WO2011052046A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2011052046A1
WO2011052046A1 PCT/JP2009/068455 JP2009068455W WO2011052046A1 WO 2011052046 A1 WO2011052046 A1 WO 2011052046A1 JP 2009068455 W JP2009068455 W JP 2009068455W WO 2011052046 A1 WO2011052046 A1 WO 2011052046A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
source side
heat medium
heat exchanger
Prior art date
Application number
PCT/JP2009/068455
Other languages
English (en)
French (fr)
Inventor
山下 浩司
裕之 森本
傑 鳩村
若本 慎一
直史 竹中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09850826.0A priority Critical patent/EP2472202B1/en
Priority to JP2011538147A priority patent/JP5511838B2/ja
Priority to PCT/JP2009/068455 priority patent/WO2011052046A1/ja
Priority to US13/501,184 priority patent/US9316420B2/en
Priority to CN200980162175.XA priority patent/CN102597660B/zh
Publication of WO2011052046A1 publication Critical patent/WO2011052046A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • a refrigerant is circulated between an outdoor unit that is a heat source unit arranged outside a building and an indoor unit arranged inside a building.
  • the refrigerant coolant thermally radiated and absorbed heat, and air-conditioning object space was cooled or heated with the air heated and cooled.
  • HFC hydrofluorocarbon
  • CO 2 carbon dioxide
  • an air conditioner called a chiller
  • heat or heat is generated by a heat source device arranged outside the building.
  • water, antifreeze, etc. are heated and cooled by a heat exchanger arranged in the outdoor unit, and this is transferred to a fan coil unit, a panel heater, etc., which are indoor units, for cooling or heating (for example, Patent Documents) 1).
  • a waste heat recovery type chiller which is connected to four water pipes between the heat source unit and the indoor unit, supplies cooled and heated water at the same time, and can freely select cooling or heating in the indoor unit (For example, refer to Patent Document 2).
  • Japanese Patent Laying-Open No. 2005-140444 page 4, FIG. 1, etc.
  • JP-A-5-280818 (4th, 5th page, FIG. 1 etc.)
  • Japanese Patent Laid-Open No. 2001-289465 pages 5 to 8, FIG. 1, FIG. 2, etc.
  • JP 2003-343936 A (Page 5, FIG. 1)
  • the present invention has been made in order to solve the above-described problems, and provides an air conditioner that can save energy. Moreover, the air conditioner which can aim at the improvement of safety
  • An air conditioner includes at least a compressor, a heat source side heat exchanger, a plurality of expansion devices, and a plurality of heat exchangers between heat mediums that exchange heat between the heat source side refrigerant and the heat medium, the compression Air conditioner in which a refrigerant circulation circuit for circulating the heat source side refrigerant is formed by connecting the refrigerant side flow paths of the heat source side heat exchanger, the plurality of expansion devices, and the plurality of heat exchangers between heat mediums A bypass pipe for connecting the front and rear of the heat source side heat exchanger to bypass the heat source side heat exchanger, and a flow rate of the heat source side refrigerant flowing in the heat source side heat exchanger And a heat source side refrigerant flow rate adjusting device capable of adjusting the ratio of the flow rate of the refrigerant flowing through the bypass pipe.
  • the air conditioner according to the present invention includes the heat source side refrigerant flow rate adjustment device capable of adjusting the flow rate of the heat source side refrigerant flowing in the heat source side heat exchanger and the flow rate of the refrigerant flowing in the bypass pipe, the air conditioner Regardless of the operating condition that is executed, stable and energy-saving operation is possible.
  • FIG. 1 and 2 are schematic diagrams illustrating an installation example of an air-conditioning apparatus according to an embodiment of the present invention. Based on FIG.1 and FIG.2, the installation example of an air conditioning apparatus is demonstrated.
  • This air conditioner uses a refrigeration cycle (refrigerant circulation circuit A, heat medium circulation circuit B) that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. It can be freely selected.
  • refrigerant circulation circuit A, heat medium circulation circuit B that circulates refrigerant (heat source side refrigerant, heat medium) so that each indoor unit can be in the cooling mode or the heating mode as an operation mode. It can be freely selected.
  • refrigerant circulation circuit A heat medium circulation circuit B
  • refrigerant circulation circuit A heat source side refrigerant, heat medium
  • the relationship of the size of each component may be different from the actual one.
  • the air conditioner according to the present embodiment includes one outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and heat that is interposed between the outdoor unit 1 and the indoor unit 2. And a medium converter 3.
  • the heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 that conducts the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
  • the air-conditioning apparatus includes one outdoor unit 1, a plurality of indoor units 2, and a plurality of divided heats interposed between the outdoor unit 1 and the indoor unit 2.
  • Medium converter 3 (parent heat medium converter 3a, child heat medium converter 3b).
  • the outdoor unit 1 and the parent heat medium converter 3a are connected by a refrigerant pipe 4.
  • the parent heat medium converter 3 a and the child heat medium converter 3 b are connected by a refrigerant pipe 4.
  • the child heat medium converter 3 b and the indoor unit 2 are connected by a pipe 5.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the parent heat medium converter 3a and the child heat medium converter 3b.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is arranged at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Is connected to the refrigerant pipe 4 and the pipe 5, respectively, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2.
  • each unit (outdoor unit 1, indoor unit 2, and heat medium converter 3) is connected using two pipes (refrigerant pipe 4, pipe 5). Therefore, construction is easy.
  • the heat medium converter 3 includes one parent heat medium converter 3 a and two child heat medium converters 3 b (child heat medium converter 3 b (1), derived from the parent heat medium converter 3 a, It can also be divided into a sub-heat medium converter 3b (2)). In this way, a plurality of child heat medium converters 3b can be connected to one parent heat medium converter 3a. In this configuration, there are three refrigerant pipes 4 that connect the parent heat medium converter 3a and the child heat medium converter 3b. This circuit will be described in detail later (see FIG. 4).
  • the heat medium converter 3 is installed in a space such as a ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • the state is shown as an example.
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • 1 and 2 show an example in which the indoor unit 2 is a ceiling cassette type, but the present invention is not limited to this, and the indoor space 7 such as a ceiling embedded type or a ceiling suspended type is shown. Any type of air can be used as long as the air for heating or the air for cooling can be blown out directly or by a duct or the like.
  • the outdoor unit 1 and 2 show an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the exhaust heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium converter 3 to the indoor unit 2 is too long, the heat medium transfer power becomes considerably large, and the energy saving effect is diminished. Further, the number of connected outdoor units 1, indoor units 2, and heat medium converters 3 is not limited to the number illustrated in FIGS. 1 and 2, and the air conditioner according to the present embodiment is installed. The number may be determined according to the building 9.
  • FIG. 3 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus (hereinafter referred to as the air-conditioning apparatus 100) according to the present embodiment. Based on FIG. 3, the detailed structure of the air conditioning apparatus 100 is demonstrated.
  • the outdoor unit 1 and the heat medium relay 3 are connected to the refrigerant pipe 4 through the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium 15 b provided in the heat medium converter 3. Connected with.
  • the heat medium relay unit 3 and the indoor unit 2 are also connected by the pipe 5 via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and connected in series through a refrigerant pipe 4. Yes.
  • the outdoor unit 1 is also provided with a first connection pipe 4a, a second connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d. Regardless of the operation that the indoor unit 2 requires, heat is provided by providing the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d.
  • the flow of the heat source side refrigerant flowing into the medium converter 3 can be in a certain direction.
  • the outdoor unit 1 is provided with a heat source side air blower 44 such as a fan in the vicinity of the heat source side heat exchanger 12.
  • the heat source side air blower 44 supplies air to the heat source side heat exchanger 12.
  • a bypass pipe 4 c that connects the front and rear of the heat source side heat exchanger 12 to bypass the heat source side heat exchanger 12 is connected to the outdoor unit 1 via the heat source side refrigerant flow rate adjustment device 45.
  • the heat source side refrigerant flow rate adjusting device 45 is provided between the heat source side heat exchanger 12 and the check valve 13a.
  • the bypass pipe 4c is provided so as to connect the heat source side refrigerant flow rate adjusting device 45 and the refrigerant pipe 4 between the first refrigerant flow switching device 11 and the heat source side heat exchanger 12.
  • the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to be in a high temperature / high pressure state, and may be configured by, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 has a flow of the heat source side refrigerant during heating operation (in the heating only operation mode and heating main operation mode) and a cooling operation (in the cooling only operation mode and cooling main operation mode). The flow of the heat source side refrigerant is switched.
  • the heat source side heat exchanger 12 functions as an evaporator during the heating operation, functions as a condenser (or a radiator) during the cooling operation, and is supplied between the air supplied from the heat source side blower 44 such as a fan and the heat source side refrigerant. Heat is exchanged between the two, and the refrigerant on the heat source side is vaporized or condensed into liquid.
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant.
  • the check valve 13d is provided in the refrigerant pipe 4 between the heat medium converter 3 and the first refrigerant flow switching device 11, and only in a predetermined direction (direction from the heat medium converter 3 to the outdoor unit 1).
  • the flow of the heat source side refrigerant is allowed.
  • the check valve 13 a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the heat medium converter 3, and only on a heat source side in a predetermined direction (direction from the outdoor unit 1 to the heat medium converter 3).
  • the refrigerant flow is allowed.
  • the check valve 13b is provided in the first connection pipe 4a, and causes the heat source side refrigerant discharged from the compressor 10 to flow to the heat medium converter 3 during the heating operation.
  • the check valve 13 c is provided in the second connection pipe 4 b and causes the heat source side refrigerant returned from the heat medium relay unit 3 to flow to the suction side of the compressor 10 during the heating operation.
  • the first connection pipe 4a is a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13d, and a refrigerant between the check valve 13a and the heat medium relay unit 3.
  • the pipe 4 is connected.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13d and the heat medium relay unit 3, and a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a.
  • FIG. 3 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the present invention is not limited to this, and these are not necessarily provided.
  • Each indoor unit 2 is equipped with a use side heat exchanger 26.
  • the use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the pipe 5.
  • the use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • FIG. 3 shows an example in which four indoor units 2 are connected to the heat medium relay unit 3, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. Show.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d. 1 and 2, the number of connected indoor units 2 is not limited to four as shown in FIG.
  • the heat medium relay unit 3 includes two heat medium heat exchangers 15, two expansion devices 16, two switch devices 17, four second refrigerant flow switching devices 18, and two pumps 21. Four first heat medium flow switching devices 22, four second heat medium flow switching devices 23, and four heat medium flow control devices 25 are mounted. In addition, what divided the heat medium converter 3 into the parent heat medium converter 3a and the child heat medium converter 3b will be described with reference to FIG.
  • heat media 15 (heat medium heat exchanger 15a, heat medium heat exchanger 15b) function as a condenser (heat radiator) or an evaporator, and heat is generated by the heat source side refrigerant and the heat medium. Exchange is performed, and the cold or warm heat generated in the outdoor unit 1 and stored in the heat source side refrigerant is transmitted to the heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a, the second refrigerant flow switching device 18a (1), and the second refrigerant flow switching device 18a (2) in the refrigerant circuit A,
  • the heating medium is used for heating in the heating only operation mode, and is used for cooling the heating medium in the cooling only operation mode, the cooling main operation mode, and the heating main operation mode.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b, the second refrigerant flow switching device 18b (1), and the second refrigerant flow switching device 18b (2) in the refrigerant circuit A.
  • the heat medium In the heating only operation mode, in the cooling main operation mode and in the heating main operation mode, the heat medium is heated, and in the full cooling operation mode, the heat medium is cooled.
  • the two expansion devices 16 have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant during the cooling operation.
  • the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 17 are constituted by two-way valves or the like, and open / close the refrigerant pipe 4.
  • the opening / closing device 17a is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant.
  • the opening / closing device 17b is provided in a pipe connecting the refrigerant pipe 4 on the inlet side and the outlet side of the heat source side refrigerant.
  • second refrigerant flow switching devices 18 (second refrigerant flow switching device 18a (1), second refrigerant flow switching device 18a (2), second refrigerant flow switching device 18b (1), second refrigerant
  • the flow path switching device 18b (2)) is configured by a two-way valve or the like, and switches the flow of the heat source side refrigerant according to the operation mode.
  • the second refrigerant flow switching device 18a (1) and the second refrigerant flow switching device 18a (2) (hereinafter referred to as the second refrigerant flow switching device 18A) generate heat in the flow of the heat source side refrigerant during the cooling operation. It is provided on the downstream side of the inter-medium heat exchanger 15a.
  • the second refrigerant flow switching device 18b (1) and the second refrigerant flow switching device 18b (2) (hereinafter referred to as the second refrigerant flow switching device 18B) are used in the flow of the heat source side refrigerant during the cooling only operation. It is provided on the downstream side of the heat exchanger related to heat medium 15b.
  • the two pumps 21 that are heat medium delivery devices circulate the heat medium that is conducted through the pipe 5.
  • the pump 21 a is provided in the pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in the pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • the two pumps 21 may be constituted by, for example, pumps capable of capacity control.
  • the pump 21a may be provided in the pipe 5 between the heat exchanger related to heat medium 15a and the first heat medium flow switching device 22.
  • the pump 21b may be provided in the pipe 5 between the heat exchanger related to heat medium 15b and the first heat medium flow switching device 22.
  • the four first heat medium flow switching devices 22 are configured by three-way valves or the like, and switch the heat medium flow channels. Is.
  • the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed. In the first heat medium flow switching device 22, one of the three sides is in the heat exchanger 15a, one of the three is in the heat exchanger 15b, and one of the three is in the heat medium flow rate. Each is connected to the adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
  • the four second heat medium flow switching devices 23 are configured by three-way valves or the like, and switch the flow path of the heat medium. Is.
  • the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
  • the heat exchanger is connected to the exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the four heat medium flow control devices 25 are composed of two-way valves or the like that can control the opening area, and adjust the flow rate of the heat medium flowing through the pipe 5. To do.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Is provided.
  • the heat medium flow adjustment device 25 a, the heat medium flow adjustment device 25 b, the heat medium flow adjustment device 25 c, and the heat medium flow adjustment device 25 d are illustrated from the lower side of the drawing.
  • the heat medium flow control device 25 is provided on the outlet side (downstream side) of the use side heat exchanger 26.
  • the other may be connected to the second heat medium flow switching device 23 and provided on the inlet side (upstream side) of the use side heat exchanger 26.
  • the heat medium relay unit 3 is provided with various detection means (two first temperature sensors 31, four second temperature sensors 34, four third temperature sensors 35, and a pressure sensor 36). Information (temperature information, pressure information) detected by these detection means is sent to a control device (not shown) that performs overall control of the operation of the air conditioner 100, and the drive frequency of the compressor 10 and the heat source side air blower 44.
  • a control device not shown
  • the rotation speed of a blower (not shown) provided near the use side heat exchanger 26, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, switching of the second refrigerant flow switching device 18, This is used for control such as switching of the flow path of the heat medium.
  • the two first temperature sensors 31 are the heat medium flowing out from the heat exchanger related to heat medium 15, that is, the temperature of the heat medium at the outlet of the heat exchanger related to heat medium 15.
  • a thermistor may be used.
  • the first temperature sensor 31a is provided in the pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34 are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and use side heat exchangers.
  • the temperature of the heat medium that has flowed out of the heater 26 is detected, and it may be constituted by a thermistor or the like.
  • the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing.
  • the four third temperature sensors 35 are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the heat exchanger related to heat medium 15
