WO2011052058A1 - 有機薄膜トランジスタ - Google Patents

有機薄膜トランジスタ Download PDF

Info

Publication number
WO2011052058A1
WO2011052058A1 PCT/JP2009/068600 JP2009068600W WO2011052058A1 WO 2011052058 A1 WO2011052058 A1 WO 2011052058A1 JP 2009068600 W JP2009068600 W JP 2009068600W WO 2011052058 A1 WO2011052058 A1 WO 2011052058A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
gate insulating
film transistor
thin film
Prior art date
Application number
PCT/JP2009/068600
Other languages
English (en)
French (fr)
Inventor
和明 荒井
英夫 越智
英夫 佐藤
隆介 小島
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2009/068600 priority Critical patent/WO2011052058A1/ja
Publication of WO2011052058A1 publication Critical patent/WO2011052058A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present invention relates to an organic thin film transistor using an organic compound for a semiconductor layer.
  • TFT thin film transistor
  • organic TFTs using organic compounds in the active layer.
  • the characteristics of organic TFTs include that they are softer than silicon-based semiconductors and can be processed at low temperatures, but the most important feature is that they can be formed by printing. Therefore, it is expected that a large area flexible display can be produced at low cost.
  • a gate electrode layer, a gate insulating layer, a source electrode layer and a drain electrode layer, and a semiconductor layer are formed on a substrate such as glass, and the semiconductor layer is made of an organic compound.
  • the organic TFT has a top contact structure and a bottom contact structure.
  • a gate electrode layer is formed on a substrate, a gate insulating layer is stacked thereon, an organic semiconductor layer is formed thereon, and finally a source electrode layer and a drain electrode layer are formed at a predetermined channel interval. To form.
  • a gate electrode layer is formed on a substrate, a gate insulating layer is stacked thereon, a source electrode layer and a drain electrode layer are formed thereon with a predetermined channel spacing, and finally an organic semiconductor The layer is formed.
  • Patent Document 1 As a conventional technique related to such an organic TFT, there is one disclosed in Patent Document 1, for example.
  • the contact resistance at the contact interface between the source / drain electrode layer and the organic semiconductor layer is relatively small. There is no particular problem.
  • the source / drain electrode layer is provided on the organic semiconductor layer, in consideration of damage to the organic semiconductor layer, photolithography technology cannot be used for patterning the source / drain electrode layer. A metal mask having an opening in the film area is used. For this reason, the channel length tends to increase, and there is a problem that it is difficult to miniaturize the organic TFT element.
  • the organic semiconductor layer since the organic semiconductor layer is provided last, it is possible to use a fine pattern formation technique typified by a photolithography technique for patterning the source / drain electrode layer, and the organic TFT element can be miniaturized. is there. For this reason, a bottom contact structure is generally employed for high-definition display applications.
  • the contact resistance tends to be larger than that of the top contact structure. This is because the electric field from the gate electrode layer cannot be strongly received, carriers are not easily injected from the source electrode layer into the organic semiconductor layer, and are not easily extracted from the organic semiconductor layer to the drain electrode layer. it is conceivable that.
  • the conventional bottom contact structure has a problem that the contact resistance at the contact interface between the source / drain electrode layer and the organic semiconductor layer is large.
  • the problem to be solved by the present invention includes the above-described problem as an example.
  • the invention according to claim 1 is an organic thin film transistor having a bottom contact structure in which a gate electrode layer, a gate insulating layer, a source electrode layer and a drain electrode layer, and an organic semiconductor layer are stacked in this order on a substrate.
  • the organic semiconductor layer is formed by applying a soluble organic semiconductor material, and the organic semiconductor layer is interposed between at least one of the source electrode layer and the drain electrode layer and the gate insulating layer. A gap into which the semiconductor material can enter was formed.
  • an invention according to claim 7 is an organic thin film transistor having a bottom contact structure in which a gate electrode layer, a gate insulating layer, a source electrode layer and a drain electrode layer, and an organic semiconductor layer are stacked in this order on a substrate.
  • the organic semiconductor layer has a protruding portion protruding between at least one of the source electrode layer and the drain electrode layer and the gate insulating layer.
  • FIG. 1 is a conceptual diagram showing an example of the layer structure of the organic thin film transistor of the first embodiment.
  • This organic thin film transistor is an organic thin film transistor having a bottom contact structure in which a gate electrode layer 2, a gate insulating layer 3, a source electrode layer 4, a drain electrode layer 5, and an organic semiconductor layer 6 are laminated in this order on a substrate 1 such as glass. is there.
  • the organic semiconductor layer 6 is formed by applying a soluble organic semiconductor material by, for example, ink jetting after forming the source electrode layer 4 and the drain electrode layer 5.
  • a soluble organic semiconductor material as a p-type semiconductor, for example, a high molecular weight material such as P3HT: poly- (3-hexylthiophene), F8T2: poly (9,9-dioctylfluorene-co-bithiophene), or a low molecular weight material is used.
  • P3HT poly- (3-hexylthiophene)
  • F8T2 poly (9,9-dioctylfluorene-co-bithiophene
  • a low molecular weight material examples thereof include pentacene solubilized in an organic solvent by modifying a functional group of the skeleton, or a precursor of tetrabenzoporphyrin.
  • the n-type semiconductor include C60MC12 in which an alkyl chain is attached to fullerene (C60).
  • the source electrode layer 4 and the drain electrode layer 5 have tapered portions 7 and 8 that are inclined with respect to the layer direction of the gate insulating layer 3 (the left-right direction in FIG. 1), respectively. These tapered portions 7 and 8 are formed so that the angle formed with the gate insulating layer 3 is ⁇ .
  • the tapered portions 7 and 8 include not only the surface where the source electrode layer 4 and the drain electrode layer 5 face each other but also the side surfaces thereof (surfaces on the front side and the back side in FIG. 1). 4 and the drain electrode layer 5 and the organic semiconductor layer 6 are provided over the entire side surface of the contact portion. With such a structure, a gap S ⁇ b> 1 in which an organic semiconductor material can enter is formed between the tapered portions 7 and 8 and the gate insulating layer 3.
  • the said structure is a structure in which the organic-semiconductor layer 6 has the protrusion part which protruded so that gap S1 might be filled between the source electrode layer 4, the drain electrode layer 5, and the gate insulating layer 3.
  • FIG. 1 is a structure in which the organic-semiconductor layer 6 has the protrusion part which protruded so that gap S1 might be filled between the source electrode layer 4, the drain electrode layer 5, and the gate insulating layer 3.
  • the drain-source voltage is V DS
  • the gate-source voltage is V GS
  • the channel length is L (see FIG. 1)
  • the thickness of the gate insulating layer 3 is d (see FIG. 1).
  • V DS ⁇ 30 V
  • V GS ⁇ 10 V
  • L 5 ⁇ m
  • d 0.3 ⁇ m
  • the electric field strength E in the normal direction of the tapered portion 7 which is a contact interface between the source electrode layer 4 and the organic semiconductor layer 6 is obtained by the following equation.
  • E ⁇ (V DS / L) sin ⁇ + (V GS / d) cos ⁇
