JP2016011781A - 冷暖同時運転型空気調和装置 - Google Patents

冷暖同時運転型空気調和装置 Download PDF

Info

Publication number
JP2016011781A
JP2016011781A JP2014133213A JP2014133213A JP2016011781A JP 2016011781 A JP2016011781 A JP 2016011781A JP 2014133213 A JP2014133213 A JP 2014133213A JP 2014133213 A JP2014133213 A JP 2014133213A JP 2016011781 A JP2016011781 A JP 2016011781A
Authority
JP
Japan
Prior art keywords
refrigerant
heat source
pressure gas
heat
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014133213A
Other languages
English (en)
Other versions
JP6394116B2 (ja
Inventor
知久 竹内
Tomohisa Takeuchi
知久 竹内
聡 河野
Satoshi Kono
聡 河野
松岡 慎也
Shinya Matsuoka
慎也 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2014133213A priority Critical patent/JP6394116B2/ja
Publication of JP2016011781A publication Critical patent/JP2016011781A/ja
Application granted granted Critical
Publication of JP6394116B2 publication Critical patent/JP6394116B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】複数の利用ユニットと分岐ユニットと熱源ユニットとが3つの冷媒連絡管を介して接続されることによって構成される冷暖同時運転型空気調和装置において、冷媒が漏洩していない他の利用ユニットの運転を継続しつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収できるようにする。【解決手段】冷暖同時運転型空気調和装置(1)に、熱源側熱交換器(24、25)を複数設け、冷媒の漏洩を検知する冷媒漏洩検知手段(57a、57b、57c、57d)を設け、冷媒漏洩検知手段(57a、57b、57c、57d)が冷媒の漏洩を検知した場合には、冷媒の放熱器として機能する熱源側熱交換器(24、25)の数を増加させて、冷媒の漏洩が検知された利用ユニット(3a、3b、3c、3d)から熱源ユニット(2)に冷媒を回収する。【選択図】図9