  • the temperature of the heat source side refrigerant flowing into the heat source or the temperature of the heat source side refrigerant flowing out of the heat exchanger related to heat medium 15 is detected, and may be composed of a thermistor or the like.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing heat source side refrigerant is detected.
  • the control device (not shown) is constituted by a microcomputer or the like, and based on detection information from various detection means and instructions from the remote controller, the driving frequency of the compressor 10 and the rotational speed of the blower (including ON / OFF) , Switching of the first refrigerant flow switching device 11, driving of the pump 21, opening of the expansion device 16, opening / closing of the opening / closing device 17, switching of the second refrigerant flow switching device 18, first heat medium flow switching device 22 The switching of the second heat medium flow switching device 23, the opening degree of the heat medium flow control device 25, and the like are controlled, and each operation mode to be described later is executed.
  • the control device may be provided for each unit, or may be provided in the outdoor unit 1 or the heat medium relay unit 3.
  • the pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 15a and one that is connected to the heat exchanger related to heat medium 15b.
  • the pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium relay unit 3.
  • the pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
  • the refrigerant in the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15a.
  • the flow path, the expansion device 16 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the refrigerant circulation circuit A.
  • the switching device 23 is connected by a pipe 5 to constitute a heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3.
  • the heat medium relay unit 3 and the indoor unit 2 are also connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is like that.
  • FIG. 4 is a schematic circuit configuration diagram showing another example of the circuit configuration of the air-conditioning apparatus according to the present embodiment (hereinafter referred to as air-conditioning apparatus 100A (1)).
  • air-conditioning apparatus 100A (1) the circuit configuration of the air conditioner 100A (1) when the heat medium relay unit 3 is divided into a parent heat medium relay unit 3a and a child heat medium relay unit 3b will be described.
  • the heat medium relay unit 3 is configured with a parent heat medium relay unit 3 a and a child heat medium relay unit 3 b with separate housings. By configuring in this way, a plurality of child heat medium converters 3b can be connected to one parent heat medium converter 3a as shown in FIG.
  • the main heat exchanger 3a is provided with a gas-liquid separator 14 and an expansion device 16c. Other components are mounted on the child heat medium converter 3b.
  • the gas-liquid separator 14 includes one refrigerant pipe 4 connected to the outdoor unit 1, and two refrigerants connected to the intermediate heat exchanger 15a and the intermediate heat exchanger 15b of the child heat medium converter 3b.
  • the heat source side refrigerant connected to the pipe 4 and supplied from the outdoor unit 1 is separated into a vapor refrigerant and a liquid refrigerant.
  • the expansion device 16c is provided on the downstream side in the flow of the liquid refrigerant in the gas-liquid separator 14, has a function as a pressure reducing valve or an expansion valve, expands the heat source side refrigerant by reducing the pressure, and is mixed with cooling and heating. During operation, the outlet of the expansion device 16c is controlled to a medium pressure.
  • the expansion device 16c may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve. With this configuration, a plurality of child heat medium converters 3b can be connected to the parent heat medium converter 3a.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • description is abbreviate
  • the air conditioner 100 also includes the air conditioner 100A (1).
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
  • each operation mode is demonstrated with the flow of a heat-source side refrigerant
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes indicated by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-pressure liquid refrigerant that has flowed into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature, low-pressure gas refrigerant while cooling.
  • the gas refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b passes through the second refrigerant flow switching device 18a (1) and the second refrigerant flow switching device 18b (1). It flows out from the converter 3 and flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening of the expansion device 16a is such that the superheat (superheat degree) obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the opening / closing device 17a is open and the opening / closing device 17b is closed.
  • the second refrigerant flow switching device 18a (1) is opened, the second refrigerant flow switching device 18a (2) is closed, the second refrigerant flow switching device 18b (1) is opened, and the second refrigerant flow switching is performed.
  • the device 18b (2) is closed.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, and the cooled heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. This difference can be covered by controlling to maintain the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • tube represented by the thick line has shown the piping through which a refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is branched and passes through the second refrigerant flow switching device 18a (2) and the second refrigerant flow switching device 18b (2), and heat between the heat media. It flows into each of the exchanger 15a and the heat exchanger related to heat medium 15b.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circulation circuit B, and becomes a high-pressure liquid refrigerant. .
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature, low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
  • the refrigerant flowing into the outdoor unit 1 is conducted through the second connection pipe 4b, passes through the check valve 13c, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from the outdoor air by the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b.
  • the opening degree is controlled.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled.
  • the opening / closing device 17a is closed and the opening / closing device 17b is open.
  • the second refrigerant flow switching device 18a (1) is closed, the second refrigerant flow switching device 18a (2) is opened, the second refrigerant flow switching device 18b (1) is closed, and the second refrigerant flow switching is performed.
  • the device 18b (2) is open.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium is circulated between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses while radiating heat to the outdoor air, and becomes a two-phase refrigerant.
  • the two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the two-phase refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b (2).
  • the two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
  • This gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a (1), passes through the refrigerant pipe 4 and returns to the outdoor unit 1 again. Inflow.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed.
  • the second refrigerant flow switching device 18a (1) is opened, the second refrigerant flow switching device 18a (2) is closed, the second refrigerant flow switching device 18b (1) is closed, and the second refrigerant flow switching is performed.
  • the device 18b (2) is open.
  • the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be. Alternatively, the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, the heat medium flow control device 25c and the heat medium flow control device 25d are closed,
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b (2).
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • This low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a (1), and again passes through the refrigerant pipe 4 to the outdoor unit. Flows into 1.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed.
  • the second refrigerant flow switching device 18a (1) is opened, the second refrigerant flow switching device 18a (2) is closed, the second refrigerant flow switching device 18b (1) is closed, and the second refrigerant flow switching is performed.
  • the device 18b (2) is open. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21b.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • the air conditioner 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay unit 3.
  • a heat medium such as water or antifreeze liquid flows through the pipe 5 connecting the heat medium converter 3 and the indoor unit 2.
  • Equation (1) A [m 2 ] ⁇ K [kW / m 2 K] ⁇ (Tr ⁇ Ta) [° C.]
  • A is the heat transfer area [m 2 ] of the heat exchanger
  • K is the heat transfer rate [kW / m 2 ] between the refrigerant (heat medium) inside the heat exchanger and the surrounding fluid.
  • K] Ta represents the temperature [° C.] of the fluid around the heat exchanger
  • Tr represents the temperature [° C.] of the refrigerant (heat medium) inside the heat exchanger.
  • Formula (1) is a formula in case a heat exchanger is operate
  • this formula is simplified, it is expressed by the following formula (2).
  • the heat source side heat exchanger 12 is considered.
  • the ability to be exhibited in the heat source side heat exchanger 12 is determined by the temperature and humidity of the outside air, the required heat amount on the load side, the frequency of the compressor 10, and the like.
  • the frequency of the compressor 10 is changed to control the evaporation temperature (low pressure) to a constant value
  • the heat source side heat exchanger 12 operates as a condenser (gas cooler), and the heat source It is considered that the heat amount of the side heat exchanger 12 is adjusted to control the condensation temperature (high pressure) to a constant value.
  • the ambient environment of the condenser or the cooling load in the evaporator changes, the same refrigerant circulates in the refrigeration cycle. Therefore, if the amount of heat in the heat source side heat exchanger 12 is not controlled, the condensation temperature in the refrigeration cycle (High pressure) cannot be the target value.
  • AK of the heat source side heat exchanger 12 may be controlled in order to control the amount of heat of the heat source side heat exchanger 12 according to the equation (2).
  • the outdoor unit 1 is provided with a heat source side air blower 44 for sending air to the heat source side heat exchanger 12.
  • a bypass pipe 4 c that bypasses the heat source side heat exchanger 12 is provided between the inlet side flow path and the outlet side flow path of the heat source side heat exchanger 12.
  • the ratio (ratio) of the flow rate of the refrigerant flowing in the heat source side heat exchanger 12 and the flow rate of the refrigerant flowing in the bypass pipe 4c at the junction of the inlet side flow path of the heat source side heat exchanger 12 and the inlet flow path of the bypass pipe 4c. ) Can be adjusted.
  • a heat source side refrigerant flow rate adjusting device 45 is installed. That is, the heat exchange amount in the heat source side heat exchanger 12 is controlled by the heat source side air blower 44 and the heat source side refrigerant flow rate adjustment device 45.
  • the heat source side air blower 44 includes a blade that generates wind by rotating, a motor that rotates the blade, and an inverter that controls the number of rotations of the motor. By controlling the number of revolutions of the heat source side air blower 44, the air volume of the air passing through the heat source side heat exchanger 12 can be changed, and the AK of the heat source side heat exchanger 12 can be changed.
  • the heat source side refrigerant flow rate adjusting device 45 is configured by an electronic stepping motor or the like that can change the opening areas of the two flow paths. By controlling such a heat source side refrigerant flow rate adjusting device 45, the ratio between the flow rate of the refrigerant flowing through the heat source side heat exchanger 12 and the flow rate of the refrigerant flowing through the bypass pipe 4c can be controlled. By controlling the flow rate of the refrigerant flowing through the heat source side heat exchanger 12, the amount of energy held by the refrigerant can be controlled, and the amount of heat given to the ambient air via the heat source side heat exchanger 12 can be controlled.
  • the heat exchange amount Qr in the heat exchanger is represented by the following formula (3).
  • Qr Gr ⁇ (hri-hro)
  • Gr is the mass flow rate [kg / h] of the refrigerant
  • hri is the inlet refrigerant enthalpy [kJ / kg] of the heat exchanger
  • hro is the outlet refrigerant enthalpy [kJ / kg] of the heat exchanger.
  • the heat quantity Qr of the heat exchanger can be changed by changing the mass flow rate Gr of the refrigerant.
  • the change in the amount of heat in the heat exchanger means that the AK of the heat exchanger changes from the above equation (2). Therefore, by controlling the heat source side refrigerant flow rate adjusting device 45 to control the refrigerant flow rate flowing into the heat source side heat exchanger 12, the AK of the heat source side heat exchanger 12 can be controlled.
  • the heat source side air blower 44 Since the heat source side air blower 44 rotates against the air resistance of the ambient air, in order to rotate stably, the heat source side air blower 44 needs to be rotated at a minimum number of rotations determined by the structure of the air blower, and below the minimum number of rotations. Then it will stop. Therefore, in the air conditioner 100, the control of the air flow by the heat source side air blower 44 and the control of the flow rate of the refrigerant by the heat source side refrigerant flow rate adjustment device 45 are performed in cooperation to perform appropriate AK control. To be able to do it.
  • FIG. 9 is a flowchart illustrating an example of the flow of cooperative control processing between the heat source side air blower 44 and the heat source side refrigerant flow rate adjustment device 45. Based on FIG. 9, an example of the heat source side air blower 44, the heat source side refrigerant
  • the control device When the operation of the air conditioner 100 is started, the control device (not shown) starts the process of cooperative control (ST0). First, the control device determines an AK control mode (hereinafter referred to as mode A) (ST1). If it is determined that modeA is 1 (ST1; 1), the control device determines whether AKn is larger than the minimum value AKmin of the capacity of the heat source side heat exchanger 12 that can be controlled by the heat source side blower device 44. (ST2).
  • mode A AK control mode
  • the control device When it is determined that AKn is larger than AKmin (ST2; Yes), the control device causes the heat source side refrigerant flow rate adjustment device 45 to be fully opened, and the flow path of the heat source side heat exchanger 12 is fully opened and the flow path of the bypass pipe 4c is fully closed. (ST3). And a control apparatus controls the heat source side air blower 44, performs capacity
  • AKmax and AKmin are the capacity of the heat source side heat exchanger 12 that can be controlled by the heat source side air blower 44.
  • the maximum value and the minimum value [%] FANmax represents the maximum rotational speed [%] of the heat source side air blower 44
  • FANmin represents the minimum rotational speed [%] of the heat source side heat exchanger 12, respectively.
  • the control device determines whether AKn is smaller than AKmin. If it is determined that AKn is less than or equal to AKmin (ST6; Yes), the control device controls the opening degree (opening area) of the heat source side refrigerant flow rate adjustment device 45 as shown in the following equation (5) to perform heat source side heat exchange.
  • the capacity of the container 12 is controlled (ST7), and the process is completed (ST9).
  • the control device determines that the necessary heat exchange amount in the heat source side heat exchanger 12 has been reduced to some extent, the control device controls the heat source side refrigerant flow rate control by the heat source side refrigerant flow rate adjustment device 45 and the rotational speed of the heat source side air blower device 44. It is executed in preference to the control.
  • Opening degree of heat source side refrigerant flow rate adjusting device 45 maximum opening degree ⁇ (1 ⁇ AKn / AKmin)
  • the control device sets modeA to 2 (ST5), and proceeds to determination of ST6. If it is determined in ST6 that AKn is greater than AKmin, modeA is set to 1 (ST8), and the process proceeds to ST2.
  • mode A is 1 in a heat exchange mode in which the entire amount of the heat source side refrigerant is caused to flow into the heat source side heat exchanger 12 for heat exchange, and the heat source side refrigerant hardly flows through the bypass pipe 14. It means that there is.
  • mode A of 2 means that the heat source side heat exchanger 12 is allowed to exchange heat without flowing the entire amount of the heat source side refrigerant, and the refrigerant flowing through the heat source side heat exchanger 12 and the bypass pipe 14 This means that the heat exchange mode is to adjust the flow rate ratio.
  • the heat source side refrigerant flow rate adjusting device 45 is configured such that when the opening is zero, the flow path of the heat source side heat exchanger 12 is fully opened and the flow path of the bypass pipe 4c is fully closed, and when the opening is the maximum opening, It is installed so that the flow path of the exchanger 12 is fully closed and the flow path of the bypass pipe 4c is fully open.
  • the values of AKmax and AKmin are, for example, 100 for AKmax and 25 for AKmin.
  • the air conditioner 100 controls the amount of heat exchange in the heat source side heat exchanger 12 by changing the rotation speed of the heat source side air blower 44 when AK is large, and when AK is small. Can change the opening degree (opening area) of the heat source side refrigerant flow rate adjusting device 45 to control the heat exchange amount in the heat source side heat exchanger 12 to change AK from approximately 0 to 100.
  • the heat source side refrigerant flow rate adjusting device 45 is a three-way valve (three-way flow rate adjusting device) capable of controlling the flow rate ratio of the three-way flow paths
  • the flow paths of the heat source-side heat exchanger 12 and A two-way valve (two-way flow control device) or the like that can control the opening area may be installed in each flow path of the bypass pipe 4c, and may be controlled separately. In this case, it may be controlled so that the total value of the opening areas of both heat source side refrigerant flow rate adjusting devices 45 does not change so much.
  • the air conditioner 100 can control the amount of heat of the heat source side heat exchanger 12 in each operation mode.
  • the heat source side heat exchanger 12 is divided into several parts (for example, four parts), and the capacity of the heat exchanger to be used (heat transfer area) according to the AK value. ) Can also be considered.
  • the heat transfer coefficient in the tube and the heat transfer coefficient outside the tube of the refrigerant in the heat source side heat exchanger 12 do not change.
  • the amount of energy change (enthalpy change amount) of the refrigerant when the refrigerant advances by the unit length in the heat source side heat exchanger 12 is the same. Accordingly, when the AK is changed by changing the heat transfer area (A), the amount of change in the enthalpy at the entrance / exit of the heat source side heat exchanger 12 decreases almost in proportion to AK.
