦可稱為x方向間距。鄰近功率分裂器/組合器或水平跡線之間的距離或間距1408 (亦稱為y方向間距)亦可大致為3 mm。x方向間距與y方向間距可彼此相同或不同。在一些實施例中,可對於彼此平行定位的四個跡線(亦稱為傳輸線)達成大致10.8 mm之總寬度。
圖15A至圖15B描繪根據本揭露內容之一些實施例之以封裝或其他封閉結構組配的功率分裂器/組合器中之每一者。標示與四H網路組配(諸如圖6A中)之四個功率分裂器/組合器之集合相關聯的尺寸。圖15A繪示位於水平跡線與豎直跡線之相交區處的多個功率分裂器/組合器1520。功率分裂器/組合器1520中之每一者居中於或對準至相交位置。鄰近水平跡線之間的距離可界定間距1408。鄰近豎直跡線之間的距離可界定間距1406。可類似於功率分裂器/組合器900之每一功率分裂器/組合器1520可具有沿著x方向之大致為4.4 mm之第一總體尺寸1504及沿著y方向之大致為3.13 mm之第二總體尺寸1506。圖15B描繪諸如功率分裂器/組合器1522之功率分裂器/組合器中之每一者,其可包含相對於其相關聯相交位置以偏移位置組配的不對稱單曲線多工功率分裂器/組合器。功率分裂器/組合器1522可在y方向上偏移以位於(例如,居中於)其相關聯水平跡線與緊鄰或緊接相關聯水平跡線之水平跡線之間。在其他方面,功率分裂器/組合器1522可類似於功率分裂器/組合器1520。
圖15C描繪根據本揭露內容之一些實施例之與八H網路組配(諸如圖7A中所展示)相關聯的經封裝的八個功率分裂器/組合器之實例。在一些實施例中,鄰近水平跡線之間的距離或間距1530可大致為1.5 mm,且鄰近豎直跡線之間的距離或間距1532可大致為1.5 mm。對於諸如功率分裂器/組合器1533的功率分裂器/組合器中之每一者,沿著x方向之第一總體尺寸1534可大致為1.52 mm,且沿著y方向之第二總體尺寸1536可大致為4.71 mm。
圖15D描繪根據本揭露內容之一些實施例之以重疊組配組配的經封裝功率分裂器/組合器之實例。功率分裂器/組合器1540、1542可包含經定位以提供水平跡線與豎直跡線之間的信號穿越的鄰近功率分裂器/組合器。為了促進緊湊設計(例如,以減小H網路之水平及/或豎直間距),與功率分裂器/組合器1540、1542相關聯的封裝可相對於彼此定位以包括重疊區域1544。重疊區域1544可包含封裝內的空的空間區域,其中無功率分裂器/組合器之部分可位於該空間區域中。
與豎直跡線及水平跡線中之一者或二者相關聯的間距可大致為3 mm或更小。應理解,本文中所揭示之尺寸僅為達成說明之目的,且其他尺寸可為可能的。在一些實施例中,多個功率分裂器/組合器可封裝在一起而非封裝單一功率分裂器/組合器。舉例而言,對於圖6A中之相交區域656,可沿著與相交位置一致的對角線配置四個功率分裂器/組合器之一群組,且將其封裝在一起。此類分組封裝可包括四個輸入及八個輸出,或相反,八個輸入及四個輸出。在替代例中,上文針對圖15A至圖15D所提及的功率分裂器/組合器之封裝可包含功率分裂器/組合器之總體大小的概述或表示,且功率分裂器/組合器無需為封閉體或其他封裝結構。
圖16描繪根據本揭露內容之一些實施例之展示用於使用位於多於一個層或平面中的導電跡線或線執行信號之功率劃分或分裂的實例過程1600之流程圖。在區塊1602處,功率分裂器/組合器(例如,功率分裂器/組合器900)可自位於多工饋送網路堆疊之第一層(例如,層820)中的跡線(例如,跡線902)接收輸入信號(例如,RF信號)。作為回應,功率分裂器/組合器可經組配以在區塊1604處在該第一層中將輸入信號劃分或分裂成二個經劃分或分裂信號。
接下來,在區塊1606處,二個經劃分或分裂信號中之一者可傳播經過或穿越功率分裂器/組合器之第一分支(例如,第一輸出線1004)。該第一分支可包含經組配以在該第一層處開始、延伸穿過第二層(例如,層822或通路1012)且在第三層(例如,層830)處結束的導電跡線、線或路徑。第一分支之導電跡線、線或路徑可組配為信號路徑長度為l/4,且與功率分裂器/組合器之輸入導電跡線、線或路徑阻抗匹配。在區塊1608處,可產生且在第三層中傳輸第一輸出信號。在第三層處的第一分支之輸出末端處,在區塊1606中傳播的信號可包含功率分裂器/組合器之第一輸出信號。第一輸出信號可包含具有與輸入信號相同之頻率及輸入信號之一半功率的信號。第一輸出信號可提供至電氣耦接至第三層處的第一分支之跡線(例如,跡線904)。
區塊1610及1612可類似於各別區塊1606及1608,惟區塊1606、1608可涉及將二個經劃分或分裂信號中之另一者經由功率分裂器/組合器之第二分支(例如,第二輸出線1006)傳播以在第三層處的第二分支之末端產生第二輸出信號除外。該第二分支可包含經組配以在第一層處開始、延伸穿過第二層(例如,層822或通路1022)且在第三層處結束的導電跡線、線或路徑。第二分支之導電跡線、線或路徑可組配為信號路徑長度為l/4,且與輸入導電跡線、線或路徑及第一輸出線阻抗匹配。第二輸出信號亦可包含具有與輸入信號相同之頻率及輸入信號之一半功率的信號。第二輸出信號可提供至電氣耦接至第三層處的第二分支之跡線(例如,跡線906)。
在替代實施例中,功率分裂器/組合器900可經組配以在不同於包括輸入線之層的層中分裂或劃分信號,而非在包括輸入線之同一層中分裂/劃分信號。此類功率分裂器/組合器可經組配以包括在第一層中之輸入線、在安置在第一層與第三層之間的第二層中之單一通路(電氣耦接至輸入線),以及設置於第三層中的第一輸出線及第二輸出線(電氣耦接至單一通路)。第一輸出線及第二輸出線中之每一者之一個末端可與第三層中的單一通路之末端形成相交區或接面。第一輸出線及第二輸出線中之每一者之相對末端可與第三層中之各別(水平)跡線相交。以此方式,自包括於第一層中的(豎直)跡線接收的傳入信號可在橫穿第一層及第二層之後、在到達與包括(水平或其他方向)跡線之層(例如,第三層)相同的層時被分裂/劃分。
可以與上文所論述的次序反轉的次序執行過程1600,其中二個輸入信號在各別第一輸出線1004及第二輸出線1006處接收,且組合為提供至輸入線1002之單一輸出信號。
四層多工饋送網路
對於某一數目個波束成形器(例如,小於256個波束成形器)、對於某一數目個天線元件及/或其類似者,在二個層中組配諸如圖7A中之八個H網路710、712、714、716、718、720、722、724的多個多工饋送網路可與接收器面板相關聯。在替代實施例中,多工饋送網路層180c可包含多於二個層,且詳言之,四個層。
圖17A描繪根據本揭露內容之一些實施例之以對準至波束成形器層的四個層組配的多工饋送網路。包括於波束成形器格組(例如,波束成形器140、240或340)中的多個波束成形器(例如,波束成形器142i、242i或342i)及相關聯結構可經組織多個波束成形器單元1700。圖17A描繪包括多個波束成形器單元1700之波束成形器格組之一部分的方塊圖。波束成形器格組可實施於層1701中。層1701可為類似於波束成形器層180d且可包括於類似於圖1G之鋪疊180之PCB層堆疊中的層。圖17A中標示的笛卡爾座標系統對應於圖1G中所展示之笛卡爾座標系統,其中圖17A繪示自層1701之下側朝向上方的層向上檢視(例如,朝向諸如實施於多工饋送網路層180c中的彼等多工饋送網路之多工饋送網路檢視)的層1701之仰視圖。多工饋送網路1720表示為點線以標示其在不同於層1701的層中之位置。
多個波束成形器單元1700中之每一波束成形器單元可包括波束成形器1702、第一濾波器1704、第二濾波器1708、通路1706、通路1710、通路1711、1712、1713、1714、1715、1716、1717、1718,以及在波束成形器1702與通路1706、1710、1711至1718之間的導電跡線。波束成形器單元1700可能類似於波束成形器單元142i。波束成形器1702可包含具有多個輸入及多個輸出(例如,晶片接腳)之積體電路(IC)晶片。波束成形器1702可包括八個輸入(標示為RFin )及八個輸出(標示在RFout 處)。八個輸入使用跡線502電氣耦接各別通路1711、1712、1713、1714、1715、1716、1717、1718。該八個輸出電氣耦接至各別通路1706、1710。第一濾波器1704或第二濾波器1708安置在每一輸出與通路1706/1710之間。對於八個輸出,可實施第一濾波器1704中之四者及第二濾波器1708中之四者。電氣耦接至第一濾波器1704之通路標示為通路1706,且電氣耦接至第二濾波器1708之通路標示為通路1710。
在一些實施例中,波束成形器1702之輸入及輸出可分佈在波束成形器1702之所有側上。如圖17A中所說明,在通路1711至1718附近之二個對置側可組配有輸入,且其餘二個對置側可組配有輸出。
第一濾波器1704及第二濾波器1708可包含分別以第一頻率(f1)及第二頻率(f2)操作或調諧至第一頻率及第二頻率的RF濾波器。第一濾波器1704及第二濾波器1708可經組配以對RF信號進行濾波以分別在或大約在第一頻率及第二頻率提取RF信號之部分。第一頻率及第二頻率可為與使用通路1706、1710電氣耦接至波束成形器1702之特定輸出的特定天線元件相關聯的頻率。在一些實施例中,第一頻率與第二頻率可為相同頻率,此係因為電氣耦接至波束成形器1702輸出之的所有天線元件可以相同頻率操作。在此類實施中,第一濾波器1704與第二濾波器1708可彼此相同。
在其他實施例中,第一頻率與第二頻率可彼此不同,此係因為包括於天線格組中的多個天線元件之第一子集與第二子集可分別以第一頻率及第二頻率操作。且詳言之,包括於第一子集中的天線元件可電氣耦接至通路1706,且包括於第二子集中的天線元件可電氣耦接至通路1710。因此,第一濾波器1704與第二濾波器1708可彼此不同。作為一實例,天線元件之第一子集與第二子集可包含以穿插配置組配的天線元件,其中第一頻率範圍介於大致11.95至12.2千兆赫(GHz),且第二頻率範圍介於大致10.95至11.2 GHz。
通路1706、1710可包含在層1701與位於天線格組層中的特定天線元件之間延伸的導電通路。若以如圖1G中組配的堆疊加以實施,則通路1706、1710之長度可垂直於層1701之主要平面延伸,且尤其是在負z方向上延伸(例如,延伸至頁面內)。通路1706可電氣耦接至與第一頻率相關聯的特定天線元件(見安置於至通路1706的輸出路徑中之第一濾波器1704)。通路1710可電氣耦接至與第二頻率相關聯的特定天線元件(見安置於至通路1710的輸出路徑中之第二濾波器1708)。通路1706、1710亦可稱為輸出通路、天線通路、天線元件通路、天線元件連接通路,等。
通路1711至1718可包含在層1701與多工饋送網路1720之最末級/層級之跡線的特定末端之間延伸的導電通路。最末級/層級之每一跡線包含在一個末端處的最末節點與在另一末端處的此類跡線之末端之間的跡線區段。與最末節點相對的跡線之末端可斷開或浮動,且可稱為多工饋送網路之端接或終止末端。此類跡線區段亦可稱為多工饋送網路之端接、終止、最末或末端跡線區段。在圖17A中,多工饋送網路1720之最末級/層級之跡線之末端包含為豎直跡線的跡線之末端。通路1711至1718亦可稱為輸入通路。
在一些實施例中,對於某一數目個波束成形器(例如,超過256個波束成形器)、對於某一數目個天線元件及/或其類似者,波束成形器單元1700與多工饋送網路1720之組配可與傳輸器面板、多工饋送網路組配在四個PCB層內的實施例、總數目個多工饋送網路由於間隔、製造或其他約束或設計偏好而不能實施於二個PCB層內的實施例相關聯。
應理解,波束成形器1202之輸入與輸出之數目可彼此相同或不同。舉例而言,經組配以耦接至八個天線元件之波束成形器可具有少於或多於八個輸入。每一波束成形器輸入可或可不耦接至彼此不同之多工饋送網路。舉例而言,包括八個輸入之波束成形器可共同地耦接至六個多工饋送網路,而非八個多工饋送網路。
與設置於二個層中的八個H網路相比,波束成形器單元1700電氣耦接至的多工饋送網路1720可包含組配於四個PCB層中的八個H網路。可實施二層H網路之二個集合,其中每一集合可包括四個H網路,在二個集合內總共有八個H網路。因為相比於圖7A至圖7D之層有較少H網路設置於二個PCB層之給定集合中,因此水平跡線之間的間距(亦稱為y間距或水平間距)及/或豎直跡線之間的間距(亦稱為x間距或豎直間距)可大於圖7A至圖7D中的跡線之對應間距。作為一實例,y間距可大致為3.1 mm,且x間距可大致為6.3 mm。
圖17B描繪根據本揭露內容之一些實施例之包括組配為八個H網路之多工饋送網路1720的堆疊之一部分的透視圖。多工饋送網路1720可包含第一子集1740及第二子集1743,其中第一子集1740及第二子集1743中之每一者可包括多個多工饋送網路。舉例而言,第一子集1740及第二子集1743中之每一者可包括四個H網路。第一子集1740可安置在第二子集1743上方。第一子集1740可包括二個PCB層1741、1742,且第二子集1743可包括二個PCB層1744、1745。層1742可安置在層1741與1744之間,且層1744可安置在層1742與1745之間。
在第一子集1740中,層1741可包括第一子集1740之四個H網路的豎直跡線1724,而層1742可包括第一子集1740之四個H網路的水平跡線1722。第一子集1740之四個H網路可包含可攜載信號S6、S1、S7及S4之H網路。在豎直跡線1724附近標示的編號對應於對如圖17A中所示的特定通路1711至1718標示的編號,且指定特定跡線至通路耦接。舉例而言,標示為編號「6」之豎直跡線1724電氣耦接至通路1716,標示為編號「1」之豎直跡線1724電氣耦接至通路1711,等等。
類似地,層1744可包括第二子集1743之四個H網路的豎直跡線1734,而層1745可包括第二子集1743之四個H網路的水平跡線1732。第二子集1743之四個H網路可包含可攜載信號S5、S2、S8及S3之H網路。在豎直跡線1734附近標示的編號對應於對如圖17A中所示的特定通路1711至1718標示的編號,且指定特定跡線至通路耦接。舉例而言,標示為編號「8」之豎直跡線1734電氣耦接至通路1718,標示為編號「3」之豎直跡線1734電氣耦接至通路1713,等等。此外,第一濾波器1704或與第一濾波器1704相關聯的第一頻率可與信號S5、S2、S6及S1相關聯,其中信號S5及S2與信號S6及S1可由不同的H網路層集合攜載。第二濾波器1708或與第二濾波器1708相關聯的第二頻率可與信號S8、S3、S7及S4相關聯,其中信號S8及S3與信號S7及S4可由不同的H網路層集合攜載。
儘管未展示,但一個或多個額外PCB層、接地平面、黏著層、電氣隔離層及/或其他層可安置在多工饋送網路1720之層的上方、之內或下方。第一子集1740與第二子集1743中多工饋送網路之數目可彼此相同或不同。