Description

本発明は、冷暖同時運転型空気調和装置、特に、複数の利用ユニットと分岐ユニットと熱源ユニットとが3つの冷媒連絡管を介して接続されることによって構成される冷暖同時運転型空気調和装置に関する。
従来より、特許文献1(特開2009−299910号公報)に示すように、複数の室内機(利用ユニット)と冷暖切換ユニット(分岐ユニット)と室外機(熱源ユニット)とが高低圧ガス接続配管、低圧ガス接続配管、液接続配管(3つの冷媒連絡管)を介して接続されることによって構成される空気調和機(冷暖同時運転型空気調和装置)がある。ここで、利用ユニットは、室内膨張弁(利用側膨張弁)と室内熱交換器(利用側熱交換器)とを有している。分岐ユニットは、各利用ユニットに対応する高圧側開閉機構(高圧ガス調節弁)及び低圧側開閉機構(低圧ガス調節弁)を有している。
この冷暖同時運転型空気調和装置では、冷媒回路に可燃性冷媒が封入されており、冷媒の漏洩を検知した場合に、冷媒の漏洩が検知された利用ユニットに対応する利用側膨張弁及び高圧ガス調節弁を閉状態にし、かつ、低圧ガス調節弁を開状態にすることで、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収している。
ここで、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収する際には、冷媒が漏洩していない他の利用ユニットにおける冷房運転や暖房運転を継続しつつ、冷媒の漏洩が検知された利用ユニットから送られる冷媒を熱源ユニットに溜める必要がある。
本発明の課題は、複数の利用ユニットと分岐ユニットと熱源ユニットとが3つの冷媒連絡管を介して接続されることによって構成される冷暖同時運転型空気調和装置において、冷媒が漏洩していない他の利用ユニットの運転を継続しつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収できるようにすることにある。
第1の観点にかかる冷暖同時運転型空気調和装置は、複数の利用ユニットと、熱源ユニットと、熱源ユニットから引き出される高低圧ガス冷媒連絡管と、熱源ユニットから引き出される低圧ガス冷媒連絡管と、熱源ユニットから引き出される液冷媒連絡管と、分岐ユニットとを有している。利用ユニットは、利用側膨張弁と利用側熱交換器とを有している。熱源ユニットは、圧縮機と熱源側熱交換器とを有している。分岐ユニットは、各利用ユニットを高低圧ガス冷媒連絡管、低圧ガス冷媒連絡管及び液冷媒連絡管に接続しており、各利用ユニットに対応する高圧ガス調節弁及び低圧ガス調節弁を有している。ここでは、熱源側熱交換器を複数設け、冷媒の漏洩を検知する冷媒漏洩検知手段を設け、冷媒漏洩検知手段が冷媒の漏洩を検知した場合には、冷媒の放熱器として機能する熱源側熱交換器の数を増加させて、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収する。
ここでは、冷媒の漏洩が検知された利用ユニットから熱源ユニットに回収される冷媒を、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に溜めることができる。これにより、冷媒が漏洩していない他の利用ユニットにおける冷房運転や暖房運転を継続しつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収することができる。
第2の観点にかかる冷暖同時運転型空気調和装置は、第1の観点にかかる冷暖同時運転型空気調和装置において、各熱源側熱交換器の液側には、熱源側膨張弁が接続されており、圧縮機の吸入側における冷媒が所定の乾き度又は過熱度以下の状態にならないように、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に対応する熱源側膨張弁の開度を制御する。
ここでは、圧縮機に過度な湿り状態の冷媒が吸入されないようにすることができる。これにより、圧縮機への液バックを抑えつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニットに回収される冷媒を、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に溜めることができる。
第3の観点にかかる冷暖同時運転型空気調和装置は、第1の観点にかかる冷暖同時運転型空気調和装置において、熱源ユニットが、複数の熱源側熱交換器を流れる冷媒の熱交換のために空気を供給する室外ファンを有しており、冷媒漏洩検知手段が冷媒の漏洩を検知した場合には、室外ファンの風量を増加させる。
ここでは、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器の冷媒を溜める能力を大きくすることができる。これにより、冷媒の漏洩が検知された利用ユニットから熱源ユニットに回収される冷媒が多い場合であっても、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に溜めることができる。
第4の観点にかかる冷暖同時運転型空気調和装置は、第1〜第3の観点にかかる冷暖同時運転型空気調和装置のいずれかにおいて、冷媒漏洩検知手段が冷媒の漏洩を検知した場合には、冷媒の蒸発器として機能する利用側熱交換器の数を増加させる。
冷媒漏洩検知手段が冷媒の漏洩を検知した場合に冷媒の放熱器として機能する熱源側熱交換器の数を増加させると、複数の利用ユニット全体の熱負荷と熱源ユニットの熱負荷とのバランスが崩れてしまうおそれがある。
そこで、ここでは、上記のように、冷媒漏洩検知手段が冷媒の漏洩を検知した場合に冷媒の放熱器として機能する熱源側熱交換器の数を増加させるとともに、冷媒の蒸発器として機能する利用側熱交換器の数を増加させるようにしている。これにより、複数の利用ユニット全体の熱負荷と熱源ユニットの熱負荷とをバランスさせつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収することができる。
第5の観点にかかる冷暖同時運転型空気調和装置は、第4の観点にかかる冷暖同時運転型空気調和装置において、冷媒漏洩検知手段が冷媒の漏洩を検知した場合には、運転が停止している利用ユニットの利用側熱交換器を冷媒の蒸発器として機能させる。
ここでは、冷媒の漏洩の検知によって増加させる冷媒の蒸発器として機能する利用側熱交換器を、運転が停止している利用ユニットの利用側熱交換器にしている。これにより、冷媒が漏洩していない他の利用ユニットにおける冷房運転や暖房運転への悪影響を抑えつつ、複数の利用ユニット全体の熱負荷と熱源ユニットの熱負荷とをバランスさせることができる。
以上の説明に述べたように、本発明によれば、以下の効果が得られる。
第1の観点にかかる冷暖同時運転型空気調和装置では、冷媒が漏洩していない他の利用ユニットにおける冷房運転や暖房運転を継続しつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収することができる。
第2の観点にかかる冷暖同時運転型空気調和装置では、圧縮機への液バックを抑えつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニットに回収される冷媒を、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に溜めることができる。
第3の観点にかかる冷暖同時運転型空気調和装置では、冷媒の漏洩が検知された利用ユニットから熱源ユニットに回収される冷媒が多い場合であっても、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に溜めることができる。
第4の観点にかかる冷暖同時運転型空気調和装置では、複数の利用ユニット全体の熱負荷と熱源ユニットの熱負荷とをバランスさせつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニットに冷媒を回収することができる。
第5の観点にかかる冷暖同時運転型空気調和装置では、冷媒が漏洩していない他の利用ユニットにおける冷房運転や暖房運転への悪影響を抑えつつ、複数の利用ユニット全体の熱負荷と熱源ユニットの熱負荷とをバランスさせることができる。
本発明の一実施形態にかかる冷暖同時運転型空気調和装置の概略構成図である。 冷暖同時運転型空気調和装置の冷房運転(蒸発負荷大)における動作(冷媒の流れ)を示す図である。 冷暖同時運転型空気調和装置の冷房運転(蒸発負荷小)における動作(冷媒の流れ)を示す図である。 冷暖同時運転型空気調和装置の暖房運転(放熱負荷大)における動作(冷媒の流れ)を示す図である。 冷暖同時運転型空気調和装置の暖房運転(放熱負荷小)における動作(冷媒の流れ)を示す図である。 冷暖同時運転型空気調和装置の冷暖同時運転(蒸発負荷主体)における動作(冷媒の流れ)を示す図である。 冷暖同時運転型空気調和装置の冷暖同時運転(放熱負荷主体)における動作(冷媒の流れ)を示す図である。 冷暖同時運転型空気調和装置の冷暖同時運転(蒸発・放熱負荷均衡)における動作(冷媒の流れ)を示す図である。 冷媒の漏洩が検知された場合の動作のフローチャートである。 冷房運転(放熱負荷小)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。 暖房運転(放熱負荷大)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。 暖房運転(放熱負荷小)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。 冷暖同時運転(蒸発負荷主体)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。 冷暖同時運転(放熱負荷主体)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。 冷暖同時運転(蒸発・放熱負荷均衡)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。 変形例における冷媒の漏洩が検知された場合の動作のフローチャートである。 変形例における冷房運転(蒸発負荷小)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。
以下、本発明にかかる冷暖同時運転型空気調和装置の実施形態について、図面に基づいて説明する。尚、本発明にかかる冷暖同時運転型空気調和装置の具体的な構成は、下記の実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(1)冷暖同時運転型空気調和装置の構成
図1は、本発明の一実施形態にかかる冷暖同時運転型空気調和装置1の概略構成図である。冷暖同時運転型空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の室内の冷暖房に使用される装置である。
冷暖同時運転型空気調和装置1は、複数(ここでは、4台)の利用ユニット3a、3b、3c、3dと熱源ユニット2(ここでは、1台)と分岐ユニット4a、4b、4c、4d(ここでは、各利用ユニット3a、3b、3c、3dに対応して4台)とが、3つの冷媒連絡管(液冷媒連絡管7、高低圧ガス冷媒連絡管8、低圧ガス冷媒連絡管9)を介して接続されることによって構成されている。すなわち、冷暖同時運転型空気調和装置1の蒸気圧縮式の冷媒回路10は、熱源ユニット2と、利用ユニット3a、3b、3c、3dと、分岐ユニット4a、4b、4c、4dと、冷媒連絡管7、8、9とが接続されることによって構成されている。また、冷媒回路10には、冷媒として、R32等の特定条件下で発火の可能性がある冷媒(可燃性冷媒)が封入されている。そして、冷暖同時運転型空気調和装置1は、各利用ユニット3a、3b、3c、3dが個別に冷房運転又は暖房運転を行うことが可能になっており、暖房運転を行う利用ユニットから冷房運転を行う利用ユニットに冷媒を送ることで利用ユニット間において熱回収を行うこと(ここでは、冷房運転と暖房運転とを同時に行う冷暖同時運転を行うこと)が可能になるように構成されている。しかも、冷暖同時運転型空気調和装置1では、上記の熱回収(冷暖同時運転)も考慮した複数の利用ユニット3a、3b、3c、3d全体の熱負荷に応じて、熱源ユニット2の熱負荷をバランスさせるように構成されている。
<利用ユニット>
利用ユニット3a、3b、3c、3dは、ビル等の室内の天井に埋め込みや吊り下げ等、又は、室内の壁面に壁掛け等により設置されている。利用ユニット3a、3b、3c、3dは、冷媒連絡管7、8、9及び分岐ユニット4a、4b、4c、4dを介して熱源ユニット2に接続されており、冷媒回路10の一部を構成している。
次に、利用ユニット3a、3b、3c、3dの構成について説明する。尚、利用ユニット3aと利用ユニット3b、3c、3dとは同様の構成であるため、ここでは、利用ユニット3aの構成のみ説明し、利用ユニット3b、3c、3dの構成については、それぞれ、利用ユニット3aの各部を示す符号の添字「a」の代わりに、「b」、「c」又は「d」の添字を付して、各部の説明を省略する。
利用ユニット3aは、主として、冷媒回路10の一部を構成しており、利用側冷媒回路13a(利用ユニット3b、3c、3dでは、それぞれ、利用側冷媒回路13b、13c、13d)を有している。利用側冷媒回路13aは、主として、利用側膨張弁51aと、利用側熱交換器52aとを有している。
利用側膨張弁51aは、利用側熱交換器52aを流れる冷媒の流量の調節等を行うために、利用側熱交換器52aの液側に接続された開度調節が可能な電動膨張弁である。
利用側熱交換器52aは、冷媒と室内空気との熱交換を行うための機器であり、例えば、多数の伝熱管及びフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。ここで、利用ユニット3aは、ユニット内に室内空気を吸入して、熱交換した後に、供給空気として屋内に供給するための室内ファン53aを有しており、室内空気と利用側熱交換器52aを流れる冷媒とを熱交換させることが可能である。室内ファン53aは、室内ファンモータ54aによって駆動される。
また、利用ユニット3aには、各種のセンサが設けられている。具体的には、利用ユニット3aからの冷媒の漏洩を検知する冷媒漏洩検知手段としての冷媒センサ57aと、利用側熱交換器52aの液側における冷媒の温度を検出する液側温度センサ58aと、が設けられている。また、利用ユニット3aは、利用ユニット3aを構成する各部51a、54aの動作を制御する利用側制御部50aを有している。そして、利用側制御部50aは、利用ユニット3aの制御を行うために設けられたマイクロコンピュータやメモリを有しており、リモコン(図示せず)との間で制御信号等のやりとりを行ったり、熱源ユニット2や分岐ユニット4aとの間で制御信号等のやりとりを行うことができるようになっている。
<熱源ユニット>
熱源ユニット2は、ビル等の屋上等に設置されており、冷媒連絡管7、8、9及び分岐ユニット4a、4b、4c、4dを介して利用ユニット3a、3b、3c、3dに接続されており、冷媒回路10の一部を構成している。
次に、熱源ユニット2の構成について説明する。熱源ユニット2は、主として、冷媒回路10の一部を構成しており、熱源側冷媒回路12を有している。熱源側冷媒回路12は、主として、圧縮機21と、複数(ここでは、2つ)の熱交切換機構22、23と、複数(ここでは、2つ)の熱源側熱交換器24、25と、複数(ここでは、2つ)の熱源側膨張弁26、27と、高低圧切換機構30と、液側閉鎖弁31と、高低圧ガス側閉鎖弁32と、低圧ガス側閉鎖弁33とを有している。
圧縮機21は、ここでは、冷媒を圧縮するための機器であり、例えば、圧縮機モータ28をインバータ制御することで運転容量を可変することが可能なスクロール型等の容積式圧縮機からなる。
第1熱交切換機構22は、第1熱源側熱交換器24を冷媒の放熱器として機能させる場合(以下、「放熱運転状態」とする)には圧縮機21の吐出側と第1熱源側熱交換器24のガス側とを接続し(図1の第1熱交切換機構22の実線を参照)、第1熱源側熱交換器24を冷媒の蒸発器として機能させる場合(以下、「蒸発運転状態」とする)には圧縮機21の吸入側と第1熱源側熱交換器24のガス側とを接続するように(図1の第1熱交切換機構22の破線を参照)、熱源側冷媒回路12内における冷媒の流路を切り換えることが可能な機器であり、例えば、四路切換弁からなる。また、第2熱交切換機構23は、第2熱源側熱交換器25を冷媒の放熱器として機能させる場合(以下、「放熱運転状態」とする)には圧縮機21の吐出側と第2熱源側熱交換器25のガス側とを接続し(図1の第2熱交切換機構23の実線を参照)、第2熱源側熱交換器25を冷媒の蒸発器として機能させる場合(以下、「蒸発運転状態」とする)には圧縮機21の吸入側と第2熱源側熱交換器25のガス側とを接続するように(図1の第2熱交切換機構23の破線を参照)、熱源側冷媒回路12内における冷媒の流路を切り換えることが可能な機器であり、例えば、四路切換弁からなる。そして、第1熱交切換機構22及び第2熱交切換機構23の切り換え状態を変更することによって、第1熱源側熱交換器24及び第2熱源側熱交換器25は、個別に冷媒の蒸発器又は放熱器として機能させる切り換えが可能になっている。