  • the heat source The AK control can be performed while controlling the refrigerant state quantity at the outlet of the side heat exchanger 12, that is, the subcool so as to be in the same state.
  • the heat transfer area of the heat source side heat exchanger 12 does not change, and the mass flow rate of the heat source side refrigerant in the pipe of the heat source side heat exchanger 12 is reduced.
  • AK control is performed.
  • the wind speed of the heat source side air blower 44 is the same, the heat transfer coefficient outside the tube of the heat source side heat exchanger 12 does not change, and therefore the refrigerant in the heat source side heat exchanger 12 travels a unit length. The amount of change in the enthalpy of the refrigerant does not change much.
  • the subcooling of the outlet refrigerant of the heat source side heat exchanger 12 is increased, and the state of the heat source side refrigerant combined with the heat source side refrigerant passing through the bypass pipe 4c divides the heat source side heat exchanger 12 into several parts, It becomes the same state as the outlet refrigerant of the heat source side heat exchanger 12 when the area is changed.
  • the density of the heat source side refrigerant increases as the temperature decreases, and more heat source side refrigerant accumulates in the heat source side heat exchanger 12. If there is a large amount of excess refrigerant in the refrigerant circuit, AK control can be performed by the above method. However, since the actual excess refrigerant is determined by the volume of the accumulator 19, the length of the extension pipe is long in the control methods described so far. In this case, the refrigerant amount is expected to be insufficient to perform the AK control in all the operation modes.
  • the heat source side heat exchanger 12 is divided into two parts, and the refrigerant amount in one heat exchanger is recovered to cover the insufficient refrigerant amount and stable control can be performed. That is, the heat source side heat exchanger 12 is divided into two (the heat source side heat exchanger 12 (1), the heat source, as in the air conditioner shown in FIG. 10 (hereinafter referred to as the air conditioner 100A (2)). Side heat exchanger 12 (2)), which are connected in parallel. Then, the refrigerant flow path blocking device 41 (1) and the refrigerant flow path blocking device 41 (2) are installed before and after the refrigerant flow path of the heat source side heat exchanger 12 (2), and the heat source side heat exchanger 12 (2). And the refrigerant passage blocking device 41 (2) and the inlet pipe of the accumulator 19 are connected by an excess refrigerant recovery pipe 42 and an excess refrigerant recovery device 43. Then, AK control is performed as shown in FIG.
  • FIG. 11 is a flowchart showing an example of the flow of AK control processing of the air-conditioning apparatus 100A (2) according to the present embodiment. Based on FIG. 11, an example of the AK control method executed by the air conditioner 100A (2) will be described.
  • the control device When the operation of the air conditioner 100A (2) is started, the control device (not shown) starts AK control processing (UT0). First, the control device determines an AK control mode (hereinafter referred to as mode A) (UT1). If it is determined that modeA is 1 (UT1; 1), the control device determines whether or not it is larger than the AKn minimum value AKmin (UT2). If it is determined that AKn is larger than AKmin (UT2; Yes), the control device fully opens the refrigerant flow passage blocking device 41 (1) and the refrigerant flow passage blocking device 41 (2) and fully closes the surplus refrigerant recovery device 43. (UT3), the heat source side refrigerant flows in both the heat source side heat exchanger 12 (1) and the heat source side heat exchanger 12 (2).
  • mode A AK control mode
  • the control device substitutes AKmax1 for AKmax and substitutes AKmin1 for AKmin (UT4).
  • the control device sets the heat source side refrigerant flow rate adjustment device 45 to such an opening that the flow path of the heat source side heat exchanger 12 is fully opened and the flow path of the bypass pipe 4c is fully closed (UT5).
  • the control device controls the heat source side air blower 44, performs capacity control of the heat source side heat exchanger 12 based on the above formula (4) (UT6), and completes the processing (UT18).
  • the control device determines whether AKn is larger than AKmin2 (UT8). If it is determined that AKn is larger than AKmin2 (UT8; Yes), the control device determines whether AKn is smaller than AKmax2 (UT9). If it is determined that AKn is smaller than AKmax2 (UT9; Yes), the control device closes the refrigerant flow path blocking device 41 (1) and the refrigerant flow path blocking device 41 (2), and heat source side heat exchanger 12 (2).
  • surplus refrigerant recovery device 43 is opened to recover the refrigerant in the heat source side heat exchanger 12 (2) into the accumulator 19 through the surplus refrigerant recovery pipe 42, Only the side heat exchanger 12 (1) performs heat exchange with air (UT10).
  • the control device substitutes AKmax2 for AKmax, and substitutes AKmin2 for AKmin (UT11).
  • the control device sets the heat source side refrigerant flow rate adjustment device 45 to such an opening that the flow path of the heat source side heat exchanger 12 is fully opened and the flow path of the bypass pipe 4c is fully closed (UT5).
  • the control device controls the heat source side air blower 44, performs capacity control of the heat source side heat exchanger 12 based on the above formula (4) (UT6), and completes the processing (UT18).
  • the control device determines whether AKn is smaller than AKmax3 (UT14). If it is determined that AKn is smaller than AKmax3 (UT14; Yes), the control device closes the refrigerant flow path blocking device 41 (1) and the refrigerant flow path blocking device 41 (2) and heat source side heat exchanger 12 (2). And the surplus refrigerant recovery device 43 is opened to recover the refrigerant in the heat source side heat exchanger 12 (2) into the accumulator 19 through the surplus refrigerant recovery pipe 42, Only the side heat exchanger 12 (1) performs heat exchange with air (UT15).
  • a control apparatus controls the opening degree (opening area) of the heat source side refrigerant
  • Opening of heat source side refrigerant flow control device 45 maximum opening ⁇ (1 ⁇ AKn / AKmax3)
  • modeA is set to 2 (UT7), and the process proceeds to UT8. If it is determined in UT8 that AKn is equal to or less than AKmin2, modeA is set to 3 (UT12), and the process proceeds to UT14. Further, when it is determined in UT9 that AKn is larger than AKmax2, modeA is set to 1 (UT13), and the process proceeds to UT2. Furthermore, when it is determined in UT14 that AKn is larger than AKmax3, modeA is set to 2 (UT17), and the process proceeds to UT8.
  • modeA is 1 means that heat exchange is performed using all of the heat source side heat exchanger 12, and the heat source side refrigerant hardly flows through the bypass pipe 14 (first heat mode). It means that the mode is exchange mode.
  • the mode A of 2 means that heat exchange is performed using a part of the heat source side heat exchanger 12 and the heat source side refrigerant hardly flows through the bypass pipe 14 (second heat exchange). Mode).
  • mode A of 3 means that heat is exchanged using a part of the heat source side heat exchanger 12 and the flow rate ratio of the refrigerant flowing through the heat source side heat exchanger 12 and the bypass pipe 14 is adjusted. It means that it is an exchange mode (third heat exchange mode).
  • the air conditioner 100A (2) causes the heat source side refrigerant recovered in the accumulator 19 to move inside the refrigerant pipe 4 and operate as a condenser. Since the refrigerant is replenished to the outlet side of the vessel 12, it can be prevented that the heat source side refrigerant is insufficient in the refrigerant circuit and capacity control cannot be performed properly, and stable AK control can be performed.
  • AKmax1, AKmin1, AKmax2, AKmin2, and AKmax3 are set to be AKmax1, AKmax2, AKmax3, AKmin1, and AKmin2 in descending order. These values are set to 100 for AKmax1, 60 for AKmax2, 40 for AKmax3, 25 for AKmin1, 20 for AKmin2, and the like. Furthermore, AKmin2 may be the same value as AKmin1.
  • the surplus refrigerant recovery pipe 42 and the surplus refrigerant recovery device 43 include a flow path between the heat source side heat exchanger 12 (2) and the refrigerant flow path blocking device 41 (2), an inlet side flow path of the accumulator 19, and the like.
  • the connection between the heat source side heat exchanger 12 (2) and the refrigerant flow path blocking device 41 (1) and the inlet of the accumulator 19 are described.
  • the side flow path may be connected, or the heat source side heat exchanger 12 (1) or the heat source side heat exchanger 12 (2) and the inlet side flow path of the compressor 10 may be connected. Good.
  • the refrigerant flow path blocking device 41 (1), the refrigerant flow path blocking device 41 (2), and the surplus refrigerant recovery device 43 may be open / close valves such as electromagnetic valves, or may be flown by electronic stepping motors. The thing which can open and close a road may be used.
  • the heat source side refrigerant flow rate adjusting device 45 is preferably one that can continuously change the opening area and control the flow rate by an electronic stepping motor or the like, but uses a plurality of solenoid valves and the like in several stages. The opening area may be changed.
  • the division of the heat source side heat exchanger 12 has good controllability if the inner volumes of the two divided heat exchangers are made substantially equal. However, the present invention is not limited to this, and there is no problem even if the two divided heat exchangers have different inner volumes.
  • the system including the heat exchanger related to heat medium 15 that performs heat exchange between the heat source side refrigerant and the heat medium such as water has been described as an example.
  • the heat of the heat source side refrigerant and the air that is the heat medium is described.
  • the amount of heat of the outdoor heat exchanger is controlled by the same method. be able to.
  • the heat amount of the heat source side heat exchanger 12 is controlled by the heat source side refrigerant flow rate adjustment device 45. Can be done.
  • the air conditioner air conditioner 100, air conditioner 100A (2)
  • the amount of heat and refrigerant in the heat source side heat exchanger 12 regardless of the operating state.
  • the amount can be controlled appropriately and energy-saving operation can be performed reliably.
  • the corresponding first heat medium flow switching device 22 and the second heat medium flow.
  • the path switching device 23 is set to an intermediate opening degree so that the heat medium flows through both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. Accordingly, both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b can be used for the heating operation or the cooling operation, so that the heat transfer area is increased, and an efficient heating operation or cooling operation is performed. Can be done.
  • the first heat medium flow switching device corresponding to the use side heat exchanger 26 performing the heating operation. 22 and the second heat medium flow switching device 23 are switched to flow paths connected to the heat exchanger related to heat medium 15b for heating, and the first heat medium corresponding to the use side heat exchanger 26 performing the cooling operation.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 By switching the flow path switching device 22 and the second heat medium flow path switching device 23 to a flow path connected to the heat exchanger related to heat medium 15a for cooling, in each indoor unit 2, heating operation and cooling operation are performed. It can be done freely.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 described in the present embodiment can switch a three-way flow path such as a three-way valve, or a two-way flow path such as an on-off valve. What is necessary is just to be able to switch a flow path, such as combining two things that perform opening and closing.
  • the first heat medium can be obtained by combining two things such as a stepping motor drive type mixing valve that can change the flow rate of the three-way flow path and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 may be used. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the heat medium flow control device 25 is a two-way valve has been described as an example, but with a bypass pipe that bypasses the use side heat exchanger 26 as a control valve having a three-way flow path You may make it install.
  • the heat medium flow control device 25 may be a stepping motor driven type that can control the flow rate flowing through the flow path, and may be a two-way valve or a one-way valve with one end closed. Further, as the heat medium flow control device 25, a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • the second refrigerant flow switching device 18 is shown as if it is a two-way flow switching valve. However, the present invention is not limited to this, and a plurality of three-way flow switching valves are used and the refrigerant flows in the same manner. You may comprise as follows. Further, the second refrigerant flow switching device 18 may be configured using a four-way valve.
  • the air conditioner according to the present embodiment has been described as being capable of mixed cooling and heating operation, the present invention is not limited to this.
  • heat source side refrigerant examples include single refrigerants such as R-22 and R-134a, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, non-azeotropic mixed refrigerants such as R-407C, It is possible to use a refrigerant containing a double bond, such as CF 3 CF ⁇ CH 2, which has a relatively low global warming potential, a mixture thereof, or a natural refrigerant such as CO 2 or propane.
  • single refrigerants such as R-22 and R-134a
  • pseudo-azeotropic mixed refrigerants such as R-410A and R-404A
  • non-azeotropic mixed refrigerants such as R-407C
  • a refrigerant containing a double bond such as CF 3 CF ⁇ CH 2 which has a relatively low global warming potential, a mixture thereof, or a natural refrigerant such as CO 2 or propane.
  • the refrigerant that performs a normal two-phase change is condensed and liquefied, and the refrigerant that becomes a supercritical state such as CO 2 is Although it is cooled in a supercritical state, in both cases, the other moves in the same way and produces the same effect.
  • the heat medium for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the heat source side heat exchanger 12 and the use side heat exchanger 26 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive.
  • the use side heat exchanger 26 may be a panel heater using radiation, and the heat source side heat exchanger 12 is of a water-cooled type that moves heat by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.
  • the case where there are four use-side heat exchangers 26 has been described as an example, but the number is not particularly limited.
  • the case where the number of heat exchangers between heat mediums 15a and the heat exchangers between heat mediums 15b is two has been described as an example, naturally the present invention is not limited to this, and the heat medium can be cooled or / and heated. If it comprises, you may install how many.
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 described in the present embodiment can switch a three-way flow path such as a three-way valve, or a two-way flow path such as an on-off valve. What is necessary is just to be able to switch a flow path, such as combining two things that perform opening and closing.
  • the first heat medium can be obtained by combining two things such as a stepping motor drive type mixing valve that can change the flow rate of the three-way flow path and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 may be used. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the heat medium flow control device 25 is a stepping motor-driven two-way valve
  • the use side heat exchanger 26 is a control valve having a three-way flow path. You may make it install with the bypass pipe to bypass.
  • the heat medium flow control device 25 may be a stepping motor driven type capable of controlling the flow rate flowing through the flow path, or may be a two-way valve or a device in which one end of the three-way valve is closed.
  • a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • the second refrigerant flow switching device 18 is a four-way valve
  • the invention is not limited to this, and a plurality of two-way flow switching valves and three-way flow switching valves are used, and the refrigerant is similarly You may comprise so that it may flow.
  • the air conditioner 100 has been described as being capable of mixed cooling and heating operation, the present invention is not limited to this.
  • One heat exchanger 15 and one expansion device 16 are connected to each other, and a plurality of use side heat exchangers 26 and heat medium flow control devices 25 are connected in parallel to perform either a cooling operation or a heating operation. Even if there is no configuration, the same effect is obtained.
  • the refrigerant that performs a normal two-phase change is condensed and liquefied, and the refrigerant that becomes a supercritical state such as CO2 is super It cools in a critical state, but in both cases the other works the same and has the same effect.
  • the heat medium for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the case where the air conditioner 100 includes the accumulator 19 has been described as an example, but the accumulator 19 may not be provided.
  • the case where the air conditioner 100 includes the check valve 13a to the check valve 13d has been described as an example, but these are not essential components. Therefore, it goes without saying that the same operation is performed and the same effect can be obtained without providing the accumulator 19 and the check valves 13a to 13d.
  • the heat source side heat exchanger 12 and the use side heat exchanger 26 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive.
  • the use side heat exchanger 26 may be a panel heater using radiation, and the heat source side heat exchanger 12 is of a water-cooled type that moves heat by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat. Further, the number of use side heat exchangers 26 is not particularly limited.
  • the first heat medium flow switching device 22, the second heat medium flow switching device 23, and the heat medium flow control device 25 are connected to each use side heat exchanger 26 one by one.
  • the present invention is not limited to this, and a plurality of each of the use side heat exchangers 26 may be connected.
  • the first heat medium flow switching device, the second heat medium flow switching device, and the heat medium flow control device connected to the same use side heat exchanger 26 may be operated in the same manner. .
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small-capacity pumps may be used in parallel.
  • the air-conditioning apparatus includes the heat medium flow switching devices on the heat medium side (the first heat medium flow switching device 22 and the second heat medium flow switching device 23), the heat medium.
  • the heat medium flow switching devices on the heat medium side (the first heat medium flow switching device 22 and the second heat medium flow switching device 23), the heat medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 省エネルギー化を図ることができる空気調和装置を得る。 熱源側熱交換器に流れる熱源側冷媒の流量及び熱源側熱交換器を迂回するバイパス配管に流れる冷媒の流量の割合を調整可能な熱源側冷媒流量調整装置を設け、熱源側熱交換器での熱交換量を制御することにより、空気調和装置が実行する運転状態に関わらず、確実に安定した省エネ運転を行う。

