WO2018043721A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2018043721A1
WO2018043721A1 PCT/JP2017/031657 JP2017031657W WO2018043721A1 WO 2018043721 A1 WO2018043721 A1 WO 2018043721A1 JP 2017031657 W JP2017031657 W JP 2017031657W WO 2018043721 A1 WO2018043721 A1 WO 2018043721A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
unit
heat source
usage
leakage
Prior art date
Application number
PCT/JP2017/031657
Other languages
English (en)
French (fr)
Inventor
覚 阪江
東 近藤
竹上 雅章
野村 和秀
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201780053870.7A priority Critical patent/CN109661547A/zh
Priority to US16/329,972 priority patent/US11015852B2/en
Priority to EP17846724.7A priority patent/EP3508796A4/en
Publication of WO2018043721A1 publication Critical patent/WO2018043721A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/221Preventing leaks from developing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-228281
  • the pump down operation is automatically performed by controlling the compressor and each valve. It has been proposed to reduce the leakage of the refrigerant to the space where the use side heat exchanger is installed as much as possible by performing the operation and collecting the refrigerant in the heat source side heat exchanger.
  • leakage occurs when one of the plurality of usage-side heat exchangers leaks refrigerant. It is conceivable that the refrigerant is continuously circulated in the utilization side heat exchanger in which leakage does not occur while closing the valve provided in the path for supplying the refrigerant to the utilization side heat exchanger in which the occurrence of the refrigerant occurs.
  • the valve opening degree can be completely closed. Instead, there may be a slight gap in the valve. In such a case, when the drive of the compressor is continued even after the refrigerant leaks, the refrigerant pressure continues to act on the valve for which the closing control is performed. May leak. And the quantity of the refrigerant
  • the present invention has been made in view of the above-described points, and the problem of the present invention is that even when the refrigerant is leaked, the operation of the refrigerant is continued even when the operation is not performed.
  • An object of the present invention is to provide a refrigeration apparatus capable of reducing the degree of leakage.
  • the refrigeration apparatus includes a heat source unit, a plurality of utilization units, and a control unit.
  • the heat source unit has a compressor and a heat source side heat exchanger.
  • the plurality of utilization units are connected in parallel to the heat source unit via the liquid side refrigerant communication pipe and the gas side refrigerant communication pipe.
  • Each utilization unit has a utilization side heat exchanger and a utilization side valve.
  • the use side valve is provided on the liquid side refrigerant communication pipe side with respect to the use side heat exchanger.
  • the control unit sets the usage side valve of the leakage unit that is the usage unit that satisfies the predetermined condition to be closed, and satisfies the predetermined condition.
  • pressure control is performed while the use side valve of the non-leakage unit that was in operation when the leaking unit fulfilled a predetermined condition is open.
  • the control unit lowers the refrigerant pressure on the liquid side refrigerant communication pipe side of the plurality of usage side valves from the refrigerant pressure when the leakage unit satisfies a predetermined condition.
  • the case where the refrigerant leakage condition satisfies the predetermined condition is not particularly limited.
  • the sensor detects that the refrigerant concentration in the usage unit is equal to or higher than the predetermined level the case where the value detected by the pressure or temperature sensor of the portion through which the refrigerant flows changes or decreases is included.
  • the use side valve of the non-leakage unit that was in operation is opened. For this reason, while avoiding the circulation of the refrigerant to the leakage unit, it is possible to circulate the refrigerant for the use side heat exchanger of the non-leakage unit and continue to use it as the refrigerant evaporator. Therefore, it becomes possible to continue cooling the cooling target for the non-leakage unit.
  • the valve opening degree may be slightly opened unintentionally. If the valve opening is unintentionally opened slightly in this way, the refrigerant that leaks through the use side valve of the leakage unit flows toward the use side heat exchanger, which is not intended. Leakage may continue.
  • the amount of refrigerant that leaks through the use side valve of such a leak unit tends to increase when the pressure of the refrigerant on the liquid side refrigerant communication pipe side of the use side valve in the leak unit is high.
  • both the non-leakage unit and the leaky unit are connected in parallel to the heat source unit. The refrigerant pressure continues to act on the piping side.
  • the control unit performs pressure control, so that the refrigerant pressure on the liquid side refrigerant communication pipe side of the plurality of usage side valves is obtained from the refrigerant pressure when the leakage unit satisfies a predetermined condition. Also lowered. For this reason, even if the valve opening degree is unintentionally slightly opened in the use side valve of the leak unit, the refrigerant passes through the use side valve of the leak unit while continuing to circulate the refrigerant through the non-leak unit. It becomes possible to reduce the amount of refrigerant.
  • the refrigeration apparatus is the refrigeration apparatus according to the first aspect, and the heat source unit has a heat source side expansion valve that lowers the pressure of the refrigerant that has radiated heat in the heat source side heat exchanger.
  • the controller controls the heat source side so that the degree of pressure reduction in the heat source side expansion valve after the leakage unit satisfies the predetermined condition is greater than the degree of pressure reduction in the heat source side expansion valve when the leakage unit satisfies the predetermined condition.
  • the pressure is controlled by controlling the expansion valve.
  • control unit can control the pressure using the heat source side expansion valve, thereby reducing the pressure of the refrigerant toward the use side heat exchanger after radiating heat in the heat source side heat exchanger. .
  • the control unit can control the pressure using the heat source side expansion valve, thereby reducing the pressure of the refrigerant toward the use side heat exchanger after radiating heat in the heat source side heat exchanger. .
  • the refrigeration apparatus is the refrigeration apparatus according to the second aspect, and further includes a supercooling pipe, a supercooling expansion valve, and a supercooling heat exchanger.
  • the supercooling pipe branches the refrigerant radiated by the heat source side heat exchanger from the refrigerant path that sends it to the plurality of utilization units, and guides it to the compressor.
  • a supercooling expansion valve is provided in the middle of a supercooling pipe, and decompresses the refrigerant which passes.
  • the supercooling heat exchanger performs heat exchange between the refrigerant flowing through the supercooling pipe and the refrigerant decompressed by the supercooling expansion valve and the refrigerant flowing through the refrigerant path.
  • Leading to the compressor may be leading to the suction side of the compressor or leading to an intermediate stage of the compression process in the compressor.
  • the refrigeration apparatus is the refrigeration apparatus according to the first aspect, wherein the control unit satisfies the predetermined condition rather than the drive frequency in the compressor when the leakage unit satisfies the predetermined condition.
  • Pressure control is performed by controlling the compressor so that the drive frequency in the later compressor becomes smaller.
  • the refrigeration apparatus is the refrigeration apparatus according to the first aspect, and the heat source unit has a heat source side fan for sending an air flow to the heat source side heat exchanger.
  • the control unit controls the heat source side fan so that the air volume by the heat source side fan after the leakage unit satisfies the predetermined condition is larger than the air volume by the heat source side fan when the leakage unit satisfies the predetermined condition. Pressure control.
  • the refrigerant pressure on the liquid side refrigerant communication pipe side of the plurality of usage side valves can be easily lowered.
  • the refrigerant pressure on the liquid side refrigerant communication pipe side of the plurality of usage side valves can be easily lowered by increasing the air volume of the heat source side fan.
  • FIG. 1 is an overall configuration diagram of a refrigeration apparatus according to an embodiment of the present invention.
  • the block diagram which showed typically the schematic structure of the controller, and each part connected to a controller.
  • the flowchart which showed an example of the process flow of the controller at the time of refrigerant
  • the whole block diagram of the freezing apparatus which has a refrigerant circuit concerning modification A.
  • the flowchart which showed an example of the process flow of the controller at the time of the refrigerant
  • the flowchart which showed an example of the process flow of the controller at the time of the refrigerant
  • FIG. 1 is a schematic configuration diagram of a refrigeration apparatus 100 according to an embodiment of the present invention.
  • the refrigeration apparatus 100 is an apparatus that cools a use-side space such as a refrigerated warehouse or a showcase of a store by a vapor compression refrigeration cycle.
  • the refrigeration apparatus 100 mainly includes a heat source unit 2, a plurality of (here, two) use units (first use unit 50, second use unit 60), heat source unit 2, first use unit 50, and second use.
  • a plurality of remote controllers first remote controller 50a, second remote controller 60a
  • a controller 70 for controlling the operation of 100.
  • the first usage unit 50 and the second usage unit 60 are connected in parallel to one heat source unit 2 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 7.
  • the refrigerant circuit 10 is configured.
  • a refrigeration cycle is performed in which the refrigerant sealed in the refrigerant circuit 10 is compressed, cooled or condensed, depressurized, heated or evaporated, and then compressed again.
  • the refrigerant circuit 10 is filled with R32 as a refrigerant for performing a vapor compression refrigeration cycle.
  • Heat source unit 2 In the heat source unit 2, a first usage unit 50 and a second usage unit 60 are connected in parallel via a liquid side refrigerant communication pipe 6 and a gas side refrigerant communication pipe 7, and constitute a part of the refrigerant circuit 10. Yes.
  • the heat source unit 2 mainly includes a compressor 21, a heat source side heat exchanger 23, a heat source side fan 34, a receiver 24, a supercooler 25, a heat source side expansion valve 28, a hot gas bypass pipe 40, A hot gas bypass valve 41, an injection pipe 26, an injection valve 27, a liquid side closing valve 29, and a gas side closing valve 30 are provided.
  • the heat source unit 2 includes a discharge side refrigerant pipe 31 that connects the discharge side of the compressor 21 and the gas side end of the heat source side heat exchanger 23, and the liquid side end of the heat source side heat exchanger 23 communicates with the liquid side refrigerant.
  • a heat source side liquid refrigerant pipe 32 connecting the pipe 6 and a suction side refrigerant pipe 33 connecting the suction side of the compressor 21 and the gas side refrigerant communication pipe 7 are provided.
  • the heat source unit 2 branches a part of the refrigerant flowing through the discharge side refrigerant pipe 31 and returns it to the suction side of the compressor 21 via the suction side refrigerant pipe 33, and a hot gas bypass pipe 40 and a hot gas bypass valve 41 provided in the middle.
  • the heat source unit 2 branches a part of the refrigerant flowing through the heat source side liquid refrigerant pipe 32 and returns it to the compressor 21, and an injection valve provided in the middle of the injection pipe 26. 27 (supercooled expansion valve).
  • the injection pipe 26 branches from a portion of the heat source side liquid refrigerant pipe 32 on the downstream side of the supercooler 25 and is connected to the compressor 21 during the compression process after passing through the supercooler 25.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure.
  • a compressor having a hermetic structure in which a rotary type or scroll type positive displacement compression element (not shown) is rotationally driven by a compressor motor M21 is used as the compressor 21 .
  • the compressor 21 of the present embodiment is configured by connecting a variable capacity compressor and one or a plurality of constant speed compressors in parallel with each other.
  • the compressor motor M21 is provided in a variable capacity compressor, and the operation frequency can be controlled by an inverter.
  • the capacity of the compressor 21 is reduced, the operating frequency of the variable capacity compressor is lowered, and it is not enough to lower the operating frequency of the variable capacity compressor. Performs the process of stopping the constant speed compressor.
  • the heat source side heat exchanger 23 is a heat exchanger that functions as a high-pressure refrigerant radiator in the refrigeration cycle.
  • the heat source unit 2 sucks outside air (heat source side air) into the heat source unit 2, exchanges heat with the refrigerant in the heat source side heat exchanger 23, and then discharges the heat source side fan to the outside. 34.
  • the heat source side fan 34 is a fan for supplying heat source side air as a cooling source of the refrigerant flowing through the heat source side heat exchanger 23 to the heat source side heat exchanger 23.
  • the heat source side fan 34 is rotationally driven by a heat source side fan motor M34.
  • the air volume of the heat source side fan 34 is controlled by adjusting the rotation speed of the heat source side fan motor M34.
  • the receiver 24 is a container that temporarily accumulates the refrigerant condensed in the heat source side heat exchanger 23 and is disposed in the middle of the heat source side liquid refrigerant pipe 32.
  • the subcooler 25 is a heat exchanger that further cools the refrigerant temporarily stored in the receiver 24, and is disposed in the heat source side liquid refrigerant pipe 32 (more specifically, in a portion downstream of the receiver 24). ing.
  • the heat source side expansion valve 28 is an electric expansion valve whose opening degree can be controlled, and is disposed in the heat source side liquid refrigerant pipe 32 (more specifically, in a downstream portion of the subcooler 25).
  • the injection valve 27 is disposed in the injection pipe 26 (more specifically, at a portion from the branch point of the heat source side liquid refrigerant pipe 32 to the inlet of the supercooler 25).
  • the injection valve 27 is an electric expansion valve whose opening degree can be controlled.
  • the injection valve 27 decompresses the refrigerant flowing through the injection pipe 26 before flowing into the subcooler 25 according to the opening.
  • the liquid side shut-off valve 29 is a manual valve arranged at a connection portion of the heat source side liquid refrigerant pipe 32 with the liquid side refrigerant communication pipe 6.
  • the gas side shut-off valve 30 is a manual valve arranged at a connection portion of the suction side refrigerant pipe 33 with the gas side refrigerant communication pipe 7.
  • a suction pressure sensor 36 that detects a suction pressure that is a refrigerant pressure on the suction side of the compressor 21 and a refrigerant pressure on the discharge side of the compressor 21 are disposed around the compressor 21 of the heat source unit 2.
  • a discharge pressure sensor 37 for detecting a certain discharge pressure is disposed.
  • a receiver outlet temperature sensor 38 that detects a receiver outlet temperature that is a temperature of the refrigerant at the outlet of the receiver 24 is provided at a portion between the outlet of the receiver 24 and the inlet of the supercooler 25 in the heat source side liquid refrigerant pipe 32.
  • a heat source side air temperature sensor 39 for detecting the temperature of the heat source side air sucked into the heat source unit 2 is disposed around the heat source side heat exchanger 23 or the heat source side fan 34.
  • the heat source unit 2 has a heat source unit control unit 20 that controls the operation of each unit constituting the heat source unit 2.
  • the heat source unit control unit 20 has a microcomputer including a CPU and a memory.
  • the heat source unit control unit 20 is connected to the usage unit control unit 57 of each usage unit 50 via a communication line, and transmits and receives control signals and the like.
  • the first usage unit 50 is connected to the heat source unit 2 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 7 and constitutes a part of the refrigerant circuit 10.
  • the first usage unit 50 includes a first usage side expansion valve 54 and a first usage side heat exchanger 52.
  • the first usage unit 50 includes a first usage-side liquid refrigerant pipe 59 that connects the liquid-side end of the first usage-side heat exchanger 52 and the liquid-side refrigerant communication pipe 6, and the first usage-side heat exchanger 52.
  • the first use side gas refrigerant pipe 58 connecting the gas side end of the gas and the gas side refrigerant communication pipe 7 is provided.
  • the first use side expansion valve 54 is a throttle mechanism that functions as a pressure reducing means for the refrigerant sent from the heat source unit 2.
  • the first usage-side expansion valve 54 is a temperature-sensitive expansion valve including a temperature-sensitive cylinder, and operates according to a temperature change of the temperature-sensitive cylinder (the opening degree is automatically determined).
  • the first use side heat exchanger 52 is a heat exchanger that functions as a low-pressure refrigerant evaporator in the refrigeration cycle and cools the internal air (use side air).
  • the first usage unit 50 is used for cooling the inside of a case with a door (reach-in case).
  • the first usage unit 50 sucks usage-side air into the first usage unit 50, exchanges heat with the refrigerant in the first usage-side heat exchanger 52, and supplies the usage-side air to the usage-side space.
  • the first usage side fan 53 is provided.
  • the first usage-side fan 53 is a fan for supplying usage-side air as a heating source for the refrigerant flowing through the first usage-side heat exchanger 52 to the first usage-side heat exchanger 52.
  • the first usage-side fan 53 is rotationally driven by a first usage-side fan motor M53.
  • the first usage unit 50 has a first on-off valve 55 that can block the flow of the refrigerant flowing into the first usage unit 50.
  • the first on-off valve 55 is disposed on the liquid refrigerant inlet side (liquid side refrigerant communication pipe 6 side) of the first usage unit 50.
  • the first on-off valve 55 is disposed on the inlet side with respect to the first usage-side heat exchanger 52. More specifically, the first on-off valve 55 is disposed closer to the inlet side than the first usage-side expansion valve 54.