第1熱源側熱交換器24は、冷媒と室外空気との熱交換を行うための機器であり、例えば、多数の伝熱管及びフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。第1熱源側熱交換器24は、そのガス側が第1熱交切換機構22に接続され、その液側が第1熱源側膨張弁26に接続されている。また、第2熱源側熱交換器25は、冷媒と室外空気との熱交換を行うための機器であり、例えば、多数の伝熱管及びフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。第2熱源側熱交換器25は、そのガス側が第2熱交切換機構23に接続され、その液側が第2熱源側膨張弁27に接続されている。ここでは、第1熱源側熱交換器24と第2熱源側熱交換器25とが一体の熱源側熱交換器として構成されている。そして、熱源ユニット2は、ユニット内に室外空気を吸入して、熱交換した後に、ユニット外に排出するための室外ファン34を有しており、室外空気と熱源側熱交換器24、25を流れる冷媒とを熱交換させることが可能である。室外ファン34は、回転数制御が可能な室外ファンモータ29によって駆動される。
第1熱源側膨張弁26は、第1熱源側熱交換器24を流れる冷媒の流量の調節等を行うために、第1熱源側熱交換器24の液側に接続された開度調節が可能な電動膨張弁である。また、第2熱源側膨張弁27は、第2熱源側熱交換器25を流れる冷媒の流量の調節等を行うために、第2熱源側熱交換器25の液側に接続された開度調節が可能な電動膨張弁である。
高低圧切換機構30は、圧縮機21から吐出された高圧のガス冷媒を利用側冷媒回路13a、13b、13c、13dに送る場合(以下、「放熱負荷運転状態」とする)には、圧縮機21の吐出側と高低圧ガス側閉鎖弁32とを接続し(図1の高低圧切換機構30の破線を参照)、圧縮機21から吐出された高圧のガス冷媒を利用側冷媒回路13a、13b、13c、13dに送らない場合(以下、「蒸発負荷運転状態」とする)には、高低圧ガス側閉鎖弁32と圧縮機21の吸入側とを接続するように(図1の高低圧切換機構30の実線を参照)、熱源側冷媒回路12内における冷媒の流路を切り換えることが可能な機器であり、例えば、四路切換弁からなる。
液側閉鎖弁31、高低圧ガス側閉鎖弁32及び低圧ガス側閉鎖弁33は、外部の機器・配管(具体的には、冷媒連絡管7、8及び9)との接続口に設けられた弁である。すなわち、液側閉鎖弁31は、熱源ユニット2から引き出される液冷媒連絡管7に接続されており、高低圧ガス側閉鎖弁32は、熱源ユニット2から引き出される高低圧ガス冷媒連絡管8に接続されており、低圧ガス側閉鎖弁33は、熱源ユニット2から引き出される低圧ガス冷媒連絡管9に接続されている。
また、熱源ユニット2には、各種のセンサが設けられている。具体的には、具体的には、圧縮機21の吸入側における冷媒の圧力を検出する吸入圧力センサ38と、圧縮機21の吐出側における冷媒の圧力を検出する吐出圧力センサ39と、圧縮機21の吐出側における冷媒の温度を検出する吐出温度センサ40とが設けられている。また、熱源ユニット2は、熱源ユニット2を構成する各部22、23、26、27、28、29、30の動作を制御する熱源側制御部20を有している。そして、熱源側制御部20は、熱源ユニット2の制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3a、3b、3c、3dの利用側制御部50a、50b、50c、50dとの間で制御信号等のやりとりを行うことができるようになっている。
<分岐ユニット>
分岐ユニット4a、4b、4c、4dは、ビル等の室内に利用ユニット3a、3b、3c、3dとともに設置されている。分岐ユニット4a、4b、4c、4dは、冷媒連絡管7、8、9とともに、利用ユニット3a、3b、3c、3dと熱源ユニット2との間に介在しており、冷媒回路10の一部を構成している。
次に、分岐ユニット4a、4b、4c、4dの構成について説明する。尚、分岐ユニット4aと分岐ユニット4b、4c、4dとは同様の構成であるため、ここでは、分岐ユニット4aの構成のみ説明し、分岐ユニット4b、4c、4dの構成については、それぞれ、分岐ユニット4aの各部を示す符号の添字「a」の代わりに、「b」、「c」又は「d」の添字を付して、各部の説明を省略する。
分岐ユニット4aは、主として、冷媒回路10の一部を構成しており、分岐側冷媒回路14a(分岐ユニット4b、4c、4dでは、それぞれ、分岐側冷媒回路14b、14c、14d)を有している。分岐側冷媒回路14aは、主として、液接続管61aと、ガス接続管62aとを有している。
液接続管61aは、その一端が利用ユニット3aの利用側膨張弁51aに接続されている。液冷媒管61aの他端は、液冷媒連絡管7に接続されている。
ガス接続管62aは、高圧ガス接続管63aと、低圧ガス接続管64aと、高圧ガス接続管63aと低圧ガス接続管64aとを合流させる合流ガス接続管65aと、を有している。
高圧ガス接続管63aは、その一端が合流ガス接続管65aに接続されている。高圧ガス接続管63aの他端は、高低圧ガス冷媒連絡管8に接続されている。高圧ガス接続管63aには、開閉可能な高圧ガス調節弁66aが設けられている。尚、ここでは、高圧ガス調節弁66aとして、開度調節が可能な電動膨張弁を採用しているが、開閉のみが可能な電磁弁等を採用してもよい。
低圧ガス接続管64aは、その一端が合流ガス接続管65aに接続されている。低圧ガス接続管64aの他端は、低圧ガス冷媒連絡管9に接続されている。低圧ガス接続管64aには、開閉可能な低圧ガス調節弁67aが設けられている。ここでは、低圧ガス調節弁67aとして、開度調節が可能な電動膨張弁を採用しているが、開閉のみが可能な電磁弁等を採用してもよい。
合流ガス接続管65aは、その一端が利用ユニット3aの利用側熱交換器52aのガス側に接続されている。合流ガス接続管65aの他端は、高圧ガス接続管63a及び低圧ガス接続管64aに接続されている。
そして、分岐ユニット4aは、利用ユニット3aが冷房運転を行う際には、低圧ガス調節弁67aを開けた状態にして、液冷媒連絡管7を通じて液接続管61aに流入する冷媒を、利用側膨張弁51aを通じて、利用ユニット3aの利用側熱交換器52aに送り、利用側熱交換器52aにおいて室内空気との熱交換によって蒸発した冷媒を、合流ガス接続管65a、低圧ガス調節弁67a及び低圧ガス接続管64aを通じて、低圧ガス冷媒連絡管9に戻すように機能することができる。また、分岐ユニット4aは、利用ユニット3aが暖房運転を行う際には、低圧ガス調節弁67aを閉止し、かつ、高圧ガス調節弁66aを開けた状態にして、高低圧ガス冷媒連絡管8を通じて高圧ガス接続管63aに流入する冷媒を、高圧ガス調節弁66a及び合流ガス接続管65aを通じて、利用ユニット3aの利用側熱交換器52aに送り、利用側熱交換器52aにおいて室内空気との熱交換によって放熱した冷媒を、利用側膨張弁51a及び液接続管61aを通じて、液冷媒連絡管7に戻すように機能することができる。このような機能は、分岐ユニット4aだけでなく、分岐ユニット4b、4c、4dも同様に有しているため、利用側熱交換器52a、52b、52c、52dは、分岐ユニット4a、4b、4c、4dによって、個別に冷媒の蒸発器又は放熱器として機能させる切り換えが可能になっている。
また、分岐ユニット4aは、分岐ユニット4aを構成する各部66a、67aの動作を制御する分岐側制御部60aを有している。そして、分岐側制御部60aは、分岐ユニット60aの制御を行うために設けられたマイクロコンピュータやメモリを有しており、利用ユニット3aの利用側制御部50aとの間で制御信号等のやりとりを行うことができるようになっている。
以上のように、冷暖同時運転型空気調和装置1は、複数(ここでは、4台)の利用ユニット3a、3b、3c、3dと、熱源ユニット2と、熱源ユニット2から引き出される高低圧ガス冷媒連絡管8と、熱源ユニット2から引き出される低圧ガス冷媒連絡管9と、熱源ユニット2から引き出される液冷媒連絡管7と、分岐ユニット4a、4b、4c、4dと、を有している。ここで、利用ユニット3a、3b、3c、3dは、利用側膨張弁51a、51b、51c、51dと、利用側熱交換器52a、52b、52c、52dと、を有している。熱源ユニット2は、圧縮機21と、熱源側熱交換器24、25と、を有している。分岐ユニット4a、4b、4c、4dは、各利用ユニット3a、3b、3c、3dを高低圧ガス冷媒連絡管8、低圧ガス冷媒連絡管9及び液冷媒連絡管7に接続しており、各利用ユニット3a、3b、3c、3dに対応する高圧ガス調節弁66a、66b、66c、66d及び低圧ガス調節弁67a、67b、67c、67dを有している。ここでは、熱源側熱交換器を複数(ここでは、熱源側熱交換器24、25の2つ)を設け、冷媒の漏洩を検知する冷媒漏洩検知手段としての冷媒センサ57a、57b、57c、57dを設けている。
(2)冷暖同時運転型空気調和装置の動作
次に、冷暖同時運転型空気調和装置1の動作について、図2〜図8を用いて説明する。
冷暖同時運転型空気調和装置1の冷凍サイクル運転は、主として、冷房運転と、暖房運転と、冷暖同時運転(蒸発負荷主体)と、冷暖同時運転(放熱負荷主体)と、冷暖同時運転(蒸発・放熱負荷均衡)とに分けることができる。ここで、冷房運転は、冷房運転(すなわち、利用側熱交換器が冷媒の蒸発器として機能する運転)を行う利用ユニットだけが存在し、利用ユニット全体の蒸発負荷に対して熱源側熱交換器24、25を冷媒の放熱器として機能させる冷凍サイクル運転である。暖房運転は、暖房運転(すなわち、利用側熱交換器が冷媒の放熱器として機能する運転)を行う利用ユニットだけが存在し、利用ユニット全体の放熱負荷に対して熱源側熱交換器24、25を冷媒の蒸発器として機能させる冷凍サイクル運転である。冷暖同時運転(蒸発負荷主体)は、冷房運転(すなわち、利用側熱交換器が冷媒の蒸発器として機能する運転)を行う利用ユニットと暖房運転(すなわち、利用側熱交換器が冷媒の放熱器として機能する運転)を行う利用ユニットとが混在し、利用ユニット全体の熱負荷が蒸発負荷主体である場合に、この利用ユニット全体の蒸発負荷に対して熱源側熱交換器24、25を冷媒の放熱器として機能させる冷凍サイクル運転である。冷暖同時運転(放熱負荷主体)は、冷房運転(すなわち、利用側熱交換器が冷媒の蒸発器として機能する運転)を行う利用ユニットと暖房運転(すなわち、利用側熱交換器が冷媒の放熱器として機能する運転)を行う利用ユニットとが混在し、利用ユニット全体の熱負荷が放熱負荷主体である場合に、この利用ユニット全体の放熱負荷に対して熱源側熱交換器24、25を冷媒の蒸発器として機能させる冷凍サイクル運転である。冷暖同時運転(蒸発・放熱負荷均衡)は、冷房運転(すなわち、利用側熱交換器が冷媒の蒸発器として機能する運転)を行う利用ユニットと暖房運転(すなわち、利用側熱交換器が冷媒の放熱器として機能する運転)を行う利用ユニットとが混在し、利用ユニット全体の蒸発負荷と放熱負荷とが均衡する場合に、熱源側熱交換器24、25の一方を冷媒の放熱器として機能させ、かつ、熱源側熱交換器24、25の他方を冷媒の蒸発器として機能させる冷凍サイクル運転である。
尚、これらの冷凍サイクル運転を含む冷暖同時運転型空気調和装置1の動作は、上記の制御部20、50a、50b、50c、50d、60a、60b、60c、60dによって行われる。
<冷房運転>
冷房運転の際、例えば、利用ユニット3a、3b、3c、3dの全てが冷房運転(すなわち、利用側熱交換器52a、52b、52c、52dの全てが冷媒の蒸発器として機能する運転)を行い、熱源側熱交換器24、25の両方が冷媒の放熱器として機能する際、空気調和装置1の冷媒回路10は、図2に示されるように構成される(冷媒の流れについては、図2の冷媒回路10に付された矢印を参照)。
具体的には、熱源ユニット2においては、第1熱交切換機構22を放熱運転状態(図2の第1熱交切換機構22の実線で示された状態)に切り換え、第2熱交切換機構23を放熱運転状態(図2の第2熱交切換機構23の実線で示された状態)に切り換えることによって、熱源側熱交換器24、25の両方を冷媒の放熱器として機能させるようになっている。また、高低圧切換機構30を蒸発負荷運転状態(図2の高低圧切換機構30の実線で示された状態)に切り換えている。また、熱源側膨張弁26、27は、開度調節されている。分岐ユニット4a、4b、4c、4dにおいては、高圧ガス調節弁66a、66b、66c、66d、及び、低圧ガス調節弁67a、67b、67c、67dを開状態にすることによって、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dの全てを冷媒の蒸発器として機能させるとともに、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dの全てと熱源ユニット2の圧縮機21の吸入側とが高低圧ガス冷媒連絡管8及び低圧ガス冷媒連絡管9を介して接続された状態になっている。利用ユニット3a、3b、3c、3dにおいては、利用側膨張弁51a、51b、51c、51dは、開度調節されている。
このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、熱交切換機構22、23を通じて、熱源側熱交換器24、25の両方に送られる。熱源側熱交換器24、25に送られた高圧のガス冷媒は、熱源側熱交換器24、25において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。熱源側熱交換器24、25において放熱した冷媒は、熱源側膨張弁26、27において流量調節された後、液側閉鎖弁31を通じて、液冷媒連絡管7に送られる。
そして、液冷媒連絡管7に送られた冷媒は、4つに分岐されて、各分岐ユニット4a、4b、4c、4dの液接続管61a、61b、61c、61dに送られる。液接続管61a、61b、61c、61dに送られた冷媒は、利用ユニット3a、3b、3c、3dの利用側膨張弁51a、51b、51c、51dに送られる。
そして、利用側膨張弁51a、51b、51c、51dに送られた冷媒は、利用側膨張弁51a、51b、51c、51dにおいて流量調節された後、利用側熱交換器52a、52b、52c、52dにおいて、室内ファン53a、53b、53c、53dによって供給される室内空気と熱交換を行うことによって蒸発して低圧のガス冷媒となる。一方、室内空気は、冷却されて室内に供給されて、利用ユニット3a、3b、3c、3dの冷房運転が行われる。利用側熱交換器52a、52b、52c、52dにおいて蒸発した低圧のガス冷媒は、分岐ユニット4a、4b、4c、4dの合流ガス接続管65a、65b、65c、65dに送られる。
そして、合流ガス接続管65a、65b、65c、65dに送られた低圧のガス冷媒は、高圧ガス調節弁66a、66b、66c、66d及び高圧ガス接続管63a、63b、63c、63dを通じて、高低圧ガス冷媒連絡管8に送られ合流するとともに、低圧ガス調節弁67a、67b、67c、67d及び低圧ガス接続管64a、64b、64c、64dを通じて、低圧ガス冷媒連絡管9に送られて合流する。
そして、ガス冷媒連絡管8、9に送られた低圧のガス冷媒は、ガス側閉鎖弁32、33及び高低圧切換機構30を通じて、圧縮機21の吸入側に戻される。
このようにして、冷房運転における動作が行われる。尚、利用ユニット3a、3b、3c、3dのいくつかが冷房運転(すなわち、利用側熱交換器52a、52b、52c、52dのいくつかが冷媒の蒸発器として機能する運転)を行う等によって、利用側熱交換器52a、52b、52c、52d全体の蒸発負荷が小さくなる場合には、熱源側熱交換器24、25の一方だけを冷媒の放熱器として機能させる運転が行われる。例えば、図3に示すように、利用ユニット3a、3b、3cだけが冷房運転(すなわち、利用側膨張弁52dを閉状態にすることによって、利用側熱交換器52a、52b、52cだけが冷媒の蒸発器として機能する運転)を行うことで、利用側熱交換器52a、52b、52c、52d全体の蒸発負荷が小さくなる場合には、第2熱源側膨張弁27を閉状態にすることによって、第1熱源側熱交換器24だけを冷媒の放熱器として機能させる運転が行われる。