Description

空気調和装置
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 ビル用マルチエアコンなどの空気調和装置においては、たとえば建物外に配置した熱源機である室外機と建物の室内に配置した室内機との間に冷媒を循環させる。そして、冷媒が放熱、吸熱して、加熱、冷却された空気により空調対象空間の冷房または暖房を行なっていた。冷媒としては、たとえばHFC(ハイドロフルオロカーボン)冷媒が多く使われている。また、二酸化炭素(CO)等の自然冷媒を使うものも提案されている。
 また、チラーと呼ばれる空気調和装置においては、建物外に配置した熱源機にて、冷熱または温熱を生成する。そして、室外機内に配置した熱交換器で水、不凍液等を加熱、冷却し、これを室内機であるファンコイルユニット、パネルヒーター等に搬送して冷房または暖房を行なっていた(たとえば、特許文献1参照)。
 また、排熱回収型チラーと呼ばれる、熱源機と室内機の間に4本の水配管を接続し、冷却、加熱した水等を同時に供給し、室内機において冷房または暖房を自由に選択できるものもある(たとえば、特許文献2参照)。
 また、1次冷媒と2次冷媒の熱交換器を各室内機の近傍に配置し、室内機に2次冷媒を搬送するように構成されているものもある(たとえば、特許文献3参照)。
 また、室外機と熱交換器を持つ分岐ユニット間を2本の配管で接続し、室内機に2次冷媒を搬送するように構成されているものもある(たとえば、特許文献4参照)。
特開2005-140444号公報(第4頁、図1等) 特開平5-280818号公報(第4、5頁、図1等) 特開2001-289465号公報(第5~8頁、図1、図2等) 特開2003-343936号公報(第5頁、図1)
 従来のビル用マルチエアコン等の空気調和装置では、室内機まで冷媒を循環させているため、冷媒が室内等に漏れる可能性があった。一方、特許文献1及び特許文献2に記載されているような空気調和装置では、冷媒が室内機を通過することはない。しかしながら、特許文献1及び特許文献2に記載されているような空気調和装置では、建物外の熱源機において熱媒体を加熱または冷却し、室内機側に搬送する必要がある。このため、熱媒体の循環経路が長くなる。ここで、熱媒体により、所定の加熱あるいは冷却の仕事をする熱を搬送しようとすると、搬送動力等によるエネルギーの消費量が冷媒よりも高くなる。そのため、循環経路が長くなると、搬送動力が非常に大きくなる。このことから、空気調和装置において、熱媒体の循環をうまく制御することができれば省エネルギー化を図れることがわかる。
 特許文献2に記載されているような空気調和装置においては、室内機毎に冷房または暖房を選択できるようにするためには室外側から室内まで4本の配管を接続しなければならず、工事性が悪いものとなっていた。特許文献3に記載されている空気調和装置においては、ポンプ等の2次媒体循環手段を室内機個別に持つ必要があるため、高価なシステムとなるだけでなく、騒音も大きいものとなり、実用的なものではなかった。加えて、熱交換器が室内機の近傍にあるため、冷媒が室内に近い場所で漏れるという危険性を排除することができなかった。
 特許文献4に記載されているような空気調和装置においては、熱交換後の1次冷媒が熱交換前の1次冷媒と同じ流路に流入しているため、複数の室内機を接続した場合に、各室内機にて最大能力を発揮することができず、エネルギー的に無駄な構成となっていた。また、分岐ユニットと延長配管との接続が冷房2本、暖房2本の合計4本の配管でなされているため、結果的に室外機と分岐ユニットとが4本の配管で接続されているシステムと類似の構成となっており、工事性が悪いシステムとなっていた。
 本発明は、上記の課題を解決するためになされたもので、省エネルギー化を図ることができる空気調和装置を得るものである。また、室内機または室内機の近傍まで冷媒を循環させずに安全性の向上を図ることができる空気調和装置を得るものである。さらに、室外機と分岐ユニット(熱媒体変換機)または室内機との接続配管を減らし、工事性の向上を図るとともに、エネルギー効率を向上させることができる空気調和装置を得るものである。
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、複数の絞り装置、及び、熱源側冷媒と熱媒体とで熱交換する複数の熱媒体間熱交換器を少なくとも備え、前記圧縮機、前記熱源側熱交換器、前記複数の絞り装置、及び、前記複数の熱媒体間熱交換器の冷媒側流路が接続されて熱源側冷媒を循環させる冷媒循環回路が形成された空気調和装置であって、前記冷媒循環回路には、前記熱源側熱交換器の前後を接続して前記熱源側熱交換器を迂回するバイパス配管と、前記熱源側熱交換器に流れる熱源側冷媒の流量及び前記バイパス配管に流れる冷媒の流量の割合を調整可能な熱源側冷媒流量調整装置と、を設けているものである。
 本発明に係る空気調和装置は、熱源側熱交換器に流れる熱源側冷媒の流量及びバイパス配管に流れる冷媒の流量の割合を調整可能な熱源側冷媒流量調整装置を設けているので、空気調和装置が実行する運転状態に関わらず、確実に安定した省エネ運転ができる。
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の回路構成の一例を示す概略回路構成図である。 本発明の実施の形態に係る空気調和装置の回路構成の別の一例を示す概略回路構成図である。 本発明の実施の形態に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の熱源側送風装置と熱源側冷媒流量調整装置との連携制御処理の流れの一例を示すフローチャートである。 本発明の実施の形態に係る空気調和装置の回路構成の他の一例を示す概略回路構成図である。 本発明の実施の形態に係る空気調和装置のAK制御処理の流れの一例を示すフローチャートである。
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1及び図2は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。図1及び図2に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒(熱源側冷媒、熱媒体)を循環させる冷凍サイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内機が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。
 図2においては、本実施の形態に係る空気調和装置は、1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する複数に分割した熱媒体変換機3(親熱媒体変換機3a、子熱媒体変換機3b)と、を有している。室外機1と親熱媒体変換機3aとは、冷媒配管4で接続されている。親熱媒体変換機3aと子熱媒体変換機3bとは、冷媒配管4で接続されている。子熱媒体変換機3bと室内機2とは、配管5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、親熱媒体変換機3a及び子熱媒体変換機3bを介して室内機2に配送されるようになっている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱または温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
 図1及び図2に示すように、本実施の形態に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。このように、本実施の形態に係る空気調和装置では、2本の配管(冷媒配管4、配管5)を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続することにより、施工が容易となっている。
 図2に示すように、熱媒体変換機3を、1つの親熱媒体変換機3aと、親熱媒体変換機3aから派生した2つの子熱媒体変換機3b(子熱媒体変換機3b(1)、子熱媒体変換機3b(2))と、に分けることもできる。このようにすることにより、1つの親熱媒体変換機3aに対し、子熱媒体変換機3bを複数接続できるようになる。この構成においては、親熱媒体変換機3aと子熱媒体変換機3bとを接続する冷媒配管4は、3本になっている。この回路については、後段で詳細に説明するものとする(図4参照)。
 なお、図1及び図2においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1及び図2においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1及び図2においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネルギーの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1及び図2に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
 図3は、本実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図3に基づいて、空気調和装置100の詳しい構成について説明する。図3に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して配管5で接続されている。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
 さらに、室外機1には、ファン等の熱源側送風装置44が熱源側熱交換器12の近傍に設けられている。この熱源側送風装置44は、熱源側熱交換器12に空気を供給するものである。なお、後段で詳細に説明するが、室外機1には熱源側熱交換器12の前後を接続して熱源側熱交換器12を迂回するバイパス配管4cが熱源側冷媒流量調整装置45を介して設けられている。熱源側冷媒流量調整装置45は、熱源側熱交換器12と逆止弁13aとの間に設けられている。バイパス配管4cは、熱源側冷媒流量調整装置45と、第1冷媒流路切替装置11と熱源側熱交換器12との間の冷媒配管4と、を接続するように設けられている。
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転時(全暖房運転モード時及び暖房主体運転モード時)における熱源側冷媒の流れと冷房運転時(全冷房運転モード時及び冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、ファン等の熱源側送風装置44から供給される空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化または凝縮液化するものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、過剰な冷媒を貯留するものである。
 逆止弁13dは、熱媒体変換機3と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
 第1接続配管4aは、室外機1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図3では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。
[室内機2]
 室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
 この図3では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1及び図2と同様に、室内機2の接続台数を図3に示す4台に限定するものではない。
[熱媒体変換機3]
 熱媒体変換機3には、2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置17と、4つの第2冷媒流路切替装置18と、2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、が搭載されている。なお、熱媒体変換機3を親熱媒体変換機3aと子熱媒体変換機3bとに分けたものについては図4で説明する。
 2つの熱媒体間熱交換器15(熱媒体間熱交換器15a、熱媒体間熱交換器15b)は、凝縮器(放熱器)または蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18a(1)、第2冷媒流路切替装置18a(2)との間に設けられており、全暖房運転モード時において熱媒体の加熱に供し、全冷房運転モード時、冷房主体運転モード時及び暖房主体運転モード時において熱媒体の冷却に供するものである。
 また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18b(1)、第2冷媒流路切替装置18b(2)との間に設けられており、全暖房運転モード時、冷房主体運転モード時及び暖房主体運転モード時において熱媒体の加熱に供し、全冷房運転モード時において熱媒体の冷却に供するものである。
 2つの絞り装置16(絞り装置16a、絞り装置16b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 2つの開閉装置17(開閉装置17a、開閉装置17b)は、二方弁等で構成されており、冷媒配管4を開閉するものである。開閉装置17aは、熱源側冷媒の入口側における冷媒配管4に設けられている。開閉装置17bは、熱源側冷媒の入口側と出口側の冷媒配管4を接続した配管に設けられている。
 4つの第2冷媒流路切替装置18(第2冷媒流路切替装置18a(1)、第2冷媒流路切替装置18a(2)、第2冷媒流路切替装置18b(1)、第2冷媒流路切替装置18b(2))は、二方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18a(1)及び第2冷媒流路切替装置18a(2)(以下、第2冷媒流路切替装置18Aと称する)は、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18b(1)、第2冷媒流路切替装置18b(2)(以下、第2冷媒流路切替装置18Bと称する)は、全冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
 熱媒体送出装置である2つのポンプ21(ポンプ21a、ポンプ21b)は、配管5を導通する熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における配管5に設けられている。2つのポンプ21は、たとえば容量制御可能なポンプ等で構成するとよい。なお、ポンプ21aを、熱媒体間熱交換器15aと第1熱媒体流路切替装置22との間における配管5に設けてもよい。また、ポンプ21bを、熱媒体間熱交換器15bと第1熱媒体流路切替装置22との間における配管5に設けてもよい。
 4つの第1熱媒体流路切替装置22(第1熱媒体流路切替装置22a~第1熱媒体流路切替装置22d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。
 4つの第2熱媒体流路切替装置23(第2熱媒体流路切替装置23a~第2熱媒体流路切替装置23d)は、三方弁等で構成されており、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。
 4つの熱媒体流量調整装置25(熱媒体流量調整装置25a~熱媒体流量調整装置25d)は、開口面積を制御できる二方弁等で構成されており、配管5に流れる熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。
 なお、本実施の形態では、熱媒体流量調整装置25は利用側熱交換器26の出口側(下流側)に設ける場合を説明するが、これに限らず、一方を利用側熱交換器26に、他方が第2熱媒体流路切替装置23に接続し、利用側熱交換器26の入口側(上流側)に設けるようにしてもよい。
 また、熱媒体変換機3には、各種検出手段(2つの第1温度センサー31、4つの第2温度センサー34、4つの第3温度センサー35、及び、圧力センサー36)が設けられている。これらの検出手段で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置(図示省略)に送られ、圧縮機10の駆動周波数、熱源側送風装置44の回転数、利用側熱交換器26近傍に設けられる図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体の流路の切替等の制御に利用されることになる。
 2つの第1温度センサー31(第1温度センサー31a、第1温度センサー31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における配管5に設けられている。
 4つの第2温度センサー34(第2温度センサー34a~第2温度センサー34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。
 4つの第3温度センサー35(第3温度センサー35a~第3温度センサー35d)は、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
 圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものである。
 また、図示省略の制御装置は、マイコン等で構成されており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置は、ユニット毎に設けてもよく、室外機1または熱媒体変換機3に設けてもよい。
 熱媒体を導通する配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置22、及び、第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15aの冷媒流路、絞り装置16、及び、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15aの熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
 図4は、本実施の形態に係る空気調和装置(以下、空気調和装置100A(1)と称する)の回路構成の別の一例を示す概略回路構成図である。図4に基づいて、熱媒体変換機3を親熱媒体変換機3aと子熱媒体変換機3bとに分けた場合の空気調和装置100A(1)の回路構成について説明する。図4に示すように、熱媒体変換機3は、親熱媒体変換機3aと、子熱媒体変換機3bとで、筐体を分けて構成されている。このように構成することにより、図2に示したように1つの親熱媒体変換機3aに対し、複数の子熱媒体変換機3bを接続することができる。
 親熱媒体変換機3aには、気液分離器14と、絞り装置16cと、が設けられている。その他の構成要素については、子熱媒体変換機3bに搭載されている。気液分離器14は、室外機1に接続する1本の冷媒配管4と、子熱媒体変換機3bの熱媒体間熱交換器15a及び熱媒体間熱交換器15bに接続する2本の冷媒配管4と、に接続され、室外機1から供給される熱源側冷媒を蒸気状冷媒と液状冷媒とに分離するものである。絞り装置16cは、気液分離器14の液状冷媒の流れにおける下流側に設けられ、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものであり、冷房暖房混在運転時に、絞り装置16cの出口を中圧に制御する。絞り装置16cは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。このように構成することにより、親熱媒体変換機3aに子熱媒体変換機3bを複数接続できるようになる。
 空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。なお、空気調和装置100A(1)が実行する各運転モードについても同様であるので、空気調和装置100A(1)が実行する各運転モードについては説明を省略する。以下、空気調和装置100には、空気調和装置100A(1)も含まれているものとする。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
 図5は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図5に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧液冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a(1)及び第2冷媒流路切替装置18b(1)を介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、開閉装置17aは開、開閉装置17bは閉となっている。さらに、第2冷媒流路切替装置18a(1)は開、第2冷媒流路切替装置18a(2)は閉、第2冷媒流路切替装置18b(1)は開、第2冷媒流路切替装置18b(2)は閉となっている。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
 図6は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図6に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a(2)及び第2冷媒流路切替装置18b(2)を通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第2接続配管4bを導通し、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。
 そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、開閉装置17aは閉、開閉装置17bは開となっている。さらに、第2冷媒流路切替装置18a(1)は閉、第2冷媒流路切替装置18a(2)は開、第2冷媒流路切替装置18b(1)は閉、第2冷媒流路切替装置18b(2)は開となっている。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
 このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
 全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷房主体運転モード]
 図7は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図7では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図7では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図7では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図7に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、二相冷媒となる。熱源側熱交換器12から流出した二相冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した二相冷媒は、第2冷媒流路切替装置18b(2)を通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入した二相冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18a(1)を介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。さらに、第2冷媒流路切替装置18a(1)は開、第2冷媒流路切替装置18a(2)は閉、第2冷媒流路切替装置18b(1)は閉、第2冷媒流路切替装置18b(2)は開となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。
 冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図7においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[暖房主体運転モード]
 図8は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図8では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図8では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図8では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図8に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを閉止し、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18b(2)を通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18a(1)を介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。さらに、第2冷媒流路切替装置18a(1)は開、第2冷媒流路切替装置18a(2)は閉、第2冷媒流路切替装置18b(1)は閉、第2冷媒流路切替装置18b(2)は開となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。
 暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図7においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷媒配管4]
 以上説明したように、本実施の形態に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。
[配管5]
 本実施の形態に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れている。
[熱源側熱交換器12の容量制御]
 本発明の実施の形態に係る空気調和装置100は、以上のように動作するが、各運転モードにおいて、熱源側熱交換器12の周囲環境である外気の温度や湿度に応じて冷凍サイクルを適切に制御し、空調対象である室内空間7での熱負荷等に応じた加熱能力または冷却能力を発揮させることが要求される。熱源側熱交換器12の周囲環境に応じて冷凍サイクルを制御するためには、熱源側熱交換器12での熱交換量(熱量)を制御する必要がある。熱交換器における熱量Q[kW]は、概略下記式(1)で表される。
式(1)
Q[kW]=A[m]×K[kW/mK]×(Tr-Ta)[℃]