  • the electric field strength E is larger than 1 in the range where the angle ⁇ is less than 90 degrees, and is larger than that of the standard electrode.
  • the angle ⁇ is larger than a certain level. Is necessary.
  • the molecular size of the organic semiconductor material is about several nm, at least the height of the opening of the gap S1 is 10 nm or more in order to allow the organic semiconductor material to enter in consideration of the surface tension of the organic semiconductor material. Need to be formed. Therefore, when the angle ⁇ at which the molecules can enter the vicinity of the center of the taper portions 7 and 8 is calculated, ⁇ is about 3 degrees.
  • the angle ⁇ of the taper portions 7 and 8 is not less than 3 degrees and less than 90 degrees, the effect of increasing the electric field strength E is obtained, and the gap S1 between the taper portions 7 and 8 and the gate insulating layer 3 is obtained.
  • Organic semiconductor materials can be introduced. Thereby, the electric field from the gate electrode layer 2 can be made to act strongly on the taper portions 7 and 8 which are contact interfaces between the source electrode layer 4 and the drain electrode layer 5 and the organic semiconductor layer 6. As a result, carriers are easily injected from the source electrode layer 4 into the organic semiconductor layer 6, and the contact resistance at the tapered portion 7 that is the contact interface can be reduced.
  • tapered portions 7 and 8 is not limited to that shown in FIG. In the example shown in FIG. 1, the tapered portions 7 and 8 are provided over the entire thickness direction of the source electrode layer 4 and the drain electrode layer 5, but for example, as shown in FIG. You may make it provide in the partial area
  • the tapered portions 7 and 8 do not have to be linear as shown in FIG.
  • an arc-shaped tapered portion that is convex or concave toward the channel side of the organic semiconductor layer 6 may be used.
  • the carriers are injected or extracted because the vicinity of the contact portion between the source electrode layer 4 or the drain electrode layer 5 and the gate insulating layer 3 is in the vicinity of the contact portion between the tapered portions 7 and 8 and the gate insulating layer 3.
  • the angle ⁇ formed between the direction of the tangent line L and the layer direction of the gate insulating layer 3 may be the value described above (3 degrees ⁇ ⁇ ⁇ 90 degrees).
  • the angle formed by the tapered portion 7 and the gate insulating layer 3 is set to 3 degrees or more, so that the tapered portion 7 and the gate insulating layer 3 are formed. It is possible to secure a space in the vicinity of the contact portion and the organic semiconductor material to the depth S1.
  • FIG. 8 is a photomicrograph taken from the side of the tapered portion 7 of the source electrode layer 4 of the actually formed electrode (hereinafter referred to as “taper electrode”)
  • FIG. 9 is an electrode formed for comparison (hereinafter referred to as “the taper electrode”). It is the microscope picture which image
  • FIG. 10 is a graph comparing the output characteristics of the taper electrode and the comparison electrode.
  • the vertical axis represents the drain current I d (A), and the horizontal axis represents the gate-source voltage V GS .
  • the inventors of the present application formed the taper electrode shown in FIG. 8 by excessive etching.
  • was about 13 degrees.
  • 8 shows only the tapered portion 7 of the source electrode layer 4, the tapered portion 8 of the drain electrode layer 5 is also formed at the same angle ⁇ .
  • the inventors of the present application formed a comparative electrode shown in FIG. In this comparative electrode, the angle ⁇ of the tapered portion 8 of the drain electrode layer 5 is 90 degrees or more.
  • the tapered portion 7 of the source electrode layer 4 is also formed at the same angle ⁇ of 90 degrees or more.
  • the drain current value of the taper electrode is significantly larger than that of the comparison electrode in the range where V GS is less than 0V. It was found that the output characteristics were greatly improved.
  • the organic thin film transistor of this embodiment has a bottom contact structure in which a gate electrode layer 2, a gate insulating layer 3, a source electrode layer 4 and a drain electrode layer 5, and an organic semiconductor layer 6 are laminated on a substrate 1 in this order.
  • a gap S ⁇ b> 1 in which an organic semiconductor material can enter is formed between the source electrode layer 4, the drain electrode layer 5, and the gate insulating layer 3.
  • the organic semiconductor layer 6 is sandwiched between the gate electrode layer 2, the source electrode layer 4, and the drain electrode layer 5, similarly to the top contact structure.
  • the electric field from the gate electrode layer 2 can be made to act strongly on the taper portions 7 and 8 which are contact interfaces between the source electrode layer 4 and the drain electrode layer 5 and the organic semiconductor layer 6.
  • carriers are easily injected from the source electrode layer 4 to the organic semiconductor layer 6 and are easily extracted from the organic semiconductor layer 6 to the drain electrode layer 5, and contact resistance at the tapered portions 7 and 8 that are contact interfaces is increased. Can be small.
  • the organic thin film transistor when the contact resistance is lowered, the organic thin film transistor can be driven at a low voltage, so that power consumption can be reduced. Furthermore, since the variation in function among a plurality of organic thin film transistors is largely due to the fact that the contact resistance varies from element to element, there is also an effect that the variation in function between the organic thin film transistors can be suppressed by reducing the contact resistance.
  • the source electrode layer 4 and the drain electrode layer 5 further include tapered portions 7 and 8 that are inclined with respect to the layer direction of the gate insulating layer 3. To do.
  • a gap S1 into which the organic semiconductor material can enter can be reliably formed between the tapered portions 7 and 8 and the gate insulating layer 3. Therefore, the contact resistance at the tapered portions 7 and 8 which are the contact interfaces can be reliably reduced.
  • the tapered portions 7 and 8 can be easily formed by a known manufacturing method such as excessive etching. Therefore, a structure in which the organic semiconductor material can enter between the source electrode layer 4 and the drain electrode layer 5 and the gate insulating layer 3 can be easily realized.
  • the angle ⁇ of the tapered portions 7 and 8 is set to 3 degrees or more and less than 90 degrees.
  • the angle ⁇ formed by the tapered portions 7 and 8 and the gate insulating layer 3 is set in the vicinity of the contact portion between the tapered portions 7 and 8 and the gate insulating layer 3.
  • the tapered portions 7 and 8 are formed so that the angle formed between the tangential direction and the layer direction of the gate insulating layer 3 is 3 degrees or more and less than 90 degrees.
  • the organic thin film transistor of the above embodiment has a bottom contact structure in which a gate electrode layer 2, a gate insulating layer 3, a source electrode layer 4, a drain electrode layer 5, and an organic semiconductor layer 6 are laminated on a substrate 1 in this order.
  • the organic semiconductor layer 6 has a protruding portion that protrudes between the source and drain electrode layers 4 and 5 and the gate insulating layer 3.
  • the organic semiconductor layer 6 is sandwiched between the gate electrode layer 2, the source electrode layer 4, and the drain electrode layer 5 in the portion where the protrusion is formed, similarly to the top contact structure.
  • the electric field from the gate electrode layer 2 can be made to act strongly on the tapered portions 7 and 8 which are the contact interfaces between the source / drain electrode layers 4 and 5 and the organic semiconductor layer 6. As a result, carriers are easily injected from the source electrode 4 into the organic semiconductor layer 6 and are easily extracted from the organic semiconductor layer 6 to the drain electrode layer 5, and the contact resistance at the contact interface can be reduced.