<暖房運転>
暖房運転の際、例えば、利用ユニット3a、3b、3c、3dの全てが暖房運転(すなわち、利用側熱交換器52a、52b、52c、52dの全てが冷媒の放熱器として機能する運転)を行い、熱源側熱交換器24、25の両方が冷媒の蒸発器として機能する際、冷暖同時運転型空気調和装置1の冷媒回路10は、図4に示されるように構成される(冷媒の流れについては、図4の冷媒回路10に付された矢印を参照)。
具体的には、熱源ユニット2においては、第1熱交切換機構22を蒸発運転状態(図4の第1熱交切換機構22の破線で示された状態)に切り換え、第2熱交切換機構23を蒸発運転状態(図4の第2熱交切換機構23の破線で示された状態)に切り換えることによって、熱源側熱交換器24、25の両方を冷媒の蒸発器として機能させるようになっている。また、高低圧切換機構30を放熱負荷運転状態(図4の高低圧切換機構30の破線で示された状態)に切り換えている。また、熱源側膨張弁26、27は、開度調節されている。分岐ユニット4a、4b、4c、4dにおいては、高圧ガス調節弁66a、66b、66c、66dを開状態にし、低圧ガス調節弁67a、67b、67c、67dを閉状態にすることによって、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dの全てを冷媒の放熱器として機能させるとともに、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dの全てと熱源ユニット2の圧縮機21の吐出側とが高低圧ガス冷媒連絡管8を介して接続された状態になっている。利用ユニット3a、3b、3c、3dにおいては、利用側膨張弁51a、51b、51c、51dは、開度調節されている。
このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、高低圧切換機構30及び高低圧ガス側閉鎖弁32を通じて、高低圧ガス冷媒連絡管8に送られる。
そして、高低圧ガス冷媒連絡管8に送られた高圧のガス冷媒は、4つに分岐されて、各分岐ユニット4a、4b、4c、4dの高圧ガス接続管63a、63b、63c、63dに送られる。高圧ガス接続管63a、63b、63c、63dに送られた高圧のガス冷媒は、高圧ガス調節弁66a、66b、66c、66d及び合流ガス接続管65a、65b、65c、65dを通じて、利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dに送られる。
そして、利用側熱交換器52a、52b、52c、52dに送られた高圧のガス冷媒は、利用側熱交換器52a、52b、52c、52dにおいて、室内ファン53a、53b、53c、53dによって供給される室内空気と熱交換を行うことによって放熱する。一方、室内空気は、加熱されて室内に供給されて、利用ユニット3a、3b、3c、3dの暖房運転が行われる。利用側熱交換器52a、52b、52c、52dにおいて放熱した冷媒は、利用側膨張弁51a、51b、51c、51dにおいて流量調節された後、分岐ユニット4a、4b、4c、4dの液接続管61a、61b、61c、61dに送られる。
そして、液接続管61a、61b、61c、61dに送られた冷媒は、液冷媒連絡管7に送られて合流する。
そして、液冷媒連絡管7に送られた冷媒は、液側閉鎖弁31を通じて、熱源側膨張弁26、27の両方に送られる。熱源側膨張弁26、27に送られた冷媒は、熱源側膨張弁26、27において流量調節された後、熱源側熱交換器24、25において、室外ファン34によって供給される室外空気と熱交換を行うことによって蒸発して低圧のガス冷媒になり、熱交切換機構22、23に送られる。熱交切換機構22、23に送られた低圧のガス冷媒は、合流して、圧縮機21の吸入側に戻される。
このようにして、暖房運転における動作が行われる。尚、利用ユニット3a、3b、3c、3dのいくつかが暖房運転(すなわち、利用側熱交換器52a、52b、52c、52dのいくつかが冷媒の放熱器として機能する運転)を行う等によって、利用側熱交換器52a、52b、52c、52d全体の放熱負荷が小さくなる場合には、熱源側熱交換器24、25の一方だけを冷媒の蒸発器として機能させる運転が行われる。例えば、図5に示すように、利用ユニット3a、3b、3cだけが暖房運転(すなわち、利用側膨張弁52dを閉状態にすることによって、利用側熱交換器52a、52b、52cだけが冷媒の放熱器として機能する運転)を行うことで、利用側熱交換器52a、52b、52c、52d全体の放熱負荷が小さくなる場合には、第2熱源側膨張弁27を閉状態にすることによって、第1熱源側熱交換器24だけを冷媒の蒸発器として機能させる運転が行われる。
<冷暖同時運転(蒸発負荷主体)>
冷暖同時運転(蒸発負荷主体)の際、例えば、利用ユニット3a、3b、3cが冷房運転、かつ、利用ユニット3dが暖房運転(すなわち、利用側熱交換器52a、52b、52cが冷媒の蒸発器として機能し、かつ、利用側熱交換器52dが冷媒の放熱器として機能する運転)を行い、第1熱源側熱交換器24だけが冷媒の放熱器として機能する際、冷暖同時運転型空気調和装置1の冷媒回路10は、図6に示されるように構成される(冷媒の流れについては、図6の冷媒回路10に付された矢印を参照)。
具体的には、熱源ユニット2においては、第1熱交切換機構22を放熱運転状態(図6の第1熱交切換機構22の実線で示された状態)に切り換えることによって、第1熱源側熱交換器24だけを冷媒の放熱器として機能させるようになっている。また、高低圧切換機構30を放熱負荷運転状態(図6の高低圧切換機構30の破線で示された状態)に切り換えている。また、第1熱源側膨張弁26は、開度調節され、第2熱源側膨張弁27は、閉状態になっている。分岐ユニット4a、4b、4c、4dにおいては、高圧ガス調節弁66d、及び、低圧ガス調節弁67a、67b、67cを開状態にし、かつ、高圧ガス調節弁66a、66b、66c、及び、低圧ガス調節弁67dを閉状態にすることによって、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cを冷媒の蒸発器として機能させ、かつ、利用ユニット3dの利用側熱交換器52dを冷媒の放熱器として機能させるとともに、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cと熱源ユニット2の圧縮機21の吸入側とが低圧ガス冷媒連絡管9を介して接続された状態になり、かつ、利用ユニット3dの利用側熱交換器52dと熱源ユニット2の圧縮機21の吐出側とが高低圧ガス冷媒連絡管8を介して接続された状態になっている。利用ユニット3a、3b、3c、3dにおいては、利用側膨張弁51a、51b、51c、51dは、開度調節されている。
このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、その一部が、高低圧切換機構30及び高低圧ガス側閉鎖弁32を通じて、高低圧ガス冷媒連絡管8に送られ、残りが、第1熱交切換機構22を通じて、第1熱源側熱交換器24に送られる。
そして、高低圧ガス冷媒連絡管8に送られた高圧のガス冷媒は、分岐ユニット4dの高圧ガス接続管63dに送られる。高圧ガス接続管63dに送られた高圧のガス冷媒は、高圧ガス調節弁66d及び合流ガス接続管65dを通じて、利用ユニット3dの利用側熱交換器52dに送られる。
そして、利用側熱交換器52dに送られた高圧のガス冷媒は、利用側熱交換器52dにおいて、室内ファン53dによって供給される室内空気と熱交換を行うことによって放熱する。一方、室内空気は、加熱されて室内に供給されて、利用ユニット3dの暖房運転が行われる。利用側熱交換器52dにおいて放熱した冷媒は、利用側膨張弁51dにおいて流量調節された後、分岐ユニット4dの液接続管61dに送られる。
そして、液接続管61dに送られた冷媒は、液冷媒連絡管7に送られる。
また、第1熱源側熱交換器24に送られた高圧のガス冷媒は、第1熱源側熱交換器24において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。第1熱源側熱交換器24において放熱した冷媒は、第1熱源側膨張弁26において流量調節された後、液側閉鎖弁31を通じて、液冷媒連絡管7に送られて、利用側熱交換器52dにおいて放熱した冷媒と合流する。
そして、液冷媒連絡管7において合流した冷媒は、3つに分岐されて、各分岐ユニット4a、4b、4cの液接続管61a、61b、61cに送られる。液接続管61a、61b、61cに送られた冷媒は、利用ユニット3a、3b、3cの利用側膨張弁51a、51b、51cに送られる。
そして、利用側膨張弁51a、51b、51cに送られた冷媒は、利用側膨張弁51a、51b、51cにおいて流量調節された後、利用側熱交換器52a、52b、52cにおいて、室内ファン53a、53b、53cによって供給される室内空気と熱交換を行うことによって蒸発して低圧のガス冷媒となる。一方、室内空気は、冷却されて室内に供給されて、利用ユニット3a、3b、3cの冷房運転が行われる。利用側熱交換器52a、52b、52cにおいて蒸発した低圧のガス冷媒は、分岐ユニット4a、4b、4cの合流ガス接続管65a、65b、65cに送られる。
そして、合流ガス接続管65a、65b、65cに送られた低圧のガス冷媒は、低圧ガス調節弁67a、67b、67c及び低圧ガス接続管64a、64b、64cを通じて、低圧ガス冷媒連絡管9に送られて合流する。
そして、低圧ガス冷媒連絡管9に送られた低圧のガス冷媒は、低圧ガス側閉鎖弁33を通じて、圧縮機21の吸入側に戻される。
このようにして、冷暖同時運転(蒸発負荷主体)における動作が行われる。
<冷暖同時運転(放熱負荷主体)>
冷暖同時運転(放熱負荷主体)の際、例えば、利用ユニット3a、3b、3cが暖房運転、かつ、利用ユニット3dが冷房運転(すなわち、利用側熱交換器52a、52b、52cが冷媒の放熱器として機能し、かつ、利用側熱交換器52dが冷媒の蒸発器として機能する運転)を行い、熱源側熱交換器24、25の両方が冷媒の蒸発器として機能する際、冷暖同時運転型空気調和装置1の冷媒回路10は、図7に示されるように構成される(冷媒の流れについては、図7の冷媒回路10に付された矢印を参照)。
具体的には、熱源ユニット2においては、第1熱交切換機構22を蒸発運転状態(図7の第1熱交切換機構22の破線で示された状態)に切り換え、第2熱交切換機構23を蒸発運転状態(図7の第2熱交切換機構23の破線で示された状態)に切り換えることによって、熱源側熱交換器24、25の両方を冷媒の蒸発器として機能させるようになっている。また、高低圧切換機構30を放熱負荷運転状態(図7の高低圧切換機構30の破線で示された状態)に切り換えている。また、熱源側膨張弁26、27は、開度調節されている。分岐ユニット4a、4b、4c、4dにおいては、高圧ガス調節弁66a、66b、66c、及び、低圧ガス調節弁67dを開状態にし、かつ、高圧ガス調節弁66d、及び、低圧ガス調節弁67a、67b、67cを閉状態にすることによって、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cを冷媒の放熱器として機能させ、かつ、利用ユニット3dの利用側熱交換器52dを冷媒の蒸発器として機能させるとともに、利用ユニット3dの利用側熱交換器52dと熱源ユニット2の圧縮機21の吸入側とが低圧ガス冷媒連絡管9を介して接続された状態になり、かつ、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cと熱源ユニット2の圧縮機21の吐出側とが高低圧ガス冷媒連絡管8を介して接続された状態になっている。利用ユニット3a、3b、3c、3dにおいては、利用側膨張弁51a、51b、51c、51dは、開度調節されている。
このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、高低圧切換機構30及び高低圧ガス側閉鎖弁32を通じて、高低圧ガス冷媒連絡管8に送られる。
そして、高低圧ガス冷媒連絡管8に送られた高圧のガス冷媒は、3つに分岐されて、各分岐ユニット4a、4b、4cの高圧ガス接続管63a、63b、63cに送られる。高圧ガス接続管63a、63b、63cに送られた高圧のガス冷媒は、高圧ガス調節弁66a、66b、66c及び合流ガス接続管65a、65b、65cを通じて、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cに送られる。
そして、利用側熱交換器52a、52b、52cに送られた高圧のガス冷媒は、利用側熱交換器52a、52b、52cにおいて、室内ファン53a、53b、53cによって供給される室内空気と熱交換を行うことによって放熱する。一方、室内空気は、加熱されて室内に供給されて、利用ユニット3a、3b、3cの暖房運転が行われる。利用側熱交換器52a、52b、52cにおいて放熱した冷媒は、利用側膨張弁51a、51b、51cにおいて流量調節された後、分岐ユニット4a、4b、4cの液接続管61a、61b、61cに送られる。
そして、液接続管61a、61b、61cに送られた冷媒は、液冷媒連絡管7に送られて合流する。
そして、液冷媒連絡管7に送られた冷媒は、その一部が、分岐ユニット4dの液接続管61dに送られ、残りが、液側閉鎖弁31を通じて、熱源側膨張弁26、27の両方に送られる。
そして、液接続管61dに送られた冷媒は、利用ユニット3dの利用側膨張弁51dに送られる。
そして、利用側膨張弁51dに送られた冷媒は、利用側膨張弁51dにおいて流量調節された後、利用側熱交換器52dにおいて、室内ファン53dによって供給される室内空気と熱交換を行うことによって蒸発して低圧のガス冷媒となる。一方、室内空気は、冷却されて室内に供給されて、利用ユニット3dの冷房運転が行われる。利用側熱交換器52dにおいて蒸発した低圧のガス冷媒は、分岐ユニット4dの合流ガス接続管65dに送られる。
そして、合流ガス接続管65dに送られた低圧のガス冷媒は、低圧ガス調節弁67d及び低圧ガス接続管64dを通じて、低圧ガス冷媒連絡管9に送られる。
そして、低圧ガス冷媒連絡管9に送られた低圧のガス冷媒は、低圧ガス側閉鎖弁33を通じて、圧縮機21の吸入側に戻される。
また、熱源側膨張弁26、27に送られた冷媒は、熱源側膨張弁26、27において流量調節された後、熱源側熱交換器24、25において、室外ファン34によって供給される室外空気と熱交換を行うことによって蒸発して低圧のガス冷媒になり、熱交切換機構22、23に送られる。熱交切換機構22、23に送られた低圧のガス冷媒は、利用側熱交換器52dにおいて蒸発して低圧のガス冷媒と合流して、圧縮機21の吸入側に戻される。
このようにして、冷暖同時運転(放熱負荷主体)における動作が行われる。
<冷暖同時運転(蒸発・放熱負荷均衡)>
冷暖同時運転(蒸発・放熱負荷均衡)の際、例えば、利用ユニット3a、3bが冷房運転、かつ、利用ユニット3c、3dが暖房運転(すなわち、利用側熱交換器52a、52bが冷媒の蒸発器として機能し、かつ、利用側熱交換器52c、52dが冷媒の放熱器として機能する運転)を行い、第1熱源側熱交換器24が冷媒の放熱器として機能し、かつ、第2熱源側熱交換器25が冷媒の蒸発器として機能する際、冷暖同時運転型空気調和装置1の冷媒回路10は、図8に示されるように構成される(冷媒の流れについては、図8の冷媒回路10に付された矢印を参照)。
具体的には、熱源ユニット2においては、第1熱交切換機構22を放熱運転状態(図8の第1熱交切換機構22の実線で示された状態)に切り換え、かつ、第2熱交切換機構23を蒸発運転状態(図8の第2熱交切換機構23の破線で示された状態)に切り換えることによって、第1熱源側熱交換器24を冷媒の放熱器として機能させ、かつ、第2熱源側熱交換器25を冷媒の蒸発器として機能させるようになっている。また、高低圧切換機構30を放熱負荷運転状態(図8の高低圧切換機構30の破線で示された状態)に切り換えている。また、熱源側膨張弁26、27は、開度調節されている。分岐ユニット4a、4b、4c、4dにおいては、高圧ガス調節弁66c、66d、及び、低圧ガス調節弁67a、67bを開状態にし、かつ、高圧ガス調節弁66a、66b、及び、低圧ガス調節弁67c、67dを閉状態にすることによって、利用ユニット3a、3bの利用側熱交換器52a、52bを冷媒の蒸発器として機能させ、かつ、利用ユニット3c、3dの利用側熱交換器52c、52dを冷媒の放熱器として機能させるとともに、利用ユニット3a、3bの利用側熱交換器52a、52bと熱源ユニット2の圧縮機21の吸入側とが低圧ガス冷媒連絡管9を介して接続された状態になり、かつ、利用ユニット3c、3dの利用側熱交換器52c、52dと熱源ユニット2の圧縮機21の吐出側とが高低圧ガス冷媒連絡管8を介して接続された状態になっている。利用ユニット3a、3b、3c、3dにおいては、利用側膨張弁51a、51b、51c、51dは、開度調節されている。