 式(1)において、Aは熱交換器の伝熱面積[m]を、Kは熱交換器の内部の冷媒(熱媒体)と周囲の流体との間の熱通過率[kW/mK]を、Taは熱交換器の周囲の流体の温度[℃]を、Trは熱交換器の内部の冷媒(熱媒体)の温度[℃]を、それぞれ表している。なお、式(1)は、熱交換器が凝縮器として動作している場合の式で、蒸発器として動作する場合は、空気温度と冷媒温度が逆になる。この式を簡略化すると、下記式(2)で表される。
式(2)
Q[kW]=AK[kW/K]×(Tr-Ta)[℃]
 式(2)において、AKは熱交換器の伝熱面積と熱通過率の積であり単位温度あたりの熱通過率の能力を表す値[kW/K]を表している。この式(2)より、熱交換器の内部の冷媒の温度Trと熱交換器の周囲の流体の温度Taとの温度差が同じであれば、AKを制御すれば熱交換器での熱量Qを制御することができることがわかる。
 ここで、熱源側熱交換器12を考える。熱源側熱交換器12で発揮すべき能力は、外気の温度や湿度、負荷側の必要熱量、圧縮機10の周波数等によって決まる。たとえば、冷房運転において、圧縮機10の周波数を変化させ、蒸発温度(低圧)を一定値にする制御がなされ、熱源側熱交換器12が凝縮器(ガスク-ラ)として動作しており、熱源側熱交換器12の熱量を調整して、凝縮温度(高圧)を一定値に制御することを考える。凝縮器の周囲環境や蒸発器での冷却負荷が変化した場合、冷凍サイクル内は同じ冷媒が循環しているため、熱源側熱交換器12での熱量も制御しないと、冷凍サイクル内の凝縮温度(高圧)を目標の値にすることはできない。
 そこで、周囲環境の変化や運転状態の変化に応じた熱源側熱交換器12の熱量の制御が必須となる。上述したように、式(2)により、熱源側熱交換器12の熱量を制御するためには、熱源側熱交換器12のAKを制御すればよい。
 図3から図8に示すように、室外機1には、熱源側熱交換器12に空気を送出するための熱源側送風装置44が設置されている。また、熱源側熱交換器12の入口側流路と出口側流路の間に熱源側熱交換器12を迂回するバイパス配管4cが設けられている。さらに、熱源側熱交換器12の入口側流路とバイパス配管4cの入口流路の合流点に、熱源側熱交換器12に流れる冷媒の流量とバイパス配管4cに流れる冷媒の流量の比率(割合)を調整できる熱源側冷媒流量調整装置45が設置されている。すなわち、熱源側熱交換器12での熱交換量は、熱源側送風装置44及び熱源側冷媒流量調整装置45によって制御される。
 熱源側送風装置44は、回転することにより風を発生させる翼と、翼を回転させるためのモーターと、モーターの回転数を制御するためのインバータと、から構成されている。このような熱源側送風装置44の回転数を制御することにより、熱源側熱交換器12を通過する空気の風量を変化させ、熱源側熱交換器12のAKを変化させることができる。
 また、熱源側冷媒流量調整装置45は、電子式のステッピングモーター等により2つの流路の開口面積を変化させられるようになっているもので構成されている。このような熱源側冷媒流量調整装置45を制御することにより、熱源側熱交換器12に流れる冷媒の流量と、バイパス配管4cに流れる冷媒の流量との比率を制御することができる。熱源側熱交換器12に流れる冷媒流量を制御することにより、冷媒の保有するエネルギー量を制御することができ、熱源側熱交換器12を介して周囲空気に与える熱量を制御することができる。
 熱交換器での熱交換量Qrは下記式(3)で表される。
式(3)
Qr=Gr×(hri-hro) 
 式(3)において、Grは冷媒の質量流量[kg/h]を、hriは熱交換器の入口冷媒エンタルピー[kJ/kg]を、hroは熱交換器の出口冷媒エンタルピー[kJ/kg]を、それぞれ表している。
 すなわち、冷媒のエンタルピーhri及びhroが同じであるとすると、冷媒の質量流量Grを変化させると熱交換器の熱量Qrを変化させることができる。熱交換器での熱量が変化するということは、上記式(2)より、熱交換器のAKが変化するということになる。よって、熱源側冷媒流量調整装置45を制御して、熱源側熱交換器12への流入冷媒流量を制御すると、熱源側熱交換器12のAKを制御できることになる。
 熱源側送風装置44は、周囲空気の空気抵抗に逆らって回転するため、安定して回転させるためには、送風装置の構造によって決まる最低回転数以上で回転させる必要があり、最低回転数以下になると停止してしまう。そこで、空気調和装置100においては、熱源側送風装置44による空気の風量の制御と、熱源側冷媒流量調整装置45による冷媒の流量の制御とを、連携して行なうことにより適切なAKの制御を行なうことができるようにしている。
 図9は、熱源側送風装置44と熱源側冷媒流量調整装置45との連携制御処理の流れの一例を示すフローチャートである。図9に基づいて、熱源側送風装置44と熱源側冷媒流量調整装置45と連携制御方法の一例について説明する。熱源側熱交換器12におけるAKは、熱交換器の種類等によって異なったものとなるため、熱交換器で発揮することができる最大のAKに対する比率で表し、ここからはこの比率をAK[%]と呼ぶ。すなわち、AKは0~100の値をとる。なお、AKの制御目標をAKnとする。
 空気調和装置100の運転が開始されると、図示省略の制御装置は、連携制御の処理を開始する(ST0)。まず、制御装置は、AK制御のモード(以下、modeAと称する)を判定する(ST1)。modeAが1であると判定すると(ST1;1)、制御装置は、AKnが熱源側送風装置44で制御可能な熱源側熱交換器12の容量の最小値AKminよりも大きいか否かを判断する(ST2)。
 AKnがAKminよりも大きいと判断すると(ST2;Yes)、制御装置は、熱源側冷媒流量調整装置45を、熱源側熱交換器12の流路が全開、バイパス配管4cの流路が全閉となるような開度に設定する(ST3)。そして、制御装置は、熱源側送風装置44を制御し、下記式(4)に基づき熱源側熱交換器12の容量制御を行ない(ST4)、処理を完了する(ST9)。つまり、制御装置は、熱源側熱交換器12での必要熱交換量が十分に大きいと判断したとき、熱源側送風装置44の回転数の制御を、熱源側冷媒流量調整装置45による熱源側冷媒流量制御に優先して実行している。
式(4)
Figure JPOXMLDOC01-appb-M000001
 式(4)において、AKmaxは熱源側熱交換器12の容量の最大値(=100)[%]を、AKmax及びAKminは熱源側送風装置44で制御可能な熱源側熱交換器12の容量の最大値及び最小値[%]を、FANmaxは熱源側送風装置44の最大回転数[%]を、FANminは熱源側熱交換器12の最低回転数[%]を、それぞれ表している。
 一方、modeAが2であると判定すると(ST1;2)、制御装置は、AKnがAKminよりも小さいか否かを判断する。AKnがAKmin以下であると判断すると(ST6;Yes)、制御装置は、熱源側冷媒流量調整装置45の開度(開口面積)を、下記式(5)のように制御して熱源側熱交換器12の容量制御を行なう(ST7)、処理を完了する(ST9)。つまり、制御装置は、熱源側熱交換器12での必要熱交換量がある程度小さくなったと判断したとき、熱源側冷媒流量調整装置45による熱源側冷媒流量制御を、熱源側送風装置44の回転数の制御に優先して実行している。
式(5)
 熱源側冷媒流量調整装置45の開度=最大開度×(1-AKn/AKmin)
 なお、ST2において、AKnがAKmin以下と判断された場合は、制御装置は、modeAを2とし(ST5)、ST6の判定に移る。また、ST6において、AKnがAKminよりも大きいと判断された場合は、modeAを1とし(ST8)、ST2の判定に移る。
 図9において、modeAが1であるとは、熱源側熱交換器12に熱源側冷媒の全量を流入させて熱交換させ、かつ、バイパス配管14には熱源側冷媒をほとんど流さない熱交換モードであることを意味している。また、modeAが2であるとは、熱源側熱交換器12に熱源側冷媒の全量を流入させずに熱交換させ、かつ、かつ、熱源側熱交換器12とバイパス配管14とに流す冷媒の流量比を調整する熱交換モードであることを意味している。 
 ここで、熱源側冷媒流量調整装置45は、開度ゼロのときに熱源側熱交換器12の流路が全開かつバイパス配管4cの流路が全閉となり、最大開度のときに熱源側熱交換器12の流路が全閉かつバイパス配管4cの流路が全開となるように設置されている。また、AKmax、AKminの値は、たとえばAKmaxは100、AKminは25等とする。
 このように制御することにより、空気調和装置100は、AKが大きいときは熱源側送風装置44の回転数を変化させて熱源側熱交換器12での熱交換量を制御し、AKが小さい時は熱源側冷媒流量調整装置45の開度(開口面積)を変化させて熱源側熱交換器12での熱交換量を制御して、AKをほぼ0から100まで変化させることができる。
 なお、熱源側冷媒流量調整装置45が三方の流路の流量比を制御できる三方弁(三方流量調整装置)である場合を例に説明を行なったが、熱源側熱交換器12の流路及びバイパス配管4cのそれぞれの流路に開口面積を制御できる二方弁(二方流量調整装置)等を設置し、それぞれ別々に制御するようにしてもよい。この場合は、双方の熱源側冷媒流量調整装置45の開口面積の合計値があまり変化しないように制御すればよい。
 また、ここでは、熱源側熱交換器12が凝縮器として動作している場合を例に説明を行なったが、熱源側熱交換器12が蒸発器として動作している場合でも同様のことが言え、同様の効果を奏する。さらに、熱源側冷媒がCO等の高圧側で超臨界状態に遷移する冷媒においても、同様のことが成り立つ。
 以上のようにして、空気調和装置100では各運転モードの時の熱源側熱交換器12の熱量の制御を行なうことができる。ところで、熱源側熱交換器12のAKを制御する方法としては、熱源側熱交換器12を数分割(たとえば4分割)し、AK値に応じて、使用する熱交換器の容量(伝熱面積)を変化させる方法も考えられる。
 熱源側熱交換器12内の冷媒の質量流量及び熱源側送風装置44の風速が同じであれば、熱源側熱交換器12内の冷媒の管内熱伝達率及び管外熱伝達率は変わらないため、冷媒が熱源側熱交換器12内での単位長さ進む場合の冷媒の保有エネルギー変化量(エンタルピー変化量)は同じになる。したがって、伝熱面積(A)を変化させて、AKを変化させる場合は、熱源側熱交換器12の出入口エンタルピー変化量はAKにほぼ比例して減少する。そこで、圧縮機10の周波数を低下させて、熱源側冷媒が熱源側熱交換器12内で単位長さ進む場合の熱源側冷媒の保有エネルギー変化量(エンタルピー変化量)を変化させることにより、熱源側熱交換器12の出口の冷媒状態量、すなわちサブクールが同じ状態になるように制御しながら、AK制御を行なうことができる。
 しかしながら、熱源側冷媒流量調整装置45を使う方法だと、熱源側熱交換器12の伝熱面積は変化せず、熱源側熱交換器12の配管内の熱源側冷媒の質量流量を低下させてAK制御を行なうことになる。このとき、熱源側送風装置44の風速が同じであれば、熱源側熱交換器12の管外熱伝達率は変わらないため、熱源側熱交換器12内での冷媒が単位長さ進む場合の冷媒のエンタルピー変化量はそれほど大きくは変わらない。したがって、熱源側熱交換器12の出口冷媒のサプクールが大きくなり、バイパス配管4cを通ってきた熱源側冷媒と合流した熱源側冷媒の状態が、熱源側熱交換器12を数分割し、伝熱面積を変化させた場合の熱源側熱交換器12の出口冷媒と同じ状態になる。
 さて、熱源側冷媒は温度が低くなると密度が大きくなり、熱源側熱交換器12内により多くの熱源側冷媒が溜まることになる。冷媒回路内に多大の余剰冷媒があれば先の方法でAK制御ができるが、実際の余剰冷媒はアキュムレーター19の容積で決まるため、今まで説明した制御方法では、延長配管の長さが長い場合に、すべての運転モードにおいてAK制御を行うには、冷媒量が不足することが予想される。
 そこで、熱源側熱交換器12を2つに分割し、片方の熱交換器内の冷媒量を回収することにより、不足する冷媒量を賄い、安定した制御が行なえる方法を考える。すなわち、図10に示す空気調和装置(以下、空気調和装置100A(2)と称する)のように、熱源側熱交換器12を2つに分割し(熱源側熱交換器12(1)、熱源側熱交換器12(2))、それらを並列に接続している。そして、熱源側熱交換器12(2)の冷媒流路の前後に冷媒流路遮断装置41(1)及び冷媒流路遮断装置41(2)を設置し、熱源側熱交換器12(2)と冷媒流路遮断装置41(2)との間の流路と、アキュムレーター19の入口配管とを、余剰冷媒回収配管42及び余剰冷媒回収装置43によって接続する。そして、図11に示すようにAK制御を行なう。
 図11は、本実施の形態に係る空気調和装置100A(2)のAK制御処理の流れの一例を示すフローチャートである。図11に基づいて、空気調和装置100A(2)が実行するAK制御方法の一例について説明する。
 空気調和装置100A(2)の運転が開始されると、図示省略の制御装置は、AK制御の処理を開始する(UT0)。まず、制御装置は、AK制御のモード(以下、modeAと称する)を判定する(UT1)。modeAが1であると判定すると(UT1;1)、制御装置は、AKn最小値AKminよりも大きいか否かを判断する(UT2)。AKnがAKminよりも大きいと判断すると(UT2;Yes)、制御装置は、冷媒流路遮断装置41(1)及び冷媒流路遮断装置41(2)を全開、余剰冷媒回収装置43を全閉とし(UT3)、熱源側冷媒が熱源側熱交換器12(1)と熱源側熱交換器12(2)の両方に流れるようにする。
 そして、制御装置は、AKmax1をAKmaxに代入し、AKmin1をAKminに代入する(UT4)。制御装置は、熱源側冷媒流量調整装置45を、熱源側熱交換器12の流路が全開、バイパス配管4cの流路が全閉となるような開度に設定する(UT5)。それから、制御装置は、熱源側送風装置44を制御し、上記式(4)に基づいて、熱源側熱交換器12の容量制御を行ない(UT6)、処理を完了する(UT18)。
 一方、modeAが2であると判定すると(UT1;2)、制御装置は、AKnがAKmin2よりも大きいか否か判断する(UT8)。AKnがAKmin2よりも大きいと判断すると(UT8;Yes)、制御装置は、AKnがAKmax2よりも小さいか否かを判定する(UT9)。AKnがAKmax2よりも小さいと判断すると(UT9;Yes)、制御装置は、冷媒流路遮断装置41(1)及び冷媒流路遮断装置41(2)を閉として熱源側熱交換器12(2)へ流れる流路を遮断し、かつ余剰冷媒回収装置43を開として、熱源側熱交換器12(2)内の冷媒を余剰冷媒回収配管42を介してアキュムレーター19内に回収するようにし、熱源側熱交換器12(1)のみで空気と熱交換を行うようにする(UT10)。
 そして、制御装置は、AKmax2をAKmaxに代入し、AKmin2をAKminに代入し(UT11)。制御装置は、熱源側冷媒流量調整装置45を、熱源側熱交換器12の流路が全開、バイパス配管4cの流路が全閉となるような開度に設定する(UT5)。それから、制御装置は、熱源側送風装置44を制御し、上記式(4)に基づいて、熱源側熱交換器12の容量制御を行ない(UT6)、処理を完了する(UT18)。