  • FIG. 11 is a conceptual diagram illustrating an example of a layer structure of the organic thin film transistor of the second embodiment.
  • the organic thin film transistor has a bottom contact structure in which a gate electrode layer 2, a gate insulating layer 3, a source electrode layer 10, a drain electrode layer 11, and an organic semiconductor layer 6 are stacked in this order on a substrate 1.
  • the organic semiconductor layer 6 is formed by applying a soluble organic semiconductor material after forming the source electrode layer 10 and the drain electrode layer 11.
  • the source electrode layer 10 and the drain electrode layer 11 have flanges 12 and 13 that protrude in a bowl shape in the layer direction of the electrode layers 10 and 11, respectively.
  • the flanges 12 and 13 are formed such that the end surfaces 12a and 13a on the gate insulating layer 3 side and the gate insulating layer 3 have a predetermined distance.
  • the flanges 12 and 13 include the source electrode layer including not only the surface where the source electrode layer 10 and the drain electrode layer 11 face each other but also the side surfaces thereof (the front and back surfaces in FIG. 11). 10 and the drain electrode layer 11 and the organic semiconductor layer 6 are provided over the entire side surface of the contact portion (see FIG. 13 described later). With such a structure, a gap S ⁇ b> 2 in which an organic semiconductor material can enter is formed between the flange portions 12 and 13 and the gate insulating layer 3.
  • FIG. 12 is a conceptual diagram showing the vicinity of the flange 12 of the source electrode layer 10 in an enlarged manner.
  • the source electrode layer 10 is formed by using two kinds of metals, and functions as a first metal layer 14 functioning as a spacer for securing the height of the flange 12 and an electrode.
  • the second metal layer 15 is similarly composed of a first metal layer 16 and a second metal layer 17 (see FIG. 13 described later). Examples of the combination of materials of the first metal layers 14 and 16 and the second metal layers 15 and 17 include chromium (Cr) and gold (Au).
  • the thickness of the first metal layers 14 and 16 corresponds to the distance between the end surfaces 12a and 13a of the flanges 12 and 13 and the gate insulating layer 3 described above.
  • the organic semiconductor material needs to enter the gap S2. Therefore, the distance, that is, the thickness of the first metal layers 14 and 16 is larger than a certain size. It is necessary to. Therefore, in consideration of the molecular size of the organic semiconductor material and the surface tension of the organic semiconductor material described above, the thickness of the first metal layers 14 and 16, that is, the end surfaces 12 a and 13 a of the flange portions 12 and 13 and the gate insulating layer 3.
  • the distance needs to be at least 10 nm or more.
  • the thickness of a channel (a region where carriers easily move) appearing in the organic semiconductor layer 6 when a gate voltage is applied is several nanometers from the surface of the gate insulating layer 3.
  • FIG. 13 is a photomicrograph (dark field) of the electrodes 12 and 13 of the source electrode layer 4 and the drain electrode layer 5 of the actually formed electrode (hereinafter referred to as “bowl electrode”) taken from the back surface, and shows the first metal.
  • 14A and 14B show lateral portions 12 and 13 of the source electrode layer 4 and the drain electrode layer 5 when the etching time of the first metal layers 14 and 16 is 40 sec.
  • 15 (a) and FIG. 15 (b) are ridges of the source electrode layer 4 and the drain electrode layer 5 when the etching time of the first metal layers 14 and 16 is 80 sec. It is the microscope picture which image
  • a glass substrate is used as the substrate 1
  • chromium is used as the first metal layers 14 and 16
  • gold is used as the second electrode layers 15 and 17
  • the thickness of the first metal layers 14 and 16 is 50 nm
  • the second electrode was 100 nm.
  • the saddle electrode was formed in the following processes. That is, in order to pattern the first metal layers 14 and 16 and the second electrode layers 15 and 17, a resist coating by spin coating and exposure / development were performed. Next, the second electrode layers 15 and 17 and the first metal layers 14 and 16 were etched in this order.
  • the eaves portions 12 and 13 were formed by adjusting the etching time so that the first metal layers 14 and 16 were excessively etched with respect to the second electrode layers 15 and 17.
  • an organic semiconductor material was applied by spin coating to form an organic semiconductor layer 6.
  • the concentration of the organic solvent was set by lowering the surface tension so that the organic semiconductor material could enter the gap S2 between the flanges 12 and 13 and the gate insulating layer 3.
  • the solvent was evaporated by baking.
  • the organic semiconductor is applied by spin coating, but it can also be applied using ink jet.
  • the relationship between the etching time of the first metal layers 14 and 16 and the length of the soot parts 12 and 13 formed is as shown in FIG. That is, when the etching time is 40 sec, 80 sec, and 120 sec, the length of the flanges 12 and 13 to be formed is 1.5 ⁇ m ( ⁇ 0.5 ⁇ m), 2.5 ⁇ m ( ⁇ 0.5 ⁇ m), 4.5 ⁇ m ( ⁇ 0.5 ⁇ m).
  • both the ridges 12 and 13 fall to the gate insulating layer 3 side, and the ridges 12 and 13 are insulated from the gate insulation.
  • the gap S2 formed with the layer 3 was reduced.
  • the organic semiconductor material constituting the organic semiconductor layer 6 has only slightly entered the gap S2, and the organic semiconductor is formed in either of the flanges 12 and 13.
  • the layer 6 could not be formed between the gate electrode layer 2 and the source electrode layer 10 and the drain electrode layer 11. Further, as shown in FIGS.
  • both the flange portions 12 and 13 further drop to the gate insulating layer 3 side and come into contact with the substrate 1. I have. From these results, it has been found that the etching time of the first metal layers 14 and 16 needs to be further shortened.
  • the organic thin film transistor having the bottom contact structure has a configuration in which the source electrode layer 10 and the drain electrode layer 11 have flange portions 12 and 13 protruding in a hook shape in the layer direction of the electrode layers 10 and 11. .
  • a gap S ⁇ b> 2 in which an organic semiconductor material can enter can be formed between the flanges 12 and 13 and the gate insulating layer 3. Therefore, in the portion where the flanges 12 and 13 are formed, a structure in which the organic semiconductor layer 6 is sandwiched between the gate electrode layer 2, the source electrode layer 10, and the drain electrode layer 11 as in the top contact structure.
  • the electric field from the gate electrode layer 2 can be made to act strongly on the end faces 12a and 13a which are contact interfaces between the source / drain electrode layers 10 and 11 and the organic semiconductor layer 6.
  • carriers are easily injected from the source electrode layer 10 into the organic semiconductor layer 6 and are easily extracted from the organic semiconductor layer 6 to the drain electrode layer 11, thereby reducing contact resistance at the end faces 12 a and 13 a that are contact interfaces. can do.
  • the flanges 12 and 13 have a distance between their end surfaces 12a and 13a on the gate insulating layer 3 side and the gate insulating layer 3 of at least 10 nm or more.
  • the taper portion and the flange portion are provided in both the source electrode layer and the drain electrode layer.
  • the source electrode layer and the drain electrode are not necessarily provided in both electrodes. It is good also as a structure provided only in either one of a layer. Also in this case, the contact resistance can be reduced by the electric field effect as compared with at least the standard electrode described above.