このような冷媒回路10において、圧縮機21で圧縮され吐出された高圧のガス冷媒は、その一部が、高低圧切換機構30及び高低圧ガス側閉鎖弁32を通じて、高低圧ガス冷媒連絡管8に送られ、残りが、第1熱交切換機構22を通じて、第1熱源側熱交換器24に送られる。
そして、高低圧ガス冷媒連絡管8に送られた高圧のガス冷媒は、分岐ユニット4c、4dの高圧ガス接続管63c、63dに送られる。高圧ガス接続管63c、63dに送られた高圧のガス冷媒は、高圧ガス調節弁66c、66d及び合流ガス接続管65c、65dを通じて、利用ユニット3c、3dの利用側熱交換器52c、52dに送られる。
そして、利用側熱交換器52c、52dに送られた高圧のガス冷媒は、利用側熱交換器52c、52dにおいて、室内ファン53c、53dによって供給される室内空気と熱交換を行うことによって放熱する。一方、室内空気は、加熱されて室内に供給されて、利用ユニット3c、3dの暖房運転が行われる。利用側熱交換器52c、52dにおいて放熱した冷媒は、利用側膨張弁51c、51dにおいて流量調節された後、分岐ユニット4c、4dの液接続管61c、61dに送られる。
そして、利用側熱交換器52c、52dにおいて放熱して液接続管61c、61dに送られた冷媒は、液冷媒連絡管7に送られて合流する。
そして、液冷媒連絡管7において合流した冷媒は、2つに分岐されて、各分岐ユニット4a、4bの液接続管61a、61bに送られる。そして、液接続管61a、61bに送られた冷媒は、利用ユニット3a、3bの利用側膨張弁51a、51bに送られる。
そして、利用側膨張弁51a、51bに送られた冷媒は、利用側膨張弁51a、51bにおいて流量調節された後、利用側熱交換器52a、52bにおいて、室内ファン53a、53bによって供給される室内空気と熱交換を行うことによって蒸発して低圧のガス冷媒となる。一方、室内空気は、冷却されて室内に供給されて、利用ユニット3a、3bの冷房運転が行われる。そして、低圧のガス冷媒は、分岐ユニット4a、4bの合流ガス接続管65a、65bに送られる。
そして、合流ガス接続管65a、65bに送られた低圧のガス冷媒は、低圧ガス調節弁67a、67b及び低圧ガス接続管64a、64bを通じて、低圧ガス冷媒連絡管9に送られて合流する。
そして、低圧ガス冷媒連絡管9に送られた低圧のガス冷媒は、ガス側閉鎖弁33を通じて、圧縮機21の吸入側に戻される。
また、第1熱源側熱交換器24に送られた高圧のガス冷媒は、第1熱源側熱交換器24において、室外ファン34によって供給される熱源としての室外空気と熱交換を行うことによって放熱する。そして、第1熱源側熱交換器24において放熱した冷媒は、第1熱源側膨張弁26を通過した後、そのほとんどが、第2熱源側膨張弁27に送られる。このため、第1熱源側熱交換器24において放熱した冷媒が、液側閉鎖弁31を通じて、液冷媒連絡管7に送られない状態になっている。そして、第2熱源側膨張弁27に送られた冷媒は、第2熱源側膨張弁27において流量調節された後、第2熱源側熱交換器25において、室外ファン34によって供給される室外空気と熱交換を行うことによって蒸発して低圧のガス冷媒になり、第2熱交切換機構23に送られる。そして、第2熱交切換機構23に送られた低圧のガス冷媒は、低圧ガス冷媒連絡管9及びガス側閉鎖弁33を通じて圧縮機21の吸入側に戻される低圧のガス冷媒と合流して、圧縮機21の吸入側に戻される。
このようにして、冷暖同時運転(蒸発・放熱負荷均衡)における動作が行われる。
(3)冷媒の漏洩が検知された場合の動作
冷暖同時運転型空気調和装置1では、上記のように、冷媒回路10にR32等の可燃性冷媒が封入されており、その漏洩を検知するための冷媒漏洩検知手段として冷媒センサ57a、57b、57c、57dが設けられている。そして、冷媒センサ57a、57b、57c、57dによって冷媒の漏洩が検知された場合には、利用ユニット3a、3b、3c、3dのうち冷媒の漏洩が検知された利用ユニットから熱源ユニット2に冷媒を回収しつつ、他の利用ユニットの冷房運転や暖房運転を継続することが好ましい。
ここで、冷媒の漏洩が検知された利用ユニットから熱源ユニット2に冷媒を回収する際には、冷媒が漏洩していない他の利用ユニットにおける冷房運転や暖房運転を継続しつつ、冷媒の漏洩が検知された利用ユニットから送られる冷媒を熱源ユニット2に溜める必要がある。
そこで、ここでは、冷媒の漏洩が検知された場合に、熱源側熱交換器24、25が複数設けられていることを利用して、以下のような動作を行って、冷媒が漏洩していない他の利用ユニットの運転を継続しつつ、冷媒の漏洩が検知された利用ユニットから熱源ユニット2に冷媒を回収できるようにしている。
次に、冷媒の漏洩が検知された場合の動作について、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合(図3参照)において、利用ユニット3aにおいて冷媒の漏洩が発生した場合を例にして、図9及び図10を用いて説明する。ここで、図9は、冷媒の漏洩が検知された場合の動作のフローチャートであり、図10は、冷房運転(蒸発負荷小)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。尚、冷媒の漏洩が検知された場合の動作についても、制御部20、50a、50b、50c、50d、60a、60b、60c、60dによって行われる。
まず、ステップST1において、冷媒漏洩検知手段としての冷媒センサ57a、57b、57c、57dのいずれかが冷媒の漏洩を検知すると(ここでは、利用ユニット3a用の冷媒センサ57aが冷媒の漏洩を検知すると)、ステップST2の処理に移行する。
次に、ステップST2において、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収するために、冷媒の漏洩が検知された利用ユニット3a(漏洩機)に対応する各種弁の開閉操作を行う。具体的には、利用ユニット3a(漏洩機)に対応する高圧ガス調節弁66a及び利用側膨張弁51aを閉状態にし、低圧ガス調節弁67aを開状態にする。これにより、利用ユニット3a(漏洩機)を他の冷媒回路部分から隔離するとともに、利用ユニット3a(漏洩機)を分岐ユニット4a及び低圧ガス冷媒連絡管9を通じて熱源ユニット2に連通した状態にすることができる。しかも、ここでは、冷媒の漏洩が検知された利用ユニット3a(漏洩機)に対応する各種弁の開閉操作に加えて、冷媒の放熱器として機能する熱源側熱交換器24、25の数を増加させる操作を行う。具体的には、複数(ここでは、2つ)の熱源側熱交換器24、25のうち停止中の熱源側熱交換器が存在する場合には、停止中の熱源側熱交換器を冷媒の放熱器として機能させるために、停止中の熱源側熱交換器に対応する熱交切換機構を放熱運転状態に切り換え、かつ、停止中の熱源側熱交換器に対応する熱源側膨張弁を開状態にする。また、複数(ここでは、2つ)の熱源側熱交換器24、25のうち停止中の熱源側熱交換器が存在しないが、冷媒の蒸発器として機能する熱源側熱交換器が存在する場合には、冷媒の蒸発器として機能する熱源側熱交換器を冷媒の放熱器として機能させるために、冷媒の蒸発器として機能する熱源側熱交換器に対応する熱交切換機構を放熱運転状態に切り換え、かつ、冷媒の蒸発器として機能する熱源側熱交換器に対応する熱源側膨張弁を開状態にする。ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合を例に挙げているため、停止中の第2熱源側熱交換器25を冷媒の放熱器として機能させるために、停止中の第2熱源側熱交換器25に対応する第2熱交切換機構23を放熱運転状態に切り換え、かつ、停止中の第2熱源側熱交換器25に対応する第2熱源側膨張弁27を開状態にする。
これにより、利用ユニット3a(漏洩機)に存在する冷媒は、分岐ユニット4a及び低圧ガス冷媒連絡管9を通じて熱源ユニット2の圧縮機21の吸入側に送られる。このようにして、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収する動作が開始される。このとき、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に回収される冷媒を、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器(ここでは、第2熱源側熱交換器25)に溜めることができる。このため、利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収する動作中においても、他の冷媒の漏洩が検知されていない利用ユニット3b、3cにおいては、冷房運転が継続可能である。
次に、ステップST3において、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2への冷媒の回収(ここでは、利用ユニット3aから熱源ユニット2への冷媒の回収)が終了したかどうかを判定する。具体的には、ステップST2の冷媒回収の開始から所定時間が経過した場合には、冷媒の回収が終了したものとみなすことができる冷媒回収終了条件を満たしているものと判定する。尚、冷媒回収終了条件は、冷媒回収の開始からの時間ではなく、利用ユニット3a(漏洩機)の利用側熱交換器52aにおける冷媒の温度や圧力等を使用してもよい。
次に、ステップST4において、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2への冷媒の回収を終了するために、冷媒の漏洩が検知された利用ユニット3a(漏洩機)に対応する各種弁の開閉操作を行う。具体的には、利用ユニット3a(漏洩機)に対応する高圧ガス調節弁66a及び低圧ガス調節弁67aを閉状態にする。そして、冷媒を回収するために増加させた冷媒の放熱器として機能する熱源側熱交換器を元の状態に戻す操作を行う。具体的には、複数(ここでは、2つ)の熱源側熱交換器24、25のうち停止していた熱源側熱交換器を冷媒の放熱器として機能させていた場合には、停止した状態に戻すために、対応する熱源側膨張弁を閉状態にする。また、複数(ここでは、2つ)の熱源側熱交換器24、25のうち冷媒の蒸発器として機能していた熱源側熱交換器を冷媒の放熱器として機能させていた場合には、冷媒の蒸発器として機能する状態に戻すために、対応する熱交切換機構を蒸発運転状態に切り換える。ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合を例に挙げているため、冷媒を回収するために冷媒の放熱器として機能させていた第2熱源側熱交換器25を、停止した状態に戻すために、第2熱源側熱交換器25に対応する第2熱源側膨張弁27を閉状態にする。
これにより、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収することができる。そして、冷媒の回収が終了した後は、利用ユニット3a(漏洩機)を他の冷媒回路部分から隔離した状態にすることができる。また、冷媒回収後においても、上記の冷媒回収時と同様に、他の冷媒の漏洩が検知されていない利用ユニット3b、3cにおける冷房運転を継続することができる。
また、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収する際には、ステップST2において、圧縮機21の吸入側における冷媒が所定の乾き度又は過熱度以下の状態にならないように、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に対応する熱源側膨張弁の開度を制御するようにしてもよい。具体的には、圧縮機21から吐出される冷媒の温度Td(ここでは、吐出温度センサ40によって検出される温度値)が、圧縮機21の吸入側における冷媒の乾き度Xsが所定の乾き度Xstになる場合、又は、圧縮機21の吸入側における冷媒の過熱度SHsが所定の過熱度SHstになる場合に相当する所定の吐出温度Tdt以下にならないように、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に対応する熱源側膨張弁の開度を制御する。すなわち、温度Tdが所定の吐出温度Tdt以下の場合には、乾き度Xsが所定の乾き度Xst以下、又は、過熱度SHsが所定の過熱度SHst以下であると判断して、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に対応する熱源側膨張弁の開度を小さくする制御を行う。ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合を例に挙げているため、圧縮機21から吐出される冷媒の温度Tdが所定の吐出温度Tdt以下にならないように、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する第2熱源側熱交換器25に対応する第2熱源側膨張弁27の開度を制御する。
ここでは、圧縮機21に過度な湿り状態の冷媒が吸入されないようにすることができる。これにより、圧縮機21への液バックを抑えつつ、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に回収される冷媒を、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する第2熱源側熱交換器25に溜めることができる。
また、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収する際には、ステップST2において、室外ファン34の風量を増加させるようにしてもよい。具体的には、室外ファン34の風量設定を冷媒の漏洩が検知された際の風量設定よりも高くなるように、室外ファンモータ29の回転数を制御する。
ここでは、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器の冷媒を溜める能力を大きくすることができる。これにより、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に回収される冷媒が多い場合であっても、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する第2熱源側熱交換器25に溜めることができる。
尚、ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合において、利用ユニット3aにおいて冷媒の漏洩が発生した場合を例にして説明したが、暖房運転や冷暖同時運転の場合においても、上記の冷媒回収の動作を行うことが可能である。
具体的には、例えば、利用ユニット3a、3b、3c、3dが暖房運転を行っており、かつ、熱源側熱交換器24、25の両方が冷媒の放熱器として機能している暖房運転(放熱負荷大)の場合(図4参照)には、高圧ガス調節弁66a及び利用側膨張弁51aが開状態で、かつ、低圧ガス調節弁67aが閉状態になっているため、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収するために、ステップST2において、高圧ガス調節弁66a及び利用側膨張弁51aを閉止し、低圧ガス調節弁67aを開ける操作を行う。しかも、ここでは、冷媒の蒸発器として機能している熱源側熱交換器24、25の一方(例えば、第2熱源側熱交換器25)を冷媒の放熱器として機能させるために、ステップST2において、第2熱源側熱交換器25に対応する第2熱交切換機構23を放熱運転状態に切り換え、かつ、第2熱源側熱交換器25に対応する第2熱源側膨張弁27を開状態にする(図11参照)。
また、例えば、利用ユニット3a、3b、3cが暖房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している暖房運転(放熱負荷小)の場合(図5参照)には、高圧ガス調節弁66a及び利用側膨張弁51aが開状態で、かつ、低圧ガス調節弁67aが閉状態になっているため、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収するために、ステップST2において、高圧ガス調節弁66a及び利用側膨張弁51aを閉止し、低圧ガス調節弁67aを開ける操作を行う。しかも、ここでは、停止中の熱源側熱交換器25を冷媒の放熱器として機能させるために、ステップST2において、第2熱源側熱交換器25に対応する第2熱交切換機構23を放熱運転状態に切り換え、かつ、第2熱源側熱交換器25に対応する第2熱源側膨張弁27を開状態にする(図12参照)。