 また、modeAが3あると判定すると(UT1;3)、制御装置は、AKnがAKmax3よりも小さいか否かを判断する(UT14)。AKnがAKmax3よりも小さいと判断すると(UT14;Yes)、制御装置は、冷媒流路遮断装置41(1)及び冷媒流路遮断装置41(2)を閉として熱源側熱交換器12(2)へ流れる流路を遮断し、かつ余剰冷媒回収装置43を開として、熱源側熱交換器12(2)内の冷媒を余剰冷媒回収配管42を介してアキュムレーター19内に回収するようにし、熱源側熱交換器12(1)のみで空気と熱交換を行うようにする(UT15)。
 そして、制御装置は、熱源側冷媒流量調整装置45の開度(開口面積)を、下記式(6)のように制御し、熱源側熱交換器12の容量制御を行ない(UT16)、処理を完了する(UT18)。
式(6)
熱源側冷媒流量調整装置45の開度=最大開度×(1-AKn/AKmax3)
 なお、UT2において、AKnが熱源側送風装置44で制御可能な熱源側熱交換器12の容量の最小値AKmin1以下と判断された場合は、modeAを2とし(UT7)、UT8の判定に移る。また、UT8において、AKnがAKmin2以下と判断された場合は、modeAを3とし(UT12)、UT14の判定に移る。さらに、UT9において、AKnがAKmax2よりも大きいと判断された場合は、modeAを1とし(UT13)、UT2の判定に移る。またさらに、UT14において、AKnがAKmax3よりも大きいと判断された場合は、modeAを2とし(UT17)、UT8の判定に移る。
 図11において、modeAが1であるとは、熱源側熱交換器12の全部を使用して熱交換させ、かつ、バイパス配管14には熱源側冷媒をほとんど流さない熱交換モード(第一の熱交換モード)であることを意味している。また、modeAが2であるとは、熱源側熱交換器12の一部を使用して熱交換させ、かつ、バイパス配管14には熱源側冷媒をほとんど流さない熱交換モード(第二の熱交換モード)であることを意味している。さらに、modeAが3であるとは、熱源側熱交換器12の一部を使用して熱交換させ、かつ、熱源側熱交換器12とバイパス配管14とに流す冷媒の流量比を調整する熱交換モード(第三の熱交換モード)であることを意味している。
 このように制御することにより、空気調和装置100A(2)は、アキュムレーター19内に回収された熱源側冷媒は、冷媒配管4の内部を移動し、凝縮器として動作している熱源側熱交換器12の出口側に補充されるため、冷媒回路内で熱源側冷媒が不足して容量制御を適切に行なえなくなることを防ぐことができ、安定したAK制御を行なうことができる。
 なお、ここで、AKmax1、AKmin1、AKmax2、AKmin2、AKmax3は、値の大きい順に、AKmax1、AKmax2、AKmax3、AKmin1、AKmin2となるように設定される。また、これらの値は、たとえばAKmax1は100、AKmax2は60、AKmax3は40、AKmin1は25、AKmin2は20等とする。さらに、AKmin2はAKmin1と同じ値であってもよい。
 ここでは、余剰冷媒回収配管42及び余剰冷媒回収装置43は、熱源側熱交換器12(2)と冷媒流路遮断装置41(2)の間の流路とアキュムレーター19の入口側流路との間に接続されている場合を例に説明を行なったが、これらは、熱源側熱交換器12(2)と冷媒流路遮断装置41(1)の間の流路とアキュムレーター19の入口側流路とを接続するようにしてもよいし、熱源側熱交換器12(1)または熱源側熱交換器12(2)と圧縮機10の入口側流路とを接続するようにしてもよい。
 また、冷媒流路遮断装置41(1)、冷媒流路遮断装置41(2)、及び、余剰冷媒回収装置43は、電磁弁のような開閉弁でもよいし、電子式のステッピングモーターにより、流路の開閉が行えるものでもよい。さらに、熱源側冷媒流量調整装置45は、電子式のステッピングモーター等により連続的に、開口面積を変化させ、流量を制御させられるものがよいが、複数の電磁弁等を使用し、数段階に、開口面積を変化させるように構成してもよい。
 熱源側熱交換器12の分割は、分割された2つの熱交換器の内容積がほぼ同等になるようにすると、制御性がよい。しかし、これに限るものではなく、分割された2つの熱交換器の内容積が異なるように分割しても問題ない。
 ここでは、熱源側冷媒と水等の熱媒体との熱交換を行う熱媒体間熱交換器15を備えたシステムを例に説明を行なったが、熱源側冷媒と熱媒体である空気との熱交換を行う熱媒体間熱交換器を収容した室内機と室外機との間を冷媒が循環する直膨式の空気調和装置においても、同様の方法で、室外熱交換器の熱量の制御を行うことができる。また、熱源側熱交換器12が熱媒体と熱源側冷媒とを熱交換させる水冷式の熱源システムである場合においても、熱源側冷媒流量調整装置45によって熱源側熱交換器12の熱量の制御を行なうことができる。
 本実施の形態に係る空気調和装置(空気調和装置100、空気調和装置100A(2))は、以上のように動作するため、運転状態によらず、熱源側熱交換器12での熱量及び冷媒量を適切に制御でき、確実に省エネ運転を行うことができる。
 本実施の形態に係る空気調和装置では、利用側熱交換器26にて暖房負荷または冷房負荷のみが発生している場合は、対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を中間的な開度にし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方に熱媒体が流れるようにしている。これにより、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方を暖房運転または冷房運転に使用することができるため、伝熱面積が大きくなり、効率のよい暖房運転または冷房運転を行なうことができる。
 また、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
 なお、本実施の形態で説明した第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行なうものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、本実施の形態では、熱媒体流量調整装置25が二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
 また、熱媒体流量制御装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、熱媒体流量制御装置25として、開閉弁等の二法流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
 また、第2冷媒流路切替装置18が二方流路切替弁であるかのように示したが、これに限るものではなく、三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。また、四方弁を用いて第2冷媒流路切替装置18を構成するようにしてもよい。
 本実施の形態に係る空気調和装置は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。たとえば、熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 熱源側冷媒としては、たとえばR-22、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CFCF=CH等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCOやプロパン等の自然冷媒を用いることができる。加熱用として動作している熱媒体間熱交換器15aまたは熱媒体間熱交換器15bにおいて、通常の二相変化を行う冷媒は、凝縮液化し、CO等の超臨界状態となる冷媒は、超臨界の状態で冷却されるが、どちらでも、その他は同じ動きをし、同様の効果を奏する。
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。
 本実施の形態では、利用側熱交換器26が4つである場合を例に説明したが、個数を特に限定するものではない。また、熱媒体間熱交換器15a、熱媒体間熱交換器15bが2つである場合を例に説明したが、当然、これに限るものではなく、熱媒体を冷却または/及び加熱できるように構成すれば、幾つ設置してもよい。さらに、ポンプ21a、ポンプ21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べて接続してもよい。
 なお、本実施の形態で説明した第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁等の三方流路を切り替えられるもの、開閉弁等の二方流路の開閉を行なうものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、ステッピングモーター駆動式の混合弁等の三方流路の流量を変化させられるもの、電子式膨張弁等の二方流路の流量を変化させられるものを2つ組み合わせる等して第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。さらに、本実施の形態では、熱媒体流量調整装置25がステッピングモーター駆動式の二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
 また、熱媒体流量調整装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用してもよいし、二方弁でも、三方弁の一端を閉止したものでもよい。また、熱媒体流量調整装置25として、開閉弁等の二法流路の開閉を行なうものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
 また、第2冷媒流路切替装置18が四方弁である場合を説明したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 本実施の形態に係る空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 熱源側冷媒としては、たとえばR-22、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CF3 CF=CH2 等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCO2 やプロパン等の自然冷媒を用いることができる。加熱用として動作している熱媒体間熱交換器15aまたは熱媒体間熱交換器15bにおいて、通常の二相変化を行なう冷媒は、凝縮液化し、CO2 等の超臨界状態となる冷媒は、超臨界の状態で冷却されるが、どちらでも、その他は同じ動きをし、同様の効果を奏する。
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 本実施の形態では、空気調和装置100にアキュムレーター19を含めている場合を例に説明したが、アキュムレーター19を設けなくてもよい。また、本実施の形態では、空気調和装置100に逆止弁13a~逆止弁13dがある場合を例に説明したが、これらも必須の部品ではない。したがって、アキュムレーター19や逆止弁13a~逆止弁13dを設けなくても、同様の動作をし、同様の効果を奏することは言うまでもない。
 また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。また、利用側熱交換器26の個数を特に限定するものではない。
 本実施の形態では、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23、及び、熱媒体流量調整装置25が、各利用側熱交換器26にそれぞれ1つずつ接続されている場合を例に説明したが、これに限るものではなく、1つの利用側熱交換器26に対し、それぞれが複数接続されていてもよい。この場合には、同じ利用側熱交換器26に接続されている、第1熱媒体流路切替装置、第2熱媒体流路開閉装置、熱媒体流量調整装置を同じように動作させればよい。
 また、本実施の形態では、熱媒体間熱交換器15が2つある場合を例に説明したが、当然、これに限るものではない。熱媒体を冷却または/及び加熱できるように構成すれば、熱媒体間熱交換器15をいくつ設置してもよい。
 また、ポンプ21a及びポンプ21bは、それぞれ一つとは限らず、複数の小容量のポンプを並列に並べて使用してもよい。
 以上のように、本実施の形態に係る空気調和装置は、熱媒体側の熱媒体流路切替装置(第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23)、熱媒体流量調整装置25、ポンプ21を制御することにより、安全かつ省エネルギー性の高い運転を実行することができる。
 1 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 熱媒体変換機、3a 親熱媒体変換機、3b 子熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、4c バイパス配管、5 配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、14 気液分離器、15 熱媒体間熱交換器、15a 熱媒体間熱交換器、15b 熱媒体間熱交換器、16 絞り装置、16a 絞り装置、16b 絞り装置、16c 絞り装置、17 開閉装置、17a 開閉装置、17b 開閉装置、18 第2冷媒流路切替装置、18a 第2冷媒流路切替装置、18b 第2冷媒流路切替装置、19 アキュムレーター、21 ポンプ、21a ポンプ、21b ポンプ、22 第1熱媒体流路切替装置、22a 第1熱媒体流路切替装置、22b 第1熱媒体流路切替装置、22c 第1熱媒体流路切替装置、22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a 第2熱媒体流路切替装置、23b 第2熱媒体流路切替装置、23c 第2熱媒体流路切替装置、23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a 熱媒体流量調整装置、25b 熱媒体流量調整装置、25c 熱媒体流量調整装置、25d 熱媒体流量調整装置、26 利用側熱交換器、26a 利用側熱交換器、26b 利用側熱交換器、26c 利用側熱交換器、26d 利用側熱交換器、31 第1温度センサー、31a 第1温度センサー、31b 第1温度センサー、34 第2温度センサー、34a 第2温度センサー、34b 第2温度センサー、34c 第2温度センサー、34d 第2温度センサー、35 第3温度センサー、35a 第3温度センサー、35b 第3温度センサー、35c 第3温度センサー、35d 第3温度センサー、36 圧力センサー、41 冷媒流路遮断装置、42 余剰冷媒回収配管、43 余剰冷媒回収装置、44 熱源側送風装置、45 熱源側冷媒流量調整装置、46 流路切替部、47 流路切替部、100 空気調和装置、100A(1) 空気調和装置、100A(2) 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (12)