  • the first on-off valve 55 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the first on-off valve 55 is switched to the closed state in order to block the flow of the refrigerant flowing into the first usage unit 50 (more specifically, the first usage-side heat exchanger 52).
  • the first on-off valve 55 cannot be completely closed, and there is a possibility that the valve opening degree is unintentionally slightly opened.
  • the first on-off valve 55 is normally controlled in an open state.
  • the first usage unit 50 includes a first check valve 51 that can block the flow of the refrigerant flowing into the first usage unit 50 from the outlet side (backflow).
  • the first check valve 51 is arranged on the gas refrigerant outlet side (gas side refrigerant communication pipe 7 side) of the first usage unit 50. Specifically, the first check valve 51 is disposed on the outlet side with respect to the first use side heat exchanger 52.
  • the first check valve 51 allows the flow of the refrigerant from the first usage-side gas refrigerant pipe 58 toward the gas-side refrigerant communication pipe 7, and from the gas-side refrigerant communication pipe 7 to the first usage-side gas refrigerant pipe 58 (more details). The flow of the refrigerant toward the first use side heat exchanger 52 side) is cut off from the first check valve 51.
  • the first usage unit 50 includes a first usage unit control unit 57 that controls the operation of each unit constituting the first usage unit 50.
  • the first usage unit control unit 57 has a microcomputer including a CPU, a memory, and the like.
  • the 1st utilization unit control part 57 is connected with the heat-source unit control part 20 via the communication line, and transmits / receives a control signal etc.
  • the first usage unit controller 57 is electrically connected to the first refrigerant leakage sensor 81, and a signal from the first refrigerant leakage sensor 81 is output.
  • the second usage unit 60 has the same configuration as the first usage unit 50 and is connected to the heat source unit 2 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 7, and a part of the refrigerant circuit 10. Is configured.
  • the second usage unit 60 is connected in parallel to the first usage unit 50.
  • the second usage unit 60 includes a second usage side expansion valve 64 and a second usage side heat exchanger 62.
  • the second usage unit 60 includes a second usage-side liquid refrigerant pipe 69 that connects the liquid-side end of the second usage-side heat exchanger 62 and the liquid-side refrigerant communication pipe 6, and a second usage-side heat exchanger 62.
  • a second usage-side gas refrigerant pipe 68 that connects the gas side end of the gas and the gas side refrigerant communication pipe 7.
  • the second use side expansion valve 64 is a throttle mechanism that functions as a pressure reducing means for the refrigerant sent from the heat source unit 2.
  • the second usage-side expansion valve 64 is a temperature-sensitive expansion valve including a temperature-sensitive cylinder, similarly to the first usage-side expansion valve 54, and operates according to a temperature change of the temperature-sensitive cylinder ( The opening is automatically determined).
  • the second usage side heat exchanger 62 is a heat exchanger that functions as a low-pressure refrigerant evaporator in the refrigeration cycle and cools the internal air (use side air).
  • the second usage unit 60 is used for cooling the inside of a case (open case) without a door having a large opening at the top.
  • the second usage unit 60 similarly to the first usage unit 50, the second usage unit 60 also has a second usage-side fan 63 that is rotationally driven by the second usage-side fan motor M63.
  • the second usage unit 60 is disposed on the liquid refrigerant inlet side (liquid side refrigerant communication pipe 6 side) of the second usage unit 60 and can block the flow of the refrigerant flowing into the second usage unit 60.
  • a second opening / closing valve 65 is provided. Specifically, the second on-off valve 65 is disposed closer to the inlet side than the second usage side heat exchanger 62. More specifically, the second on-off valve 65 is disposed closer to the inlet side than the second usage side expansion valve 64.
  • the second on-off valve 65 is an electromagnetic valve that can be switched between an open state and a closed state.
  • the second on-off valve 65 is switched to the closed state in order to block the flow of the refrigerant flowing into the second usage unit 60 (more specifically, the second usage-side heat exchanger 62).
  • the second on-off valve 65 is normally controlled to be in an open state.
  • the second usage unit 60 is disposed on the gas refrigerant outlet side (gas side refrigerant communication pipe 7 side) of the second usage unit 60 and flows into the second usage unit 60 from the outlet side (backflow).
  • the second check valve 61 is disposed on the outlet side of the second use side heat exchanger 62.
  • the second check valve 61 allows the flow of the refrigerant from the second usage side gas refrigerant pipe 68 toward the gas side refrigerant communication pipe 7, and from the gas side refrigerant communication pipe 7 to the second usage side gas refrigerant pipe 68 (more details).
  • the flow of the refrigerant toward the second use side heat exchanger 62 side than the second check valve 61 is cut off.
  • the second usage unit 60 has a second usage unit control unit 67 that controls the operation of each part constituting the second usage unit 60.
  • the second usage unit control unit 67 has a microcomputer including a CPU, a memory, and the like.
  • the second usage unit controller 67 is connected to the heat source unit controller 20 via a communication line, and transmits and receives control signals and the like.
  • the second usage unit controller 67 is electrically connected to the second refrigerant leakage sensor 82 and outputs a signal from the second refrigerant leakage sensor 82.
  • First refrigerant leak sensor 81, second refrigerant leak sensor 82 The first refrigerant leakage sensor 81 is a sensor for detecting refrigerant leakage in the first usage unit 50.
  • the second refrigerant leakage sensor 82 is a sensor for detecting refrigerant leakage in the second usage unit 60.
  • the refrigerant leakage sensors 81 and 82 are arranged in the casings of the corresponding usage units 50 and 60.
  • known general-purpose products are used for the first refrigerant leak sensor 81 and the second refrigerant leak sensor 82.
  • Each of the first refrigerant leak sensor 81 and the second refrigerant leak sensor 82 is connected to an electrical signal (hereinafter referred to as “refrigerant leak signal”) indicating that refrigerant leak has occurred when refrigerant leak is detected.
  • refrigerant leak signal an electrical signal (hereinafter referred to as “refrigerant leak signal”) indicating that refrigerant leak has occurred when refrigerant leak is detected.
  • First remote controller 50a, second remote controller 60a The first remote controller 50a is an input device for the user of the first usage unit 50 to input various instructions for switching the operating state of the refrigeration apparatus 100.
  • the first remote controller 50a also functions as a display device for displaying the operating state of the refrigeration apparatus 100 and predetermined notification information.
  • the first remote controller 50a is connected to the first usage unit controller 57 via a communication line, and transmits and receives signals to and from each other.
  • the second remote controller 60a is the same as the first remote controller 50a, and is an input device and a display device for the user of the second usage unit 60 to input various instructions for switching the operating state of the refrigeration apparatus 100.
  • the second remote controller 60a is connected to the second usage unit controller 67 via a communication line, and transmits and receives signals to and from each other.
  • Controller 70 In the refrigeration apparatus 100, the heat source unit control unit 20, the first usage unit control unit 57, and the second usage unit control unit 67 are connected via a communication line, whereby the refrigeration apparatus.
  • a controller 70 for controlling the operation of 100 is configured.
  • FIG. 2 is a block diagram schematically showing a schematic configuration of the controller 70 and each unit connected to the controller 70. As shown in FIG.
  • the controller 70 has a plurality of control modes, and controls the operation of the refrigeration apparatus 100 according to the transitioned control mode.
  • the controller 70 has, as control modes, a normal operation mode that transitions to a normal time and a refrigerant leakage control mode that transitions when refrigerant leakage occurs.
  • the controller 70 includes each actuator included in the heat source unit 2 (specifically, the compressor 21 (compressor motor M21), the heat source side expansion valve 28, the injection valve 27, the hot gas bypass valve 41, and the heat source side fan 34 ( The heat source side fan motor M34)) is electrically connected to various sensors (suction pressure sensor 36, discharge pressure sensor 37, receiver outlet temperature sensor 38, heat source side air temperature sensor 39, etc.).
  • the controller 70 includes an actuator (specifically, a first usage-side fan 53 (first usage-side fan motor M53), a first usage-side expansion valve 54, and a first on-off valve included in the first usage unit 50. 55).
  • the controller 70 includes an actuator (specifically, a second usage side fan 63 (second usage side fan motor M63), a second usage side expansion valve 64, and a second on-off valve included in the second usage unit 60. 65).
  • the controller 70 is electrically connected to the first refrigerant leakage sensor 81, the second refrigerant leakage sensor 82, the first remote controller 50a, and the second remote controller 60a.
  • the controller 70 mainly includes a storage unit 71, a communication unit 72, a mode control unit 73, an actuator control unit 74, and a display control unit 75. These units in the controller 70 are realized by the functions of the units included in the heat source unit control unit 20 and / or the utilization unit control unit 57 being integrated.
  • the storage unit 71 includes, for example, a ROM, a RAM, and a flash memory, and includes a volatile storage area and a nonvolatile storage area.
  • the storage unit 71 stores a control program that defines processing in each unit of the controller 70.
  • the storage unit 71 appropriately stores predetermined information (for example, detection values of each sensor, commands input to the first remote controller 50a, the second remote controller 60a, and the like) in a predetermined storage area by each unit of the controller 70. Is done.
  • the communication unit 72 is a functional unit that plays a role as a communication interface for transmitting and receiving signals to and from each device connected to the controller 70.
  • the communication unit 72 receives a request from the actuator control unit 74 and transmits a predetermined signal to the designated actuator. Further, the communication unit 72 receives signals output from the various sensors (36 to 39), the first refrigerant leakage sensor 81, the second refrigerant leakage sensor, the first remote controller 50a, and the second remote controller 60a, and receives the storage unit 71. Stored in a predetermined storage area.
  • the mode control unit 73 is a functional unit that performs control mode switching and the like.
  • the mode control unit 73 sets the control mode to the normal operation mode when neither the first refrigerant leakage sensor 81 nor the second refrigerant leakage sensor 82 is in the state of detecting refrigerant leakage.
  • the mode control unit 73 switches the control mode to the refrigerant leakage control mode, and the first refrigerant leakage sensor 81 and the second refrigerant leakage sensor 82 are switched to the refrigerant leakage control mode corresponding to the sensor that has detected the refrigerant leakage.
  • Actuator controller 74 The actuator control unit 74 controls the operation of each actuator (for example, the compressor 21 and the on-off valve 55) included in the refrigeration apparatus 100 according to the situation according to the control program.
  • the actuator control unit 74 determines the number of rotations of the compressor 21, the number of rotations of the heat source side fan 34 and the use side fans 53 and 63, and the injection according to the set temperature, detection values of various sensors, and the like.
  • the opening degree of the valve 27 is controlled in real time.
  • the actuator control unit 74 performs control so that the heat source side expansion valve 28 is fully opened.
  • the actuator controller 74 sets the target value of the suction pressure according to the cooling load required by the first usage unit 50 and the second usage unit 60 so that the suction pressure becomes the target value.
  • the operation frequency of the compressor 21 is controlled.
  • the actuator control unit 74 controls the hot gas bypass valve 41 to be in a fully closed state and does not cause the refrigerant to flow through the hot gas bypass pipe 40.
  • the actuator control unit 74 controls the operation of each actuator so that a predetermined operation is performed in the refrigerant leakage control mode. Specifically, the actuator control unit 74 continues to control the operation frequency of the compressor 21 so that the suction pressure becomes a target value as in the normal operation mode, and the first usage unit 50 and the second usage unit 60. Control for closing the on-off valve (the first on-off valve 55 or the second on-off valve 65) in order to interrupt the supply of the refrigerant to the leakage unit for the use unit (hereinafter referred to as "leak unit") in which refrigerant leakage occurs. I do.
  • non-leakage unit the usage unit in which refrigerant leakage has not occurred
  • the on-off valve the first on-off valve 55 or the second on-off valve 65
  • the actuator control part 74 tries to maintain the drive state of the compressor 21 immediately after refrigerant
  • the refrigerant pressure on the suction side of the compressor 21 is more reliably maintained to be higher than the refrigerant pressure on the check valve of the leakage unit and its use side heat exchanger rather than 61).
  • the pressure of the high-pressure refrigerant on the discharge side of the compressor 21 is applied to the suction side of the compressor 21 rather than the check valve of the leakage unit (the hot gas bypass valve 41 is controlled to be opened).
  • the actuator control unit 74 reduces the valve opening degree of the heat source side expansion valve 28 in order to reduce the pressure of the refrigerant flowing downstream of the heat source side expansion valve 28.
  • Display control unit 75 is a functional unit that controls operations of the first remote controller 50a and the second remote controller 60a as display devices.
  • the display control unit 75 causes the first remote controller 50a and the second remote controller 60a to output predetermined information in order to display information related to the driving state and situation to the administrator.
  • the display control unit 75 displays various information such as the set temperature on the first remote controller 50a and the second remote controller 60a.
  • the display control unit 75 is information that specifically indicates that a refrigerant leak has occurred and a usage unit of the first usage unit 50 and the second usage unit 60 in which a refrigerant leak has occurred in the refrigerant leakage control mode. Are displayed on the first remote controller 50a and the second remote controller 60a. In addition, the display control unit 75 notifies the service engineer of notification information indicating that the non-leakage unit, which is an operable use unit in which refrigerant leakage has not occurred, is continuing operation in the refrigerant leakage control mode. The prompting information is displayed on the first remote controller 50a and the second remote controller 60a.
  • the refrigerant charged in the refrigerant circuit 10 mainly includes the compressor 21, the heat source side heat exchanger 23, the receiver 24, the subcooler 25, the heat source side expansion valve 28, and the use side expansion valve 54. , 64 and the use side heat exchangers 52, 62 are circulated in the order of cooling operation (refrigeration cycle operation).
  • the refrigerant When the cooling operation is started, the refrigerant is discharged into the refrigerant circuit 10 after being sucked into the compressor 21 and compressed.
  • the low pressure in the refrigeration cycle is the suction pressure detected by the suction pressure sensor 36
  • the high pressure in the refrigeration cycle is the discharge pressure detected by the discharge pressure sensor 37.
  • the compressor 21 performs capacity control according to the cooling load required by the first usage unit 50 and the second usage unit 60. Specifically, the target value of the suction pressure is set according to the cooling load required by the first usage unit 50 and the second usage unit 60, and the operating frequency of the compressor 21 is set so that the suction pressure becomes the target value. Be controlled.
  • the gas refrigerant discharged from the compressor 21 flows into the gas side end of the heat source side heat exchanger 23 through the discharge side refrigerant pipe 31.
  • the hot gas bypass valve 41 In the normal operation mode, the hot gas bypass valve 41 is fully closed, and no refrigerant flows through the hot gas bypass pipe 40.
  • the gas refrigerant that has flowed into the gas side end of the heat source side heat exchanger 23 performs heat exchange with the heat source side air supplied by the heat source side fan 34 in the heat source side heat exchanger 23 to dissipate and condense. And flows out from the liquid side end of the heat source side heat exchanger 23.
  • the liquid refrigerant flowing out from the liquid side end of the heat source side heat exchanger 23 flows into the inlet of the receiver 24 through a portion between the heat source side heat exchanger 23 and the receiver 24 of the heat source side liquid refrigerant pipe 32.
  • the liquid refrigerant flowing into the receiver 24 is temporarily stored as a saturated liquid refrigerant in the receiver 24 and then flows out from the outlet of the receiver 24.
  • the liquid refrigerant that has flowed out from the outlet of the receiver 24 flows through the portion of the heat source side liquid refrigerant tube 32 from the receiver 24 to the supercooler 25 and flows into the inlet of the subcooler 25 on the heat source side liquid refrigerant tube 32 side. .
  • the liquid refrigerant flowing into the subcooler 25 exchanges heat with the refrigerant flowing through the injection pipe 26 in the subcooler 25 and is further cooled to become a supercooled liquid refrigerant. It flows out from the outlet on the valve 28 side.
  • the valve opening degree of the injection valve 27 is controlled by the controller 70 so that the refrigerant flowing from the supercooler 25 toward the heat source side expansion valve 28 has a predetermined positive supercooling degree.
  • the liquid refrigerant flowing out from the outlet on the heat source side expansion valve 28 side of the subcooler 25 passes through a portion of the heat source side liquid refrigerant pipe 32 between the subcooler 25 and the heat source side expansion valve 28, and then the heat source side expansion valve 28. Flow into. At this time, a part of the liquid refrigerant flowing out from the outlet on the heat source side expansion valve 28 side of the subcooler 25 is injected from a portion between the subcooler 25 and the heat source side expansion valve 28 in the heat source side liquid refrigerant pipe 32.
  • the pipe 26 is branched.
  • the refrigerant flowing through the injection pipe 26 is depressurized by the injection valve 27 until it reaches an intermediate pressure in the refrigeration cycle.
  • the refrigerant flowing through the injection pipe 26 after being decompressed by the injection valve 27 flows into the inlet of the subcooler 25 on the injection pipe 26 side.
  • the refrigerant flowing into the inlet of the subcooler 25 on the injection pipe 26 side is heated in the supercooler 25 by exchanging heat with the refrigerant flowing through the heat source side liquid refrigerant pipe 32 to become a gas refrigerant.
  • the refrigerant heated in the subcooler 25 flows out from the outlet of the subcooler 25 on the injection pipe 26 side and is returned to the middle of the compression process of the compressor 21.
  • the heat source side expansion valve 28 Since the heat source side expansion valve 28 is controlled to be fully opened in the normal operation mode, the liquid refrigerant flowing into the heat source side expansion valve 28 from the heat source side liquid refrigerant pipe 32 is not reduced in pressure, and the heat source side expansion valve 28 is not decompressed. Then, it flows into the first usage unit 50 and the second usage unit 60 during operation through the liquid side closing valve 29 and the liquid side refrigerant communication pipe 6.
  • the refrigerant that has flowed into the first usage unit 50 flows into the first usage-side expansion valve 54 via the first on-off valve 55 and a part of the first usage-side liquid refrigerant pipe 59.
  • the refrigerant that has flowed into the first usage-side expansion valve 54 is decompressed by the first usage-side expansion valve 54 until it reaches a low pressure in the refrigeration cycle, passes through the first usage-side liquid refrigerant pipe 59, and is used in the first usage-side heat exchanger 52. Flows into the liquid end of the liquid.
  • the refrigerant flowing into the liquid side end of the first usage side heat exchanger 52 evaporates by performing heat exchange with the usage side air supplied by the first usage side fan 53 in the first usage side heat exchanger 52, It becomes a gas refrigerant and flows out from the gas side end of the first usage side heat exchanger 52.
  • the gas refrigerant flowing out from the gas side end of the first usage side heat exchanger 52 flows to the gas side refrigerant communication pipe 7 via the first check valve 51 and the first usage side gas refrigerant pipe 58.
  • the refrigerant that has flowed into the second usage unit 60 flows into the second usage-side expansion valve 64 through a part of the second on-off valve 65 and the second usage-side liquid refrigerant pipe 69, as in the first usage unit 50. .
  • the refrigerant flowing into the second usage side expansion valve 64 is depressurized by the second usage side expansion valve 64 until it reaches a low pressure in the refrigeration cycle, passes through the second usage side liquid refrigerant pipe 69, and is then used in the second usage side heat exchanger 62. Flows into the liquid end of the liquid.
  • the refrigerant flowing into the liquid side end of the second usage side heat exchanger 62 evaporates by exchanging heat with the usage side air supplied by the second usage side fan 63 in the second usage side heat exchanger 62, It becomes a gas refrigerant and flows out from the gas side end of the second usage side heat exchanger 62.
  • the gas refrigerant flowing out from the gas side end of the second usage side heat exchanger 62 flows to the gas side refrigerant communication pipe 7 via the second check valve 61 and the second usage side gas refrigerant pipe 68.
  • the refrigerant that has flowed out of the first usage unit 50 and the refrigerant that has flowed out of the second usage unit 60 merge in the gas-side refrigerant communication pipe 7, and the gas-side shut-off valve 30 and the suction-side refrigerant pipe 33 are connected. Then, it is sucked into the compressor 21 again.
  • refrigerant leakage occurs in the first usage unit 50 of the first usage unit 50 and the second usage unit 60 (when the first usage unit 50 is a leakage unit), and the second usage unit 60 performs a cooling operation.
  • the case of continuing when the second usage unit 60 is a non-leakage unit will be described as an example, but the process is the same regardless of the refrigerant leakage in any usage unit.
  • Step S ⁇ b> 10 the controller 70 receives a refrigerant leak signal from either the first refrigerant leak sensor 81 or the second refrigerant leak sensor 82 (that is, any of the first usage unit 50 and the second usage unit 60). If it is assumed that a refrigerant leak has occurred in this case, the process proceeds to step S10. On the other hand, when the refrigerant leakage signal is not received from either the first refrigerant leakage sensor 81 or the second refrigerant leakage sensor 82 (that is, the refrigerant leakage is detected in either the first refrigerant leakage sensor 81 or the second refrigerant leakage sensor 82). If it is assumed that no occurrence has occurred, the normal operation mode is continued, and step S10 is repeated.
  • Step S ⁇ b> 11 the controller 70 performs control to close the on / off valve of the usage unit (leakage unit) in which the refrigerant leakage occurs among the first usage unit 50 and the second usage unit 60 while driving the compressor 21 ( In other words, in this example, the first on-off valve 55 is controlled to be closed.)
  • the opening / closing valve of the usage unit (non-leakage unit) in which the refrigerant leakage does not occur among the first usage unit 50 and the second usage unit 60 is controlled so as to be maintained in an open state (that is, In this example, control is performed so that the second on-off valve 65 is maintained in an opened state.) Then, the process proceeds to step S12.
  • the controller 70 performs control for closing the opening / closing valve of the use unit (leakage unit) in which the refrigerant leakage has occurred, but the opening / closing valve of the leakage unit cannot be completely closed, and is slightly unintentionally. In some cases, the valve opening may be open.
  • step S12 the controller 70 causes the first remote controller 50a and the second remote controller 60a to notify the first remote controller 50a and the second remote controller 60a of information indicating which refrigerant leak has occurred and which use unit is the leaking unit in which the refrigerant leak has occurred.
  • the notification here can be both a display display and an audio output.
  • the controller 70 opens the hot gas bypass valve 41 and causes the refrigerant to flow through the hot gas bypass pipe 40.
  • the opening degree of the hot gas bypass valve 41 is not particularly limited.
  • the hot gas bypass valve 41 may be controlled to have a predetermined opening degree, or the suction pressure value detected by the suction pressure sensor 36 may be controlled. It may be controlled so as to be maintained at a value larger than the atmospheric pressure, and the detected value of the suction pressure sensor 36 is larger after opening the hot gas bypass valve 41 than before opening the hot gas bypass valve 41. May be controlled. Thereby, it is possible to suppress air in the atmosphere from being taken into the refrigerant circuit 10 through the leaked portion. Thereafter, the process proceeds to step S14.
  • step S14 the controller 70 throttles the valve opening degree of the heat source side expansion valve 28 in order to reduce the pressure of the refrigerant flowing downstream of the heat source side expansion valve 28.
  • the controller 70 restricts the opening degree of the heat source side expansion valve 28 so that the opening degree of the valve is smaller than that in the fully opened state. Thereby, it is possible to continue the cooling operation in the non-leakage unit while suppressing the supply of the refrigerant to the leaking unit. Thereafter, the process proceeds to step S15.
  • step S15 the controller 70 arrives at the site of the service engineer who noticed the refrigerant leakage by the notification in step S12, and a new command is input by the service engineer or the like via the first remote controller 50a or the second remote controller 60a. After that, the process according to the command is performed.
  • valve opening may slightly open. If the valve opening is slightly opened unintentionally in this way, the refrigerant that leaks through the on-off valve of the leakage unit flows toward the use side heat exchanger and leaks unintentionally. The condition may continue.
  • the controller 70 reduces the pressure of the refrigerant passing through the heat source side expansion valve 28.
  • the opening degree of the side expansion valve 28 is reduced (in this embodiment, the opening degree of the heat source side expansion valve 28 is reduced until the predetermined opening degree is reached).
  • the pressure of the refrigerant flowing through the liquid side refrigerant communication pipe 6 can be lowered, and the refrigerant differential pressure before and after the on-off valve of the leakage unit can be reduced ( Since it is considered that atmospheric pressure is acting on the leakage point side of the on / off valve of the leakage unit, the difference between the refrigerant pressure on the liquid refrigerant communication pipe 6 side of the on / off valve of the leakage unit and the atmospheric pressure can be reduced.
  • the opening degree of the heat source side expansion valve 28 it is possible to reduce the pressure of the refrigerant that is dissipated by the heat source side heat exchanger 23 and moves toward the use units 50 and 60. Thereby, it is possible to eliminate the need to greatly reduce the refrigerant pressure (pressure of the refrigerant flowing through the heat source side heat exchanger 23 as a radiator) when the heat source side heat exchanger 23 radiates heat to the refrigerant.
  • the pressure of the refrigerant flowing from the heat source side expansion valve 28 toward the non-leakage unit side is reduced by controlling the opening degree of the heat source side expansion valve 28.
  • the refrigerant flowing into the heat source side expansion valve 28 can be supercooled by using the supercooler 25. Thereby, it is possible to suppress the occurrence of flashing in the refrigerant decompressed by the heat source side expansion valve 28, and it is easy to supply the liquid phase refrigerant to the non-leakage unit.
  • the first usage unit 50 is provided with the first on-off valve 55 and the temperature-sensitive first usage-side expansion valve 54 on the refrigerant inlet side of the first usage-side heat exchanger 52, and the second usage unit 60.
  • the refrigeration apparatus 100 in which the second opening / closing valve 65 and the temperature-sensitive second usage-side expansion valve 64 are provided on the refrigerant inlet side of the second usage-side heat exchanger 62 has been described as an example.
  • a first usage-side electronic expansion valve 155 is provided, and the second opening / closing valve 65 and the temperature sensing are provided.
  • a refrigeration apparatus 100 a provided with a second use side electronic expansion valve 165 may be used.
  • both the first usage-side electronic expansion valve 155 and the second usage-side electronic expansion valve 165 are electrically connected to the controller 70, and are expansion valves whose opening degree can be controlled by the controller 70.
  • the controller 70 appropriately adjusts the respective opening degrees, whereby the refrigeration apparatus 100 of the above embodiment. It is possible to achieve the same effect as.
  • the operation of the first usage-side electronic expansion valve 155 and the second usage-side electronic expansion valve 165 in the refrigerant leakage control mode is the leakage of the first usage-side electronic expansion valve 155 and the second usage-side electronic expansion valve 165.
  • the refrigeration apparatus of the above embodiment is performed by performing control to fully close the unit side (while performing control to set the minimum opening), and performing control to continue the expansion operation for the non-leakage unit side. It is possible to achieve the same effect as 100.
  • the method of reducing the pressure of the refrigerant sent to the non-leakage unit side is not limited to this.
  • a compressor is used instead of step S14 in the above embodiment.
  • the process of step 14a for forcibly lowering the drive frequency 21 may be performed to control the pressure of the refrigerant to be lowered.
  • the driving frequency of the compressor 21 in the refrigerant leakage control mode is determined based on the driving frequency of the compressor 21 when refrigerant leakage is detected by the first refrigerant leakage sensor 81 or the second refrigerant leakage sensor 82.
  • the controller 70 may control the compressor 21 so as to be smaller.
  • the method of lowering the drive frequency of the compressor 21 here is not particularly limited.
  • the compressor 21 may be forcibly lowered by a predetermined drive frequency, or to the extent that a refrigeration cycle can be realized with a non-leakage unit.
  • the drive frequency of the compressor 21 may be lowered as much as possible to the extent that the differential pressure can be generated.
  • step S14 of the said embodiment you may make it perform both the process of step S14 of the said embodiment, and the process of this step S14a simultaneously. That is, the driving frequency of the compressor 21 may be forcibly lowered while the refrigerant is decompressed in the heat source side expansion valve 28. Even in this case, the refrigerant leakage amount can be kept small.
  • the method of reducing the pressure of the refrigerant sent to the non-leakage unit side is not limited to this.
  • the heat source side The process of step 14b for forcibly increasing the air volume of the fan 34 may be performed to control the pressure of the refrigerant to be reduced.
  • the air volume of the heat source side fan 34 in the refrigerant leak control mode is determined based on the air volume of the heat source side fan 34 when refrigerant leak is detected by the first refrigerant leak sensor 81 or the second refrigerant leak sensor 82.
  • the controller 70 may control the heat source side fan 34 so as to increase the value.
  • the method of increasing the air volume of the heat source side fan 34 here is not particularly limited.
  • the heat source side fan motor M34 may be controlled so as to forcibly increase the rotational speed by a predetermined rotational speed. The maximum air volume may be controlled.
  • the increase in the air volume of the heat source side fan 34 promotes the heat radiation of the refrigerant in the heat source side heat exchanger 23, lowers the refrigerant pressure in the heat source side heat exchanger 23, and opens and closes the leakage unit.
  • the refrigerant differential pressure before and after such as the refrigerant leakage amount it is possible to reduce the refrigerant leakage amount.
  • step S14 of the said embodiment you may make it perform both the process of step S14 of the said embodiment, and the process of this step S14b simultaneously. That is, the air volume of the heat source side fan 34 may be forcibly increased while the refrigerant is decompressed in the heat source side expansion valve 28. Furthermore, by performing all of the process of step S14 of the above embodiment, the process of step 14a of the modified example B, and the process of step S14b at the same time, while reducing the refrigerant in the heat source side expansion valve 28, The air volume of the heat source side fan 34 may be forcibly increased while forcibly reducing the drive frequency of the compressor 21. Even in these cases, it is possible to keep the refrigerant leakage amount small.
  • the degree to which the pressure of the refrigerant sent to the non-leakage unit side is reduced is not limited to the pressure reduction degree by the control to throttle the heat source side expansion valve 28 to such a predetermined valve opening degree.
  • the refrigerant pressure may be lowered within a range in which the refrigerant that has passed through the heat source side expansion valve 28 is maintained in a liquid single-phase state instead of being in a gas-liquid two-phase state, The pressure of the refrigerant may be lowered so that the pressure decreases when the refrigerant flows from the heat source side expansion valve 28 to the non-leakage unit (predetermined pressure loss) from the minimum value in the range.
  • the refrigerant pressure may be lowered to a large pressure.
  • the heat source side expansion valve 28 is controlled to be fully opened during the normal operation mode.
  • the present invention is not limited to this, and control is performed to throttle the heat source side expansion valve 28 during the normal operation mode, and control is performed so that the valve opening degree of the heat source side expansion valve 28 is further throttled than during the normal operation mode. You may do it.
  • the hot gas bypass pipe 40 is optional and can be omitted. Moreover, you may make it also omit the process which flows a refrigerant
  • an injection pipe for injecting a refrigerant into the suction side of the compressor 21 may be used.
  • the refrigerant leak sensor 81 is arranged to detect the refrigerant leak of each usage unit 50.
  • the refrigerant leakage sensor 81 is not necessarily required in the refrigeration apparatus 100 when the refrigerant leakage of each usage unit 50 can be detected without using the refrigerant leakage sensor 81.
  • the refrigerant leakage in each usage unit 50 can be individually detected based on the change in the detection value of the sensor, the refrigerant leakage
  • the sensor 81 may be omitted.
  • the present invention is not limited to this, and a refrigeration apparatus that cools the inside of the transport container may be used, or an air conditioning system (air conditioner) that realizes air conditioning by cooling the inside of the building.
  • a refrigeration apparatus that cools the inside of the transport container
  • an air conditioning system air conditioner
  • R32 is used as the refrigerant circulating in the refrigerant circuit 10.
  • the refrigerant used in the refrigerant circuit 10 is not particularly limited.
  • HFO1234yf, HFO1234ze a mixed refrigerant of these refrigerants, or the like may be used instead of R32.
  • HFC type refrigerants such as R407C and R410A may be used.
  • a flammable refrigerant such as propane or a toxic refrigerant such as ammonia may be used.
  • the present invention can be used for a refrigeration apparatus.
  • Heat source unit 6 Liquid side refrigerant communication pipe 7: Gas side refrigerant communication pipe 10: Refrigerant circuit 20: Heat source unit controller 21: Compressor 23: Heat source side heat exchanger 24: Receiver 25: Supercooler (supercooling) Heat exchanger) 26: Injection pipe (supercooled pipe) 27: Injection valve (supercooled expansion valve) 28: heat source side expansion valve 34: heat source side fan 36: suction pressure sensor 37: discharge pressure sensor 40: hot gas bypass pipe 41: hot gas bypass valve 50: first usage unit 51: first check valve 52: first User side heat exchanger 54: First user side expansion valve 55: First on-off valve (user side valve) 57: 1st utilization unit control part 58: 1st utilization side gas refrigerant pipe 59: 1st utilization side liquid refrigerant pipe 60: 2nd utilization unit 61: 2nd check valve 62: 2nd utilization side heat exchanger 64: Second use side expansion valve 65: second on-off valve (use side valve) 67: 2nd utilization unit control part

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒の漏洩が生じた場合において漏洩が生じていない箇所での運転を継続させる場合であっても、冷媒の漏洩程度を小さく抑えることが可能な冷凍装置を提供する。コントローラ(70)は、液側冷媒連絡配管(6)およびガス側冷媒連絡配管(7)を介して並列接続された第1利用ユニット(50)、第2利用ユニット(60)のいずれかの内部において冷媒漏洩状況が所定条件を満たした場合に、漏洩ユニットの利用側熱交換器の液側冷媒連絡配管(6)側に設けられた開閉弁を閉じる制御と、非漏洩ユニットの利用側熱交換器の液側冷媒連絡配管(6)側に設けられた開閉弁を開いたままにする制御を行いつつ、各開閉弁の液側冷媒連絡配管(6)側における冷媒圧力を、冷媒漏洩状況が所定条件を満たした際の冷媒圧力よりも下げる。

Description

冷凍装置
 本発明は、冷凍装置に関する。
 従来より、圧縮機、熱源側熱交換器、膨張弁、利用側熱交換器が接続されて構成される冷媒回路を用いて冷凍サイクルを行っている場合に、何らかの原因で利用側熱交換器やその付近の箇所から冷媒の漏洩が生じることがあった。
 これに対して、例えば、特許文献1(特開2002―228281号公報)に記載の例では、冷媒漏洩を検知した際に、圧縮機や各弁を制御することで自動的にポンプダウン運転が行って冷媒を熱源側熱交換器内に回収することにより、利用側熱交換器が設置されている空間への冷媒の漏れ出しを極力低減させることが提案されている。
 これに対して、例えば、利用側熱交換器が複数台接続されて構成されている冷媒回路においては、複数の利用側熱交換器のうちの1台において冷媒の漏洩が生じた場合に、漏洩が生じた利用側熱交換器に対して冷媒を供給するための経路に設けられた弁を閉じつつ、漏洩が生じていない利用側熱交換器においては冷媒を循環させ続けることが考えられる。
 これにより、当該漏洩箇所からの冷媒の漏洩を抑制させつつ、漏洩が生じてない利用側熱交換器による温度管理を継続させることが可能になる。
 ところが、このように、漏洩が生じた利用側熱交換器に対して冷媒を供給するための経路の弁を閉じる制御を行う場合であっても、弁の開度を完全に閉じきることができず、弁にわずかな隙間が生じていることがある。このような場合に、冷媒の漏洩が生じた後も圧縮機の駆動を継続させる場合には、当該閉じる制御が行われた弁に対して冷媒圧力が作用し続けるため、当該弁の隙間を冷媒が漏れ通るおそれがある。そして、当該弁の隙間を漏れ通る冷媒の量は、当該弁に作用する冷媒圧力が大きいほど大量になってしまう。
 本願発明は、上述した点に鑑みてなされたものであり、本願発明の課題は、冷媒の漏洩が生じた場合において漏洩が生じていない箇所での運転を継続させる場合であっても、冷媒の漏洩程度を小さく抑えることが可能な冷凍装置を提供することにある。
 第1観点に係る冷凍装置は、熱源ユニットと、複数の利用ユニットと、制御部と、を備えている。熱源ユニットは、圧縮機と熱源側熱交換器を有している。複数の利用ユニットは、熱源ユニットに対して液側冷媒連絡配管およびガス側冷媒連絡配管を介して並列に接続されている。各利用ユニットは、利用側熱交換器と、利用側弁と、を有している。利用側弁は、利用側熱交換器に対して液側冷媒連絡配管側に設けられている。制御部は、複数の利用ユニットのいずれかにおける冷媒漏洩状況が所定条件を満たした場合に、所定条件を満たした利用ユニットである漏洩ユニットが有する利用側弁は閉じた状態とし、所定条件を満たしていない利用ユニットである非漏洩ユニットのうち漏洩ユニットが所定条件を満たした際に運転中であったものが有する利用側弁は開いた状態としつつ、圧力制御を行う。圧力制御では、制御部は、複数の利用側弁の液側冷媒連絡配管側における冷媒圧力を、漏洩ユニットが所定条件を満たした際の冷媒圧力よりも下げる。
 ここで、冷媒漏洩状況が所定条件を満たす場合とは、特に限定されるものではなく、例えば、利用ユニット内における漏れ冷媒濃度が所定濃度以上になったことをセンサで把握した場合や、利用ユニット内の冷媒が流れる部分の圧力または温度のセンサによる検知値が変化・低下した場合が含まれる。
 この冷凍装置では、複数の利用ユニットのいずれかで冷媒漏洩状況が所定条件を満たした場合に、漏洩ユニットが有する利用側弁は閉じた状態とされる。これにより、圧縮機から吐出され熱源側熱交換器を通過した冷媒が、漏洩ユニットの利用側弁の利用側熱交換器側に流れて行きにくくすることが可能になり、漏洩ユニットからの冷媒漏洩量を少なく抑えることが可能になる。
 さらに、非漏洩ユニットのうち運転中であったものの利用側弁は開いた状態とされる。このため、漏洩ユニットに対する冷媒の循環を避けつつ、非漏洩ユニットの利用側熱交換器については冷媒を循環させ、冷媒の蒸発器として利用し続けることが可能になる。したがって、非漏洩ユニットについては、冷却対象を冷却させ続けることが可能になる。
 ここで、一般に、利用側弁では、全閉状態に制御しようとしても、完全に閉じきることができず、意図せず僅かに弁開度が開いた状態になることがある。このように意図せず弁開度が僅かに開いた状態になる場合には、漏洩ユニットの利用側弁を漏れ通る冷媒が利用側熱交換器側に向けて流れて行ってしまい、意図せず漏洩状態が継続してしまうおそれがある。このような漏洩ユニットの利用側弁を漏れ通る冷媒量は、漏洩ユニットにおける利用側弁の液側冷媒連絡配管側における冷媒の圧力が高い場合に多くなりやすい。そして、非漏洩ユニットに対して冷媒を循環させ続ける場合には、非漏洩ユニットも漏洩ユニットもいずれも熱源ユニットに対して並列に接続されているため、漏洩ユニットにおける利用側弁の液側冷媒連絡配管側には冷媒の圧力が作用し続けることになる。
 これに対して、この冷凍装置では、制御部が圧力制御を行うことで、複数の利用側弁の液側冷媒連絡配管側における冷媒圧力を、漏洩ユニットが所定条件を満たした際の冷媒圧力よりも下げている。このため、漏洩ユニットの利用側弁において意図せず僅かに弁開度が開いた状態になったとしても、非漏洩ユニットに対して冷媒を循環させ続けながら、漏洩ユニットの利用側弁を漏れ通る冷媒量を少なく抑えることが可能になる。
 以上により、冷媒の漏洩が生じた場合において漏洩が生じていない箇所での運転を継続させる場合であっても、冷媒の漏洩程度を小さく抑えることが可能になる。
 第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、熱源ユニットは、熱源側熱交換器で放熱を行った冷媒の圧力を下げる熱源側膨張弁を有している。制御部は、漏洩ユニットが所定条件を満たした際の熱源側膨張弁における減圧程度よりも、漏洩ユニットが所定条件を満たした後の熱源側膨張弁における減圧程度の方が大きくなるように熱源側膨張弁を制御することで圧力制御を行う。
 この冷凍装置では、制御部が、熱源側膨張弁を用いた圧力制御を行うことにより、熱源側熱交換器で放熱した後の利用側熱交換器に向かう冷媒の圧力を下げることができている。これにより、放熱器としての熱源側熱交換器を流れる冷媒の圧力を大きく下げる必要を無くすることが可能になる。
 第3観点に係る冷凍装置は、第2観点に係る冷凍装置であって、過冷却管と、過冷却膨張弁と、過冷却熱交換器と、をさらに備えている。過冷却管は、熱源側熱交換器で放熱を行った冷媒を、複数の利用ユニット側に送る冷媒経路から分岐させて、圧縮機に導く。過冷却膨張弁は、過冷却管の途中に設けられ、通過する冷媒を減圧する。過冷却熱交換器は、過冷却管を流れる冷媒のうち過冷却膨張弁で減圧された冷媒と、冷媒経路を流れる冷媒と、の間で熱交換を行わせる。
 圧縮機に導くとは、圧縮機の吸入側に導く場合であってもよいし、圧縮機における圧縮工程の途中段階に導く場合であってもよい。
 この冷凍装置では、熱源側膨張弁に向かう冷媒を過冷却させることが可能になるため、熱源側熱交換器を通過した後の冷媒の圧力を熱源側膨張弁を用いて下げることにより圧力制御を行う場合であっても、熱源側膨張弁から非漏洩ユニット側に向けて流れる冷媒のフラッシュを抑制させることが可能になる。
 第4観点に係る冷凍装置は、第1観点に係る冷凍装置であって、制御部は、漏洩ユニットが所定条件を満たした際の圧縮機における駆動周波数よりも、漏洩ユニットが所定条件を満たした後の圧縮機における駆動周波数の方が小さくなるように圧縮機を制御することで圧力制御を行う。
 この冷凍装置では、圧縮機の駆動周波数を小さくすることにより、複数の利用側弁の液側冷媒連絡配管側における冷媒圧力を容易に下げることが可能になる。
 第5観点に係る冷凍装置は、第1観点に係る冷凍装置であって、熱源ユニットは、熱源側熱交換器に空気流れを送るための熱源側ファンを有している。制御部は、漏洩ユニットが所定条件を満たした際の熱源側ファンによる風量よりも、漏洩ユニットが所定条件を満たした後の熱源側ファンによる風量の方が大きくなるように熱源側ファンを制御することで圧力制御を行う。
 この冷凍装置では、熱源側ファンの風量を大きくすることにより、複数の利用側弁の液側冷媒連絡配管側における冷媒圧力を容易に下げることが可能になる。
 第1観点に係る冷凍装置では、冷媒の漏洩が生じた場合において漏洩が生じていない箇所での運転を継続させる場合であっても、冷媒の漏洩程度を小さく抑えることが可能になる。
 第2観点に係る冷凍装置では、放熱器としての熱源側熱交換器を流れる冷媒の圧力を大きく下げる必要を無くすることが可能になる。
 第3観点に係る冷凍装置では、熱源側膨張弁から非漏洩ユニット側に向けて流れる冷媒のフラッシュを抑制させることが可能になる。
 第4観点に係る冷凍装置では、複数の利用側弁の液側冷媒連絡配管側における冷媒圧力を容易に下げることが可能になる。
 第5観点に係る冷凍装置では、熱源側ファンの風量を大きくすることにより、複数の利用側弁の液側冷媒連絡配管側における冷媒圧力を容易に下げることが可能になる。
本発明の一実施形態に係る冷凍装置の全体構成図。 コントローラの概略構成と、コントローラに接続される各部と、を模式的に示したブロック図。 冷媒漏洩制御モード時のコントローラの処理の流れの一例を示したフローチャート。 変形例Aに係る冷媒回路を有する冷凍装置の全体構成図。 変形例Bに係る冷媒漏洩制御モード時のコントローラの処理の流れの一例を示したフローチャート。 変形例Cに係る冷媒漏洩制御モード時のコントローラの処理の流れの一例を示したフローチャート。
 以下、図面を参照しながら、本発明の一実施形態に係る冷凍装置100について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、発明の要旨を逸脱しない範囲で適宜変更が可能である。
 (1)冷凍装置100
 図1は、本発明の一実施形態に係る冷凍装置100の概略構成図である。冷凍装置100は、蒸気圧縮式の冷凍サイクルによって、冷蔵倉庫や店舗のショーケースの庫内等の利用側空間の冷却を行う装置である。
 冷凍装置100は、主として、熱源ユニット2と、複数(ここでは2台)の利用ユニット(第1利用ユニット50、第2利用ユニット60)と、熱源ユニット2と第1利用ユニット50、第2利用ユニット60とを接続する液側冷媒連絡配管6およびガス側冷媒連絡配管7と、各利用ユニット内の冷媒漏洩を検出する冷媒漏洩センサ(第1利用ユニット50内の冷媒漏洩を検出する第1冷媒漏洩センサ81、第2利用ユニット60内の冷媒漏洩を検出する第2冷媒漏洩センサ82)と、入力装置および表示装置としての複数のリモコン(第1リモコン50a、第2リモコン60a)と、冷凍装置100の動作を制御するコントローラ70と、を有している。
 冷凍装置100では、1台の熱源ユニット2に対して、液側冷媒連絡配管6およびガス側冷媒連絡配管7を介して、第1利用ユニット50と第2利用ユニット60とが互いに並列に接続されることで、冷媒回路10が構成されている。冷凍装置100では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒としてR32が充填されている。
 (1-1)熱源ユニット2
 熱源ユニット2は、液側冷媒連絡配管6およびガス側冷媒連絡配管7を介して第1利用ユニット50および第2利用ユニット60が並列に接続されており、冷媒回路10の一部を構成している。熱源ユニット2は、主として、圧縮機21と、熱源側熱交換器23と、熱源側ファン34と、レシーバ24と、過冷却器25と、熱源側膨張弁28と、ホットガスバイパス管40と、ホットガスバイパス弁41と、インジェクション管26、インジェクション弁27と、液側閉鎖弁29と、ガス側閉鎖弁30と、を有している。
 また、熱源ユニット2は、圧縮機21の吐出側と熱源側熱交換器23のガス側端とを接続する吐出側冷媒管31と、熱源側熱交換器23の液側端と液側冷媒連絡配管6とを接続する熱源側液冷媒管32と、圧縮機21の吸入側とガス側冷媒連絡配管7とを接続する吸入側冷媒管33と、を有している。
 また、熱源ユニット2は、吐出側冷媒管31を流れる冷媒の一部を分岐して、吸入側冷媒管33を介して圧縮機21の吸入側に戻すホットガスバイパス管40と、ホットガスバイパス管40の途中に設けられたホットガスバイパス弁41と、を有している。
 また、熱源ユニット2は、熱源側液冷媒管32を流れる冷媒の一部を分岐して、圧縮機21に戻すインジェクション管26(過冷却管)と、インジェクション管26の途中に設けられたインジェクション弁27(過冷却膨張弁)と、を有している。インジェクション管26は、熱源側液冷媒管32の過冷却器25の下流側の部分から分岐して、過冷却器25を通過してから圧縮機21の圧縮工程の途中に接続されている。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータM21によって回転駆動される密閉式構造の圧縮機が使用されている。なお、図示は省略するが、本実施形態の圧縮機21は、容量可変型の圧縮機と、1台または複数台の定速型の圧縮機と、が互いに並列接続されて構成されている。圧縮機モータM21は、容量可変型の圧縮機に設けられており、インバータにより運転周波数の制御が可能である。特に限定されないが、圧縮機21の容量を下げる場合には、容量可変型の圧縮機の運転周波数を下げ、容量可変型の圧縮機の運転周波数を下げるだけでは足りずにさらに容量を下げる場合には定速型の圧縮機を停止させる処理を行う。
 熱源側熱交換器23は、冷凍サイクルにおける高圧の冷媒の放熱器として機能する熱交換器である。ここで、熱源ユニット2は、熱源ユニット2内に庫外空気(熱源側空気)を吸入して、熱源側熱交換器23において冷媒と熱交換させた後に、外部に排出するための熱源側ファン34を有している。熱源側ファン34は、熱源側熱交換器23を流れる冷媒の冷却源としての熱源側空気を熱源側熱交換器23に供給するためのファンである。熱源側ファン34は、熱源側ファンモータM34によって回転駆動される。熱源側ファン34の風量は、熱源側ファンモータM34の回転数を調節することにより制御される。
 レシーバ24は、熱源側熱交換器23において凝縮した冷媒を一時的に溜める容器であり、熱源側液冷媒管32の途中に配置されている。
 過冷却器25は、レシーバ24において一時的に溜められた冷媒をさらに冷却する熱交換器であり、熱源側液冷媒管32に(より詳細にはレシーバ24よりも下流側の部分に)配置されている。
 熱源側膨張弁28は、開度制御が可能な電動膨張弁であり、熱源側液冷媒管32に(より詳細には過冷却器25の下流側の部分に)配置されている。
 インジェクション弁27は、インジェクション管26に(より詳細には、熱源側液冷媒管32の分岐箇所から過冷却器25の入口に至るまでの部分に)配置されている。インジェクション弁27は、開度制御が可能な電動膨張弁である。インジェクション弁27は、その開度に応じて、インジェクション管26を流れる冷媒を過冷却器25に流入させる前に減圧する。
 液側閉鎖弁29は、熱源側液冷媒管32の液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁30は、吸入側冷媒管33のガス側冷媒連絡配管7との接続部分に配置された手動弁である。
 熱源ユニット2には、各種センサが配置されている。具体的には、熱源ユニット2の圧縮機21周辺には、圧縮機21の吸入側における冷媒の圧力である吸入圧力を検出する吸入圧力センサ36と、圧縮機21の吐出側における冷媒の圧力である吐出圧力を検出する吐出圧力センサ37と、が配置されている。また、熱源側液冷媒管32のうちレシーバ24の出口と過冷却器25の入口との間の部分には、レシーバ24の出口における冷媒の温度であるレシーバ出口温度を検出するレシーバ出口温度センサ38が配置されている。さらに、熱源側熱交換器23又は熱源側ファン34の周辺には、熱源ユニット2内に吸入される熱源側空気の温度を検出する熱源側空気温度センサ39が配置されている。
 熱源ユニット2は、熱源ユニット2を構成する各部の動作を制御する熱源ユニット制御部20を有している。熱源ユニット制御部20は、CPUやメモリ等を含むマイクロコンピュータを有している。熱源ユニット制御部20は、各利用ユニット50の利用ユニット制御部57と通信線を介して接続されており、制御信号等の送受信を行う。
 (1-2)第1利用ユニット50
 第1利用ユニット50は、液側冷媒連絡配管6およびガス側冷媒連絡配管7を介して熱源ユニット2と接続されており、冷媒回路10の一部を構成している。
 第1利用ユニット50は、第1利用側膨張弁54と、第1利用側熱交換器52と、を有している。また、第1利用ユニット50は、第1利用側熱交換器52の液側端と液側冷媒連絡配管6とを接続する第1利用側液冷媒管59と、第1利用側熱交換器52のガス側端とガス側冷媒連絡配管7とを接続する第1利用側ガス冷媒管58と、を有している。
 第1利用側膨張弁54は、熱源ユニット2から送られてくる冷媒の減圧手段として機能する絞り機構である。本実施形態において、第1利用側膨張弁54は、感温筒を含む感温式膨張弁であり、感温筒の温度変化に応じて作動する(開度が自動的に決まる)。
 第1利用側熱交換器52は、冷凍サイクルにおける低圧の冷媒の蒸発器として機能して庫内空気(利用側空気)を冷却する熱交換器である。なお、特に限定されないが、本実施形態では、第1利用ユニット50は、扉の付いたケース(リーチインケース)の内部を冷却する用途で用いられている。
 ここで、第1利用ユニット50は、第1利用ユニット50内に利用側空気を吸入して、第1利用側熱交換器52において冷媒と熱交換させた後に、利用側空間に供給するための第1利用側ファン53を有している。第1利用側ファン53は、第1利用側熱交換器52を流れる冷媒の加熱源としての利用側空気を第1利用側熱交換器52に供給するためのファンである。第1利用側ファン53は、第1利用側ファンモータM53によって回転駆動される。
 また、第1利用ユニット50は、第1利用ユニット50に流入する冷媒の流れを遮断可能な第1開閉弁55を有している。第1開閉弁55は、第1利用ユニット50の液冷媒の入口側(液側冷媒連絡配管6側)に配置されている。具体的には、第1開閉弁55は、第1利用側熱交換器52よりも入口側に配置されている。より詳細には、第1開閉弁55は、第1利用側膨張弁54よりも入口側に配置されている。本実施形態において、第1開閉弁55は、開状態と閉状態とを切換えられる電磁弁である。第1開閉弁55は、第1利用ユニット50(より詳細には第1利用側熱交換器52)に流入する冷媒の流れを遮断するために、閉状態に切り換えられる。ただし、当該第1開閉弁55は、全閉状態に制御しようとしても、完全に閉じきることができず、意図せず僅かに弁開度が開いた状態になるおそれがある。なお、第1開閉弁55は、通常、開状態に制御される。
 また、第1利用ユニット50は、第1利用ユニット50に出口側から流入(逆流)する冷媒の流れを遮断可能な第1逆止弁51を有している。第1逆止弁51は、第1利用ユニット50のガス冷媒の出口側(ガス側冷媒連絡配管7側)に配置されている。具体的には、第1逆止弁51は、第1利用側熱交換器52よりも出口側に配置されている。第1逆止弁51は、第1利用側ガス冷媒管58からガス側冷媒連絡配管7に向かう冷媒の流れを許容し、ガス側冷媒連絡配管7から第1利用側ガス冷媒管58(より詳細には第1逆止弁51よりも第1利用側熱交換器52側)に向かう冷媒の流れを遮断する。
 また、第1利用ユニット50は、第1利用ユニット50を構成する各部の動作を制御する第1利用ユニット制御部57を有している。第1利用ユニット制御部57は、CPUやメモリ等を含むマイクロコンピュータを有している。第1利用ユニット制御部57は、熱源ユニット制御部20と通信線を介して接続されており、制御信号等の送受信を行う。第1利用ユニット制御部57は、第1冷媒漏洩センサ81と電気的に接続されており、第1冷媒漏洩センサ81からの信号を出力される。
 (1-3)第2利用ユニット60
 第2利用ユニット60は、第1利用ユニット50と同様の構成であり、液側冷媒連絡配管6およびガス側冷媒連絡配管7を介して熱源ユニット2と接続されており、冷媒回路10の一部を構成している。この第2利用ユニット60は、第1利用ユニット50に対して並列に接続されている。
 第2利用ユニット60は、第2利用側膨張弁64と、第2利用側熱交換器62と、を有している。また、第2利用ユニット60は、第2利用側熱交換器62の液側端と液側冷媒連絡配管6とを接続する第2利用側液冷媒管69と、第2利用側熱交換器62のガス側端とガス側冷媒連絡配管7とを接続する第2利用側ガス冷媒管68と、を有している。
 第2利用側膨張弁64は、熱源ユニット2から送られる冷媒の減圧手段として機能する絞り機構である。本実施形態において、第2利用側膨張弁64は、第1利用側膨張弁54と同様に、感温筒を含む感温式膨張弁であり、感温筒の温度変化に応じて作動する(開度が自動的に決まる)。
 第2利用側熱交換器62は、冷凍サイクルにおける低圧の冷媒の蒸発器として機能して庫内空気(利用側空気)を冷却する熱交換器である。なお、特に限定されないが、本実施形態では、第2利用ユニット60は、上方が大きく開口した扉の無いケース(オープンケース)の内側を冷却する用途で用いられている。
 ここで、第2利用ユニット60も、第1利用ユニット50と同様に、第2利用側ファンモータM63によって回転駆動される第2利用側ファン63を有している。
 また、第2利用ユニット60は、第2利用ユニット60の液冷媒の入口側(液側冷媒連絡配管6側)に配置されており、第2利用ユニット60に流入する冷媒の流れを遮断可能な第2開閉弁65を有している。具体的には、第2開閉弁65は、第2利用側熱交換器62よりも入口側に配置されている。より詳細には、第2開閉弁65は、第2利用側膨張弁64よりも入口側に配置されている。本実施形態において、第2開閉弁65は、開状態と閉状態とを切換えられる電磁弁である。第2開閉弁65は、第2利用ユニット60(より詳細には第2利用側熱交換器62)に流入する冷媒の流れを遮断するために、閉状態に切り換えられる。ただし、当該第2開閉弁65は、全閉状態に制御しようとしても、完全に閉じきることができず、意図せず僅かに弁開度が開いた状態になるおそれがある。なお、第2開閉弁65は、通常、開状態に制御される。
 また、第2利用ユニット60は、第2利用ユニット60のガス冷媒の出口側(ガス側冷媒連絡配管7側)に配置されており、第2利用ユニット60に出口側から流入(逆流)する冷媒の流れを遮断可能な第2逆止弁61を有している。具体的には、第2逆止弁61は、第2利用側熱交換器62よりも出口側に配置されている。第2逆止弁61は、第2利用側ガス冷媒管68からガス側冷媒連絡配管7に向かう冷媒の流れを許容し、ガス側冷媒連絡配管7から第2利用側ガス冷媒管68(より詳細には第2逆止弁61よりも第2利用側熱交換器62側)に向かう冷媒の流れを遮断する。
 また、第2利用ユニット60は、第2利用ユニット60を構成する各部の動作を制御する第2利用ユニット制御部67を有している。第2利用ユニット制御部67は、CPUやメモリ等を含むマイクロコンピュータを有している。第2利用ユニット制御部67は、熱源ユニット制御部20と通信線を介して接続されており、制御信号等の送受信を行う。第2利用ユニット制御部67は、第2冷媒漏洩センサ82と電気的に接続されており、第2冷媒漏洩センサ82からの信号を出力される。
 (1-4)第1冷媒漏洩センサ81、第2冷媒漏洩センサ82
 第1冷媒漏洩センサ81は、第1利用ユニット50内における冷媒漏洩を検知するためのセンサである。第2冷媒漏洩センサ82は、第2利用ユニット60内における冷媒漏洩を検知するためのセンサである。このように、冷媒漏洩センサ81、82は、対応する利用ユニット50、60のケーシング内に配置されている。本実施形態では、第1冷媒漏洩センサ81および第2冷媒漏洩センサ82は、公知の汎用品が用いられる。
 第1冷媒漏洩センサ81と第2冷媒漏洩センサ82は、それぞれ、冷媒漏洩を検出すると、冷媒漏洩が生じている旨を示す電気信号(以下、「冷媒漏洩信号」と記載)を、接続されている第1利用ユニット制御部57または第2利用ユニット制御部67に対して出力する。
 (1-5)第1リモコン50a、第2リモコン60a
 第1リモコン50aは、第1利用ユニット50のユーザが冷凍装置100の運転状態を切り換えるための各種指示を入力するための入力装置である。また、第1リモコン50aは、冷凍装置100の運転状態や所定の報知情報を表示するための表示装置としても機能する。第1リモコン50aは、第1利用ユニット制御部57と通信線を介して接続されており、相互に信号の送受信を行っている。
 第2リモコン60aも、第1リモコン50aと同様であり、第2利用ユニット60のユーザが冷凍装置100の運転状態を切り換えるための各種指示を入力するための入力装置、表示装置である。第2リモコン60aは、第2利用ユニット制御部67と通信線を介して接続されており、相互に信号の送受信を行っている。
 (2)コントローラ70の詳細
 冷凍装置100では、熱源ユニット制御部20と、第1利用ユニット制御部57および第2利用ユニット制御部67と、が通信線を介して接続されることで、冷凍装置100の動作を制御するコントローラ70が構成されている。
 図2は、コントローラ70の概略構成と、コントローラ70に接続される各部と、を模式的に示したブロック図である。
 コントローラ70は、複数の制御モードを有し、遷移している制御モードに応じて冷凍装置100の運転を制御する。例えば、コントローラ70は、制御モードとして、平常時に遷移する通常運転モードと、冷媒漏洩が生じた場合に遷移する冷媒漏洩制御モードと、を有している。
 コントローラ70は、熱源ユニット2に含まれる各アクチュエータ(具体的には、圧縮機21(圧縮機モータM21)、熱源側膨張弁28、インジェクション弁27、ホットガスバイパス弁41、および熱源側ファン34(熱源側ファンモータM34))と、各種センサ(吸入圧力センサ36、吐出圧力センサ37、レシーバ出口温度センサ38、および熱源側空気温度センサ39等)と、電気的に接続されている。また、コントローラ70は、第1利用ユニット50に含まれるアクチュエータ(具体的には、第1利用側ファン53(第1利用側ファンモータM53)、第1利用側膨張弁54、および第1開閉弁55)と電気的に接続されている。また、コントローラ70は、第2利用ユニット60に含まれるアクチュエータ(具体的には、第2利用側ファン63(第2利用側ファンモータM63)、第2利用側膨張弁64、および第2開閉弁65)と電気的に接続されている。また、コントローラ70は、第1冷媒漏洩センサ81、第2冷媒漏洩センサ82と、第1リモコン50a、第2リモコン60aと、電気的に接続されている。
 コントローラ70は、主として、記憶部71と、通信部72と、モード制御部73と、アクチュエータ制御部74と、表示制御部75と、を有している。なお、コントローラ70内におけるこれらの各部は、熱源ユニット制御部20および/又は利用ユニット制御部57に含まれる各部が一体的に機能することによって実現されている。
 (2-1)記憶部71
 記憶部71は、例えば、ROM、RAM、およびフラッシュメモリ等で構成されており、揮発性の記憶領域と不揮発性の記憶領域を含む。記憶部71には、コントローラ70の各部における処理を定義した制御プログラムが格納されている。また、記憶部71は、コントローラ70の各部によって、所定の情報(例えば、各センサの検出値、第1リモコン50a、第2リモコン60aに入力されたコマンド等)を、所定の記憶領域に適宜格納される。
 (2-2)通信部72
 通信部72は、コントローラ70に接続される各機器と、信号の送受信を行うための通信インターフェースとしての役割を果たす機能部である。通信部72は、アクチュエータ制御部74からの依頼を受けて、指定されたアクチュエータに所定の信号を送信する。また、通信部72は、各種センサ(36~39)、第1冷媒漏洩センサ81、第2冷媒漏洩センサ、第1リモコン50a、および第2リモコン60aから出力された信号を受けて、記憶部71の所定の記憶領域に格納する。
 (2-3)モード制御部73
 モード制御部73は、制御モードの切り換え等を行う機能部である。モード制御部73は、第1冷媒漏洩センサ81も第2冷媒漏洩センサ82もいずれも冷媒漏洩を検知していない状態にある場合には、制御モードを通常運転モードとする。
 一方、モード制御部73は、第1冷媒漏洩センサ81と第2冷媒漏洩センサ82のいずれかにおいて冷媒漏洩が検知された場合には、制御モードを冷媒漏洩制御モードに切り換え、第1冷媒漏洩センサ81と第2冷媒漏洩センサ82のうち冷媒漏洩を検知したセンサに応じた冷媒漏洩制御モードに切り換える。
 (2-4)アクチュエータ制御部74
 アクチュエータ制御部74は、制御プログラムに沿って、状況に応じて、冷凍装置100に含まれる各アクチュエータ(例えば圧縮機21や開閉弁55等)の動作を制御する。
 例えば、アクチュエータ制御部74は、通常運転モード時には、設定温度や各種センサの検出値等に応じて、圧縮機21の回転数、熱源側ファン34および利用側ファン53、63の回転数、およびインジェクション弁27の開度等をリアルタイムに制御する。なお、通常運転モードでは、アクチュエータ制御部74は、熱源側膨張弁28が全開状態となるように制御する。また、通常運転モード時には、アクチュエータ制御部74は、吸入圧力の目標値を第1利用ユニット50および第2利用ユニット60で要求される冷却負荷に応じて設定し、吸入圧力が目標値になるように圧縮機21の運転周波数を制御する。また、通常運転モード時には、アクチュエータ制御部74は、ホットガスバイパス弁41を全閉状態に制御し、ホットガスバイパス管40には冷媒を流さない。
 また、アクチュエータ制御部74は、冷媒漏洩制御モード時には、所定の運転が行われるように各アクチュエータの動作を制御する。具体的には、アクチュエータ制御部74は、通常御運転モード時と同様に吸入圧力が目標値になるように圧縮機21の運転周波数を制御し続け、第1利用ユニット50と第2利用ユニット60のうち冷媒漏洩が生じた利用ユニット(以下、「漏洩ユニット」という)について、漏洩ユニットに対する冷媒の供給を途絶えさせるために、開閉弁(第1開閉弁55または第2開閉弁65)を閉じる制御を行う。他方で、第1利用ユニット50と第2利用ユニット60のうち冷媒漏洩が生じていない利用ユニット(以下、「非漏洩ユニット」という)については、非漏洩ユニットの熱交換器を利用した冷却を継続させるために、開閉弁(第1開閉弁55または第2開閉弁65)を開けた状態に制御する。そして、アクチュエータ制御部74は、上述のように冷媒漏洩検知直後は圧縮機21の駆動状態を維持させようとするものの、漏洩ユニットの逆止弁(第1逆止弁51または第2逆止弁61)よりも圧縮機21の吸入側の冷媒圧力の方が、漏洩ユニットの逆止弁やその利用側熱交換器側の冷媒圧力よりも高く維持されるように、吸入圧力の低下を確実に抑制するために、圧縮機21の吐出側の高圧冷媒の圧力を漏洩ユニットの逆止弁よりも圧縮機21の吸入側に作用させる(ホットガスバイパス弁41を開いた状態に制御する)。さらに、アクチュエータ制御部74は、冷媒漏洩制御モード時には、熱源側膨張弁28の下流側を流れる冷媒の圧力を低下させるために、熱源側膨張弁28の弁開度を絞る。
 (2-5)表示制御部75
 表示制御部75は、表示装置としての第1リモコン50aおよび第2リモコン60aの動作を制御する機能部である。
 表示制御部75は、運転状態や状況に係る情報を管理者に対して表示すべく、第1リモコン50aおよび第2リモコン60aに所定の情報を出力させる。
 例えば、表示制御部75は、通常運転モードで冷却運転中には、設定温度等の各種情報を第1リモコン50aおよび第2リモコン60aに表示させる。
 また、表示制御部75は、冷媒漏洩制御モード時には、冷媒漏洩が生じていることおよび第1利用ユニット50および第2利用ユニット60のうちの冷媒漏洩が生じている利用ユニットを具体的に表す情報を、第1リモコン50aおよび第2リモコン60aに表示させる。また、表示制御部75は、冷媒漏洩制御モードにおいて、冷媒漏洩が生じていない運転可能な利用ユニットである非漏洩ユニットについては動作継続中であることを表す報知情報、およびサービスエンジニアへの通知を促す情報を、第1リモコン50aおよび第2リモコン60aに表示させる。
 (3)通常運転モードの冷媒の流れ
 以下、通常運転モードにおける冷媒回路10における冷媒の流れについて説明する。
 冷凍装置100では、運転時に、冷媒回路10に充填された冷媒が、主として、圧縮機21、熱源側熱交換器23、レシーバ24、過冷却器25、熱源側膨張弁28、利用側膨張弁54、64、利用側熱交換器52、62の順に循環する冷却運転(冷凍サイクル運転)が行われる。
 冷却運転が開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。ここで、冷凍サイクルにおける低圧は、吸入圧力センサ36によって検出される吸入圧力であり、冷凍サイクルにおける高圧は、吐出圧力センサ37によって検出される吐出圧力である。
 圧縮機21では、第1利用ユニット50および第2利用ユニット60で要求される冷却負荷に応じた容量制御が行われる。具体的には、吸入圧力の目標値が第1利用ユニット50および第2利用ユニット60で要求される冷却負荷に応じて設定され、吸入圧力が目標値になるように圧縮機21の運転周波数が制御される。
 圧縮機21から吐出されたガス冷媒は、吐出側冷媒管31を経て、熱源側熱交換器23のガス側端に流入する。
 なお、通常運転モード時には、ホットガスバイパス弁41は全閉状態とされ、ホットガスバイパス管40には冷媒は流れない。
 熱源側熱交換器23のガス側端に流入したガス冷媒は、熱源側熱交換器23において、熱源側ファン34によって供給される熱源側空気と熱交換を行って放熱して凝縮し、液冷媒となって熱源側熱交換器23の液側端から流出する。
 熱源側熱交換器23の液側端から流出した液冷媒は、熱源側液冷媒管32の熱源側熱交換器23からレシーバ24までの間の部分を経て、レシーバ24の入口に流入する。レシーバ24に流入した液冷媒は、レシーバ24において飽和状態の液冷媒として一時的に溜められた後に、レシーバ24の出口から流出する。
 レシーバ24の出口から流出した液冷媒は、熱源側液冷媒管32のレシーバ24から過冷却器25までの間の部分を経て、過冷却器25の熱源側液冷媒管32側の入口に流入する。
 過冷却器25に流入した液冷媒は、過冷却器25において、インジェクション管26を流れる冷媒と熱交換を行ってさらに冷却されて過冷却状態の液冷媒になり、過冷却器25の熱源側膨張弁28側の出口から流出する。なお、ここで、インジェクション弁27の弁開度は、コントローラ70によって、過冷却器25から熱源側膨張弁28に向けて流れる冷媒が所定の正の過冷却度を有するように制御される。
 過冷却器25の熱源側膨張弁28側の出口から流出した液冷媒は、熱源側液冷媒管32における過冷却器25と熱源側膨張弁28との間の部分を経て、熱源側膨張弁28に流入する。このとき、過冷却器25の熱源側膨張弁28側の出口から流出した液冷媒の一部は、熱源側液冷媒管32における過冷却器25と熱源側膨張弁28との間の部分からインジェクション管26に分岐されるようになっている。
 インジェクション管26を流れる冷媒は、インジェクション弁27によって冷凍サイクルにおける中間圧になるまで減圧される。インジェクション弁27によって減圧された後のインジェクション管26を流れる冷媒は、過冷却器25のインジェクション管26側の入口に流入する。過冷却器25のインジェクション管26側の入口に流入した冷媒は、過冷却器25において、熱源側液冷媒管32を流れる冷媒と熱交換を行って加熱されてガス冷媒になる。そして、過冷却器25において加熱された冷媒は、過冷却器25のインジェクション管26側の出口から流出して、圧縮機21の圧縮工程の途中に戻される。
 熱源側膨張弁28は、通常運転モードでは全開状態に制御されているため、熱源側液冷媒管32から熱源側膨張弁28に流入した液冷媒は、減圧されることなく熱源側膨張弁28を通過し、その後に、液側閉鎖弁29、および液側冷媒連絡配管6を経て、運転中の第1利用ユニット50および第2利用ユニット60に流入する。
 第1利用ユニット50に流入した冷媒は、第1開閉弁55および第1利用側液冷媒管59の一部を経て、第1利用側膨張弁54に流入する。第1利用側膨張弁54に流入した冷媒は、第1利用側膨張弁54によって冷凍サイクルにおける低圧になるまで減圧されて、第1利用側液冷媒管59を経て第1利用側熱交換器52の液側端に流入する。第1利用側熱交換器52の液側端に流入した冷媒は、第1利用側熱交換器52において、第1利用側ファン53によって供給される利用側空気と熱交換を行って蒸発し、ガス冷媒となって第1利用側熱交換器52のガス側端から流出する。第1利用側熱交換器52のガス側端から流出したガス冷媒は、第1逆止弁51、第1利用側ガス冷媒管58を介して、ガス側冷媒連絡配管7に流れていく。
 第2利用ユニット60に流入した冷媒は、第1利用ユニット50と同様に、第2開閉弁65および第2利用側液冷媒管69の一部を経て、第2利用側膨張弁64に流入する。第2利用側膨張弁64に流入した冷媒は、第2利用側膨張弁64によって冷凍サイクルにおける低圧になるまで減圧されて、第2利用側液冷媒管69を経て第2利用側熱交換器62の液側端に流入する。第2利用側熱交換器62の液側端に流入した冷媒は、第2利用側熱交換器62において、第2利用側ファン63によって供給される利用側空気と熱交換を行って蒸発し、ガス冷媒となって第2利用側熱交換器62のガス側端から流出する。第2利用側熱交換器62のガス側端から流出したガス冷媒は、第2逆止弁61、第2利用側ガス冷媒管68を介して、ガス側冷媒連絡配管7に流れていく。
 このようにして、第1利用ユニット50から流出した冷媒と、第2利用ユニット60から流出した冷媒とは、ガス側冷媒連絡配管7において合流し、ガス側閉鎖弁30および吸入側冷媒管33を経て、再び、圧縮機21に吸入される。
 (4)冷媒漏洩制御モード時のコントローラ70による処理の流れ
 以下、通常運転モード時に冷媒の漏洩が生じた場合のコントローラ70の処理の流れの一例を、図3のフローチャートを参照しながら説明する。
 ここでは、第1利用ユニット50と第2利用ユニット60のうちの第1利用ユニット50において冷媒漏洩が生じ(第1利用ユニット50が漏洩ユニットである場合)、第2利用ユニット60で冷却動作を継続させる場合(第2利用ユニット60が非漏洩ユニットである場合)を例に挙げて説明するが、いずれの利用ユニットで冷媒漏洩が生じても処理は同様である。
 ステップS10では、コントローラ70は、第1冷媒漏洩センサ81または第2冷媒漏洩センサ82のいずれかから冷媒漏洩信号を受信している場合(すなわち、第1利用ユニット50と第2利用ユニット60のいずれかにおいて冷媒漏洩が生じていると想定される場合)には、ステップS10へ移行する。一方、第1冷媒漏洩センサ81と第2冷媒漏洩センサ82のいずれからも冷媒漏洩信号を受信していない場合(すなわち、第1冷媒漏洩センサ81と第2冷媒漏洩センサ82のいずれにおいても冷媒漏洩が生じていないと想定される場合)には、通常運転モードを継続させ、ステップS10を繰り返す。
 ステップS11では、コントローラ70は、圧縮機21を駆動させたままで、第1利用ユニット50と第2利用ユニット60のうち冷媒漏洩が生じた利用ユニット(漏洩ユニット)の開閉弁を閉じる制御を行う(すなわち、この例では、第1開閉弁55を閉じる制御を行う。)。なお、第1利用ユニット50と第2利用ユニット60のうち冷媒漏洩が生じていない利用ユニット(非漏洩ユニット)の開閉弁は、開けられた状態で維持されるように制御しておく(すなわち、この例では、第2開閉弁65が開けられた状態で維持されるように制御する。)。そして、ステップS12に移行する。
 なお、コントローラ70は、冷媒漏洩が生じた利用ユニット(漏洩ユニット)の開閉弁を閉じるための制御を行うが、当該漏洩ユニットの開閉弁は、完全に閉じきることができず、意図せず僅かに弁開度が開いた状態になることがある。
 ステップS12では、コントローラ70は、冷媒漏洩が生じたこと、および、冷媒漏洩が生じた漏洩ユニットがどの利用ユニットであるか、を示す情報を、第1リモコン50a、第2リモコン60aにおいて報知させる。ここでの報知は、ディスプレイ表示および音声出力の両方とすることができる。
 ステップS13では、コントローラ70は、ホットガスバイパス弁41を開けて、ホットガスバイパス管40に冷媒を流す。ここで、ホットガスバイパス弁41の弁開度は、特に限定されないが、例えば、予め定めた所定開度となるように制御されてもよいし、吸入圧力センサ36が検知する吸入圧力の値が大気圧より大きな値で維持されるように制御されてもよし、吸入圧力センサ36の検知値がホットガスバイパス弁41を開ける前よりもホットガスバイパス弁41を開けた後の方が大きくなるように制御されてもよい。これにより、漏洩箇所を介して冷媒回路10内に大気中の空気が取り込まれてしまうことを抑制することが可能になっている。その後、ステップS14に移行する。
 ステップS14では、コントローラ70は、熱源側膨張弁28の下流側を流れる冷媒の圧力を低下させるために、熱源側膨張弁28の弁開度を絞る。特に限定されないが、本実施形態では、コントローラ70は、全開状態よりも弁開度が小さい所定の弁開度となるように熱源側膨張弁28の弁開度を絞る。これにより、漏洩ユニットに対する冷媒の供給を抑制させつつ、非漏洩ユニットにおいては冷却動作を継続させることが可能になる。その後、ステップS15に移行する。
 ステップS15では、コントローラ70は、ステップS12の報知により冷媒漏洩に気付いたサービスエンジニアが現地に到着し、当該サービスエンジニア等により第1リモコン50aまたは第2リモコン60aを介して新たなコマンドが入力されるのを待って、当該コマンドに従った処理を行う。
 (5)冷凍装置100の特徴
 (5-1)
 本実施形態に係る冷凍装置100では、冷媒漏洩が生じた際に、漏洩ユニットの開閉弁を閉じる制御を行うことで(第1利用ユニット50で冷媒漏洩が生じた場合には第1開閉弁55を閉じる制御を行い、第2利用ユニット60で冷媒漏洩が生じた場合には第2開閉弁65を閉じる制御を行うことで)、漏洩ユニットに対するさらなる冷媒の供給を抑制し、漏洩ユニットにおける冷媒の漏洩量の増大を抑制させることができている。
 (5-2)
 また、冷媒漏洩が生じていないユニットである非漏洩ユニットの開閉弁についは開いた状態を維持させる制御を行うことで(第1利用ユニット50で冷媒漏洩が生じた場合には第2開閉弁65を開いた状態にする制御を行い、第2利用ユニット60で冷媒漏洩が生じた場合には第1開閉弁55を開いた状態にする制御を行うことで)、漏洩ユニットでの冷却動作を停止させた場合であっても、非漏洩ユニットにおいては冷却動作を継続させることが可能になっている。これにより、少なくとも冷媒漏洩が生じていないユニットである非漏洩ユニットについては、冷却対象を冷却させ続けることが可能になるため、冷却が途絶えることによる被冷却対象への不具合等を抑制させることが可能になる。
 (5-3)
 一般に、第1利用ユニット50の第1開閉弁55や第2利用ユニットの第2開閉弁65のような弁では、全閉状態に制御しようとしても、完全に閉じきることができず、意図せず僅かに弁開度が開いた状態になることがある。このように意図せず弁開度が僅かに開いた状態になる場合には、漏洩ユニットの開閉弁を漏れ通る冷媒が利用側熱交換器側に向けて流れて行ってしまい、意図せず漏洩状態が継続してしまうおそれがある。
 そして、漏洩ユニットにおける開閉弁に対する液側冷媒連絡配管6側の冷媒の圧力が高い場合には、漏洩ユニットの開閉弁の前後における冷媒差圧が大きくなるため、漏洩ユニットの開閉弁を漏れ通る冷媒量が多くなりがちである。特に、非漏洩ユニットにおける冷却動作を継続させるために、非漏洩ユニットに対して冷媒を循環させ続ける場合には、漏洩ユニットにおける開閉弁の液側冷媒連絡配管6側には冷媒の圧力が作用し続けることになる。
 これに対して、本実施形態の冷凍装置100では、通常運転モード時とは異なり、冷媒漏洩制御モード時には、コントローラ70が、熱源側膨張弁28を通過する冷媒の圧力を低下させるように、熱源側膨張弁28の弁開度を絞る(本実施形態では、所定の弁開度となるまで熱源側膨張弁28の弁開度を絞る)。このため、熱源側膨張弁28を通過した後、液側冷媒連絡配管6を流れる冷媒の圧力を下げることができ、漏洩ユニットの開閉弁の前後における冷媒差圧を小さくすることが可能になる(漏洩ユニットの開閉弁の漏洩箇所側は大気圧が作用していると考えられるため、漏洩ユニットの開閉弁の液側冷媒連絡配管6側の冷媒圧力と大気圧との差を小さくすることが可能になる、ということになる。)。このため、漏洩ユニットの開閉弁に対して閉じる制御を行ったとしても完全に閉じきることができない場合があっても、当該漏洩ユニットの開閉弁を介して漏洩箇所に冷媒が供給される程度を小さく抑えることが可能になる。これにより、漏洩ユニットにおける冷媒漏洩量が増大することによる不具合を生じにくくし(例えば、可燃性冷媒を用いていた場合には漏洩冷媒濃度が上昇して可燃域に達するまでの時間を長くでき)、サービスエンジニアが現地に到着するまでの時間を確保しやすくなる。
 また、熱源側膨張弁28の弁開度を絞る制御を行うことにより、熱源側熱交換器23で放熱して利用ユニット50、60側に向かう冷媒の圧力を下げることができている。これにより、熱源側熱交換器23において冷媒に放熱させる際の冷媒圧力(放熱器としての熱源側熱交換器23を流れる冷媒の圧力)を大きく下げる必要を無くすることができる。
 (5-4)
 なお、本実施形態の冷凍装置100では、熱源側膨張弁28の弁開度を絞る制御を行うことにより、熱源側膨張弁28から非漏洩ユニット側に向けて流れる冷媒の圧力を下げる場合であっても、過冷却器25を用いることで熱源側膨張弁28に流入する冷媒を過冷却させることが可能になっている。これにより、熱源側膨張弁28で減圧された冷媒にフラッシュが生じることを抑制させることが可能になり、非漏洩ユニットに対して液相冷媒を供給させやすくなっている。
 (5-5)
 また、非漏洩ユニットに対して冷媒が供給され続けるが、非漏洩ユニットの利用側熱交換器において蒸発し、非漏洩ユニットから流出した冷媒は、再び、圧縮機21の吸入側に向けて流れていくこととなる。ここで、漏洩ユニットにおける圧縮機21の吸入側の部分には、逆止弁が設けられていることから、非漏洩ユニットから圧縮機21の吸入側に冷媒を流す場合であっても、漏洩ユニットに向けて冷媒が流れ込むことが抑制されている。これによっても、漏洩ユニットにおける冷媒の漏洩量の増大を抑制させることができている。
 (5-6)
 さらに、本実施形態に係る冷凍装置100では、冷媒漏洩が生じた場合には、ホットガスバイパス弁41を開けて、ホットガスバイパス管40に冷媒を流すことで、圧縮機21の吐出冷媒の高圧を、漏洩ユニットの逆止弁から圧縮機21の吸入側までの間に作用させて、冷媒圧力を高めることができている。このため、漏洩ユニットの逆止弁よりも上流側(利用側ガス冷媒管、利用側熱交換器、利用側液冷媒管、利用側膨張弁)の冷媒漏洩箇所における冷媒圧力よりも、漏洩ユニットの逆止弁から圧縮機21の吸入側までの間の冷媒圧力が小さくなる状況を回避し、漏洩ユニットの漏洩箇所を介して空気が冷媒回路10内に混入してしまうことを抑制することが可能になっている。これにより、冷媒回路10内に空気が混入してしまった場合に生じうる圧縮機21等の機器へのダメージを抑制させることができている。
 (6)変形例
 上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
 (6-1)変形例A
 上記実施形態では、第1利用ユニット50において第1利用側熱交換器52の冷媒の入口側に第1開閉弁55および感温式の第1利用側膨張弁54を設け、第2利用ユニット60において第2利用側熱交換器62の冷媒の入口側に第2開閉弁65および感温式の第2利用側膨張弁64を設けた冷凍装置100を例に挙げて説明した。
 しかし、図4に示すように、これらの第1開閉弁55および感温式の第1利用側膨張弁54の代わりに第1利用側電子膨張弁155を設け、第2開閉弁65および感温式の第2利用側膨張弁64の代わりに第2利用側電子膨張弁165を設けた冷凍装置100aとしてもよい。
 ここで、第1利用側電子膨張弁155および第2利用側電子膨張弁165は、いずれもコントローラ70と電気的に接続されており、コントローラ70によって開度制御が可能な膨張弁である。
 この第1利用側電子膨張弁155および第2利用側電子膨張弁165における通常運転モード時における膨張動作については、コントローラ70がそれぞれの開度を適宜調整することで、上記実施形態の冷凍装置100と同様の効果を奏することが可能である。
 また、第1利用側電子膨張弁155および第2利用側電子膨張弁165の冷媒漏洩制御モード時の動作については、第1利用側電子膨張弁155および第2利用側電子膨張弁165のうち漏洩ユニット側のものについては全閉させる制御を行いつつ(最小開度にさせる制御を行いつつ)、非漏洩ユニット側のものについては膨張動作を継続させる制御を行うことで、上記実施形態の冷凍装置100と同様の効果を奏することが可能である。
 そして、この第1利用側電子膨張弁155および第2利用側電子膨張弁165を用いた冷凍装置100aにおいても、上記実施形態と同様に、漏洩ユニットにおける電子膨張弁(第1利用側電子膨張弁155または第2利用側電子膨張弁165)の前後の冷媒差圧が小さくなることで、冷媒漏洩量を小さく抑えることが可能である。
 (6-2)変形例B
 上記実施形態では、冷媒漏洩制御モードでは、熱源側膨張弁28において冷媒圧力を低下させることにより、非漏洩ユニット側に送られる冷媒の圧力を低下させる制御を行う場合を例に挙げて説明した(ステップS14参照)。
 これに対して、非漏洩ユニット側に送られる冷媒の圧力を低下させる手法は、これに限られるものではなく、例えば、図5に示すように、上記実施形態のステップS14の代わりに、圧縮機21の駆動周波数を強制的に落とすステップ14aの処理を行って、冷媒の圧力を低下させる制御を行うようにしてもよい。
 具体的には、例えば、冷媒漏洩制御モード時の圧縮機21の駆動周波数を、第1冷媒漏洩センサ81または第2冷媒漏洩センサ82において冷媒漏洩が検知された際の圧縮機21における駆動周波数よりも小さくなるように、コントローラ70が圧縮機21を制御するようにしてもよい。ここでの圧縮機21の駆動周波数の下げ方は特に限定されないが、例えば、所定の駆動周波数分だけ強制的に下げるようにしてもよいし、非漏洩ユニットとの間で冷凍サイクルを実現できる程度の差圧を生じさせることが可能な限度で圧縮機21の駆動周波数をできるだけ下げるようにしてもよい。
 この場合であっても、漏洩ユニットの開閉弁等の前後の冷媒差圧が小さくなることで、冷媒漏洩量を小さく抑えることが可能である。
 なお、上記実施形態のステップS14の処理と、このステップS14aの処理と、の両方を同時に行うようにしてもよい。すなわち、熱源側膨張弁28において冷媒を減圧させつつ、圧縮機21の駆動周波数も強制的に落とすようにしてもよい。この場合においても、冷媒漏洩量を小さく抑えることが可能である。
 (6-3)変形例C
 上記実施形態では、冷媒漏洩制御モードでは、熱源側膨張弁28において冷媒圧力を低下させることにより、非漏洩ユニット側に送られる冷媒の圧力を低下させる制御を行う場合を例に挙げて説明した(ステップS14参照)。
 これに対して、非漏洩ユニット側に送られる冷媒の圧力を低下させる手法は、これに限られるものではなく、例えば、図6に示すように、上記実施形態のステップS14の代わりに、熱源側ファン34の風量を強制的に増大させるステップ14bの処理を行って、冷媒の圧力を低下させる制御を行うようにしてもよい。
 具体的には、例えば、冷媒漏洩制御モード時の熱源側ファン34の風量を、第1冷媒漏洩センサ81または第2冷媒漏洩センサ82において冷媒漏洩が検知された際の熱源側ファン34の風量よりも大きくするように、コントローラ70が熱源側ファン34を制御するようにしてもよい。ここでの熱源側ファン34の風量の上げ方は特に限定されないが、例えば、熱源側ファンモータM34の回転数が所定の回転数分だけ強制的に上げるように制御してもよいし、強制的に最大風量となるように制御してもよい。
 この場合であっても、熱源側ファン34の風量が増大することで熱源側熱交換器23における冷媒の放熱が促進され、熱源側熱交換器23における冷媒圧力を低下させ、漏洩ユニットの開閉弁等の前後の冷媒差圧が小さくなることで、冷媒漏洩量を小さく抑えることが可能である。
 なお、上記実施形態のステップS14の処理と、このステップS14bの処理と、の両方を同時に行うようにしてもよい。すなわち、熱源側膨張弁28において冷媒を減圧させつつ、熱源側ファン34の風量を強制的に増大させるようにしてもよい。さらには、上記実施形態のステップS14の処理と、変形例Bのステップ14aの処理と、このステップS14bの処理と、の全てを同時に行うことで、熱源側膨張弁28において冷媒を減圧させつつ、圧縮機21の駆動周波数も強制的に落としつつ、熱源側ファン34の風量を強制的に増大させるようにしてもよい。これらの場合においても、冷媒漏洩量を小さく抑えることが可能である。
 (6-4)変形例D
 上記実施形態の冷凍装置100では、冷媒漏洩制御モード時に、熱源側膨張弁28の弁開度を所定の弁開度まで絞る制御を例に挙げて説明した。
 これに対して、非漏洩ユニット側に送られる冷媒の圧力を低下させる程度は、このような所定の弁開度まで熱源側膨張弁28を絞る制御による圧力低下程度に限られるものではなく、例えば、熱源側膨張弁28を通過した冷媒が気液二相状態の冷媒にならず液単相状態で維持される範囲で冷媒の圧力を下げるようにしてもよいし、当該範囲内で最小値となるように冷媒の圧力を下げるようにしてもよいし、さらには熱源側膨張弁28から非漏洩ユニットまで冷媒が流れる際の圧力損失分(予め定めた圧力損失分)だけ当該範囲の最小値よりも大きな圧力まで冷媒の圧力を下げるようにしてもよい。
 また、上記実施形態では、通常運転モード時に熱源側膨張弁28を全開状態に制御していた。しかし、これに限られず、通常運転モード時に熱源側膨張弁28を絞る制御を行いつつ、冷媒漏洩制御モード時には熱源側膨張弁28の弁開度を通常運転モード時よりもさらに絞るように制御するようにしてもよい。
 (6-5)変形例E
 上記実施形態では、ホットガスバイパス管40が設けられた冷凍装置100を例に挙げて説明した。
 しかし、ホットガスバイパス管40は任意であり、省略可能である。また、上記実施形態のステップS13におけるホットガスバイパス管40に冷媒を流す処理も省略するようにしてもよい。
 (6-6)変形例F
 上記実施形態では、圧縮機21の圧縮工程の途中段階に冷媒をインジェクションさせるインジェクション管26が設けられた冷凍装置100を例に挙げて説明した。
 これに対して、例えば、上記実施形態のインジェクション管26の代わりに、圧縮機21の吸入側に冷媒をインジェクションさせるインジェクション管を用いてもよい。
 (6-7)変形例G
 上記実施形態では、各利用ユニット50の冷媒漏洩を検出するために冷媒漏洩センサ81が配置されていた。しかし、冷媒漏洩センサ81によらずとも各利用ユニット50の冷媒漏洩を検出可能な場合には、冷凍装置100において冷媒漏洩センサ81は必ずしも必要ない。
 例えば、各利用ユニット50内に冷媒圧力センサや冷媒温度センサ等のセンサを配置し、係るセンサの検出値の変化に基づき、各利用ユニット50における冷媒漏洩を個別に検出可能な場合には冷媒漏洩センサ81を省略してもよい。
 (6-8)変形例H
 上記実施形態では、冷蔵倉庫や店舗のショーケースの庫内の冷却を行う冷凍装置100を例に挙げて説明した。
 しかし、これに限定されず、輸送コンテナ内の冷却を行う冷凍装置としてもよいし、建物内の冷房等を行うことで空気調和を実現する空調システム(エアコン)としてもよい。
 (6-9)変形例I
 上記実施形態では、R32が冷媒回路10を循環する冷媒として用いられていた。
 しかし、冷媒回路10で用いられる冷媒は、特に限定されない。例えば、冷媒回路10では、HFO1234yf、HFO1234zeやこれらの冷媒の混合冷媒などが、R32に代えて用いられてもよい。また、冷媒回路10では、R407CやR410A等のHFC系冷媒が用いられてもよい。また、冷媒回路10では、プロパンのような燃焼性を有する冷媒、又は、アンモニアのような毒性を有する冷媒が用いられてもよい。
 本発明は、冷凍装置に利用可能である。
 2   :熱源ユニット
 6   :液側冷媒連絡配管
 7   :ガス側冷媒連絡配管
10   :冷媒回路
20   :熱源ユニット制御部
21   :圧縮機
23   :熱源側熱交換器
24   :レシーバ
25   :過冷却器(過冷却熱交換器)
26   :インジェクション管(過冷却管)
27   :インジェクション弁(過冷却膨張弁)
28   :熱源側膨張弁
34   :熱源側ファン
36   :吸入圧力センサ
37   :吐出圧力センサ
40   :ホットガスバイパス管
41   :ホットガスバイパス弁
50   :第1利用ユニット
51   :第1逆止弁
52   :第1利用側熱交換器
54   :第1利用側膨張弁
55   :第1開閉弁(利用側弁)
57   :第1利用ユニット制御部
58   :第1利用側ガス冷媒管
59   :第1利用側液冷媒管
60   :第2利用ユニット
61   :第2逆止弁
62   :第2利用側熱交換器
64   :第2利用側膨張弁
65   :第2開閉弁(利用側弁)
67   :第2利用ユニット制御部
68   :第2利用側ガス冷媒管
69   :第2利用側液冷媒管
70   :コントローラ(制御部)
81   :第1冷媒漏洩センサ
82   :第2冷媒漏洩センサ
100、100a  :冷凍装置
155  :第1利用側電子膨張弁
165  :第2利用側電子膨張弁
特開2002―228281号公報

Claims (5)

  1.  圧縮機(21)と熱源側熱交換器(23)を有する熱源ユニット(2)と、
     前記熱源ユニットに対して液側冷媒連絡配管(6)およびガス側冷媒連絡配管(7)を介して並列に接続される複数の利用ユニット(50、60)と、
     制御部(70)と、
    を備え、
     複数の前記利用ユニットは、それぞれ、利用側熱交換器と、前記利用側熱交換器に対して前記液側冷媒連絡配管側に設けられた利用側弁(55、65、155、165)と、を有し、
     前記制御部は、複数の前記利用ユニットのいずれかにおける冷媒漏洩状況が所定条件を満たした場合に、前記所定条件を満たした前記利用ユニットである漏洩ユニットが有する前記利用側弁は閉じた状態とし、前記所定条件を満たしていない前記利用ユニットである非漏洩ユニットのうち前記漏洩ユニットが前記所定条件を満たした際に運転中であったものが有する前記利用側弁は開いた状態としつつ、複数の前記利用側弁の前記液側冷媒連絡配管側における冷媒圧力を前記漏洩ユニットが前記所定条件を満たした際の冷媒圧力よりも下げる圧力制御を行う、
    冷凍装置(100、100a)。
  2.  前記熱源ユニットは、前記熱源側熱交換器で放熱を行った冷媒の圧力を下げる熱源側膨張弁(28)を有しており、
     前記制御部は、前記漏洩ユニットが前記所定条件を満たした際の前記熱源側膨張弁における減圧程度よりも、前記漏洩ユニットが前記所定条件を満たした後の前記熱源側膨張弁における減圧程度の方が大きくなるように前記熱源側膨張弁を制御することで前記圧力制御を行う、
    請求項1に記載の冷凍装置。
  3.  前記熱源側熱交換器で放熱を行った冷媒を複数の前記利用ユニット側に送る冷媒経路(32、6)から分岐させて前記圧縮機に導く過冷却管(26)と、
     前記過冷却管の途中に設けられ、通過する冷媒を減圧する過冷却膨張弁(27)と、
     前記過冷却管を流れる冷媒のうち前記過冷却膨張弁で減圧された冷媒と、前記冷媒経路を流れる冷媒と、の間で熱交換を行わせる過冷却熱交換器(25)と、
    をさらに備えた請求項2に記載の冷凍装置。
  4.  前記制御部は、前記漏洩ユニットが前記所定条件を満たした際の前記圧縮機における駆動周波数よりも、前記漏洩ユニットが前記所定条件を満たした後の前記圧縮機における駆動周波数の方が小さくなるように前記圧縮機を制御することで前記圧力制御を行う、
    請求項1に記載の冷凍装置。
  5.  前記熱源ユニットは、前記熱源側熱交換器に空気流れを送るための熱源側ファン(34)を有しており、
     前記制御部は、前記漏洩ユニットが前記所定条件を満たした際の前記熱源側ファンによる風量よりも、前記漏洩ユニットが前記所定条件を満たした後の前記熱源側ファンによる風量の方が大きくなるように前記熱源側ファンを制御することで前記圧力制御を行う、
    請求項1に記載の冷凍装置。
PCT/JP2017/031657 2016-09-02 2017-09-01 冷凍装置 WO2018043721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780053870.7A CN109661547A (zh) 2016-09-02 2017-09-01 制冷装置
US16/329,972 US11015852B2 (en) 2016-09-02 2017-09-01 Refrigeration apparatus
EP17846724.7A EP3508796A4 (en) 2016-09-02 2017-09-01 FREEZER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016172010A JP6269756B1 (ja) 2016-09-02 2016-09-02 冷凍装置
JP2016-172010 2016-09-02

Publications (1)

Publication Number Publication Date
WO2018043721A1 true WO2018043721A1 (ja) 2018-03-08

Family

ID=61074652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031657 WO2018043721A1 (ja) 2016-09-02 2017-09-01 冷凍装置

Country Status (5)

Country Link
US (1) US11015852B2 (ja)
EP (1) EP3508796A4 (ja)
JP (1) JP6269756B1 (ja)
CN (1) CN109661547A (ja)
WO (1) WO2018043721A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158653A1 (ja) * 2019-01-31 2020-08-06 ダイキン工業株式会社 冷媒サイクル装置
US11441820B2 (en) 2018-09-06 2022-09-13 Carrier Corporation Refrigerant leak detection system
AU2019438605B2 (en) * 2019-04-02 2023-02-09 Mitsubishi Electric Corporation Air-conditioning apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
WO2018092197A1 (ja) * 2016-11-16 2018-05-24 三菱電機株式会社 空気調和装置および冷媒漏洩検知方法
US11435124B2 (en) * 2018-02-28 2022-09-06 Carrier Corporation Refrigeration system with leak detection
DE102018109604B4 (de) * 2018-04-20 2019-10-31 Rittal Gmbh & Co. Kg Schaltschrankanordnung mit Sicherheitsfunktion sowie ein entsprechendes Verfahren
JP7085405B2 (ja) * 2018-05-15 2022-06-16 三菱重工サーマルシステムズ株式会社 熱源システム、制御装置、熱源システム運転方法及びプログラム
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
EP3760955B1 (en) 2019-07-02 2024-09-18 Carrier Corporation Distributed hazard detection system for a transport refrigeration system
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
CN110671768B (zh) * 2019-10-23 2021-07-13 深圳市俊安环境科技有限公司 蓄冷中央空调的控制系统
CN111829138B (zh) * 2020-07-14 2022-07-01 宁波奥克斯电气股份有限公司 一种壳管式换热器的检漏方法、装置、空调器及存储介质
KR20220028404A (ko) * 2020-08-28 2022-03-08 엘지전자 주식회사 냉난방 멀티 공기조화기
JP2022115492A (ja) * 2021-01-28 2022-08-09 パナソニックIpマネジメント株式会社 空気調和装置
WO2023135630A1 (ja) * 2022-01-11 2023-07-20 三菱電機株式会社 空気調和装置
US12117191B2 (en) 2022-06-24 2024-10-15 Trane International Inc. Climate control system with improved leak detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123685A1 (en) * 2012-11-02 2014-05-08 Jeonghun Kim Air conditioner and a method of controlling an air conditioner
JP2014115011A (ja) * 2012-12-10 2014-06-26 Fujitsu General Ltd 空気調和装置
JP2016011781A (ja) * 2014-06-27 2016-01-21 ダイキン工業株式会社 冷暖同時運転型空気調和装置
JP2016011782A (ja) * 2014-06-27 2016-01-21 ダイキン工業株式会社 冷暖同時運転型空気調和装置
WO2016017643A1 (ja) * 2014-07-28 2016-02-04 三菱電機株式会社 空気調和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162132B2 (ja) * 1991-10-30 2001-04-25 株式会社日立製作所 冷凍装置の制御方法
JPH1026425A (ja) * 1996-07-11 1998-01-27 Mitsubishi Electric Corp 可変速度駆動を行う冷媒圧縮機および該冷媒圧縮機を備えた冷凍サイクル装置
JP2002228281A (ja) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd 空気調和機
KR100432224B1 (ko) * 2002-05-01 2004-05-20 삼성전자주식회사 공기 조화기의 냉매 누설 검출 방법
WO2011141959A1 (ja) * 2010-05-12 2011-11-17 三菱電機株式会社 切換装置及び空気調和装置
EP2629028B1 (en) * 2010-10-12 2020-02-26 Mitsubishi Electric Corporation Air conditioner
JP2014009869A (ja) * 2012-06-28 2014-01-20 Denso Corp ヒートポンプサイクル
CN104603557B (zh) * 2012-08-27 2016-10-12 大金工业株式会社 制冷装置
KR102317340B1 (ko) * 2014-01-14 2021-10-26 삼성전자주식회사 공기 조화기 및 그의 고장 진단 방법
JP6484950B2 (ja) * 2014-08-01 2019-03-20 ダイキン工業株式会社 冷凍装置
CN104567158B (zh) * 2014-12-19 2017-02-22 李宁 控制制冷机系统中制冷液泄漏量的系统及方法
CN104633864B (zh) * 2015-02-05 2018-02-27 珠海格力电器股份有限公司 用于空调的冷媒泄露检测方法、装置以及空调室外机
JP6604051B2 (ja) * 2015-06-26 2019-11-13 ダイキン工業株式会社 空気調和システム
CN105004492B (zh) * 2015-07-16 2017-10-27 珠海格力电器股份有限公司 空调机组制冷剂泄漏的检测方法和装置
JP6156528B1 (ja) * 2016-02-16 2017-07-05 ダイキン工業株式会社 冷凍装置
JP6428717B2 (ja) * 2016-07-15 2018-11-28 ダイキン工業株式会社 冷凍システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123685A1 (en) * 2012-11-02 2014-05-08 Jeonghun Kim Air conditioner and a method of controlling an air conditioner
JP2014115011A (ja) * 2012-12-10 2014-06-26 Fujitsu General Ltd 空気調和装置
JP2016011781A (ja) * 2014-06-27 2016-01-21 ダイキン工業株式会社 冷暖同時運転型空気調和装置
JP2016011782A (ja) * 2014-06-27 2016-01-21 ダイキン工業株式会社 冷暖同時運転型空気調和装置
WO2016017643A1 (ja) * 2014-07-28 2016-02-04 三菱電機株式会社 空気調和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441820B2 (en) 2018-09-06 2022-09-13 Carrier Corporation Refrigerant leak detection system
WO2020158653A1 (ja) * 2019-01-31 2020-08-06 ダイキン工業株式会社 冷媒サイクル装置
JP2020122646A (ja) * 2019-01-31 2020-08-13 ダイキン工業株式会社 冷媒サイクル装置
US11536502B2 (en) 2019-01-31 2022-12-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
AU2019438605B2 (en) * 2019-04-02 2023-02-09 Mitsubishi Electric Corporation Air-conditioning apparatus
AU2019438605B9 (en) * 2019-04-02 2023-02-23 Mitsubishi Electric Corporation Air-conditioning apparatus
US11781795B2 (en) 2019-04-02 2023-10-10 Mitsubishi Electric Corporation Air-conditioning apparatus

Also Published As

Publication number Publication date
US20190203997A1 (en) 2019-07-04
EP3508796A1 (en) 2019-07-10
US11015852B2 (en) 2021-05-25
CN109661547A (zh) 2019-04-19
EP3508796A4 (en) 2020-04-22
JP2018036030A (ja) 2018-03-08
JP6269756B1 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6269756B1 (ja) 冷凍装置
JP6156528B1 (ja) 冷凍装置
CN109844426B (zh) 制冷装置
JP6274277B2 (ja) 冷凍装置
JP6935720B2 (ja) 冷凍装置
JP6304330B2 (ja) 冷凍装置
JP5774210B2 (ja) 空気調和装置
JP5992089B2 (ja) 空気調和装置
JP5774211B2 (ja) 空気調和装置
KR20150048193A (ko) 냉동장치
JP7032667B2 (ja) 冷凍装置
US20220065506A1 (en) Refrigerant cycle apparatus
JP6038382B2 (ja) 空気調和装置
US20190360725A1 (en) Refrigeration apparatus
WO2017175299A1 (ja) 冷凍サイクル装置
JP6540666B2 (ja) 冷凍装置
WO2017056394A1 (ja) 冷凍装置
JP2017067397A (ja) 冷凍装置
WO2018042490A1 (ja) 冷凍サイクル装置
JPWO2020049646A1 (ja) 水冷式空気調和装置
JP2018087676A (ja) 冷凍装置
JP6319388B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846724

Country of ref document: EP

Effective date: 20190402