また、例えば、利用ユニット3a、3b、3cが冷房運転を行い、利用ユニット3dが暖房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している冷暖同時運転(蒸発負荷主体)の場合(図6参照)には、低圧ガス調節弁67a及び利用側膨張弁51aが開状態で、かつ、高圧ガス調節弁66aが閉状態になっているため、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収するために、ステップST2において、利用側膨張弁51aを閉止する操作を行う。しかも、ここでは、停止中の熱源側熱交換器25を冷媒の放熱器として機能させるために、ステップST2において、第2熱源側熱交換器25に対応する第2熱交切換機構23を放熱運転状態に切り換え、かつ、第2熱源側熱交換器25に対応する第2熱源側膨張弁27を開状態にする(図13参照)。
また、例えば、利用ユニット3a、3b、3cが暖房運転を行い、利用ユニット3dが冷房運転を行い、かつ、熱源側熱交換器24、25の両方が冷媒の蒸発器として機能している冷暖同時運転(放熱負荷主体)の場合(図7参照)には、高圧ガス調節弁66a及び利用側膨張弁51aが開状態で、かつ、低圧ガス調節弁67aが閉状態になっているため、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収するために、ステップST2において、高圧ガス調節弁66a及び利用側膨張弁51aを閉止し、低圧ガス調節弁67aを開ける操作を行う。しかも、ここでは、冷媒の蒸発器として機能している熱源側熱交換器25の一方(例えば、第2熱源側熱交換器25)を冷媒の放熱器として機能させるために、ステップST2において、第2熱源側熱交換器25に対応する第2熱交切換機構23を放熱運転状態に切り換え、かつ、第2熱源側熱交換器25に対応する第2熱源側膨張弁27を開状態にする(図14参照)。
また、例えば、利用ユニット3a、3bが冷房運転を行い、利用ユニット3c、3dが暖房運転を行い、第1熱源側熱交換器24が冷媒の放熱器として機能し、かつ、第2熱源側熱交換器25が冷媒の蒸発器として機能している冷暖同時運転(蒸発・放熱負荷均衡)の場合(図8参照)には、低圧ガス調節弁67a及び利用側膨張弁51aが開状態で、かつ、高圧ガス調節弁66aが閉状態になっているため、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収するために、ステップST2において、利用側膨張弁51aを閉止する操作を行う。しかも、ここでは、冷媒の蒸発器として機能している第2熱源側熱交換器を冷媒の放熱器として機能させるために、ステップST2において、第2熱源側熱交換器25に対応する第2熱交切換機構23を放熱運転状態に切り換え、かつ、第2熱源側熱交換器25に対応する第2熱源側膨張弁27を開状態にする(図15参照)。
(4)変形例
上記の実施形態のように、冷媒漏洩検知手段としての冷媒センサ57a、57b、57c、57dが冷媒の漏洩を検知した場合に冷媒の放熱器として機能する熱源側熱交換器24、25の数を増加させて冷媒回収を行うと、複数の利用ユニット3a、3b、3c、3d全体の熱負荷と熱源ユニット2の熱負荷とのバランスが崩れてしまうおそれがある。
そこで、ここでは、冷媒漏洩検知手段としての冷媒センサ57a、57b、57c、57dが冷媒の漏洩を検知した場合に、冷媒の放熱器として機能する熱源側熱交換器24、25の数を増加させるとともに、冷媒の蒸発器として機能する利用側熱交換器52a、52b、52c、52dの数を増加させるようにしている。
次に、本変形例における冷媒の漏洩が検知された場合の動作について、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合(図3参照)において、利用ユニット3aにおいて冷媒の漏洩が発生した場合を例にして、図16及び図17を用いて説明する。ここで、図16は、本変形例における冷媒の漏洩が検知された場合の動作のフローチャートであり、図17は、冷房運転(蒸発負荷小)時に冷媒の漏洩が検知された場合の動作(冷媒の流れ)を示す図である。尚、本変形例の冷媒の漏洩が検知された場合の動作についても、制御部20、50a、50b、50c、50d、60a、60b、60c、60dによって行われる。また、ステップST1、ST3の処理については、上記の実施形態(図9参照)のステップST1、ST3と同様であるため、ここでは説明を省略し、漏洩機からの冷媒回収開始及び漏洩機からの冷媒回収終了の処理(ステップST12、ST14)について説明する。
ステップST12においては、上記の実施形態のステップST2と同様に、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収するために、冷媒の漏洩が検知された利用ユニット3a(漏洩機)に対応する各種弁の開閉操作を行う。具体的には、利用ユニット3a(漏洩機)に対応する高圧ガス調節弁66a及び利用側膨張弁51aを閉状態にし、低圧ガス調節弁67aを開状態にする。これにより、利用ユニット3a(漏洩機)を他の冷媒回路部分から隔離するとともに、利用ユニット3a(漏洩機)を分岐ユニット4a及び低圧ガス冷媒連絡管9を通じて熱源ユニット2に連通した状態にすることができる。また、ここでは、冷媒の漏洩が検知された利用ユニット3a(漏洩機)に対応する各種弁の開閉操作に加えて、冷媒の放熱器として機能する熱源側熱交換器24、25の数を増加させる操作を行う。具体的には、複数(ここでは、2つ)の熱源側熱交換器24、25のうち停止中の熱源側熱交換器が存在する場合には、停止中の熱源側熱交換器を冷媒の放熱器として機能させるために、停止中の熱源側熱交換器に対応する熱交切換機構を放熱運転状態に切り換え、かつ、停止中の熱源側熱交換器に対応する熱源側膨張弁を開状態にする。また、複数(ここでは、2つ)の熱源側熱交換器24、25のうち停止中の熱源側熱交換器が存在しないが、冷媒の蒸発器として機能する熱源側熱交換器が存在する場合には、冷媒の蒸発器として機能する熱源側熱交換器を冷媒の放熱器として機能させるために、冷媒の蒸発器として機能する熱源側熱交換器に対応する熱交切換機構を放熱運転状態に切り換え、かつ、冷媒の蒸発器として機能する熱源側熱交換器に対応する熱源側膨張弁を開状態にする。ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合を例に挙げているため、停止中の第2熱源側熱交換器25を冷媒の放熱器として機能させるために、停止中の第2熱源側熱交換器25に対応する第2熱交切換機構23を放熱運転状態に切り換え、かつ、停止中の第2熱源側熱交換器25に対応する第2熱源側膨張弁27を開状態にする。さらに、ここでは、冷媒の漏洩が検知された利用ユニット3a(漏洩機)に対応する各種弁の開閉操作、及び、冷媒の放熱器として機能する熱源側熱交換器24、25の数を増加させる操作に加えて、冷媒の蒸発器として機能する利用側熱交換器52a、52b、52c、52dの数を増加させる操作を行う。具体的には、複数(ここでは、4つ)の利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dのうち停止中の利用側熱交換器が存在する場合には、停止中の利用側熱交換器を冷媒の蒸発器として機能させるために、停止中の利用側熱交換器に対応する低圧ガス調節弁及び利用側膨張弁を開状態にし、かつ、高圧ガス調節弁を閉状態にする。また、複数(ここでは、4つ)の利用ユニット3a、3b、3c、3dの利用側熱交換器52a、52b、52c、52dのうち停止中の利用側熱交換器が存在しないが、冷媒の放熱器として機能する利用側熱交換器が存在する場合には、冷媒の放熱器として機能する利用側熱交換器を冷媒の蒸発器として機能させるために、冷媒の蒸発器として機能する利用側熱交換器に対応する低圧ガス調節弁及び利用側膨張弁を開状態にし、かつ、高圧ガス調節弁を閉状態にする。ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合を例に挙げているため、停止中の利用側熱交換器52dを冷媒の蒸発器として機能させるために、停止中の利用側熱交換器52dに対応する低圧ガス調節弁67d及び利用側膨張弁51dを開状態にし、かつ、高圧ガス調節弁66dを閉状態にする。
これにより、利用ユニット3a(漏洩機)に存在する冷媒は、分岐ユニット4a及び低圧ガス冷媒連絡管9を通じて熱源ユニット2の圧縮機21の吸入側に送られる。このようにして、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収する動作が開始される。このとき、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に回収される冷媒を、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器(ここでは、第2熱源側熱交換器25)に溜めることができる。このため、利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収する動作中においても、他の冷媒の漏洩が検知されていない利用ユニット3b、3cにおいては、冷房運転が継続可能である。しかも、このとき、冷媒の蒸発器として機能する利用側熱交換器52dの数を増加させるようにしているため、利用ユニット3a、3b、3c、3d全体の熱負荷と熱源ユニット2の熱負荷とをバランスさせつつ、冷媒の漏洩が検知された3a(漏洩機)から熱源ユニット2に冷媒を回収することができる。特に、ここでは、冷媒の漏洩の検知によって増加させる冷媒の蒸発器として機能する利用側熱交換器を、運転が停止している利用ユニット3dの利用側熱交換器52dにしている。これにより、冷媒が漏洩していない他の利用ユニット(ここでは、利用ユニット3b、3c)における冷房運転や暖房運転(ここでは、利用ユニット3b、3cの冷房運転)への悪影響を抑えつつ、複数の利用ユニット3a、3b、3c、3d全体の熱負荷と熱源ユニット2の熱負荷とをバランスさせることができる。
ステップST14においては、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2への冷媒の回収を終了するために、冷媒の漏洩が検知された利用ユニット3a(漏洩機)に対応する各種弁の開閉操作を行う。具体的には、利用ユニット3a(漏洩機)に対応する高圧ガス調節弁66a及び低圧ガス調節弁67aを閉状態にする。そして、冷媒を回収するために増加させた冷媒の放熱器として機能する熱源側熱交換器を元の状態に戻す操作を行う。具体的には、複数(ここでは、2つ)の熱源側熱交換器24、25のうち停止していた熱源側熱交換器を冷媒の放熱器として機能させていた場合には、停止した状態に戻すために、熱源側膨張弁を閉状態にする。また、複数(ここでは、2つ)の熱源側熱交換器24、25のうち冷媒の蒸発器として機能していた熱源側熱交換器を冷媒の放熱器として機能させていた場合には、冷媒の蒸発器として機能する状態に戻すために、対応する熱交切換機構を蒸発運転状態に切り換える。ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合を例に挙げているため、冷媒を回収するために冷媒の放熱器として機能させていた第2熱源側熱交換器25を、停止した状態に戻すために、第2熱源側熱交換器25に対応する第2熱源側膨張弁27を閉状態にする。そして、さらに、利用ユニット3a、3b、3c、3d全体の熱負荷と熱源ユニット2の熱負荷とをバランスさせるために増加させた冷媒の蒸発器として機能する利用側熱交換器を元の状態に戻す操作を行う。具体的には、複数(ここでは、4つ)の利用側熱交換器52a、52b、52c、52dのうち停止していた利用ユニットの利用側熱交換器を冷媒の蒸発器として機能させていた場合には、停止した状態に戻すために、対応する利用側膨張弁を閉状態にする。また、複数(ここでは、4つ)の利用側熱交換器52a、52b、52c、52dのうち冷媒の放熱器として機能していた利用側熱交換器を冷媒の蒸発器として機能させていた場合には、冷媒の放熱器として機能する状態に戻すために、対応する高圧ガス調節弁及び利用側膨張弁を開状態にし、かつ、対応する低圧ガス調節弁を閉状態にする。ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合を例に挙げているため、利用ユニット3a、3b、3c、3d全体の熱負荷と熱源ユニット2の熱負荷とをバランスさせるために冷媒の蒸発器として機能させていた利用ユニット3dの利用側熱交換器52dを、停止した状態に戻すために、利用側熱交換器52dに対応する利用側膨張弁51dを閉状態にする。
これにより、冷媒の漏洩が検知された利用ユニット3a(漏洩機)から熱源ユニット2に冷媒を回収することができる。そして、冷媒の回収が終了した後は、利用ユニット3a(漏洩機)を他の冷媒回路部分から隔離した状態にすることができる。また、冷媒回収後においても、上記の冷媒回収時と同様に、他の冷媒の漏洩が検知されていない利用ユニット3b、3cにおける冷房運転を継続することができる。
また、本変形例においても、上記の実施形態と同様に、ステップST12において、圧縮機21の吸入側における冷媒が所定の乾き度又は過熱度以下の状態にならないように、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器に対応する熱源側膨張弁の開度を制御するようにしてもよい。また、ステップST12において、冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する熱源側熱交換器の冷媒を溜める能力を大きくするために、室外ファン34の風量を増加させるようにしてもよい。
尚、ここでは、利用ユニット3a、3b、3cが冷房運転を行っており、かつ、第1熱源側熱交換器24だけが冷媒の放熱器として機能している場合において、利用ユニット3aにおいて冷媒の漏洩が発生した場合を例にして説明したが、暖房運転や冷暖同時運転の場合においても、上記の冷媒回収の動作を行うことが可能である。
(5)他の変形例
上記の実施形態及び変形例では、熱源ユニット2が1台だけであるが、これに限定されるものではなく、2台以上であってもよい。また、上記の実施形態及び変形例では、複数の熱源側熱交換器が2つの熱源側熱交換器24、25から構成されているが、これに限定されるものではなく、例えば3つ以上の熱源側熱交換器から構成されていてもよい。
上記の実施形態及び変形例では、複数の利用ユニット3a、3b、3c、3dのそれぞれに対応する分岐ユニット4a、4b、4c、4dが接続されているが、これに限定されるものではなく、分岐ユニットが複数の利用ユニット毎にまとまった構成であってもよい。
上記の実施形態及び変形例では、冷媒漏洩検知手段としての冷媒センサ57a、57b、57c、57dを利用ユニット3a、3b、3c、3dに設けているが、これに限定されるものではなく、冷媒センサ57a、57b、57c、57dを利用ユニット3a、3b、3c、3dが設置される室内空間に設けてもよい。また、上記の実施形態及び変形例では、冷媒漏洩検知手段として冷媒センサ57a、57b、57c、57dを使用しているが、これに限定されるものではなく、冷凍サイクル運転の状態(高圧の時間変化など)によって冷媒の漏洩の有無を検知してもよい。
本発明は、複数の利用ユニットと分岐ユニットと熱源ユニットとが3つの冷媒連絡管を介して接続されることによって構成される冷暖同時運転型空気調和装置に対して、広く適用可能である。
1 冷暖同時運転型空気調和装置
2 熱源ユニット
3a、3b、3c、3d 利用ユニット
4a、4b、4c、4d 分岐ユニット
7 液冷媒連絡管
8 高低圧ガス冷媒連絡管
9 低圧ガス冷媒連絡管
21 圧縮機
24、25 熱源側熱交換器
26、27 熱源側膨張弁
34 室外ファン
51a、51b、51c、51d 利用側膨張弁
52a、52b、52c、52d 利用側熱交換器
57a、57b、57c、57d 冷媒センサ(冷媒漏洩検知手段)
66a、66b、66c、66d 高圧ガス調節弁
67a、67b、67c、67d 低圧ガス調節弁
特開2009−299910号公報

Claims (5)

  1. 利用側膨張弁(51a、51b、51c、51d)と、利用側熱交換器(52a、52b、52c、52d)と、を有する複数の利用ユニット(3a、3b、3c、3d)と、
    圧縮機(21)と、複数の熱源側熱交換器(24、25)と、を有する熱源ユニット(2)と、
    前記熱源ユニットから引き出される高低圧ガス冷媒連絡管(8)と、
    前記熱源ユニットから引き出される低圧ガス冷媒連絡管(9)と、
    前記熱源ユニットから引き出される液冷媒連絡管(7)と、
    前記各利用ユニットを前記高低圧ガス冷媒連絡管、前記低圧ガス冷媒連絡管及び前記液冷媒連絡管に接続しており、前記各利用ユニットに対応する高圧ガス調節弁(66a、66b、66c、66d)及び低圧ガス調節弁(67a、67b、67c、67d)を有する分岐ユニット(4a、4b、4c、4d)と、
    を備えており、
    冷媒の漏洩を検知する冷媒漏洩検知手段(57a、57b、57c、57d)を設け、
    前記冷媒漏洩検知手段が冷媒の漏洩を検知した場合には、冷媒の放熱器として機能する前記熱源側熱交換器の数を増加させて、冷媒の漏洩が検知された前記利用ユニットから前記熱源ユニットに冷媒を回収する、
    冷暖同時運転型空気調和装置(1)。
  2. 前記各熱源側熱交換器(24、25)の液側には、熱源側膨張弁(26、27)が接続されており、
    前記圧縮機(21)の吸入側における冷媒が所定の乾き度又は過熱度以下の状態にならないように、前記冷媒の漏洩の検知によって増加させた冷媒の放熱器として機能する前記熱源側熱交換器(24、25)に対応する前記熱源側膨張弁(26、27)の開度を制御する、
    請求項1に記載の冷暖同時運転型空気調和装置(1)。
  3. 前記熱源ユニット(2)は、前記複数の熱源側熱交換器(24、25)を流れる冷媒の熱交換のために空気を供給する室外ファン(34)を有しており、
    前記冷媒漏洩検知手段(57a、57b、57c、57d)が冷媒の漏洩を検知した場合には、前記室外ファンの風量を増加させる、
    請求項1に記載の冷暖同時運転型空気調和装置(1)。
  4. 前記冷媒漏洩検知手段(57a、57b、57c、57d)が冷媒の漏洩を検知した場合には、冷媒の蒸発器として機能する前記利用側熱交換器(52a、52b、52c、52d)の数を増加させる、
    請求項1〜3のいずれか1項に記載の冷暖同時運転型空気調和装置(1)。
  5. 前記冷媒漏洩検知手段(57a、57b、57c、57d)が冷媒の漏洩を検知した場合には、運転が停止している前記利用ユニット(3a、3b、3c、3d)の前記利用側熱交換器(52a、52b、52c、52d)を冷媒の蒸発器として機能させる、
    請求項4に記載の冷暖同時運転型空気調和装置(1)。
JP2014133213A 2014-06-27 2014-06-27 冷暖同時運転型空気調和装置 Active JP6394116B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133213A JP6394116B2 (ja) 2014-06-27 2014-06-27 冷暖同時運転型空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133213A JP6394116B2 (ja) 2014-06-27 2014-06-27 冷暖同時運転型空気調和装置

Publications (2)

Publication Number Publication Date
JP2016011781A true JP2016011781A (ja) 2016-01-21
JP6394116B2 JP6394116B2 (ja) 2018-09-26

Family

ID=55228620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133213A Active JP6394116B2 (ja) 2014-06-27 2014-06-27 冷暖同時運転型空気調和装置

Country Status (1)

Country Link
JP (1) JP6394116B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269756B1 (ja) * 2016-09-02 2018-01-31 ダイキン工業株式会社 冷凍装置
WO2018216127A1 (ja) 2017-05-24 2018-11-29 三菱電機株式会社 空調システム
CN108954666A (zh) * 2018-08-21 2018-12-07 珠海格力电器股份有限公司 一种机组、隔离装置及冷媒泄漏处理方法、装置
CN110940048A (zh) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 一种制冷剂泄漏检测方法及空调器
CN112503719A (zh) * 2020-12-08 2021-03-16 合肥美的暖通设备有限公司 冷媒泄漏保护方法、空气调节设备和可读存储介质
US11199337B2 (en) 2018-04-09 2021-12-14 Mitsubishi Electric Corporation Air conditioner
CN114364925A (zh) * 2019-09-09 2022-04-15 大金工业株式会社 制冷剂泄漏判定系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299910A (ja) * 2008-06-10 2009-12-24 Hitachi Appliances Inc 空気調和機
WO2011052046A1 (ja) * 2009-10-28 2011-05-05 三菱電機株式会社 空気調和装置
JP2013178073A (ja) * 2012-02-06 2013-09-09 Daikin Industries Ltd 冷凍装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299910A (ja) * 2008-06-10 2009-12-24 Hitachi Appliances Inc 空気調和機
WO2011052046A1 (ja) * 2009-10-28 2011-05-05 三菱電機株式会社 空気調和装置
JP2013178073A (ja) * 2012-02-06 2013-09-09 Daikin Industries Ltd 冷凍装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269756B1 (ja) * 2016-09-02 2018-01-31 ダイキン工業株式会社 冷凍装置
JP2018036030A (ja) * 2016-09-02 2018-03-08 ダイキン工業株式会社 冷凍装置
WO2018043721A1 (ja) * 2016-09-02 2018-03-08 ダイキン工業株式会社 冷凍装置
WO2018216127A1 (ja) 2017-05-24 2018-11-29 三菱電機株式会社 空調システム
US11098916B2 (en) 2017-05-24 2021-08-24 Mitsubishi Electric Corporation Air conditioning system
US11199337B2 (en) 2018-04-09 2021-12-14 Mitsubishi Electric Corporation Air conditioner
CN108954666A (zh) * 2018-08-21 2018-12-07 珠海格力电器股份有限公司 一种机组、隔离装置及冷媒泄漏处理方法、装置
CN110940048A (zh) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 一种制冷剂泄漏检测方法及空调器
CN114364925A (zh) * 2019-09-09 2022-04-15 大金工业株式会社 制冷剂泄漏判定系统
CN114364925B (zh) * 2019-09-09 2023-10-20 大金工业株式会社 制冷剂泄漏判定系统
CN112503719A (zh) * 2020-12-08 2021-03-16 合肥美的暖通设备有限公司 冷媒泄漏保护方法、空气调节设备和可读存储介质

Also Published As

Publication number Publication date
JP6394116B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6394116B2 (ja) 冷暖同時運転型空気調和装置
JP6278094B1 (ja) 空気調和装置
JP6081033B1 (ja) 空気調和装置
JP6323214B2 (ja) 冷暖同時運転型空気調和装置
JP5774225B2 (ja) 空気調和装置
JP6417750B2 (ja) 冷暖同時運転型空気調和装置
JP5772904B2 (ja) 熱回収型冷凍装置
JP5747968B2 (ja) 熱回収型冷凍装置
JP6331768B2 (ja) 冷暖同時運転型空気調和装置
JP5959716B2 (ja) 空気調和装置
JP2013139924A (ja) 冷凍装置
JP5949831B2 (ja) 冷凍装置
JP6922748B2 (ja) 空気調和装置
JP6120943B2 (ja) 空気調和装置
JP6291774B2 (ja) 冷凍装置
JP5907212B2 (ja) 熱回収型冷凍装置
WO2015182484A1 (ja) 冷凍装置
JP5839084B2 (ja) 冷凍装置
WO2015182587A1 (ja) 冷凍装置
JP7473836B2 (ja) 冷凍サイクルシステム
JP5983678B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R151 Written notification of patent or utility model registration

Ref document number: 6394116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151