  1.  圧縮機、熱源側熱交換器、複数の絞り装置、及び、熱源側冷媒と熱媒体とで熱交換する複数の熱媒体間熱交換器を少なくとも備え、
     前記圧縮機、前記熱源側熱交換器、前記複数の絞り装置、及び、前記複数の熱媒体間熱交換器の冷媒側流路が接続されて熱源側冷媒を循環させる冷媒循環回路が形成された空気調和装置であって、
     前記冷媒循環回路には、
     前記熱源側熱交換器の前後を接続して前記熱源側熱交換器を迂回するバイパス配管と、
     前記熱源側熱交換器に流れる熱源側冷媒の流量及び前記バイパス配管に流れる冷媒の流量の割合を調整可能な熱源側冷媒流量調整装置と、を設けている
     ことを特徴とする空気調和装置。
  2.  前記冷媒循環回路を流れている熱源側冷媒の略全部が前記熱源側冷媒流量調整装置を通過するようにしている
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記熱源側冷媒流量調整装置が、
     三方流量調整装置、あるいは、複数の二方流量調整装置である
     ことを特徴とする請求項1または2に記載の空気調和装置。
  4.  前記熱源側熱交換器に空気を供給する熱源側送風装置を備え、
     前記熱源側送風装置の回転数の制御と、前記熱源側冷媒流量調整装置による熱源側冷媒流量制御と、を連携して実行している
     ことを特徴とする請求項1~3のいずれか一項に記載の空気調和装置。
  5.  前記熱源側熱交換器での必要熱交換量が所定値よりも大きいとき、
     前記熱源側送風装置の回転数の制御を、前記熱源側冷媒流量調整装置による熱源側冷媒流量制御に優先して実行し、
     前記熱源側熱交換器での必要熱交換量が所定値よりも小さくなったとき、
     前記熱源側冷媒流量調整装置による熱源側冷媒流量制御を、前記熱源側送風装置の回転数の制御に優先して実行する
     ことを特徴とする請求項4に記載の空気調和装置。
  6.  前記熱源側熱交換器を並列に接続した複数の熱交換器で構成したものにおいて、
     前記複数の熱交換器のうちの一部の前後に設置した冷媒流路遮断装置と、
     前記複数の熱交換器のうちの少なくとも一部の一端または他端と前記圧縮機の吸入側の流路とを接続する余剰冷媒回収配管と、
     前記余剰冷媒回収配管に設置した余剰冷媒回収装置と、を備えた
     ことを特徴とする請求項1~5のいずれか一項に記載の空気調和装置。
  7.  前記複数の熱交換器の全部を使用して熱交換させ、かつ、前記バイパス配管にはほとんど熱源側冷媒を流さない第一熱交換モードと、
     前記複数の熱交換器のうちの一部を使用して熱交換させ、かつ、前記バイパス配管にはほとんど熱源側冷媒を流さない第二の熱交換モードと、
     前記複数の熱交換器のうちの一部を使用して熱交換させ、かつ、前記熱交換器と前記バイパス配管とに流す熱源側冷媒の流量比を調整する第三の熱交換モードと、を備え、
     前記第一の熱交換モードにおいては、
     前記冷媒流路遮断装置を開とし、前記余剰冷媒回収装置を閉としている
     ことを特徴とする請求項6に記載の空気調和装置。
  8.  前記第二の熱交換モード及び前記第三の運転モードにおいては、
     前記冷媒流路遮断装置を閉とし、前記余剰冷媒回収装置を開としている
     ことを特徴とする請求項6または7に記載の空気調和装置。
  9.  前記熱源側熱交換器を構成する複数の熱交換器の容積を略同等としている
     ことを特徴とする請求項6~8のいずれか一項に記載の空気調和装置。
  10.  複数の熱媒体送出装置と、前記熱媒体と空調対象空間に係る空気とで熱交換を行なう複数の利用側熱交換器とを備え、
     前記複数の熱媒体間熱交換器の熱媒体側流路に、前記複数の熱媒体送出装置と前記複数の利用側熱交換器とを接続して、複数の熱媒体循環回路を形成し、
     前記複数の利用側熱交換器のそれぞれの入口側または出口側に、前記利用側熱交換器に対する熱媒体の循環量を調整する利用側流量制御装置を設置し、
     前記複数の利用側熱交換器のそれぞれの入口側及び出口側に熱媒体の流路を切り換える熱媒体流路切替装置を設置している
     ことを特徴とする請求項1~9のいずれか一項に記載の空気調和装置。
  11.  前記圧縮機及び前記熱源側熱交換器は室外機に収容され、
     前記複数の絞り装置、前記複数の熱媒体間熱交換器及び前記複数のポンプは熱媒体変換機に収容され、
     前記利用側熱交換器は室内機に収容され、
     前記室内機、前記熱媒体変換機、及び、前記室外機は、それぞれ別体に形成され、互いに離れた場所に設置できる
     ことを特徴とする請求項10に記載の空気調和装置。
  12.  前記室外機と前記熱媒体変換機とを少なくとも2本の冷媒配管で接続し、前記熱媒体変換機と前記室内機とを2本の熱媒体配管で接続している
     ことを特徴とする請求項11に記載の空気調和装置。
PCT/JP2009/068455 2009-10-28 2009-10-28 空気調和装置 WO2011052046A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09850826.0A EP2472202B1 (en) 2009-10-28 2009-10-28 Air conditioning device
JP2011538147A JP5511838B2 (ja) 2009-10-28 2009-10-28 空気調和装置
PCT/JP2009/068455 WO2011052046A1 (ja) 2009-10-28 2009-10-28 空気調和装置
US13/501,184 US9316420B2 (en) 2009-10-28 2009-10-28 Air-conditioning apparatus
CN200980162175.XA CN102597660B (zh) 2009-10-28 2009-10-28 空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068455 WO2011052046A1 (ja) 2009-10-28 2009-10-28 空気調和装置

Publications (1)

Publication Number Publication Date
WO2011052046A1 true WO2011052046A1 (ja) 2011-05-05

Family

ID=43921487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068455 WO2011052046A1 (ja) 2009-10-28 2009-10-28 空気調和装置

Country Status (5)

Country Link
US (1) US9316420B2 (ja)
EP (1) EP2472202B1 (ja)
JP (1) JP5511838B2 (ja)
CN (1) CN102597660B (ja)
WO (1) WO2011052046A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011781A (ja) * 2014-06-27 2016-01-21 ダイキン工業株式会社 冷暖同時運転型空気調和装置
CN105276857A (zh) * 2014-06-30 2016-01-27 庄雅凤 温度控制系统
JP2016038107A (ja) * 2014-08-05 2016-03-22 ヤンマー株式会社 ヒートポンプ
JP2017083043A (ja) * 2015-10-26 2017-05-18 株式会社富士通ゼネラル 空気調和システム
CN103381745B (zh) * 2012-05-02 2017-10-13 曼卡车和巴士股份公司 用于商用车的循环系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2667107B1 (en) * 2011-01-20 2020-08-19 Mitsubishi Electric Corporation Air conditioner
US9631829B2 (en) * 2011-11-30 2017-04-25 Samsung Electronics Co., Ltd. Air conditioner
JP5911590B2 (ja) * 2012-10-10 2016-04-27 三菱電機株式会社 空気調和装置
US9933192B2 (en) * 2012-12-20 2018-04-03 Mitsubishi Electric Corporation Air-conditioning apparatus
US10168060B2 (en) * 2013-01-08 2019-01-01 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014128831A1 (ja) * 2013-02-19 2014-08-28 三菱電機株式会社 空気調和装置
JP6288496B2 (ja) * 2013-12-03 2018-03-07 三菱重工サーマルシステムズ株式会社 熱源機運転台数制御装置、熱源システム、制御方法及びプログラム
EP3543616A4 (en) * 2016-11-16 2019-12-04 Mitsubishi Electric Corporation AIR CONDITIONING CONTROL APPARATUS AND AIR CONDITIONING CONTROL METHOD
CN110806037B (zh) * 2019-10-21 2021-10-26 广州大学 一种多联式空调热水联供系统及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280818A (ja) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH08291952A (ja) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp 空気調和装置
JP2000346488A (ja) * 1999-05-31 2000-12-15 Mitsubishi Electric Corp 空気調和装置
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP2002106995A (ja) * 2000-09-29 2002-04-10 Hitachi Ltd 空気調和機
JP2003004326A (ja) * 2001-06-26 2003-01-08 Mitsubishi Heavy Ind Ltd マルチ型ガスヒートポンプ式空気調和装置
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2004226015A (ja) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd 冷温水供給システム
JP2005140444A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237833A (en) 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
US5526650A (en) * 1993-09-21 1996-06-18 Nippondenso Co., Ltd. Air-conditioning apparatus
EP0800940A3 (en) * 1996-04-10 2001-06-06 Denso Corporation Vehicular air conditioning system for electric vehicles
JPH10325589A (ja) 1997-05-22 1998-12-08 Daikin Ind Ltd 熱回収型空気調和装置
JPH10325641A (ja) 1997-05-22 1998-12-08 Daikin Ind Ltd 冷凍装置
EP1275913A3 (en) 2001-06-26 2003-08-13 Mitsubishi Heavy Industries, Ltd. Multiform gas heat pump type air conditioning system
JP3899993B2 (ja) * 2002-04-19 2007-03-28 株式会社デンソー 車両用空調装置
KR100437805B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
US7493775B2 (en) * 2002-10-30 2009-02-24 Mitsubishi Denki Kabushiki Kaisha Air conditioner
KR100504498B1 (ko) * 2003-01-13 2005-08-03 엘지전자 주식회사 공기조화기용 과냉확보장치
JP3757967B2 (ja) * 2003-08-25 2006-03-22 ダイキン工業株式会社 冷凍装置
AU2005252958B2 (en) * 2004-06-11 2007-06-28 Daikin Industries, Ltd. Subcooling apparatus
EP1816416B1 (en) * 2004-11-25 2019-06-19 Mitsubishi Denki Kabushiki Kaisha Air conditioner
WO2006134771A1 (ja) * 2005-06-15 2006-12-21 Daikin Industries, Ltd. 冷凍装置
JP2007298196A (ja) * 2006-04-28 2007-11-15 Denso Corp 内部熱交換器付配管およびそれを備える冷凍サイクル装置
JP4245064B2 (ja) * 2007-05-30 2009-03-25 ダイキン工業株式会社 空気調和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291952A (ja) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp 空気調和装置
JPH05280818A (ja) 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2000346488A (ja) * 1999-05-31 2000-12-15 Mitsubishi Electric Corp 空気調和装置
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
JP2002106995A (ja) * 2000-09-29 2002-04-10 Hitachi Ltd 空気調和機
JP2003004326A (ja) * 2001-06-26 2003-01-08 Mitsubishi Heavy Ind Ltd マルチ型ガスヒートポンプ式空気調和装置
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2004226015A (ja) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd 冷温水供給システム
JP2005140444A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 空気調和機およびその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103381745B (zh) * 2012-05-02 2017-10-13 曼卡车和巴士股份公司 用于商用车的循环系统
JP2016011781A (ja) * 2014-06-27 2016-01-21 ダイキン工業株式会社 冷暖同時運転型空気調和装置
CN105276857A (zh) * 2014-06-30 2016-01-27 庄雅凤 温度控制系统
JP2016038107A (ja) * 2014-08-05 2016-03-22 ヤンマー株式会社 ヒートポンプ
JP2017083043A (ja) * 2015-10-26 2017-05-18 株式会社富士通ゼネラル 空気調和システム

Also Published As

Publication number Publication date
EP2472202A4 (en) 2016-09-07
CN102597660A (zh) 2012-07-18
US20120192588A1 (en) 2012-08-02
JP5511838B2 (ja) 2014-06-04
EP2472202B1 (en) 2019-03-20
CN102597660B (zh) 2015-05-06
EP2472202A1 (en) 2012-07-04
JPWO2011052046A1 (ja) 2013-03-14
US9316420B2 (en) 2016-04-19

Similar Documents

Publication Publication Date Title
JP5511838B2 (ja) 空気調和装置
JP5188629B2 (ja) 空気調和装置
JP5279919B2 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
JP5377653B2 (ja) 空気調和装置
JP5236080B2 (ja) 空気調和装置
JP5762427B2 (ja) 空気調和装置
JP5490245B2 (ja) 空気調和装置
JP6000373B2 (ja) 空気調和装置
WO2011030429A1 (ja) 空気調和装置
WO2014083680A1 (ja) 空気調和装置
JP5420057B2 (ja) 空気調和装置
JP5312606B2 (ja) 空気調和装置
WO2014083652A1 (ja) 空気調和装置
JP5752135B2 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
WO2011052050A1 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162175.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538147

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009850826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13501184

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE