WO2011052680A1 - 炭酸ストロンチウム微粉末及びその製造方法 - Google Patents

炭酸ストロンチウム微粉末及びその製造方法 Download PDF

Info

Publication number
WO2011052680A1
WO2011052680A1 PCT/JP2010/069167 JP2010069167W WO2011052680A1 WO 2011052680 A1 WO2011052680 A1 WO 2011052680A1 JP 2010069167 W JP2010069167 W JP 2010069167W WO 2011052680 A1 WO2011052680 A1 WO 2011052680A1
Authority
WO
WIPO (PCT)
Prior art keywords
strontium carbonate
strontium
acid
powder
particles
Prior art date
Application number
PCT/JP2010/069167
Other languages
English (en)
French (fr)
Inventor
文夫 岡田
武史 日元
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to US13/504,723 priority Critical patent/US8388749B2/en
Priority to JP2011538479A priority patent/JP5718238B2/ja
Priority to KR1020127013187A priority patent/KR101761952B1/ko
Priority to CN201080059860.2A priority patent/CN102666389B/zh
Publication of WO2011052680A1 publication Critical patent/WO2011052680A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/187Strontium carbonate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to fine strontium carbonate powder and a method for producing the same.
  • strontium carbonate powder is as a raw material for producing dielectric ceramic powder such as strontium titanate powder.
  • the strontium titanate powder is manufactured by mixing a strontium carbonate powder and a titanium dioxide powder to form a powder mixture and then firing.
  • Dielectric ceramic powder is used as a constituent material of a dielectric ceramic layer of a multilayer ceramic capacitor.
  • Patent Document 1 as a method for producing fine strontium carbonate powder, two or more carboxyls in one molecule are stirred while stirring an aqueous solution or aqueous suspension of strontium hydroxide having a concentration of 1 to 20% by mass.
  • an organic acid having 3 or 12 carbon atoms having a group or a hydroxyl group carbon dioxide gas is added to the aqueous solution or aqueous suspension in a range of 0.5 to 200 mL / min with respect to 1 g of strontium hydroxide.
  • strontium hydroxide is carbonated to produce strontium carbonate particles, and then dried.
  • organic acids examples include citric acid, malic acid, adipic acid, gluconic acid, and glucaric acid.
  • Glucuronic acid, tartaric acid, maleic acid, ascorbic acid are exemplified, and citric acid and ascorbic acid are preferred. It is.
  • this Patent Document 1 by using the above method, a fine strontium carbonate powder having a specific surface area of 52 to 300 m 2 / g is obtained, and ceramic beads are used for this fine strontium carbonate powder. By performing the pulverization process, it is said that it is possible to obtain particles having a projected area equivalent diameter of primary particles of 5 to 50 nm and an aspect ratio of 2 or less.
  • the surface of the strontium carbonate particles is a polymer that is a polycarboxylic acid having a polyoxyalkylene group in the side chain or an anhydride thereof. It describes the use of a processing method.
  • strontium carbonate particles are produced in a ceramic medium. A method is described in which beads are ground in the presence of the polymer.
  • an object of the present invention is to provide a fine strontium carbonate powder having excellent dispersibility in a liquid medium.
  • Another object of the present invention is to provide a method capable of producing a fine strontium carbonate powder having excellent dispersibility in a liquid medium without performing a pulverization treatment using ceramic beads.
  • the present inventor has developed an aqueous solution or aqueous suspension of strontium hydroxide in the presence of an organic acid (for example, tartaric acid, malic acid and gluconic acid) having at least one hydroxyl group and a carboxyl group, respectively, and a total of at least three.
  • an organic acid for example, tartaric acid, malic acid and gluconic acid
  • a suspension of strontium carbonate particles obtained by introducing carbon dioxide gas into a suspension under predetermined conditions to carbonate strontium hydroxide to produce strontium carbonate particles, and having a polyoxyalkylene group in the side chain
  • the mixture is stirred and mixed with a stirring blade rotating at a high speed of 5 to 32 m / second at a peripheral speed, and then dried, and then pulverized using ceramic beads.
  • the present invention resides in fine strontium carbonate powder comprising spherical particles having an average aspect ratio of 2.0 or less and having a BET specific surface area in the range of 20 to 150 m 2 / g.
  • Preferred embodiments of the fine strontium carbonate powder of the present invention are as follows. (1) The average aspect ratio is in the range of 1.2 to 2.0. (2) On the surface of the spherical particles, a polymer which is a polycarboxylic acid having a polyoxyalkylene group in the side chain or an anhydride thereof is included.
  • the present invention also provides an organic compound having at least one hydroxyl group and at least three hydroxyl groups and a total of at least three hydroxyl groups while stirring an aqueous solution or suspension of strontium hydroxide having a concentration in the range of 1 to 20% by mass.
  • carbon dioxide gas is introduced into the aqueous solution or suspension at a flow rate of 0.5 to 200 mL / min with respect to 1 g of strontium hydroxide to carbonate strontium hydroxide.
  • a step of obtaining an aqueous suspension of strontium carbonate particles by generating strontium carbonate particles, and the obtained aqueous suspension of strontium carbonate particles is a polycarboxylic acid having a polyoxyalkylene group in the side chain or an anhydride thereof. Stirring and mixing with stirring blades rotating at a peripheral speed of 5 to 32 m / sec in the presence of polymer, and stirring There is also a method for producing a powder strontium carbonate fine of the present invention including the step of drying strontium carbonate particles an aqueous suspension after engagement.
  • a preferred embodiment of the method for producing fine strontium carbonate powder of the present invention is as follows.
  • the organic acid is selected from the group consisting of tartaric acid, malic acid and gluconic acid.
  • (2) The presence of a polymer which is a polycarboxylic acid having a polyoxyalkylene group in the side chain or an anhydride thereof in the stirring and mixing step is made by adding the polymer to an aqueous suspension of strontium carbonate particles.
  • the strontium carbonate fine powder of the present invention is composed of fine spherical particles, it is excellent in dispersibility in a liquid medium. Therefore, the strontium carbonate fine powder of the present invention can be mixed with other material powders such as titanium dioxide using a wet mixing method to obtain a powder mixture having a fine and uniform composition. A dielectric ceramic powder such as strontium titanate having a fine and uniform composition can be advantageously produced. In addition, by using the method for producing fine strontium carbonate powder of the present invention, the fine strontium carbonate powder of the present invention can be produced without pulverizing with ceramic beads.
  • FIG. 2 is an electron micrograph of strontium carbonate powder produced in Example 1.
  • FIG. 2 is an electron micrograph of strontium carbonate powder produced in Example 2.
  • FIG. 4 is an electron micrograph of strontium carbonate powder produced in Example 3.
  • the fine powder of strontium carbonate of the present invention is an aggregate of spherical particles having an average aspect ratio (major axis / minor axis ratio) of 2.0 or less.
  • the average aspect ratio is preferably in the range of 1.2 to 2.0, more preferably in the range of 1.3 to 1.9.
  • the spherical shape does not need to be a true spherical shape, and may be a long spherical shape, a cubic shape with rounded corners, or a rectangular parallelepiped shape.
  • the strontium carbonate fine powder it is not necessary that all particles contained in the strontium carbonate fine powder have a spherical shape, but 60% or more, particularly 80% or more of the particles are preferably spherical on the basis of the number of particles.
  • the spherical particles are usually primary particles.
  • the strontium carbonate fine powder of the present invention has a BET specific surface area in the range of 20 to 150 m 2 / g, preferably in the range of 40 to 150 m 2 / g, more preferably in the range of 60 to 150 m 2 / g. That is, the strontium carbonate fine powder of the present invention is fine, and the particle size is calculated from the following formula as a BET equivalent particle diameter in the range of 11 to 81 nm, preferably in the range of 11 to 41 nm, more preferably in the range of 11 to 27 nm. It is in the range.
  • BET equivalent particle diameter (nm) 1000 ⁇ 6 / [BET specific surface area (m 2 / g) ⁇ true density of strontium carbonate (3.70 g / cm 3 )]
  • the fine powder of strontium carbonate of the present invention introduces carbon dioxide gas into the aqueous solution or aqueous suspension in the presence of a predetermined organic acid while stirring the aqueous solution or aqueous suspension of strontium hydroxide.
  • a process for producing an aqueous suspension of strontium carbonate particles in which strontium hydroxide is carbonated to produce strontium carbonate particles, and the resulting aqueous suspension of strontium carbonate particles is a polycarboxylic acid having a polyoxyalkylene group in the side chain.
  • a stirring and mixing step of stirring and mixing with a stirring blade in the presence of a polymer which is an acid or an anhydride thereof, and a drying step of drying the aqueous suspension of strontium carbonate particles after the stirring and mixing are produced in this order. Can do.
  • the aqueous solution or aqueous suspension of strontium hydroxide used in the production process of the aqueous suspension of strontium carbonate particles generally has a strontium hydroxide concentration in the range of 1 to 20% by mass, preferably in the range of 2 to 15% by mass. More preferably, it is in the range of 3 to 8% by mass.
  • the organic acid used in the production process of the aqueous suspension of strontium carbonate particles is an organic acid containing at least one hydroxyl group and a carboxyl group, and a total of three or more.
  • the organic acid preferably has 1 or 2 carboxyl groups and a total of 3 to 6 carboxyl groups.
  • Examples of organic acids include tartaric acid, malic acid and gluconic acid.
  • An organic acid may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the tartaric acid is preferably DL-tartaric acid.
  • the malic acid is preferably DL-malic acid.
  • the gluconic acid is preferably D-gluconic acid.
  • the amount of the organic acid used is generally in the range of 0.1 to 20 parts by mass, preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of strontium hydroxide.
  • the organic acid acts as a crystal growth inhibitor that suppresses crystal growth of strontium carbonate generated by carbonation of strontium hydroxide, and also acts as an aggregation inhibitor that suppresses aggregation of strontium carbonate particles generated by carbonation.
  • the flow rate of carbon dioxide gas introduced into the aqueous solution or aqueous suspension of strontium hydroxide is generally in the range of 0.5 to 200 mL / min, preferably 0.5 to 100 mL / min, with respect to 1 g of strontium hydroxide. It is a range.
  • the end point of carbonation of strontium hydroxide is generally when the pH of the aqueous solution or aqueous suspension becomes 7 or less.
  • the temperature of the aqueous solution or suspension of strontium hydroxide is preferably in the range of 0 to 40 ° C., more preferably in the range of 0 to 30 ° C. A range of 15 ° C. is particularly preferable.
  • the polymer which is a polycarboxylic acid having a polyoxyalkylene group in the side chain or an anhydride thereof used in the stirring and mixing step is preferably a polycarboxylic acid anhydride having a polyoxyalkylene group in the side chain.
  • the polycarboxylic acid anhydride is preferably composed of a maleic anhydride polymer.
  • Examples of polycarboxylic acid anhydrides having a polyoxyalkylene group in the side chain include Marialim KM-0521, Mariarim AKM-0531, Mariarim AKM-1511-60, Marialim HKM-50A, Marialim AKM- 150A can be mentioned.
  • the amount of the polymer used is generally in the range of 0.5 to 20 parts by mass, preferably in the range of 1 to 10 parts by mass, with respect to 100 parts by mass of strontium carbonate in the aqueous suspension.
  • the above polymer may be added to an aqueous solution or aqueous suspension of strontium hydroxide before carbonation, but it is preferable to add it to an aqueous suspension of strontium carbonate particles.
  • the peripheral speed of the stirring blade used for stirring and mixing the aqueous suspension of strontium carbonate particles is generally in the range of 5 to 32 m / second, preferably in the range of 5 to 16 m / second.
  • a homomixer can be used for this stirring and mixing.
  • the time for stirring and mixing is generally in the range of 1 to 200 minutes, preferably in the range of 10 to 100 minutes.
  • a dryer such as a spray dryer or a drum dryer can be used for drying the aqueous suspension of strontium carbonate particles.
  • Example 1 366 g of strontium hydroxide octahydrate was added to 3 L of pure water having a water temperature of 10 ° C. and mixed to prepare an aqueous suspension of strontium hydroxide having a concentration of 5.6% by mass.
  • aqueous suspension 366 g of strontium hydroxide octahydrate was added to 3 L of pure water having a water temperature of 10 ° C. and mixed to prepare an aqueous suspension of strontium hydroxide having a concentration of 5.6% by mass.
  • the carbon dioxide gas was supplied to the aqueous suspension at a flow rate of 3.75 L / min (22 mL for 1 g of strontium hydroxide). (Flow rate / min) until the pH of the aqueous suspension reached 7 to generate strontium carbonate particles, and then stirring was continued for another 30 minutes to obtain an aqueous suspension of strontium carbonate particles.
  • FIG. 1 An electron micrograph of the obtained strontium carbonate powder is shown in FIG. It can be seen from the photograph in FIG. 1 that the obtained strontium carbonate powder is an aggregate of spherical particles.
  • the obtained strontium carbonate powder was a fine powder having a BET specific surface area of 107.2 m 2 / g and a BET equivalent particle diameter of 15.1 nm.
  • the aspect ratio of 300 strontium carbonate particles was measured from the electron micrograph of the strontium carbonate powder and the average aspect ratio was determined, it was 1.6.
  • strontium carbonate powder was weighed out, put into 20 mL of a hexametaphosphoric acid aqueous solution having a concentration of 0.2% by mass, and ultrasonicated for 5 minutes using an ultrasonic homogenizer (BONSON, SONIFIER 150). Dispersion treatment was performed to prepare a strontium carbonate particle dispersion, and the average particle size of the strontium carbonate particles in the dispersion was measured by a dynamic light scattering method. As a result, it was confirmed that the average particle diameter of the strontium carbonate particles was 61 nm, which was about 4 times the BET equivalent particle diameter. From these values, the strontium carbonate particles were almost in the form of primary particles in the dispersion. It was confirmed that it was dispersed.
  • Example 2 In the same manner as in Example 1, except that 7.1 g of malic acid (DL-malic acid, reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.) was added to the aqueous strontium hydroxide suspension instead of tartaric acid, Strontium carbonate powder was obtained. An electron micrograph of the obtained strontium carbonate powder is shown in FIG. It can be seen from the photograph in FIG. 2 that the obtained strontium carbonate powder is an aggregate of spherical particles. Further, the obtained strontium carbonate powder was a fine powder having a BET specific surface area of 83.4 m 2 / g, a BET equivalent particle diameter of 19.4 nm, and an average aspect ratio of 1.8.
  • malic acid DL-malic acid, reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.
  • a strontium carbonate particle dispersion was prepared from the obtained strontium carbonate powder in the same manner as in Example 1, and the average particle diameter of the strontium carbonate particles in the dispersion was measured by a dynamic light scattering method. As a result, it was confirmed that the average particle diameter of the strontium carbonate particles was 116 nm, which was about 6 times the BET equivalent particle diameter. From these values, the strontium carbonate particles were almost in the form of primary particles in the dispersion. It was confirmed that it was dispersed.
  • Example 3 Instead of tartaric acid, 25.5 g of gluconic acid (D-gluconic acid, reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.) (15.2 parts by mass with respect to 100 parts by mass of strontium hydroxide) was added to the aqueous strontium hydroxide suspension.
  • a strontium carbonate powder was obtained in the same manner as in Example 1 except that it was added to the suspension. An electron micrograph of the obtained strontium carbonate powder is shown in FIG. From the photograph of FIG. 3, it can be seen that the obtained strontium carbonate powder is an aggregate of spherical particles. Further, the obtained strontium carbonate powder was a fine powder having a BET specific surface area of 100 m 2 / g, a BET equivalent particle diameter of 16.2 nm, and an average aspect ratio of 1.3.
  • a strontium carbonate particle dispersion was prepared from the obtained strontium carbonate powder in the same manner as in Example 1, and the average particle diameter of the strontium carbonate particles in the dispersion was measured by a dynamic light scattering method.
  • the average particle diameter of the strontium carbonate particles was 120 nm, which was confirmed to be about 7.4 times the BET equivalent particle diameter. From these values, the strontium carbonate particles were almost similar to the primary particles in the dispersion. It was confirmed that it was dispersed in the form.

Abstract

 平均アスペクト比が2.0以下の球状粒子からなり、BET比表面積が20~150m2/gの範囲にある炭酸ストロンチウム微粉末。この炭酸ストロンチウム微粉末は液体媒体への分散性が高く、チタン酸ストロンチウムなどの誘電体セラミックの製造原料として有用である。

Description

炭酸ストロンチウム微粉末及びその製造方法
 本発明は、炭酸ストロンチウム微粉末及びその製造方法に関する。
 炭酸ストロンチウム粉末の用途の一つとして、チタン酸ストロンチウム粉末などの誘電体セラミック粉末の製造原料の用途がある。例えば、チタン酸ストロンチウム粉末は、炭酸ストロンチウム粉末と二酸化チタン粉末とを混合して粉末混合物とした後、焼成することによって製造される。誘電体セラミック粉末は、積層セラミックコンデンサの誘電体セラミック層の構成材料として利用されている。
 電子機器の小型化に伴って、積層セラミックコンデンサにおいても小型化が求められている。積層セラミックコンデンサの小型化のためには、積層セラミックコンデンサの誘電体セラミック層の薄層化が必要となる。この誘電体セラミック層の薄層化のためには、微細で、かつ組成が均一な誘電体セラミック粉末が不可欠である。
 微細で、かつ組成が均一な誘電体セラミック粉末を製造するには、原料の粉末を微細にし、かつ粉末混合物の組成を均一にする必要がある。組成が均一な粉末混合物を得る方法として、原料の粉末を液体媒体に分散させて混合する湿式混合法が広く利用されている。従って、誘電体セラミック粉末製造用として用いる炭酸ストロンチウム粉末は、微細でかつ液体媒体への分散性が高いことが望ましい。
 特許文献1には、微細な炭酸ストロンチウム粉末の製造方法として、濃度が1~20質量%の範囲にある水酸化ストロンチウムの水溶液もしくは水性懸濁液を撹拌しながら、一分子中に二以上のカルボキシル基又はヒドロキシル基を有する、炭素原子数3~12の有機酸の存在下にて、該水溶液もしくは水性懸濁液に二酸化炭素ガスを水酸化ストロンチウム1gに対して0.5~200mL/分の範囲の流量にて導入し、水酸化ストロンチウムを炭酸化させて炭酸ストロンチウム粒子を生成させて、次いで乾燥する方法が記載され、有機酸としては、クエン酸、リンゴ酸、アジピン酸、グルコン酸、グルカル酸、グルクロン酸、酒石酸、マレイン酸、アスコルビン酸が例示されていて、好ましくはクエン酸及びアスコルビン酸であることが記載されている。この特許文献1によれば、上記の方法を利用することにより、比表面積が52~300m2/gの炭酸ストロンチウム微粉末が得られ、そして、この炭酸ストロンチウム微粉末に対してセラミック製ビーズを用いた粉砕処理を行なうことによって、一次粒子の投影面積相当径が5~50nmで、アスペクト比で2以下の粒子を得ることが可能であるとされている。
 特許文献2には、炭酸ストロンチウム微粉末の液体媒体中での分散性を向上させるために、炭酸ストロンチウム粒子の表面を側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーで処理する方法を利用することが記載されている。この特許文献2には、炭酸ストロンチウム粒子の表面を側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーで処理する方法として、水性媒体中にて炭酸ストロンチウム粒子を、セラミック製ビーズを用いて該ポリマーの存在下にて粉砕する方法が記載されている。
特開2007-76934号公報 特開2008-222496号公報
 炭酸ストロンチウム微粉末の製造に際して、特許文献1及び2に記載されているようなセラミック製ビーズを用いた粉砕処理を行なうことは、微細な炭酸ストロンチウム粉末を製造するには有用であるが、粉砕処理後の炭酸ストロンチウム粒子は角張った不定形な多面体状になることが多い。炭酸ストロンチウム微粉末中に角張った不定形な多面体状の粒子が多く存在すると、液体媒体中での分散性が低下し、均一な組成の粉末混合物を得るのが難しくなる。また、セラミック製ビーズを用いた粉砕処理を行なうと、セラミック製ビーズの成分が摩耗により最終製品の炭酸ストロンチウム微粉末に混入し、生成微粉末の純度が低下しやすいことがある。
 従って、本発明の目的は、液体媒体中での分散性に優れる炭酸ストロンチウム微粉末を提供することにある。本発明の目的はまた、液体媒体中での分散性に優れる炭酸ストロンチウム微粉末を、セラミック製ビーズを用いた粉砕処理を行なわずに製造することができる方法を提供することにもある。
 本発明者は、水酸基とカルボルキシル基とをそれぞれ少なくとも1個、かつ合計で少なくとも3個有する有機酸(例えば、酒石酸、リンゴ酸及びグルコン酸)の存在下にて、水酸化ストロンチウムの水溶液もしくは水性懸濁液に二酸化炭素ガスを所定の条件で導入し、水酸化ストロンチウムを炭酸化させて炭酸ストロンチウム粒子を生成させることによって得られた炭酸ストロンチウム粒子の懸濁液を、側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーの存在下、周速で5~32m/秒となる高速に回転する撹拌羽根で撹拌混合した後、乾燥することによって、セラミック製ビーズを用いた粉砕処理を行なわなくても、平均アスペクト比が2.0以下と小さい球状粒子からなり、BET比表面積が20~150m2/gの範囲と粒子サイズが微細な炭酸ストロンチウム微粉末を製造することができることを見出した。そして、その炭酸ストロンチウム微粉末は、液体媒体に微細な微粒子として比較的容易に分散させることができることを確認して、本発明を完成させた。
 従って、本発明は、平均アスペクト比が2.0以下の球状粒子からなり、BET比表面積が20~150m2/gの範囲にある炭酸ストロンチウム微粉末にある。
 本発明の炭酸ストロンチウム微粉末の好ましい態様は次の通りである。
(1)平均アスペクト比が1.2~2.0の範囲にある。
(2)球状粒子の表面に、側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーを有する。
 本発明はまた、濃度が1~20質量%の範囲にある水酸化ストロンチウムの水溶液もしくは水性懸濁液を撹拌しながら、水酸基とカルボルキシル基とをそれぞれ少なくとも1個、かつ合計として少なくとも3個有する有機酸の存在下にて、該水溶液もしくは水性懸濁液に二酸化炭素ガスを水酸化ストロンチウム1gに対して0.5~200mL/分の範囲の流量にて導入し、水酸化ストロンチウムを炭酸化させて炭酸ストロンチウム粒子を生成させることにより、炭酸ストロンチウム粒子水性懸濁液を得る工程、得られた炭酸ストロンチウム粒子水性懸濁液を、側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーの存在下、5~32m/秒の周速で回転する撹拌羽根で撹拌混合する工程、そして撹拌混合後の炭酸ストロンチウム粒子水性懸濁液を乾燥する工程を含む上記本発明の炭酸ストロンチウム微粉末の製造方法にもある。
 本発明の炭酸ストロンチウム微粉末の製造方法の好ましい態様は次の通りである。
(1)有機酸が、酒石酸、リンゴ酸及びグルコン酸からなる群より選ばれる。
(2)撹拌混合工程における側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーの存在が、該ポリマーを炭酸ストロンチウム粒子水性懸濁液に添加することによってなされる。
 本発明の炭酸ストロンチウム微粉末は、微細な球状粒子からなるため、液体媒体中での分散性に優れる。従って、本発明の炭酸ストロンチウム微粉末は、二酸化チタンなどの他の材料粉末と湿式混合法を用いて混合することによって、微細で、かつ均一な組成の粉末混合物を得ることができ、これにより、微細で、かつ均一な組成のチタン酸ストロンチウムなどの誘電体セラミック粉末を有利に製造することができる。また、本発明の炭酸ストロンチウム微粉末の製造方法を利用することによって、セラミック製ビーズによる粉砕処理を行なうことなく、上記本発明の炭酸ストロンチウム微粉末を製造することが可能となる。
実施例1にて製造した炭酸ストロンチウム粉末の電子顕微鏡写真である。 実施例2にて製造した炭酸ストロンチウム粉末の電子顕微鏡写真である。 実施例3にて製造した炭酸ストロンチウム粉末の電子顕微鏡写真である。
 本発明の炭酸ストロンチウム微粉末は、平均アスペクト比(長径/短径比)が2.0以下の球状粒子の集合体である。平均アスペクト比は好ましくは1.2~2.0の範囲、より好ましくは1.3~1.9の範囲である。本発明において、球状とは、真球状である必要はなく、長球状、角が丸まった立方体状や直方体状であってもよい。また炭酸ストロンチウム微粉末に含まれる全ての粒子が球状である必要はないが、粒子の個数基準で60%以上、特に80%以上の粒子が球状であることが好ましい。なお、球状粒子は通常、一次粒子である。
 本発明の炭酸ストロンチウム微粉末は、BET比表面積が20~150m2/gの範囲、好ましくは40~150m2/gの範囲、より好ましくは60~150m2/gの範囲にある。すなわち、本発明の炭酸ストロンチウム微粉末は微細であって、粒子サイズが下記の式より求められるBET換算粒子径として、11~81nmの範囲、好ましくは11~41nmの範囲、より好ましくは11~27nmの範囲にある。
 BET換算粒子径(nm)=1000×6/[BET比表面積(m2/g)×炭酸ストロンチウムの真密度(3.70g/cm3)]
 本発明の炭酸ストロンチウム微粉末は、例えば、水酸化ストロンチウムの水溶液もしくは水性懸濁液を撹拌しながら、所定の有機酸の存在下にて、該水溶液もしくは水性懸濁液に二酸化炭素ガスを導入し、水酸化ストロンチウムを炭酸化させて炭酸ストロンチウム粒子を生成させる炭酸ストロンチウム粒子水性懸濁液の製造工程と、得られた炭酸ストロンチウム粒子水性懸濁液を、側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーの存在下、撹拌羽根で撹拌混合する撹拌混合工程と、そして撹拌混合後の炭酸ストロンチウム粒子水性懸濁液を乾燥する乾燥工程をこの順で行なう方法により製造することができる。
 炭酸ストロンチウム粒子水性懸濁液の製造工程において用いる水酸化ストロンチウムの水溶液もしくは水性懸濁液は、水酸化ストロンチウムの濃度が一般に1~20質量%の範囲であり、好ましくは2~15質量%の範囲、より好ましくは3~8質量%の範囲である。
 炭酸ストロンチウム粒子水性懸濁液の製造工程において用いる有機酸は、水酸基とカルボルキシル基とをそれぞれ1個以上で、かつ合計が3個以上となるように含有する有機酸である。有機酸は、カルボキシル基の数が1個又は2個で、かつそれらの合計が3~6個であることが好ましい。有機酸の例としては、酒石酸、リンゴ酸及びグルコン酸を挙げることができる。有機酸は一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。酒石酸はDL-酒石酸が好ましい。リンゴ酸はDL-リンゴ酸が好ましい。グルコン酸は、D-グルコン酸が好ましい。有機酸の使用量は、水酸化ストロンチウム100質量部に対して一般に0.1~20質量部の範囲、好ましくは1~10質量部の範囲である。有機酸は、水酸化ストロンチウムの炭酸化により生成する炭酸ストロンチウムの結晶成長を抑制する結晶成長抑制剤として作用すると共に、炭酸化により生成した炭酸ストロンチウム粒子の凝集を抑える凝集抑制剤としても作用する。
 水酸化ストロンチウムの水溶液もしくは水性懸濁液に導入する二酸化炭素ガスの流量は、水酸化ストロンチウム1gに対して一般に0.5~200mL/分の範囲であり、好ましくは0.5~100mL/分の範囲である。水酸化ストロンチウムの炭酸化の終点は、一般に水溶液もしくは水性懸濁液のpHが7以下となった時点である。
 水酸化ストロンチウムを炭酸化させる際、水酸化ストロンチウムの水溶液もしくは水性懸濁液の液温は0~40℃の範囲にあることが好ましく、0~30℃の範囲にあることがより好ましく、5~15℃の範囲にあることが特に好ましい。
 撹拌混合工程において用いる側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーは、側鎖にポリオキシアルキレン基を有するポリカルボン酸無水物であることが好ましい。ポリカルボン酸無水物は、無水マレイン酸の重合体からなることが好ましい。側鎖にポリオキシアルキレン基を有するポリカルボン酸無水物の例としては、日本油脂株式会社製のマリアリムKM-0521、マリアリムAKM-0531、マリアリムAKM-1511-60、マリアリムHKM-50A、マリアリムAKM-150Aを挙げることができる。
 上記のポリマーの使用量は、水性懸濁液中の炭酸ストロンチウム100質量部に対して、一般に0.5~20質量部の範囲、好ましくは1~10質量部の範囲である。
 上記のポリマーは、炭酸化させる前の水酸化ストロンチウムの水溶液もしくは水性懸濁液に添加してもよいが、炭酸ストロンチウム粒子水性懸濁液に添加することが好ましい。
 炭酸ストロンチウム粒子水性懸濁液の撹拌混合で用いる撹拌羽根の周速は、一般に5~32m/秒の範囲、好ましくは5~16m/秒の範囲である。この撹拌混合にはホモミキサーを用いることができる。撹拌混合の時間は、一般に1~200分の範囲、好ましくは10~100分の範囲である。
 撹拌混合工程後の乾燥工程において、炭酸ストロンチウム粒子水性懸濁液の乾燥には、スプレードライヤあるいはドラムドライヤなどの乾燥機を用いることができる。
[実施例1]
 水温10℃の純水3Lに、水酸化ストロンチウム八水和物366gを投入し、混合して濃度5.6質量%の水酸化ストロンチウム水性懸濁液を調製した。この水酸化ストロンチウム水性懸濁液に酒石酸(DL-酒石酸、和光純薬工業(株)製試薬特級)7.1g(水酸化ストロンチウム100質量部に対して4.3質量部)を加えて、撹拌して溶解させた。次いで水酸化ストロンチウム水性懸濁液の液温を10℃に維持しつつ、撹拌を続けながら、該水性懸濁液に二酸化炭素ガスを3.75L/分の流量(水酸化ストロンチウム1gに対して22mL/分の流量)で該水性懸濁液のpHが7になるまで吹き込んで、炭酸ストロンチウム粒子を生成させた後、さらに30分間撹拌を続けて、炭酸ストロンチウム粒子水性懸濁液を得た。
 得られた炭酸ストロンチウム粒子水性懸濁液に、マリアリムKM-0521(日本油脂株式会社製)を15g(炭酸ストロンチウム100質量部に対して9.6質量部)添加した後、ホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)を用いて、撹拌羽根を7.85m/秒の周速で回転させて1時間撹拌混合した。撹拌混合終了後、炭酸ストロンチウム粒子水性懸濁液を乾燥して炭酸ストロンチウム粉末を得た。
 得られた炭酸ストロンチウム粉末の電子顕微鏡写真を図1に示す。図1の写真から、得られた炭酸ストロンチウム粉末は、球状粒子の集合体であることが分かる。得られた炭酸ストロンチウム粉末は、BET比表面積が107.2m2/gであり、BET換算粒子径が15.1nmの微粉末であった。また、炭酸ストロンチウム粉末の電子顕微鏡写真から300個の炭酸ストロンチウム粒子のアスペクト比を測定し、その平均アスペクト比を求めたところ、1.6であった。
 さらに、得られた炭酸ストロンチウム粉末を0.2g量り取り、これを濃度0.2質量%のヘキサメタリン酸水溶液20mLに投入して、超音波ホモジナイザー(BRAMSON社製、SONIFIER150)を用いて5分間超音波分散処理を行なって炭酸ストロンチウム粒子分散液を調製し、その分散液中の炭酸ストロンチウム粒子の平均粒子径を動的光散乱法により測定した。その結果、炭酸ストロンチウム粒子の平均粒子径は61nmであり、BET換算粒子径の約4倍であることが確認され、これらの数値から、炭酸ストロンチウム粒子は分散液中にほぼ一次粒子に近い形で分散していることが確認された。
[実施例2]
 酒石酸の代わりに、リンゴ酸(DL-リンゴ酸、和光純薬工業(株)製試薬特級)7.1gを水酸化ストロンチウム水性懸濁液に加えたこと以外は、実施例1と同様にして、炭酸ストロンチウム粉末を得た。
 得られた炭酸ストロンチウム粉末の電子顕微鏡写真を図2に示す。図2の写真から、得られた炭酸ストロンチウム粉末は球状粒子の集合体であることが分かる。また得られた炭酸ストロンチウム粉末は、BET比表面積が83.4m2/gであり、BET換算粒子径が19.4nmで、平均アスペクト比が1.8の微粉末であった。
 さらに、得られた炭酸ストロンチウム粉末を実施例1と同様にして炭酸ストロンチウム粒子分散液を調製し、その分散液中の炭酸ストロンチウム粒子の平均粒子径を動的光散乱法により測定した。その結果、炭酸ストロンチウム粒子の平均粒子径は116nmであり、BET換算粒子径の約6倍であることが確認され、これらの数値から、炭酸ストロンチウム粒子は分散液中にほぼ一次粒子に近い形で分散していることが確認された。
[実施例3]
 酒石酸の代わりに、グルコン酸(D-グルコン酸、和光純薬工業(株)製試薬特級)25.5g(水酸化ストロンチウム100質量部に対して15.2質量部)を、水酸化ストロンチウム水性懸濁液に加えたこと以外は、実施例1と同様にして、炭酸ストロンチウム粉末を得た。
 得られた炭酸ストロンチウム粉末の電子顕微鏡写真を図3に示す。図3の写真から、得られた炭酸ストロンチウム粉末は、球状粒子の集合体であることが分かる。また得られた炭酸ストロンチウム粉末は、BET比表面積が100m2/gであり、BET換算粒子径が16.2nmで、平均アスペクト比が1.3の微粉末であった。
 さらに、得られた炭酸ストロンチウム粉末を実施例1と同様にして炭酸ストロンチウム粒子分散液を調製し、その分散液中の炭酸ストロンチウム粒子の平均粒子径を動的光散乱法により測定した。その結果、炭酸ストロンチウム粒子の平均粒子径は120nmであり、BET換算粒子径の約7.4倍であることが確認され、これらの数値から、炭酸ストロンチウム粒子は分散液中にほぼ一次粒子に近い形で分散していることが確認された。

Claims (6)

  1.  平均アスペクト比が2.0以下の球状粒子からなり、BET比表面積が20~150m2/gの範囲にある炭酸ストロンチウム微粉末。
  2.  平均アスペクト比が1.2~2.0の範囲にある請求項1に記載の炭酸ストロンチウム微粉末。
  3.  球状粒子の表面に、側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーを有する請求項1に記載の炭酸ストロンチウム微粉末。
  4.  濃度が1~20質量%の範囲にある水酸化ストロンチウムの水溶液もしくは水性懸濁液を撹拌しながら、水酸基とカルボルキシル基とをそれぞれ少なくとも1個、かつ合計で少なくとも3個有する有機酸の存在下にて、該水溶液もしくは水性懸濁液に二酸化炭素ガスを水酸化ストロンチウム1gに対して0.5~200mL/分の範囲の流量にて導入して、水酸化ストロンチウムを炭酸化させて炭酸ストロンチウム粒子を生成させることにより、炭酸ストロンチウム粒子水性懸濁液を得る工程、得られた炭酸ストロンチウム粒子水性懸濁液を、側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーの存在下、5~32m/秒の周速で回転する撹拌羽根で撹拌混合する工程、そして撹拌混合後の炭酸ストロンチウム粒子水性懸濁液を乾燥する工程を含む請求項1に記載の炭酸ストロンチウム微粉末の製造方法。
  5.  有機酸が、酒石酸、リンゴ酸及びグルコン酸からなる群より選ばれる有機酸である請求項4に記載の製造方法。
  6.  撹拌混合工程における側鎖にポリオキシアルキレン基を有するポリカルボン酸もしくはその無水物であるポリマーの存在が、該ポリマーを炭酸ストロンチウム粒子水性懸濁液に添加することによってなされる請求項4に記載の製造方法。
PCT/JP2010/069167 2009-10-28 2010-10-28 炭酸ストロンチウム微粉末及びその製造方法 WO2011052680A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/504,723 US8388749B2 (en) 2009-10-28 2010-10-28 Strontium carbonate micropowder and process for production
JP2011538479A JP5718238B2 (ja) 2009-10-28 2010-10-28 炭酸ストロンチウム微粉末及びその製造方法
KR1020127013187A KR101761952B1 (ko) 2009-10-28 2010-10-28 탄산스트론튬 미분말 및 그 제조 방법
CN201080059860.2A CN102666389B (zh) 2009-10-28 2010-10-28 碳酸锶微粉及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009247877 2009-10-28
JP2009-247877 2009-10-28

Publications (1)

Publication Number Publication Date
WO2011052680A1 true WO2011052680A1 (ja) 2011-05-05

Family

ID=43922102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069167 WO2011052680A1 (ja) 2009-10-28 2010-10-28 炭酸ストロンチウム微粉末及びその製造方法

Country Status (6)

Country Link
US (1) US8388749B2 (ja)
JP (1) JP5718238B2 (ja)
KR (1) KR101761952B1 (ja)
CN (1) CN102666389B (ja)
TW (1) TWI552868B (ja)
WO (1) WO2011052680A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083522A (ja) * 2013-10-25 2015-04-30 宇部マテリアルズ株式会社 針状炭酸ストロンチウム微粉末
WO2015060438A1 (ja) 2013-10-25 2015-04-30 宇部マテリアルズ株式会社 針状炭酸ストロンチウム微粉末及びその製造方法
JP2015193488A (ja) * 2014-03-31 2015-11-05 宇部マテリアルズ株式会社 炭酸ストロンチウム微粉末及びその製造方法
KR20160138991A (ko) 2014-03-20 2016-12-06 우베 마테리알즈 가부시키가이샤 침상 탄산스트론튬 미립자 및 그 분산액
JPWO2017073684A1 (ja) * 2015-10-30 2018-10-04 宇部興産株式会社 アルカリ土類金属化合物粒子含有水性樹脂分散体組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067799B2 (en) * 2012-09-28 2015-06-30 Ube Material Industries, Ltd. Acicular strontium carbonate fine powder treated with a combination of compounds containing a polyoxyalkylene group

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111612A1 (ja) * 2007-03-13 2008-09-18 Ube Material Industries, Ltd. 高分散性アルカリ土類金属炭酸塩微粉末
JP2008266134A (ja) * 2007-03-28 2008-11-06 Ube Material Industries Ltd 粒状炭酸バリウム組成物粉末
JP2009173487A (ja) * 2008-01-24 2009-08-06 Tosoh Corp 炭酸ストロンチウム粒子及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099614A (ja) * 2005-09-12 2007-04-19 Ube Material Industries Ltd 炭酸ストロンチウム微粉末
CN101314479B (zh) * 2008-06-25 2010-04-07 中国科学院青海盐湖研究所 准一维纳米碳酸锶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111612A1 (ja) * 2007-03-13 2008-09-18 Ube Material Industries, Ltd. 高分散性アルカリ土類金属炭酸塩微粉末
JP2008266134A (ja) * 2007-03-28 2008-11-06 Ube Material Industries Ltd 粒状炭酸バリウム組成物粉末
JP2009173487A (ja) * 2008-01-24 2009-08-06 Tosoh Corp 炭酸ストロンチウム粒子及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083522A (ja) * 2013-10-25 2015-04-30 宇部マテリアルズ株式会社 針状炭酸ストロンチウム微粉末
WO2015060438A1 (ja) 2013-10-25 2015-04-30 宇部マテリアルズ株式会社 針状炭酸ストロンチウム微粉末及びその製造方法
KR20160075563A (ko) * 2013-10-25 2016-06-29 우베 마테리알즈 가부시키가이샤 침상 탄산스트론튬 미분말 및 그 제조 방법
EP3061728A4 (en) * 2013-10-25 2017-06-21 Ube Material Industries, Ltd. Needle-like strontium carbonate fine powder and method for producing same
KR102251155B1 (ko) 2013-10-25 2021-05-11 우베 고산 가부시키가이샤 침상 탄산스트론튬 미분말 및 그 제조 방법
KR20160138991A (ko) 2014-03-20 2016-12-06 우베 마테리알즈 가부시키가이샤 침상 탄산스트론튬 미립자 및 그 분산액
JP2015193488A (ja) * 2014-03-31 2015-11-05 宇部マテリアルズ株式会社 炭酸ストロンチウム微粉末及びその製造方法
JPWO2017073684A1 (ja) * 2015-10-30 2018-10-04 宇部興産株式会社 アルカリ土類金属化合物粒子含有水性樹脂分散体組成物

Also Published As

Publication number Publication date
US8388749B2 (en) 2013-03-05
KR101761952B1 (ko) 2017-07-26
CN102666389A (zh) 2012-09-12
TWI552868B (zh) 2016-10-11
JPWO2011052680A1 (ja) 2013-03-21
US20120214927A1 (en) 2012-08-23
TW201130651A (en) 2011-09-16
KR20120098733A (ko) 2012-09-05
CN102666389B (zh) 2015-06-17
JP5718238B2 (ja) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5718238B2 (ja) 炭酸ストロンチウム微粉末及びその製造方法
KR101453119B1 (ko) 고분산성 알칼리 토금속 탄산염 미분말
JP6260759B2 (ja) アルカリ土類金属炭酸塩微粉末
JP2006206425A (ja) アルカリ土類金属炭酸塩微粒子およびその製造方法
Jiang et al. Polymorph and morphology control of CaCO 3 via temperature and PEG during the decomposition of Ca (HCO 3) 2
JP2007176789A (ja) 炭酸バリウム粉末及びその製造方法
FI105545B (fi) Saostettu kalsiumkarbonaatti
JP5201855B2 (ja) 高分散性炭酸ストロンチウム微粉末
JP2021507863A (ja) 増加した表面積およびメソ孔性を有するシリカコーティング炭酸カルシウムの調製
JP2007161537A (ja) 軽質炭酸カルシウムスラリー
WO2001030700A1 (fr) Carbonate de calcium et son procede de production
KR101474041B1 (ko) 고분산성 알칼리 토금속 탄산염 미분말 및 그 제조 방법
JP7085325B2 (ja) アラゴナイト型軽質炭酸カルシウム及びその製造方法
JP2004059378A (ja) 塩基性炭酸マグネシウムの製造方法及び該塩基性炭酸マグネシウムを含有する組成物又は構造体
WO2015060438A1 (ja) 針状炭酸ストロンチウム微粉末及びその製造方法
JP5474310B2 (ja) 粒状炭酸バリウム組成物粉末
JP4969076B2 (ja) 炭酸ストロンチウム微粉末の製造方法
JP2007099614A (ja) 炭酸ストロンチウム微粉末
JP2005154158A (ja) 多孔質粒状塩基性炭酸マグネシウム及びその製造方法
JP2006027915A (ja) 多面体炭酸カルシウムの製造方法
JP2009173794A (ja) 樹脂−炭酸カルシウム複合粒子、樹脂エマルジョン−炭酸カルシウム複合粒子含有エマルジョン液及びそのエマルジョン液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13504723

Country of ref document: US

Ref document number: 2011538479

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127013187

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10826812

Country of ref document: EP

Kind code of ref document: A1