在一些實施例中,第一子集1740與第二子集1743之H網路的定向可彼此相同,以使得跡線重疊於彼此之上(除如下文所論述之外)。因此,第一子集1740與第二子集1743之跡線可在垂直於堆疊之主要平面的方向上(例如,沿著z軸)彼此對準且共線。舉例而言,圖17A至圖17B展示位於彼此正上方的水平跡線1722及1732。
第一子集1740與第二子集1743之豎直跡線及節點亦可彼此共線,惟第一子集1740及第二子集1743之端接跡線區段及端接末端除外。若第一子集1740與第二子集1743之端接末端彼此共線,則第二子集1743之端接末端不可使用自層1701之豎直通路接取,及/或藉由自層1701之豎直通路與第二子集1743中之端接末端電氣耦接亦可包含與位於此類豎直通路與第二子集1743中的此類端接末端之間的第一子集1740中之端接末端電氣耦接。
因此,為了使通路1711至1718中之每一者與第一子集1740或第二子集1743中的端接末端中之一特定者(例如,在第一子集1740及第二子集1743中的端接末端之間交替以實現鄰近通路)電氣耦接,第一子集1740與第二子集1743中之對應端接末端可經組配以在垂直於層1701之主要平面的方向上彼此偏移或不共線。圖17B中所展示之豎直跡線1724、1734可包含在端接末端處之跡線。自左至右,第一子集1740及第二子集1743中之鄰近端接末端沿著x軸移位或彼此間隔開,且亦在位於第一子集1740或位於第二子集1743中之間(沿著z軸)交替。
為了使第一子集1740與第二子集1743之對應端接末端自彼此偏移,與對應端接末端相關聯的端接跡線區段可經組配以規定不同跡線路徑或具有彼此不同之形狀。大體而言,對應端接跡線區段及多工饋送網路1720之所有端接跡線區段仍可具有相同跡線長度,以致使與多個多工饋送網路1720中之每一多工饋送網路相關聯的自輸入/輸出至輸出/輸入的信號路徑長度將彼此長度匹配。舉例而言,用以與各別通路1715及1716電氣耦接的端接末端可自彼此偏移,且與此類端接末端相關聯的端接跡線區段可規定彼此不同之跡線路徑以將此類端接末端定位在不共線位置,即使與此類端接末端相關聯的二個H網路之其餘跡線可彼此共線。
圖17C至圖17D描繪根據本揭露內容之一些實施例之包括於多工饋送網路1720中的端接跡線區段1750、1760之實例形狀或輪廓。在一些實施例中,端接跡線區段1750之一個末端可包含端接末端1752,且端接跡線區段1750之相對末端可包含包括端接跡線區段1750的多工饋送網路之最末或末端節點1754。端接跡線區段1760之一個末端可包含端接末端1762,且端接跡線區段1760之相對末端可包含包括端接跡線區段1760的多工饋送網路之最末或末端節點1764。
端接跡線區段1750可具有不同於端接跡線區段1760之形狀或輪廓。端接跡線區段1750、1760中之每一者可包括一個或多個平直區段、一個或多個彎曲區段、一個或多個成角度區段,及/或其類似者。因為端接跡線區段1750、1760可具有不同於直線之形狀(所有非端接跡線區段具有直線形狀),端接跡線區段1750、1760亦可稱為曲折跡線或具有曲折形狀、輪廓之跡線,等。
端接跡線區段1750、1760可根據輪廓、製造、位置及/或類似要求或約束加以組配。作為一實例,端接跡線區段1750、1760之信號路徑(亦稱為電氣路徑)長度彼此相等或在特定容限範圍內,諸如1.55 mm。作為另一實例,若端接跡線區段1750、1760之(線)寬度為0.2 mm,則包括於端接跡線區段1750、1760中的任何曲線之最小曲率半徑(ROC)為至少0.5 mm。作為又一實例,端接跡線區段1750、1760之位置可經組配以使得諸如與波束成形器單元1700相關聯的通路1706及/或1710之通路可經由多工饋送網路層延伸至位於天線格組層中之特定天線元件。
圖17D描繪根據本揭露內容之一些實施例之自與圖17A中相同的視點觀之的端接跡線區段1750、1760之實例配置,惟層1701省略除外。在端接跡線區段之上部群組中,端接跡線區段1760可包含包括於第二子集1743中的跡線,且可安置於包括於第一集合1740中的端接跡線區段1750下方。在端接跡線區段之下部群組中,端接跡線區段1750可包含包括於第二子集1743中的跡線,且可安置於包括於第一集合1740中的端接跡線區段1760下方。以此方式,端接末端1762、1752可自彼此偏移,且亦經定位(例如,沿著對角線定位)以與通路1711至1718中之特定者對準。舉例而言,端接末端1770、1772可分別電氣耦接至通路1715、1716,且端接末端1774、1776可分別電氣耦接至通路1718、1717。作為另一實例,端接末端1770、1772可分別電氣耦接至通路1712、1711,且端接末端1774、1776可分別電氣耦接至通路1713、1714。
不僅端接跡線區段1750、1760彼此長度匹配,與多個多工饋送網路1720中之每一多工饋送網路相關聯的總信號路徑長度亦彼此長度匹配。此類長度匹配亦適用於包括於多工饋送網路1720中的功率分裂器/組合器。
下文提供本文中所揭露的各種實施例之設備、系統及方法的說明性實例。設備、系統或方法的實施例可包括下文描述的實例中之任一者或多者或任何組合。
實例1為一種功率分裂器/組合器,其包括:
一第一導電跡線,其包括於一第一層中;
第二導電跡線及第三導電跡線,其包括於一第二層中;
一第一通路,其電氣耦接至該第一導電跡線及該第二導電跡線;及
一第二通路,其電氣耦接至該第一導電跡線及該第三導電跡線,
其中該第一導電跡線之一第一部分包含該功率分裂器/組合器之一第一埠,
其中該第一導電跡線之一第二部分、該第一通路及該第二導電跡線包含該功率分裂器/組合器之一第二埠,且
其中該第一導電跡線之一第三部分、該第二通路及該第三導電跡線包含該功率分裂器/組合器之一第三埠。
實例2包括實例1之主題,且其中與該第一層中之該第一導電跡線之該第二部分或該第二層中之該第二導電跡線相關聯的一信號路徑長度,小於與該第二埠相關聯的一總信號路徑長度。
實例3包括實例1至2中之任一者之主題,且其中該第一埠、該第二埠與該第三埠彼此阻抗匹配。
實例4包括實例1至3中之任一者之主題,且其中該第一埠處的一第一信號在該第二埠與該第三埠處分別分裂為第二信號與第三信號,且其中該第二信號及該第三信號中之每一者具有為該第一信號之功率的一半之功率。
實例5包括實例1至4中之任一者之主題,且其中該第一導電跡線、該第二導電跡線及該第三導電跡線包括於組配在該第一層及該第二層上的一多工饋送網路中。
實例6包括實例1至5中之任一者之主題,且其中該第一導電跡線之該第一部分、該第二部分與該第三部分在該第一層中彼此相交。
實例7包括實例1至6中之任一者之主題,且其中該第一導電跡線之該第二部分或該第三部分中之一者或二者包括呈現朝向該第一導電跡線之該第一部分之輪廓的一定向。
實例8包括實例1至7中之任一者之主題,且其中該功率分裂器/組合器在垂直於該第一導電跡線之該第一部分的一定向之一方向上的一寬度,減少該第一導電跡線之該第二部分及該第三部分中之一者或二者朝向該第一導電跡線之該第一部分之該輪廓。
實例9包括實例1至8中之任一者之主題,且其中該第二導電跡線或該第三導電跡線中之一者或二者包括呈現朝向該第一導電跡線之該第一部分的輪廓之一定向。
實例10包括實例1至9中之任一者之主題,且其中該功率分裂器/組合器在垂直於該第一導電跡線之該第一部分的一定向之一方向上的一寬度,減少該第二導電跡線或該第三導電跡線中之一者或二者朝向該第一導電跡線之該第一部分之該輪廓。
實例11包括實例1至10中之任一者之主題,且其中該第一層或該第二層中之一者或二者包括一基礎層以使該第一層或該第二層與鄰近層電氣隔離。
實例12包括實例1至11中之任一者之主題,且其中該基礎層包含一印刷電路板(PCB)、一介電材料或一非導電材料。
實例13包括實例1至12中之任一者之主題,且其中該功率分裂器/組合器之該第一埠、該第二埠及該第三埠包括於一封裝中,且該封裝定位於一印刷電路板(PCB)之一位置處,在該位置處,位於二個不同層中的導電跡線在垂直於該等導電跡線所設置的該等層之一平面的一方向上彼此共線。
實例14為一種設備,其包括:
一第一電氣信號路徑分支,其包括於一第一層中;
一第二電氣信號路徑分支,其包括於該第一層及一第二層中;及
一第三電氣信號路徑分支,其包括於該第一層及該第二層中,
其中該第一電氣信號路徑分支、該第二電氣信號路徑分支及該第三電氣信號路徑分支在該第一層中彼此電氣耦接,且其中與該第二電氣信號路徑分支及該第三電氣信號路徑分支相關聯的信號路徑長度為四分之一波長信號路徑長度。
實例15包括實例14之主題,且其中該第一電氣信號路徑分支、該第二電氣信號路徑分支與該第三電氣信號路徑分支阻抗匹配。
實例16包括實例14至15中之任一者之主題,且其中該第一電氣信號路徑分支、該第二電氣信號路徑分支或該第三電氣信號路徑分支的至少一部分包含一導電跡線。
實例17包括實例14至16中之任一者之主題,且其中該第二電氣信號路徑分支及該第三電氣信號路徑分支的至少一部分包含在該第一層與該第二層之間延伸的一通路。
實例18包括實例14至17中之任一者之主題,且其中該第二電氣信號路徑分支包含第一部分、第二部分及第三部分,且其中該第一部分包括於該第一層中,該第二部分在該第一層與該第二層之間延伸,且該第三部分包括於該第二層中。
實例19包括實例14至18中之任一者之主題,且其中該第一部分及該第三部分包含導電跡線,且該第二部分包含一通路。
實例20包括實例14至19中之任一者之主題,且其中該第一部分及該第二部分中之一者或二者包括呈現朝向該第一電氣信號路徑分支的輪廓之一定向。
實例21包括實例14至20中之任一者之主題,且其中該第二電氣信號路徑分支包括一線性定向部分及一非線性定向部分。
實例22包括實例14至21中之任一者之主題,且其中該第二電氣信號路徑分支與該第三電氣信號路徑分支沿著該第一電氣信號路徑分支之對置側對稱。
實例23包括實例14至22中之任一者之主題,且其中輸入至該第一電氣信號路徑分支之一第一信號在該第二電氣信號路徑分支與該第三電氣信號路徑分支處分別轉換為第二信號與第三信號,且其中該第二信號及該第三信號中之每一者具有該第一信號之功率的一半功率。
實例24包括實例14至23中之任一者之主題,且其中該第一信號、該第二信號及該第三信號包含射頻(RF)信號。
實例25包括實例14至24中之任一者之主題,且其中分別輸入至該第二電氣信號路徑分支與該第三電氣信號路徑分支之第二信號與第三信號在該第一電氣信號路徑分支處組合為一第一信號,且其中該第一信號具有為該第二信號與該第三信號之功率總和的功率。
實例26包括實例14至25中之任一者之主題,且其中該第一電氣信號路徑分支、該第二電氣信號路徑分支及該第三電氣信號路徑分支之與彼此相交的末端相對的末端,分別電氣耦接至包括於該第一層中的一第一電氣導電跡線、包括於該第二層中的一第二電氣導電跡線及包括於該第二層中的一第三電氣導電跡線。
實例27為一種路由信號之方法,其包括:
回應於在一第一層中接收到一第一信號,將該第一信號分裂成第二信號及第三信號;
致使將該第二信號自該第一層傳播至安置在該第一層上方或下方之一第二層;及
致使將該第三信號自該第一層傳播至該第二層,
其中該第二信號及該第三信號中之每一者具有該第一信號之功率的一半功率。
實例28包括實例27之主題,且其中該第一信號、該第二信號及該第三信號包含射頻(RF)信號,且其中一相同頻率與該第一信號、該第二信號及該第三信號相關聯。
實例29包括實例27至28中之任一者之主題,且其中將該第一信號分裂成該第二信號及該第三信號包含在該第一層中分裂該第一信號。
實例30包括實例27至29中之任一者之主題,且其中致使將該第二信號自該第一層傳播至該第二層,包含致使經由包括於該第一層中的一第一導電線、在該第一層與該第二層之間延伸的一第一通路及包括於該第二層中的一第二導電線傳播該第二信號。
實例31包括實例27至30中之任一者之主題,且其中該第一信號係在一第三導電線處接收,且其中致使將該第三信號自該第一層傳播至該第二層,包含致使經由包括於該第一層中的一第四導電線、在該第一層與該第二層之間延伸的一第二通路及包括於該第二層中的一第五導電線傳播該第三信號。
實例32包括實例27至31中之任一者之主題,且其中該第三導電線、該第一傳導線、該第一通路與該第二傳導線以及該第四導電線、該第二通路與該第五導電線彼此阻抗匹配。
實例33為一種設備,其包括:
一第一層,其具有包含多個階層式網路之一第一部分的第一多個導電跡線;
一第二層,其具有包含該多個階層式網路之一第二部分的第二多個導電跡線,其中該第一多個導電跡線定向於一第一方向上,且該第二多個導電跡線定向於不同於該第一方向之一第二方向上;及
多個通路,其將該第一層之該等第一多個導電跡線電氣連接至該第二層之該各別第二多個導電跡線以界定該多個階層式網路。
實例34包括實例33之主題,且其中該多個階層式網路包含H網路、碎片網路、自類似碎片網路、樹網路、星形網路或雜合網路。
實例35包括實例33至34中之任一者之主題,且其中該多個階層式網路包含至少三個階層式網路。
實例36包括實例33至35中之任一者之主題,且其中該第一多個導電跡線中之各別跡線彼此平行且偏移,且其中該第二多個導電跡線中之各別跡線彼此平行且偏移。
實例37包括實例33至36中之任一者之主題,且其中該多個階層式網路中之階層式網路彼此電氣隔離。
實例38包括實例33至37中之任一者之主題,且其中該多個通路包含第一多個通路,且其中該第二多個跡線經由第二多個通路電氣耦接至包括於不同於該第一層及該第二層之一層中的多個電氣組件。
實例39包括實例33至38中之任一者之主題,且其進一步包含:
多個隔離通路,其鄰近於該第一多個跡線及該第二多個跡線中之至少一些。
實例40包括實例33至39中之任一者之主題,且其中該多個通路以及該第一多個導電跡線及該第二多個導電跡線之特定部分包含多個功率分裂器/組合器。
實例41包括實例33至40中之任一者之主題,且其中該多個階層式網路包含第一多個階層式網路,且該多個通路包含第一多個通路,且其進一步包含:
一第三層,其具有第三多個導電跡線、包含第二多個階層式網路之一第一部分;
一第四層,其具有第四多個導電跡線、包含該第二多個階層式網路之一第二部分,其中該第三多個導電跡線定向於該第一方向上,且該第四多個導電跡線定向於該第二方向上;及
第二多個通路,其將該第三層之該第三多個導電跡線電氣連接至該第四層之該各別第四多個導電跡線以界定該第二多個階層式網路。
實例42包括實例33至41中之任一者之主題,且其中在該第一多個第一階層式網路之一最末級處的該第一跡線或該第二跡線之開放末端包含多個第一末端,且在該第二多個第一階層式網路之一最末級處的該第三跡線或該第四跡線之開放末端包含多個第二末端,且其中該多個第一末端中之一第一末端及該多個第二末端中之一對應第二末端在垂直於該第一層之一主要平面的一方向上彼此不共線。
實例43包括實例33至42中之任一者之主題,且其中在該第一多個階層式網路之該最末級處的該第一跡線或該第二跡線中之至少一者與在該第二多個階層式網路之該最末級處的該第三跡線或該第四跡線中之至少一者具有一不同形狀。
實例44包括實例33至43中之任一者之主題,且其進一步包含包括於安置在該第一層及該第二層上方的一第三層中且以獨立於該多個階層式網路之一組配的一組配配置的多個天線元件,其中該多個階層式網路經組配以將多個隔離的射頻(RF)信號傳輸至該多個天線元件傳輸或自該多個天線元件接收多個隔離的射頻(RF)信號。
實例45為一種設備,其包括:
一第一導電跡線,其具有一第一定向、包括於一第一層中;
一第二導電跡線,其具有不同於該第一定向之一第二定向、包括於一第二層中;及
一功率分裂器/組合器,其包括於該第一層及該第二層中,其中該功率分裂器/組合器之包括於該第一層中的一第一部分電氣連接至該第一導電跡線,該功率分裂器/組合器之包括於該第二層中的一第二部分電氣連接至該第二導電跡線,且該功率分裂器/組合器之一第三部分包含在該第一層與該第二層之間延伸的一通路。
實例46包括實例45之主題,且其中該第一導電跡線及該第二導電跡線包含與一階層式網路相關聯的跡線。
實例47包括實例45至46中之任一者之主題,且其進一步包含包括於該第二層中之一隔離電阻器,該隔離電阻器經組配以使該第二導電跡線之一第一部分與該第二導電跡線之一第二部分電氣隔離,其中該功率分裂器/組合器之包括於該第二層中之該第二部分包含第一分支及第二分支,且其中該第二導電跡線之該第一部分及該第二部分與各別第一分支及第二分支電氣耦接。
實例48包括實例45至47中之任一者之主題,且其中該通路包含一第一通路,且其中該功率分裂器/組合器之該第三部分進一步包含在該第一層與該第二層之間延伸的一第二通路。
實例49包括實例45至48中之任一者之主題,且其進一步包含:
一第三導電跡線,其包括於該第一層中,且具有該第一定向且緊鄰該第一導電跡線;
一第四導電跡線,其包括於該第二層中,且具有該第二定向且緊鄰該第二導電跡線;及
一第二功率分裂器/組合器,其包括於該第一層及該第二層中,其中該第二功率分裂器/組合器與在該第三導電跡線與該第四導電跡線之間路由信號相關聯。
實例50包括實例45至49中之任一者之主題,且其中該功率分裂器/組合器之包括於該第二層中的該第二部分包含第一分支及第二分支,其中該第二導電跡線之第一部分及第二部分與各別第一分支及第二分支電氣耦接,且其中與該第一導電跡線及該第三導電跡線或該第二導電跡線及該第四導電跡線中之一者或二者相關聯的一間距小於與該第一分支或該第二分支中之一者或二者相關聯的一信號路徑長度。
實例51包括實例45至50中之任一者之主題,且其中該第一導電跡線及該第二導電跡線與一第一階層式網路相關聯,且該第三導電跡線及該第四導電跡線與一第二階層式網路相關聯,且其中該第一階層式網路與該第二階層式網路彼此電氣隔離。
實例52包括實例45至51中之任一者之主題,且其中該第一階層式網路包含一H網路。
實例53包括實例45至52中之任一者之主題,且其中該功率分裂器/組合器位於該第一導電跡線及該第二導電跡線之在垂直於該第一層之一平面的一方向上彼此共線之部分處。
實例54為一種用於路由信號之方法,其包括:
經由一第一階層式網路將一第一信號路由至第一多個電氣組件,其中經由該第一階層式網路路由該第一信號包括經由一第一層中定向於一第一方向上的一第一導電跡線、位於該第一層與一第二層之間的一第一通路及該第二層中定向於不同於該第一方向的一第二方向上的一第二導電跡線路由該第一信號;及
經由一第二階層式網路將一第二信號路由至第二多個電氣組件,其中經由該第二階層式網路路由該第二信號包括經由該第一層中定向於該第一方向的一第三導電跡線、位於該第一層與該第二層之間的一第二通路及該第二層中定向於該第二方向上的一第四導電跡線路由該第二信號,
其中該第一導電跡線與該第三導電跡線在該第一層中自彼此偏移,且該第二導電跡線與該第四導電跡線在該第二層中自彼此偏移。
實例55包括實例54之主題,且其中該第一通路及該第二通路包含多個功率分裂器/組合器之包括於該第一階層式網路及該第二階層式網路中之每一者中的部分。
實例56包括實例54至55中之任一者之主題,且其中該第一階層式網路及該第二階層式網路包含H網路、碎片網路、自類似碎片網路、樹網路、星形網路、雜合網路、直線式H網路,或曲線H網路。
實例57包括實例54至56中之任一者之主題,且其中該第一階層式網路與該第二階層式網路彼此電氣隔離。
實例58包括實例54至57中之任一者之主題,且其中該第一信號及該第二信號中之每一者包含多個射頻(RF)信號。
實例59包括實例54至58中之任一者之主題,且其中經由該第一階層式網路路由該第一信號進一步包括經由一第一層中定向於一第一方向上的一第一導電跡線、包括該第一通路及位於該第一層與該第二層之間的一第三通路的一功率分裂器/組合器及該第二導電跡線之第一部分及第二部分之對置方向路由該第一信號。
實例60包括實例54至59中之任一者之主題,且其進一步包含:
經由該第一階層式網路自該第一多個電氣組件路由第三信號;及
經由該第二階層式網路自該第二多個電氣組件路由第四信號。
儘管本文已出於描述之目的說明並描述了某些實施例,但在不背離本揭露內容之範疇的情況下,多種替代及/或等效實施例或經計算以達成相同目的之實施可取代所展示及描述之實施例。‎本申請案意欲涵蓋本文中所論述之實施例的任何調適或變化。因此,顯然地意欲本文中所描述之實施例僅受申請專利範圍限制。
100、200、300‧‧‧相控陣列天線系統
110‧‧‧天線孔口
110A、110B、110C、110D、120、220‧‧‧天線格組
112、112A、112B、112C、112D‧‧‧載體
120A、120B、120C、120D‧‧‧實施例
122i、222a、222b、222i、322a、322b‧‧‧天線元件
124i‧‧‧放大器
130‧‧‧對映系統
140、240‧‧‧波束成形器格組
142i‧‧‧波束成形器元件/波束成形器
144a‧‧‧濾波器
145i‧‧‧移相器
148a、824、826、1106、1706、1710、1711、1712、1713、1714、1715、1716、1717、1718‧‧‧通路
150、1720‧‧‧多工饋送網路
160‧‧‧分配器/組合器
170‧‧‧調變器/解調變器
180、280、380‧‧‧鋪疊
180a‧‧‧天線層
180b、380b1、380b2、380b3、380b4‧‧‧對映層
180c‧‧‧多工饋送網路層
180d、280d‧‧‧波束成形器層
224a、224b‧‧‧低雜訊放大器(LNA)
226a、226b‧‧‧天線模組
228a、248a‧‧‧導電通路
232a‧‧‧第一對映跡線
234a‧‧‧第二對映跡線
238a、238b、338a、338b‧‧‧中間通路
242a、242i‧‧‧波束成形器元件
244a、244b‧‧‧RF濾波器
260‧‧‧組合器
270‧‧‧RF解調變器
280a‧‧‧天線格組層
280b1‧‧‧第一對映層
280b2‧‧‧第二對映層
280c、620、630、720、730、810、820、822、830、840、1102、1104、1701‧‧‧層
342a、342i、1702‧‧‧波束成形器
400‧‧‧信號饋送網路
402‧‧‧部分
404‧‧‧信號組合器或分裂器
406、604、606、704、706、902、904、906‧‧‧跡線
408‧‧‧襯墊
410、412、414、418‧‧‧基底/層
416、610、612、614、616、710、712、714、716、718、720、722、724‧‧‧H網路
600、700、800‧‧‧多工饋送網路堆疊
601、721、1750、1760‧‧‧端接跡線區段
602、S‧‧‧射頻(RF)信號
608、708、1752、1762、1770、1772、1774、1776‧‧‧端接末端
650、652、654、656、750、752‧‧‧相交區域
702‧‧‧輸入/輸出
900、1520、1522、1533、1540、1542‧‧‧功率分裂器/組合器
910、912、914、916、918、920、d1、d2、d3、d4、d5、d6‧‧‧尺寸
1000、1002‧‧‧信號路徑
1001‧‧‧輸入線
1004‧‧‧第一輸出線
1006‧‧‧第二輸出線
1010、1020‧‧‧頂部部分
1012、1022‧‧‧中間部分
1014、1024‧‧‧底部部分
1026‧‧‧距離
1028‧‧‧隔離電阻器
1100‧‧‧層/平面
1202‧‧‧區域/波束成形器
1204‧‧‧介電或非導電材料
1402、1724、1734‧‧‧豎直跡線
1404、1722、1732‧‧‧水平跡線
1406、1408、1530‧‧‧距離或間距
1504、1534‧‧‧第一總體尺寸
1506、1536‧‧‧第二總體尺寸
1544‧‧‧重疊區域
1600‧‧‧過程
1602、1604、1606、1608、1610、1612‧‧‧區塊
1700‧‧‧波束成形器單元
1704‧‧‧第一濾波器
1708‧‧‧第二濾波器
1740‧‧‧第一子集
1741、1742、1744、1745‧‧‧PCB層
1743‧‧‧第二子集
1754、1764‧‧‧最末或末端節點
B‧‧‧波束
D‧‧‧較佳方向/所要指向角度
D1、D2、d1、d2、d3‧‧‧間隔
LM‧‧‧主瓣
LS‧‧‧旁瓣
M‧‧‧距離/第二方向
N‧‧‧第一方向
RX‧‧‧接收方向
S1、S2、S3、S4、S5、S6、S7、S8‧‧‧信號
TX‧‧‧傳輸方向
θ、ϕ‧‧‧角度
本揭露內容之前述態樣及許多伴隨優勢將變得更易於瞭解,此係因為當結合隨附圖式參考以下實施方式時,該等態樣及優勢會變得更好理解,圖式中:
圖1A繪示根據本揭露內容之一個實施例的用於相控陣列天線系統之電氣組配的示意圖,該相控陣列天線系統包括界定天線孔口之天線格組、對映、波束成形器格組、多工饋送網路、分配器或組合器,及調變器或解調變器。
圖1B繪示根據本揭露內容之一個實施例的由相控陣列天線孔口達成之信號輻射場型。
圖1C繪示根據本揭露內容之實施例的用以界定各種天線孔口的相控陣列天線之個別天線元件之示意性佈局(例如,矩形、圓形、空間漸縮)。
圖1D繪示根據本揭露內容之實施例的用以界定天線孔口的呈空間漸縮組配之個別天線元件。
圖1E為界定圖1D中之天線孔口之面板的橫截面視圖。
圖1F為天線信號之主瓣及不良旁瓣的圖形。
圖1G繪示根據本揭露內容之一個實施例的構成相控陣列天線系統之多個層疊層的等角視圖。
圖2A繪示根據本揭露內容之一個實施例的用於天線格組中之多個天線元件耦接至波束成形器格組中之單一波束成形器的電氣組配的示意圖。
圖2B繪示根據圖2A之電氣組配的構成例示性接收系統中之相控陣列天線系統之多個層疊層的示意性橫截面。
圖3A繪示根據本揭露內容之一個實施例的用於天線格組中之多個穿插天線元件耦接至波束成形器格組中之單一波束成形器的電氣組配的示意圖。
圖3B繪示根據圖3A之電氣組配的構成例示性傳輸及穿插系統中之相控陣列天線系統之多個層疊層的示意性橫截面。
圖4A描繪根據本揭露內容之一些實施例之信號饋送網路之實例。
圖4B描繪根據本揭露內容之一些實施例之圖4A之信號饋送網路之一部分的額外細節。
圖5描繪根據習知技術的設置在分離基底上的多個信號饋送器網路之每一信號饋送網路。
圖6A描繪根據本揭露內容之一些實施例之多工饋送網路層之實例的俯視圖。
圖6B至圖6C描繪根據本揭露內容之一些實施例之圖6A之多工饋送網路層之不同層的俯視圖。
圖7A描繪根據本揭露內容之一些實施例之多工饋送網路層之另一實例的俯視圖。
圖7B描繪根據本揭露內容之一些實施例之圖7A之多工饋送網路層之一部分的俯視圖。
圖7C至圖7D描繪根據本揭露內容之一些實施例之圖7B之多工饋送網路層之該部分的不同層之俯視圖。
圖8描繪根據本揭露內容之一些實施例之實例多工饋送網路堆疊之橫截面圖。
圖9描繪根據本揭露內容之一些實施例之包括於圖8之堆疊中的實例功率劃分器之方塊圖。
圖10描繪根據本揭露內容之一些實施例之功率劃分器及相關聯跡線之等角視圖。
圖11描繪展示根據本揭露內容之一些實施例之功率分裂器/組合器的層之間的跡線長度分配之方塊圖。
圖12描繪根據本揭露內容之一些實施例之在多個層之上下文中展示的功率劃分器之等角視圖。
圖13A描繪展示根據本揭露內容之一些實施例之功率劃分器之頂層與另一層的至少一部分之堆疊的俯視圖。
圖13B描繪根據本揭露內容之一些實施例之與四個H網路相關聯的多個功率劃分器之俯視圖。
圖14A至圖14B描繪根據本揭露內容之一些實施例之在堆疊之各種層之上下文內展示的圖13B之四個功率劃分器之集合的等角視圖。
圖15A至圖15B標示根據本揭露內容之一些實施例之與四H網路組配之四個功率劃分器的集合相關聯的額外尺寸。
圖15C描繪展示根據本揭露內容之一些實施例之與八H網路組配相關聯的一組八個功率劃分器之方塊圖。
圖15D描繪根據本揭露內容之一些實施例之以重疊組配組配的經封裝功率分裂器/組合器之實例。
圖16描繪展示根據本揭露內容之一些實施例之用於使用位於多於一個層或平面中的導電跡線或線執行信號之功率劃分或分裂的實例過程之流程圖。
圖17A描繪根據本揭露內容之一些實施例之包括波束成形器格組層及四個多工饋送網路層之堆疊之一部分的方塊圖。
圖17B描繪根據本揭露內容之一些實施例之包括組配為八H網路之多工饋送網路的堆疊之一部分之透視圖。
圖17C至圖17D描繪根據本揭露內容之一些實施例之包括於圖17B之多工饋送網路中的端接跡線區段之實例形狀或輪廓。

Claims (32)

  1. 一種功率分裂器/組合器,其包含: 一第一導電跡線,其包括於一第一層中; 第二導電跡線及第三導電跡線,其包括於一第二層中; 一第一通路,其電氣耦接至該第一導電跡線及該第二導電跡線;及 一第二通路,其電氣耦接至該第一導電跡線及該第三導電跡線, 其中該第一導電跡線之一第一部分包含該功率分裂器/組合器之一第一埠, 其中該第一導電跡線之一第二部分、該第一通路及該第二導電跡線包含該功率分裂器/組合器之一第二埠,且 其中該第一導電跡線之一第三部分、該第二通路及該第三導電跡線包含該功率分裂器/組合器之一第三埠。
  2. 如請求項1之功率分裂器/組合器,其中與該第一層中之該第一導電跡線之該第二部分或該第二層中之該第二導電跡線相關聯的一信號路徑長度,小於與該第二埠相關聯的一總信號路徑長度。
  3. 如請求項1至2中任一項之功率分裂器/組合器,其中該第一埠、該第二埠與該第三埠彼此阻抗匹配。
  4. 如請求項1至2中任一項之功率分裂器/組合器,其中該第一埠處的一第一信號在該第二埠與該第三埠處分別分裂為第二信號與第三信號,且其中該第二信號及該第三信號中之每一者具有為該第一信號之功率的一半之功率。
  5. 如請求項1至2中任一項之功率分裂器/組合器,其中該第一導電跡線、該第二導電跡線及該第三導電跡線包括於組配在該第一層及該第二層上的一多工饋送網路中。
  6. 如請求項1至2中任一項之功率分裂器/組合器,其中該第一導電跡線之該第一部分、該第二部分與該第三部分在該第一層中彼此相交。
  7. 如請求項1至2中任一項之功率分裂器/組合器,其中該第一導電跡線之該第二部分或該第三部分中之一者或二者包括呈現朝向該第一導電跡線之該第一部分之輪廓的一定向。
  8. 如請求項7之功率分裂器/組合器,其中該功率分裂器/組合器在垂直於該第一導電跡線之該第一部分的一定向之一方向上的一寬度,減少該第一導電跡線之該第二部分及該第三部分中之一者或二者朝向該第一導電跡線之該第一部分之該輪廓。
  9. 如請求項1至2及8中任一項之功率分裂器/組合器,其中該第二導電跡線或該第三導電跡線中之一者或二者包括呈現朝向該第一導電跡線之該第一部分的輪廓之一定向。
  10. 如請求項9之功率分裂器/組合器,其中該功率分裂器/組合器在垂直於該第一導電跡線之該第一部分的一定向之一方向上的一寬度,減少該第二導電跡線或該第三導電跡線中之一者或二者朝向該第一導電跡線之該第一部分之該輪廓。
  11. 如請求項1至2、8及10中任一項之功率分裂器/組合器,其中該第一層或該第二層中之一者或二者包括一基礎層以使該第一層或該第二層與鄰近層電氣隔離。
  12. 如請求項11之功率分裂器/組合器,其中該基礎層包含一印刷電路板(PCB)、一介電材料或一非導電材料。
  13. 如請求項11之功率分裂器/組合器,其中該功率分裂器/組合器之該第一埠、該第二埠及該第三埠包括於一封裝中,且該封裝定位於一印刷電路板(PCB)之一位置處,在該位置處,位於二個不同層中的導電跡線在垂直於該等導電跡線所設置的該等層之一平面的一方向上彼此共線。
  14. 一種設備,其包含: 一第一電氣信號路徑分支,其包括於一第一層中; 一第二電氣信號路徑分支,其包括於該第一層及一第二層中;及 一第三電氣信號路徑分支,其包括於該第一層及該第二層中, 其中該第一電氣信號路徑分支、該第二電氣信號路徑分支及該第三電氣信號路徑分支在該第一層中彼此電氣耦接,且其中與該第二電氣信號路徑分支及該第三電氣信號路徑分支相關聯的信號路徑長度為四分之一波長信號路徑長度。
  15. 如請求項14之設備,其中該第一電氣信號路徑分支、該第二電氣信號路徑分支與該第三電氣信號路徑分支阻抗匹配。
  16. 如請求項14至15中任一項之設備,其中該第一電氣信號路徑分支、該第二電氣信號路徑分支或該第三電氣信號路徑分支的至少一部分包含一導電跡線。
  17. 如請求項14至15中任一項之設備,其中該第二電氣信號路徑分支及該第三電氣信號路徑分支的至少一部分包含在該第一層與該第二層之間延伸的一通路。
  18. 如請求項14至15中任一項之設備,其中該第二電氣信號路徑分支包含第一部分、第二部分及第三部分,且其中該第一部分包括於該第一層中,該第二部分在該第一層與該第二層之間延伸,且該第三部分包括於該第二層中。
  19. 如請求項18之設備,其中該第一部分及該第三部分包含導電跡線,且該第二部分包含一通路。
  20. 如請求項18之設備,其中該第一部分及該第二部分中之一者或二者包括呈現朝向該第一電氣信號路徑分支的輪廓之一定向。
  21. 如請求項14至15及19至20中任一項之設備,其中該第二電氣信號路徑分支包括一線性定向部分及一非線性定向部分。
  22. 如請求項14至15及19至20中任一項之設備,其中該第二電氣信號路徑分支與該第三電氣信號路徑分支沿著該第一電氣信號路徑分支之對置側對稱。
  23. 如請求項14至15及19至20中任一項之設備,其中輸入至該第一電氣信號路徑分支之一第一信號在該第二電氣信號路徑分支與該第三電氣信號路徑分支處分別轉換為第二信號與第三信號,且其中該第二信號及該第三信號中之每一者具有該第一信號之功率的一半功率。
  24. 如請求項14至15及19至20中任一項之設備,其中該第一信號、該第二信號及該第三信號包含射頻(RF)信號。
  25. 如請求項14至15及19至20中任一項之設備,其中分別輸入至該第二電氣信號路徑分支與該第三電氣信號路徑分支之第二信號與第三信號在該第一電氣信號路徑分支處組合為一第一信號,且其中該第一信號具有為該第二信號與該第三信號之功率總和的功率。
  26. 如請求項14至15及19至20中任一項之設備,其中該第一電氣信號路徑分支、該第二電氣信號路徑分支及該第三電氣信號路徑分支之與彼此相交的末端相對的末端,分別電氣耦接至包括於該第一層中的一第一電氣導電跡線、包括於該第二層中的一第二電氣導電跡線及包括於該第二層中的一第三電氣導電跡線。
  27. 一種路由信號之方法,該方法包含: 回應於在一第一層中接收到一第一信號,將該第一信號分裂成第二信號及第三信號; 致使將該第二信號自該第一層傳播至安置在該第一層上方或下方之一第二層;及 致使將該第三信號自該第一層傳播至該第二層, 其中該第二信號及該第三信號中之每一者具有該第一信號之功率的一半功率。
  28. 如請求項27之方法,其中該第一信號、該第二信號及該第三信號包含射頻(RF)信號,且其中一相同頻率與該第一信號、該第二信號及該第三信號相關聯。
  29. 如請求項27至28中任一項之方法,其中將該第一信號分裂成該第二信號及該第三信號包含在該第一層中分裂該第一信號。
  30. 如請求項27至28中任一項之方法,其中致使將該第二信號自該第一層傳播至該第二層,包含致使經由包括於該第一層中的一第一導電線、在該第一層與該第二層之間延伸的一第一通路及包括於該第二層中的一第二導電線傳播該第二信號。
  31. 如請求項30之方法,其中該第一信號係在一第三導電線處接收,且其中致使將該第三信號自該第一層傳播至該第二層,包含致使經由包括於該第一層中的一第四導電線、在該第一層與該第二層之間延伸的一第二通路及包括於該第二層中的一第五導電線傳播該第三信號。
  32. 如請求項31之方法,其中該第三導電線、該第一傳導線、該第一通路與該第二傳導線以及該第四導電線、該第二通路與該第五導電線彼此阻抗匹配。
TW108104978A 2018-02-15 2019-02-14 階層式網絡信號傳送路由安排設備及方法 TW201946382A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862631195P 2018-02-15 2018-02-15
US62/631,195 2018-02-15
US201862631694P 2018-02-17 2018-02-17
US62/631,694 2018-02-17

Publications (1)

Publication Number Publication Date
TW201946382A true TW201946382A (zh) 2019-12-01

Family

ID=67541153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104978A TW201946382A (zh) 2018-02-15 2019-02-14 階層式網絡信號傳送路由安排設備及方法

Country Status (3)

Country Link
US (2) US10998606B2 (zh)
TW (1) TW201946382A (zh)
WO (1) WO2019161121A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201946382A (zh) 2018-02-15 2019-12-01 美商太空探索科技公司 階層式網絡信號傳送路由安排設備及方法
JP2023519973A (ja) * 2020-04-02 2023-05-15 テレフオンアクチーボラゲット エルエム エリクソン(パブル) アナログビームステアリングのための方法および送信機

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE292329T1 (de) * 1999-09-20 2005-04-15 Fractus Sa Mehrebenenantenne
EP1258054B1 (en) * 2000-01-19 2005-08-17 Fractus, S.A. Space-filling miniature antennas
US6538603B1 (en) 2000-07-21 2003-03-25 Paratek Microwave, Inc. Phased array antennas incorporating voltage-tunable phase shifters
US6842157B2 (en) 2001-07-23 2005-01-11 Harris Corporation Antenna arrays formed of spiral sub-array lattices
US7348929B2 (en) 2005-09-08 2008-03-25 Harris Corporation Phased array antenna with subarray lattices forming substantially rectangular aperture
US7848719B2 (en) 2006-05-12 2010-12-07 University Of Southern California Ultra-wideband variable-phase ring-oscillator arrays, architectures, and related methods
US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
US7489283B2 (en) 2006-12-22 2009-02-10 The Boeing Company Phased array antenna apparatus and methods of manufacture
US7642978B2 (en) 2007-03-30 2010-01-05 Itt Manufacturing Enterprises, Inc. Method and apparatus for steering and stabilizing radio frequency beams utilizing photonic crystal structures
US7626556B1 (en) 2007-09-18 2009-12-01 Lockheed Martin Corporation Planar beamformer structure
KR101070009B1 (ko) * 2009-09-10 2011-10-04 경희대학교 산학협력단 격리도를 향상시킨 1:2 초광대역 전력 분배기/결합기
US8216912B2 (en) * 2009-08-26 2012-07-10 International Business Machines Corporation Method, structure, and design structure for a through-silicon-via Wilkinson power divider
US9379437B1 (en) 2011-01-31 2016-06-28 Ball Aerospace & Technologies Corp. Continuous horn circular array antenna system
EP2575211B1 (en) * 2011-09-27 2014-11-05 Technische Universität Darmstadt Electronically steerable planar phased array antenna
KR101454878B1 (ko) * 2013-09-12 2014-11-04 한국과학기술원 수평 방사와 수직 방사의 선택적 이용이 가능한 매립형 혼 안테나
US10297923B2 (en) 2014-12-12 2019-05-21 The Boeing Company Switchable transmit and receive phased array antenna
TW201946382A (zh) 2018-02-15 2019-12-01 美商太空探索科技公司 階層式網絡信號傳送路由安排設備及方法
US11189911B2 (en) * 2018-04-18 2021-11-30 Tubis Technology Inc. Compact combiner for phased-array antenna beamformer
MX2022009428A (es) * 2020-02-03 2022-10-18 Ppc Broadband Inc Un dispositivo divisor moca.

Also Published As

Publication number Publication date
US11862837B2 (en) 2024-01-02
US20210249749A1 (en) 2021-08-12
US20190252755A1 (en) 2019-08-15
US10998606B2 (en) 2021-05-04
WO2019161121A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US11606134B2 (en) Beamformer lattice for phased array antennas
US20190252800A1 (en) Self-multiplexing antennas
US11469517B2 (en) Antenna modules for phased array antennas
US20180241122A1 (en) Distributed phase shifter array system and method
US9698455B2 (en) Multi-mode filter having at least one feed line and a phase array of coupling elements
US11056801B2 (en) Antenna aperture in phased array antenna systems
US10230174B2 (en) Frequency diverse phased-array antenna
US11862837B2 (en) Hierarchical network signal routing apparatus and method
US11916298B2 (en) Patch antenna
US11699852B2 (en) Phased array antenna systems
US10971817B2 (en) Antenna-to-beamformer assignment and mapping in phased array antenna systems
RU2799836C2 (ru) Модуль антенного элемента