Landscapes

  • Thin Film Transistor (AREA)

Abstract

【課題】ソース・ドレイン電極層と有機半導体層との接触界面における接触抵抗を小さくする。 【解決手段】基板1上にゲート電極層2、ゲート絶縁層3、ソース電極層4及びドレイン電極層5、有機半導体層6の順で積層されたボトムコンタクト構造の有機薄膜トランジスタにおいて、ソース電極層4及びドレイン電極層5にテーパ部7,8を設けることにより、ソース電極層4及びドレイン電極層5とゲート絶縁層3との間に、有機半導体材料が入り込むことが可能な隙間S1を形成する。

Description

有機薄膜トランジスタ
 本発明は、半導体層に有機化合物を用いた有機薄膜トランジスタに関する。
 一般に、携帯電話、薄型テレビ、パソコンのモニタ、PDA(Personal Digital Assistant)、及び電子ペーパー等には、液晶ディスプレイや有機EL(electroluminescence)ディスプレイ、あるいは電気泳動型ディスプレイ等のアクティブマトリクス駆動型ディスプレイが使用されている。このアクティブマトリクス駆動に欠かせない素子が薄膜トランジスタ(以下「TFT」と称する)である。従来、TFTには主にシリコン半導体を原材料とした活性層が使用されていた。
 近年、活性層に有機化合物を用いた有機TFTの研究開発が盛んに行われている。有機TFTの特長として、シリコン系半導体と比べて柔らかく、低温プロセスが可能である点等が挙げられるが、一番の特長は印刷により形成が可能である点である。そのため、大面積フレキシブルディスプレイを安価に作成することができると期待されている。
 有機TFTは、ガラス等の基板上に、ゲート電極層、ゲート絶縁層、ソース電極層及びドレイン電極層、半導体層が形成されており、この半導体層が有機化合物で構成されている。有機TFTの構造には、トップコンタクト構造とボトムコンタクト構造がある。トップコンタクト構造は、基板上にゲート電極層を形成し、その上にゲート絶縁層を積層し、その上に有機半導体層を形成し、最後にソース電極層及びドレイン電極層を所定のチャネル間隔で形成するものである。一方、ボトムコンタクト構造は、基板上にゲート電極層を形成し、その上にゲート絶縁層を積層し、その上にソース電極層及びドレイン電極層を所定のチャネル間隔で形成し、最後に有機半導体層を形成するものである。このような有機TFTに関連する従来技術として、例えば特許文献1に記載のものがある。
特開2003-258265号公報
 トップコンタクト構造では、有機半導体層がゲート電極層とソース・ドレイン電極層との間に挟まれた構造となるため、ソース・ドレイン電極層と有機半導体層との接触界面における接触抵抗は比較的小さくなり、特に問題となることはない。しかしながら、ソース・ドレイン電極層を有機半導体層の上に設けるため、有機半導体層へのダメージを考慮すると、ソース・ドレイン電極層のパターニングにフォトリソグラフィ技術を用いることができず、一般的には成膜エリアに開口部を設けたメタルマスクが用いられる。このため、チャネル長が大きくなる傾向にあり、有機TFT素子の微細化が困難であるという問題がある。
 一方、ボトムコンタクト構造では、有機半導体層を最後に設けるため、ソース・ドレイン電極層のパターニングにフォトリソグラフィ技術に代表される微細パターン形成技術を用いることができ、有機TFT素子の微細化が可能である。このため、一般に高精細ディスプレイの用途にはボトムコンタクト構造が採用される。しかしながら、この構造では、有機半導体層がゲート電極層とソース・ドレイン電極層との間に挟まれていないため、トップコンタクト構造に比べて接触抵抗が大きくなる傾向がある。これは、ゲート電極層からの電界を強く受けることができず、キャリアがソース電極層から有機半導体層に注入されにくく、且つ、有機半導体層からドレイン電極層に注出されにくいことが原因であると考えられる。
 このように、従来のボトムコンタクト構造では、ソース・ドレイン電極層と有機半導体層との接触界面における接触抵抗が大きいという問題があった。
 本発明が解決しようとする課題には、上記した問題が一例として挙げられる。
 上記課題を解決するために、請求項1記載の発明は、基板上にゲート電極層、ゲート絶縁層、ソース電極層及びドレイン電極層、有機半導体層の順で積層されたボトムコンタクト構造の有機薄膜トランジスタであって、前記有機半導体層は、可溶な有機半導体材料を塗布することによって形成されており、前記ソース電極層及び前記ドレイン電極層の少なくとも一方と前記ゲート絶縁層との間に、前記有機半導体材料が入り込むことが可能な隙間を形成した。
 上記課題を解決するために、請求項7記載の発明は、基板上にゲート電極層、ゲート絶縁層、ソース電極層及びドレイン電極層、有機半導体層の順で積層されたボトムコンタクト構造の有機薄膜トランジスタであって、前記有機半導体層は、前記ソース電極層及び前記ドレイン電極層の少なくとも一方と前記ゲート絶縁層との間に突出した突出部を有する。
第1実施形態の有機薄膜トランジスタの層構造の一例を表す概念図である。 ソース電極層のゲート絶縁層との接触部近傍に作用する電界のベクトルを表す図である。 ゲート絶縁層の厚みが300nmの場合において、電界強度が標準電極と比較して何倍になるかを表す図である。 ゲート絶縁層の厚みが100nmの場合において、電界強度が標準電極と比較して何倍になるかを表す図である。 第1実施形態の変形例における有機薄膜トランジスタの層構造の一例を表す概念図である。 第1実施形態の変形例における有機薄膜トランジスタの層構造の一例を表す概念図である。 第1実施形態の変形例における有機薄膜トランジスタの層構造の一例を表す概念図である。 第1実施例のテーパ電極におけるソース電極層のテーパ部部分を側方から撮影した顕微鏡写真である。 第1実施例の比較電極におけるドレイン電極層のテーパ部部分を側方から撮影した顕微鏡写真である。 テーパ電極と比較電極との出力特性を比較した図である。 第2実施形態の有機薄膜トランジスタの層構造の一例を表す概念図である。 ソース電極層の庇部近傍を拡大して示す概念図である。 第2実施例の庇電極におけるソース電極層及びドレイン電極層の庇部部分を裏面から撮影した顕微鏡写真である。 第1金属層のエッチング時間を40secとした場合における、ソース電極層及びドレイン電極層の庇部部分を側方から撮影した顕微鏡写真である。 第1金属層のエッチング時間を80secとした場合における、ソース電極層及びドレイン電極層の庇部部分を側方から撮影した顕微鏡写真である。
 <第1実施形態>
 図1は、第1実施形態の有機薄膜トランジスタの層構造の一例を表す概念図である。この有機薄膜トランジスタは、ガラス等の基板1上に、ゲート電極層2、ゲート絶縁層3、ソース電極層4及びドレイン電極層5、有機半導体層6の順で積層されたボトムコンタクト構造の有機薄膜トランジスタである。有機半導体層6は、ソース電極層4及びドレイン電極層5の形成後に、可溶な有機半導体材料を例えばインクジェットにより塗布することによって形成されている。
 可溶な有機半導体材料としては、p型半導体としては、例えばP3HT:poly-(3-hexylthiophene)、F8T2:poly(9,9-dioctylfluorene-co-bithiophene)等の高分子材料や、低分子であるがその骨格に官能基を修飾させる等により有機溶媒に可溶化したペンタセン、あるいはテトラベンゾポルフィリンの前躯体等が挙げられる。またn型半導体としては、例えばフラーレン(C60)にアルキル鎖を付けたC60MC12等が挙げられる。
 ソース電極層4及びドレイン電極層5は、ゲート絶縁層3の層方向(図1中左右方向)に対して傾斜したテーパ部7,8をそれぞれ有している。これらテーパ部7,8は、ゲート絶縁層3とのなす角度がθとなるように形成されている。なお、テーパ部7,8はソース電極層4とドレイン電極層5とが向かい合う面だけでなく、その側方の面(図1中紙面手前側及び奥側の面)を含めた、ソース電極層4及びドレイン電極層5と有機半導体層6とが接触する部分の側面全体に亘って設けられている。このような構造により、テーパ部7,8とゲート絶縁層3との間に、有機半導体材料が入り込むことが可能な隙間S1が形成されている。
 なお、上記構成は、有機半導体層6が、ソース電極層4及びドレイン電極層5とゲート絶縁層3との間に、隙間S1を埋めるように突出した突出部を有する構成であるとも言える。
 次に、テーパ部7,8の角度θの最適値の計算方法の一例について図2を用いて説明する。ドレイン・ソース間の電圧をVDS、ゲート・ソース間の電圧をVGS、チャネル長をL(図1参照)、ゲート絶縁層3の厚さをd(図1参照)とする。キャリアが注入されるソース電極層4のゲート絶縁層3との接触部近傍の電界Eについて考える。図2に示すように、ドレイン・ソース間にかかる電界はE=VDS/Lで表される。またゲート・ソース間にかかる電界はE=-VGS/d(上向きを正とする)で表される。両方のベクトル和Eが、ソース電極層4と有機半導体層6との接触界面であるテーパ部7の法線方向(θ-π/2)となるようにθを設定する。したがって、θは次式で求まる。
 tan(θ-π/2)=-(VGS/d)/(VDS/L)
 θ=π/2+tan-1{-(VGS/d)/(VDS/L)}
 例えばVDS=-30V、VGS=-10V、L=5μm、d=0.3μmである場合、これらを上記の式に代入し、θの単位をラジアンから度に変換するとθ=10.2度となる。
 次に、角度θの数値範囲について検討する。図2に示すように、ソース電極層4と有機半導体層6との接触界面であるテーパ部7の法線方向への電界強度Eは次式により求まる。
 E-=(VDS/L)sinθ+(VGS/d)cosθ
 図3及び図4は、VDS=-30V、VGS=0~-30V、L=5μmの場合に、上記式による電界強度Eが、角度θが90度である電極(以下「標準電極」という)と比較して何倍になるかを表す図であり、図3はd=300nm、図4はd=100nmの場合である。なお、これら図3及び図4において、縦軸は電界強度Eが標準電極の何倍となるか、横軸はテーパ部の角度θを表している。
 これら図3及び図4に示すように、VGS=0V以外では、角度θが90度未満となる範囲で電界強度Eは1倍より大きくなっており、標準電極に比べて増大している。特に、実駆動で想定されるVGS=-5~-15Vの範囲では、次のような結果となっている。すなわち、電界強度Eが標準電極と比較して2倍以上となるのは、θ=65度以下(VGS=-5V)、79度以下(VGS=-10V)、83度以下(VGS=-15V)の範囲である。また、電界強度Eが最高値の80%以上となる角度θは、θ=55度以下(VGS=-5V)、45度以下(VGS=-10V)、40度以下(VGS=-15V)の範囲である。
 次に角度θの下限値について検討する。角度θが0度である場合には、テーパ部7,8とゲート絶縁層3との間の隙間S1がなくなり、有機半導体材料が入り込むことが不可能となるため、角度θはある程度以上の大きさが必要である。一般に、有機半導体材料の分子の大きさは数nm程度なので、有機半導体材料の表面張力を考慮した上で、有機半導体材料を入り込ませるために、少なくとも隙間S1の開口の高さを10nm以上となるように形成する必要がある。そこで、テーパ部7,8の中央部近傍まで分子が入り込むことが可能な角度θを計算すると、θ=3度程度となる。なおこの角度θは、テーパ部7,8部分の長さはチャネル長Lより短い必要があるため、L=5μm、テーパ部7,8の長さをその1/10程度の500nmとした場合の値である。
 以上から、テーパ部7,8の角度θが3度以上90度未満であれば、電界強度Eの増大効果が得られると共に、テーパ部7,8とゲート絶縁層3との間の隙間S1に有機半導体材料を入り込ませることができる。これにより、ソース電極層4及びドレイン電極層5と有機半導体層6との接触界面であるテーパ部7,8にゲート電極層2からの電界を強く作用させることができる。その結果、キャリアがソース電極層4から有機半導体層6に注入され易くなり、接触界面であるテーパ部7における接触抵抗を小さくすることができる。
 なお、テーパ部7,8の形態は上記図1に示すものに限られない。図1に示す例では、テーパ部7,8をソース電極層4及びドレイン電極層5の厚み方向全体に亘って設けるようにしたが、例えば図5に示すように、テーパ部7,8をソース電極層4及びドレイン電極層5の厚み方向の一部領域に設けるようにしてもよい。
 また、テーパ部7,8は図1に示すような直線状でなくともよい。例えば図6及び図7に示すように、有機半導体層6のチャネル側に向かって凸あるいは凹となる円弧状のテーパ部でもよい。この場合においても、キャリアが注入あるいは注出するのは、ソース電極層4またはドレイン電極層5とゲート絶縁層3の接触部近傍なので、テーパ部7,8のゲート絶縁層3との接触部近傍における接線Lの方向と、ゲート絶縁層3の層方向とのなす角度θが上述した値(3度≦θ<90度)となるように形成すればよい。このように、テーパ部7,8のゲート絶縁層3との接触部近傍において、テーパ部7とゲート絶縁層3とのなす角度を3度以上とすることで、テーパ部7とゲート絶縁層3との接触部近傍における空間を確保し、有機半導体材料を隙間S1の奥まで入り込ませることができる。
 <実施例1>
 本願発明者等は、ソース電極層4及びドレイン電極層5が図1に示す形態のテーパ部7,8を有する電極を実際に形成し、出力特性の評価を行った。図8は実際に形成した電極(以下「テーパ電極」という)のソース電極層4のテーパ部7部分を側方から撮影した顕微鏡写真であり、図9は比較のために形成した電極(以下「比較電極」という)のドレイン電極層5のテーパ部8部分を側方から撮影した顕微鏡写真である。また図10は、上記テーパ電極と比較電極との出力特性を比較した図であり、縦軸はドレイン電流I(A)、横軸はゲート・ソース間の電圧VGSを表している。
 本願発明者等は、図8に示すテーパ電極を過剰エッチングにより形成した。このテーパ電極におけるソース電極層4のテーパ部7の角度θを実測すると、θは約13度であった。なお、図8ではソース電極層4のテーパ部7のみ示しているが、ドレイン電極層5のテーパ部8も同様の角度θで形成されている。また本願発明者等は、図9に示す比較電極を形成した。この比較電極では、ドレイン電極層5のテーパ部8の角度θは90度以上となっている。なお、図9ではドレイン電極層5のテーパ部8のみ示しているが、ソース電極層4のテーパ部7も同様の90度以上の角度θで形成されている。
 これらテーパ電極と比較電極との出力特性を比較すると、図10に示すように、VGSが0V未満となる範囲において、テーパ電極は比較電極に比べてドレイン電流値が大幅に大きくなっており、出力特性が大幅に向上していることが分かった。
 以上説明した実施形態の効果について説明する。本実施形態の有機薄膜トランジスタは、基板1上にゲート電極層2、ゲート絶縁層3、ソース電極層4及びドレイン電極層5、有機半導体層6の順で積層されたボトムコンタクト構造となっている。このようなボトムコンタクト構造の有機薄膜トランジスタにおいて、ソース電極層4及びドレイン電極層5とゲート絶縁層3との間に、有機半導体材料が入り込むことが可能な隙間S1を形成する。これにより、当該隙間S1が形成された部分では、トップコンタクト構造と同様に、有機半導体層6がゲート電極層2とソース電極層4及びドレイン電極層5との間に挟まれた構造となる。このため、ソース電極層4及びドレイン電極層5と有機半導体層6との接触界面であるテーパ部7,8にゲート電極層2からの電界を強く作用させることができる。その結果、キャリアがソース電極層4から有機半導体層6に注入され易くなると共に、有機半導体層6からドレイン電極層5に注出され易くなり、接触界面であるテーパ部7,8おける接触抵抗を小さくすることができる。
 また、接触抵抗が下がると有機薄膜トランジスタの低電圧での駆動が可能となるため、消費電力を低減することができる。さらに、複数の有機薄膜トランジスタ間での機能のばらつきは、接触抵抗が素子ごとに異なることが大きな要因であることから、接触抵抗が下がることにより有機薄膜トランジスタ間の機能のばらつきを抑制できる効果もある。
 上記実施形態の有機薄膜トランジスタにおいては、上述した構成に加えてさらに、ソース電極層4及びドレイン電極層5が、ゲート絶縁層3の層方向に対して傾斜したテーパ部7,8を有した構成とする。これにより、当該テーパ部7,8とゲート絶縁層3との間に、有機半導体材料が入り込むことが可能な隙間S1を確実に形成することができる。したがって、接触界面であるテーパ部7,8における接触抵抗を確実に小さくすることができる。また、テーパ部7,8は過剰エッチング等の公知の製法により容易に形成することが可能である。したがって、ソース電極層4及びドレイン電極層5とゲート絶縁層3との間に有機半導体材料が入り込むことが可能な構造を、容易に実現することができる。
 上記実施形態の有機薄膜トランジスタにおいては、上述した構成に加えてさらに、テーパ部7,8の角度θを3度以上90度未満とする。これにより、テーパ部7,8の長さが例えば500nm程度である場合に、テーパ部7,8の中央部分においてゲート絶縁層3との間に上記10nm以上の隙間を確保することができる。その結果、少なくともテーパ部7,8の中央部近傍まで有機半導体材料を入り込ませることができるので、接触抵抗の減少効果を確実に得ることができる。また、上記角度θを90度未満とすることにより、テーパ部7,8とゲート絶縁層3との間に有機半導体材料が入り込むことが可能な隙間S1を確実に形成することができる。
 上記実施形態の有機薄膜トランジスタにおいては、上述した構成に加えてさらに、テーパ部7,8とゲート絶縁層3とがなす角度θを、テーパ部7,8のゲート絶縁層3との接触部近傍における接線方向と、ゲート絶縁層3の層方向とのなす角度とし、当該角度が3度以上90度未満となるようにテーパ部7,8を形成する。これにより、次のような効果が得られる。すなわち、ソース電極層4及びドレイン電極層5のテーパ部7,8においては、ゲート絶縁層3との間の距離が小さいほどゲート電極層2からの電界が強く作用する。すなわち、テーパ部7,8においては、ゲート絶縁層3との接触部に近いほどキャリアがソース電極層4から有機半導体層6に注入され易く、且つ、有機半導体層6からドレイン電極層5に注出され易い。したがって、テーパ部7のゲート絶縁層3との接触部近傍において、テーパ部7とゲート絶縁層3とのなす角度を3度以上とすることで、テーパ部7とゲート絶縁層3との接触部近傍における空間を確保し、有機半導体材料を隙間S1のなるべく奥まで入り込ませることができる。その結果、接触抵抗の減少効果を確実に得ることができる。
 上記実施形態の有機薄膜トランジスタにおいては、基板1上にゲート電極層2、ゲート絶縁層3、ソース電極層4及びドレイン電極層5、有機半導体層6の順で積層されたボトムコンタクト構造となっている。このようなボトムコンタクト構造の有機薄膜トランジスタにおいて、有機半導体層6が、ソース電極層4及びドレイン電極層5とゲート絶縁層3との間に突出した突出部を有する構成とする。これにより、当該突出部が形成された部分では、トップコンタクト構造と同様に、有機半導体層6がゲート電極層2とソース電極層4及びドレイン電極層5との間に挟まれた構造となるため、ソース・ドレイン電極層4,5と有機半導体層6との接触界面であるテーパ部7,8にゲート電極層2からの電界を強く作用させることができる。その結果、キャリアがソース電極4から有機半導体層6に注入され易くなると共に、有機半導体層6からドレイン電極層5に注出され易くなり、接触界面おける接触抵抗を小さくすることができる。
 <第2実施形態>
 図11は、第2実施形態の有機薄膜トランジスタの層構造の一例を表す概念図である。この有機薄膜トランジスタは、第1実施形態と同様に、基板1上にゲート電極層2、ゲート絶縁層3、ソース電極層10及びドレイン電極層11、有機半導体層6の順で積層されたボトムコンタクト構造の有機薄膜トランジスタであり、有機半導体層6は、ソース電極層10及びドレイン電極層11の形成後に、可溶な有機半導体材料を塗布することによって形成されている。
 ソース電極層10及びドレイン電極層11は、当該電極層10,11の層方向に庇状に突出した庇部12,13をそれぞれ有している。これら庇部12,13は、そのゲート絶縁層3側の端面12a,13aとゲート絶縁層3とが所定の距離を有するように形成されている。なお、庇部12,13はソース電極層10とドレイン電極層11とが向かい合う面だけでなく、その側方の面(図11中紙面手前側及び奥側の面)を含めた、ソース電極層10及びドレイン電極層11と有機半導体層6とが接触する部分の側面全体に亘って設けられている(後述の図13参照)。このような構造により、庇部12,13とゲート絶縁層3との間に、有機半導体材料が入り込むことが可能な隙間S2が形成されている。
 図12は、ソース電極層10の庇部12近傍を拡大して示す概念図である。この図12に示すように、ソース電極層10は2種類の金属を用いて形成されており、庇部12の高さを確保するためのスペーサとして機能する第1金属層14と、電極として機能する第2金属層15とにより構成されている。なお、ドレイン電極層11も同様に第1金属層16と第2金属層17とにより構成されている(後述の図13参照)。第1金属層14,16と第2金属層15,17の材料の組合せとしては、例えばクロム(Cr)と金(Au)が挙げられる。
 第1金属層14,16の厚みは、上述した庇部12,13の端面12a,13aとゲート絶縁層3との距離に相当する。ここで、電界効果による接触抵抗の低減効果を得るためには、上記隙間S2に有機半導体材料が入り込む必要があるため、上記距離、すなわち第1金属層14,16の厚みをある程度の大きさ以上とする必要がある。したがって、前述した有機半導体材料の分子の大きさや有機半導体材料の表面張力を考慮し、第1金属層14,16の厚み、すなわち庇部12,13の端面12a,13aとゲート絶縁層3との距離を、少なくとも10nm以上とする必要がある。
 その一方で、ゲート電圧の印加時に有機半導体層6内に現れるチャネル(キャリアが移動しやすい領域)の厚さは、ゲート絶縁層3の表面から数nmであることがわかっており、且つ、ゲート電極層2からの距離が近いほど電界が強く作用する。このため、第2電極層15,17とチャネルとの距離を極力小さくする必要がある。したがって、第1金属層14,16の厚み、すなわち庇部12,13の端面12a,13aとゲート絶縁層3との距離は、上述したように少なくとも10nm以上とした上で、極力小さくするのが好ましい。
 <実施例2>
 本願発明者等は、ソース電極層10及びドレイン電極層11が上記庇部12,13を有する電極を実際に形成した。図13は実際に形成した電極(以下「庇電極」という)のソース電極層4及びドレイン電極層5の庇部12,13部分を裏面から撮影した顕微鏡写真(暗視野)であり、第1金属層14,16のエッチング時間を40sec、80sec、及び120secの3種類で行った場合を示している。また図14(a)及び図14(b)は、第1金属層14,16のエッチング時間を40secとした場合における、ソース電極層4及びドレイン電極層5の庇部12,13部分を側方から撮影した顕微鏡写真であり、図15(a)及び図15(b)は、第1金属層14,16のエッチング時間を80secとした場合における、ソース電極層4及びドレイン電極層5の庇部12,13部分を側方から撮影した顕微鏡写真である。
 本実施例では、基板1としてガラス基板、第1金属層14,16としてクロム、第2電極層15,17として金を採用し、第1金属層14,16の厚さを50nm、第2電極層15,17の厚さを100nmとした。そして、次のような工程で庇電極を形成した。すなわち、第1金属層14,16及び第2電極層15,17をパターニングするために、スピンコートによるレジストの塗布及び露光・現像を行った。次に、第2電極層15,17、第1金属層14,16の順でエッチングした。このとき、第1金属層14,16が第2電極層15,17に対して過剰エッチングとなるようにエッチング時間を調整することにより、庇部12,13を形成した。次に、有機半導体材料をスピンコートにより塗布し、有機半導体層6を形成した。このとき、有機溶媒の濃度は、有機半導体材料が庇部12,13とゲート絶縁層3との間の隙間S2に入り込むことが可能なように、表面張力を下げて設定した。最後にベークにより、溶媒を蒸発させた。なお、本実施例ではスピンコートにより有機半導体を塗布したが、インクジェットを用いても塗布することができる。
 以上のようにして形成した庇電極において、第1金属層14,16のエッチング時間と、形成される庇部12,13の長さとの関係は、図13に示すようになった。すなわち、エッチング時間を40sec、80sec、120secとすると、形成される庇部12,13の長さは1.5μm(±0.5μm)、2.5μm(±0.5μm)、4.5μm(±0.5μm)となった。
 図14(a)及び図14(b)に示すように、エッチング時間を40secとした場合には、庇部12,13はいずれもゲート絶縁層3側に落ち込み、庇部12,13とゲート絶縁層3との間に形成される隙間S2が小さくなった。その結果、図14(b)に示す庇部12側において、有機半導体層6を構成する有機半導体材料が隙間S2に微小に入り込めたに過ぎず、庇部12,13のいずれにおいても有機半導体層6をゲート電極層2とソース電極層10及びドレイン電極層11との間に形成できなかった。さらに、図15(a)及び図15(b)に示すように、エッチング時間を80secとした場合には、庇部12,13はいずれもゲート絶縁層3側にさらに落ち込み、基板1と接触してしまった。このような結果から、第1金属層14,16のエッチング時間をさらに短くする必要があることが判明した。
 以上説明した実施形態の効果について説明する。本実施形態においては、ボトムコンタクト構造の有機薄膜トランジスタにおいて、ソース電極層10及びドレイン電極層11が、当該電極層10,11の層方向に庇状に突出した庇部12,13を有する構成とする。これにより、当該庇部12,13とゲート絶縁層3との間に、有機半導体材料が入り込むことが可能な隙間S2を形成することができる。このため、当該庇部12,13が形成された部分では、トップコンタクト構造と同様に、有機半導体層6がゲート電極層2とソース電極層10及びドレイン電極層11との間に挟まれた構造となり、ソース・ドレイン電極層10,11と有機半導体層6との接触界面である端面12a,13aにゲート電極層2からの電界を強く作用させることができる。その結果、キャリアがソース電極層10から有機半導体層6に注入され易くなると共に、有機半導体層6からドレイン電極層11に注出され易くなり、接触界面である端面12a,13aにおける接触抵抗を小さくすることができる。
 上記実施形態の有機薄膜トランジスタにおいては、上述した構成に加えてさらに、庇部12,13を、それらのゲート絶縁層3側の端面12a,13aとゲート絶縁層3との距離が少なくとも10nm以上となるように構成する。前述したように、一般に有機半導体材料の分子は数nm程度なので、有機半導体材料が入り込ませるために、少なくとも10nm以上の隙間を形成する必要がある。そこで、上記構成とすることで、庇部12,13とゲート絶縁層3との間の隙間S2に有機半導体材料を確実に入り込ませることができる。
 なお、以上の実施形態においては、テーパ部や庇部を、ソース電極層及びドレイン電極層の両方に設けた場合を説明したが、必ずしも両方の電極に設ける必要はなく、ソース電極層及びドレイン電極層のいずれか一方にのみ設ける構成としてもよい。この場合にも、少なくとも前述した標準電極に比べ、電界効果による接触抵抗の低減効果を得ることができる。
 1       基板
 2       ゲート電極層
 3       ゲート絶縁層
 4       ソース電極層
 5       ドレイン電極層
 6       有機半導体層
 7,8     テーパ部
 10      ソース電極層
 11      ドレイン電極層
 12,13   庇部
 12a,13a 端面
 S1,S2   隙間
 14,16   第1金属層
 15,17   第2金属層

Claims (7)

  1.  基板上にゲート電極層、ゲート絶縁層、ソース電極層及びドレイン電極層、有機半導体層の順で積層されたボトムコンタクト構造の有機薄膜トランジスタであって、
     前記有機半導体層は、
     可溶な有機半導体材料を塗布することによって形成されており、
     前記ソース電極層及び前記ドレイン電極層の少なくとも一方と前記ゲート絶縁層との間に、前記有機半導体材料が入り込むことが可能な隙間を形成した
    ことを特徴とする有機薄膜トランジスタ。
  2.  請求項1記載の有機薄膜トランジスタにおいて、
     前記ソース電極層及び前記ドレイン電極層の少なくとも一方は、
     前記ゲート絶縁層の層方向に対して傾斜したテーパ部を有しており、
     前記隙間は、
     前記テーパ部と前記ゲート絶縁層との間に形成されている
    ことを特徴とする有機薄膜トランジスタ。
  3.  請求項2記載の有機薄膜トランジスタにおいて、
     前記テーパ部は、
     当該テーパ部と前記ゲート絶縁層とのなす角度が3度以上90度未満となるように形成されている
    ことを特徴とする有機薄膜トランジスタ。
  4.  請求項3記載の有機薄膜トランジスタにおいて、
     前記角度は、
     前記テーパ部の前記ゲート絶縁層との接触部近傍における接線方向と、前記ゲート絶縁層の層方向とのなす角度である
    ことを特徴とする有機薄膜トランジスタ。
  5.  請求項1記載の有機薄膜トランジスタにおいて、
     前記ソース電極層及び前記ドレイン電極層の少なくとも一方は、
     当該電極層の層方向に庇状に突出した庇部を有しており、
     前記隙間は、
     前記庇部と前記ゲート絶縁層との間に形成されている
    ことを特徴とする有機薄膜トランジスタ。
  6.  請求項5記載の有機薄膜トランジスタにおいて、
     前記庇部は、
     その前記ゲート絶縁層側の端面と前記ゲート絶縁層との距離が、少なくとも10nm以上となるように形成されている
    ことを特徴とする有機薄膜トランジスタ。
  7.  基板上にゲート電極層、ゲート絶縁層、ソース電極層及びドレイン電極層、有機半導体層の順で積層されたボトムコンタクト構造の有機薄膜トランジスタであって、
     前記有機半導体層は、
     前記ソース電極層及び前記ドレイン電極層の少なくとも一方と前記ゲート絶縁層との間に突出した突出部を有する
    ことを特徴とする有機薄膜トランジスタ。
PCT/JP2009/068600 2009-10-29 2009-10-29 有機薄膜トランジスタ WO2011052058A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068600 WO2011052058A1 (ja) 2009-10-29 2009-10-29 有機薄膜トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068600 WO2011052058A1 (ja) 2009-10-29 2009-10-29 有機薄膜トランジスタ

Publications (1)

Publication Number Publication Date
WO2011052058A1 true WO2011052058A1 (ja) 2011-05-05

Family

ID=43921499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068600 WO2011052058A1 (ja) 2009-10-29 2009-10-29 有機薄膜トランジスタ

Country Status (1)

Country Link
WO (1) WO2011052058A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057196A1 (ja) * 2010-10-27 2012-05-03 住友化学株式会社 電荷注入特性が高い有機薄膜トランジスタ
FR2976127A1 (fr) * 2011-06-01 2012-12-07 Commissariat Energie Atomique Composant organique a electrodes ayant un agencement et une forme ameliores
WO2014030613A1 (ja) * 2012-08-24 2014-02-27 国立大学法人大阪大学 有機薄膜トランジスタ及びその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076854A (ja) * 2007-08-31 2009-04-09 Sony Corp 半導体装置およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076854A (ja) * 2007-08-31 2009-04-09 Sony Corp 半導体装置およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057196A1 (ja) * 2010-10-27 2012-05-03 住友化学株式会社 電荷注入特性が高い有機薄膜トランジスタ
FR2976127A1 (fr) * 2011-06-01 2012-12-07 Commissariat Energie Atomique Composant organique a electrodes ayant un agencement et une forme ameliores
WO2012163965A3 (fr) * 2011-06-01 2013-05-30 Commissariat à l'énergie atomique et aux énergies alternatives Composant organique a electrodes ayant un agencement et une forme ameliores
CN103650191A (zh) * 2011-06-01 2014-03-19 原子能和替代能源委员会 包括有构造和形状改进的电极的有机元件
US20140103323A1 (en) * 2011-06-01 2014-04-17 Isorg Organic component comprising electrodes having an improved layout and shape
JP2014517526A (ja) * 2011-06-01 2014-07-17 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 改良したレイアウトおよび形状を有する電極を備える有機構成部品
WO2014030613A1 (ja) * 2012-08-24 2014-02-27 国立大学法人大阪大学 有機薄膜トランジスタ及びその製造方法
JP5842262B2 (ja) * 2012-08-24 2016-01-13 国立大学法人大阪大学 有機薄膜トランジスタ及びその製造方法
US9379341B2 (en) 2012-08-24 2016-06-28 Osaka University Organic thin film transistor and method for producing same

Similar Documents

Publication Publication Date Title
JP5521270B2 (ja) 薄膜トランジスタアレイ、薄膜トランジスタアレイの製造方法、および薄膜トランジスタアレイを用いたアクティブマトリクス型ディスプレイ
KR101363714B1 (ko) 유기 박막트랜지스터, 그 제조 방법, 이를 이용한 정전기방지 소자, 액정표시장치 및 그 제조 방법
JP4436280B2 (ja) 薄膜トランジスタ及びその製造方法
US7619245B2 (en) Flat panel display and manufacturing method of flat panel display
US7977144B2 (en) Thin film transistor array panel and manufacture thereof
JP4844767B2 (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器
US20120199891A1 (en) Semiconductor device and method for manufacturing same
JP6323055B2 (ja) 薄膜トランジスタアレイおよびその製造方法
US20070114525A1 (en) Display device and manufacturing method
KR20070013132A (ko) 박막트랜지스터 기판과 박막트랜지스터 기판의 제조방법
US10651255B2 (en) Thin film transistor and method of manufacturing the same
JP5439723B2 (ja) 薄膜トランジスタ、マトリクス基板、電気泳動表示装置および電子機器
JP2008182047A (ja) トランジスタ、トランジスタ回路、電気光学装置および電子機器
WO2011052058A1 (ja) 有機薄膜トランジスタ
JP2006261517A (ja) 有機薄膜トランジスタ、それを備えた表示装置および有機薄膜トランジスタの製造方法。
KR20150043238A (ko) 박막 트랜지스터 및 그 제조 방법과 표시 장치 및 전자 기기
JP2010224403A (ja) アクティブマトリックス基板の製造方法、アクティブマトリックス基板、電気光学装置、および電子機器
JPWO2016067591A1 (ja) 薄膜トランジスタアレイおよびその製造方法
JP5272280B2 (ja) 薄膜トランジスタアレイとディスプレイ及び薄膜トランジスタアレイの製造方法
JP5103742B2 (ja) 薄膜トランジスタ装置及びその製造方法及び薄膜トランジスタアレイ及び薄膜トランジスタディスプレイ
JP5447996B2 (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、および電子機器
JP2014041874A (ja) 半導体装置およびその製造方法、並びに電子機器
WO2012067182A1 (ja) 有機半導体装置
JP4926378B2 (ja) 表示装置及びその作製方法
JP2008177398A (ja) 有機薄膜トランジスタ及びそれを用いた集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP