WO2017056394A1 - 冷凍装置 - Google Patents
冷凍装置 Download PDFInfo
- Publication number
- WO2017056394A1 WO2017056394A1 PCT/JP2016/004007 JP2016004007W WO2017056394A1 WO 2017056394 A1 WO2017056394 A1 WO 2017056394A1 JP 2016004007 W JP2016004007 W JP 2016004007W WO 2017056394 A1 WO2017056394 A1 WO 2017056394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- temperature
- discharge
- heat exchanger
- control
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- the present invention relates to a refrigeration apparatus that performs a refrigeration cycle by circulating a flammable refrigerant in a refrigerant circuit, and more particularly to a technique for suppressing erroneous detection of refrigerant leakage during a defrost operation performed using a high-pressure gas refrigerant.
- a refrigerant leak detector (sensor) is generally used. It is used.
- the refrigerant leakage detector may erroneously detect that the refrigerant is leaking even if the refrigerant is not leaking.
- an electric heater may be used to perform a defrost operation that is performed when the usage-side heat exchanger provided in the usage-side unit is frosted (for example,
- the surface temperature generally rises to around 300 ° C.
- the frost adhering to the use side heat exchanger evaporates all at once and supersaturated water vapor exists in the freezer, and the water content of the water vapor adheres to the refrigerant leak detector. There is a risk of erroneous detection that the refrigerant has leaked.
- the defrost operation is also performed by flowing a high-pressure gas refrigerant discharged from a compressor, which has a temperature lower than that of the electric heater, through a use-side heat exchanger. Therefore, it is conceivable to apply the defrost operation using the high-pressure gas refrigerant to a refrigeration apparatus using a refrigerant circuit in which a combustible refrigerant circulates.
- the present invention has been made in view of such problems, and an object thereof is to suppress erroneous detection of refrigerant leakage during defrost operation in a refrigeration apparatus having a refrigerant circuit using a flammable refrigerant. That is.
- the heat source side unit (11) and the use side unit (12) are connected via the liquid side connecting pipe (14) and the gas side connecting pipe (15), and the combustible refrigerant circulates.
- the refrigeration apparatus includes a refrigerant circuit (20) for performing a refrigeration cycle and a refrigerant leakage detector (95) for detecting refrigerant leakage of the use side unit (12).
- this refrigeration apparatus is provided with the defrost control part (91) which controls the defrost of the utilization side heat exchanger (61) provided in the said utilization side unit (12), The said defrost control part (91)
- the first control for gradually increasing the high pressure (HP) of the refrigerant circuit (20) so as to reach the target value is performed.
- the inlet side refrigerant temperature (Tin) of the use side heat exchanger (61) is equal to or higher than the reference temperature
- the discharge superheat degree (Tdsh) of the compressor (31a to 31c) of the refrigerant circuit (20) is the reference superheat degree. Is higher, the second control is performed to lower the discharge refrigerant temperature (Td) of the compressor (31a to 31c) toward the target discharge temperature.
- the high pressure (HP) of the refrigerant circuit (20) is gradually increased to the target value.
- the first control is performed to raise it to Further, the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is equal to or higher than the reference temperature, and the discharge superheat degree (Tdsh) of the compressor (31a to 31c) of the refrigerant circuit (20) is the reference superheat degree. Is higher, the second control is performed to lower the discharge refrigerant temperature (Td) of the compressor (31a to 31c) toward the target discharge temperature.
- the control is performed with the high pressure (HP) as a target.
- the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is high, moisture may sublimate and the interior may be oversaturated, whereas the compressors (31a to 31c ) Is performed to lower the discharged refrigerant temperature (Td), so that the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is lowered.
- the defrost control unit (91) determines that the discharge superheat degree (Tdsh) is equal to or lower than a reference superheat degree during the second control
- the superheat degree control which raises the discharge superheat degree (Tdsh) of 31c) toward the said reference
- the discharge superheat degree (Tdsh) when the discharge superheat degree (Tdsh) is equal to or lower than the reference superheat degree during the second control, the discharge superheat degree (Tdsh) of the compressors (31a to 31c) is moved toward the reference superheat degree.
- the superheat degree control to raise is performed.
- the defrost control unit (91) has an outlet refrigerant temperature (Tout) of the use side heat exchanger (61) higher than an outlet reference temperature
- the target value of the high pressure (HP) during control is set lower than the target value when the outlet refrigerant temperature (Tout) is lower than the outlet reference temperature
- the target discharge temperature in the temperature control during the second control is set as the outlet refrigerant.
- the temperature (Tout) is set lower than the target discharge temperature when it is lower than the outlet reference temperature.
- the target value of the high pressure (HP) during the first control is set to the outlet refrigerant temperature (Tout). Is set lower than the target value when the temperature is lower than the outlet reference temperature, and the target discharge temperature in the temperature control during the second control is lower than the target discharge temperature when the outlet refrigerant temperature (Tout) is lower than the outlet reference temperature. Set. That is, when the outlet refrigerant temperature (Tout) is high, it is determined that the amount of frost formation is small, so the target value of the high pressure (HP) and the target value of the discharge temperature are set to be low.
- a fourth aspect of the present disclosure is the injection operation according to any one of the first to third aspects, wherein the refrigerant circuit (20) supplies a low-pressure refrigerant or an intermediate-pressure refrigerant to the compressors (31a to 31c).
- the defrost control unit (91) performs a second control for lowering the discharge refrigerant temperature (Td) of the compressor (31a to 31c) toward the target discharge temperature by an injection operation. It is characterized by doing.
- the second control for lowering the discharge refrigerant temperature (Td) of the compressor (31a to 31c) toward the target discharge temperature is performed by the injection operation.
- the defrost control unit (91) causes the discharge superheat degree of the compressors (31a to 31c) of the refrigerant circuit (20) ( When the Tdsh) is higher than the reference superheat degree, the second control for lowering the discharge refrigerant temperature (Td) of the compressors (31a to 31c) toward the target discharge temperature is performed, and the discharge refrigerant temperature of the compressors (31a to 31c) ( Instead of lowering Td) toward the target discharge temperature, the discharge superheat degree (Tdsh) is lowered toward the reference superheat degree.
- the discharge refrigerant temperature (Td) of the compressor (31a to 31c) of the refrigerant circuit (20) is higher than the reference superheat degree
- the discharge refrigerant temperature (Td) of the compressor (31a to 31c) is set.
- the second control which decreases toward the target discharge temperature, moves the discharge superheat degree (Tdsh) toward the reference superheat degree instead of lowering the discharge refrigerant temperature (Td) of the compressor (31a to 31c) toward the target discharge temperature. It is done by lowering.
- the refrigerant leak detector (95) is located near the liquid refrigerant pipe (71c) of the usage-side unit (12). It is characterized by being arranged.
- the refrigerant leak detector (95) is disposed in the vicinity of the liquid refrigerant pipe (71c) of the use side unit (12), the temperature of the refrigerant leak detector (95) is kept high. Can suppress the adhesion of moisture.
- the seventh aspect of the present disclosure is characterized in that, in any one of the first to sixth aspects, a temperature sensor (96) is disposed in the vicinity of the refrigerant leakage detector (95).
- the temperature sensor (96) detects the temperature in the vicinity of the refrigerant leak detector (95) to detect the temperature change in the vicinity of the refrigerant leak detector (95), and whether there is an ignition source. Used to determine
- the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is low in the first control, there is little possibility of moisture sublimation, and high pressure (HP) is targeted. Control is performed.
- the second control if the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is high, moisture may sublimate and the interior may be oversaturated, whereas the compressors (31a to 31c ) Is performed to lower the discharged refrigerant temperature (Td), so that the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is lowered.
- the temperature difference between the inside temperature that is low during defrosting and the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is reduced, so that sublimation of moisture is suppressed.
- moisture hardly adheres to the refrigerant leak detector (95), and the refrigerant leak detector (95) can be prevented from erroneously detecting the refrigerant leak.
- the completion of defrosting is detected by the liquid pipe temperature (outlet temperature at the time of defrosting) of the use side heat exchanger (61), and at that time, the target high pressure is controlled. For this reason, since the gas pipe temperature (inlet temperature at the time of defrost) of the utilization side heat exchanger (61) was not controlled, the inlet temperature was high and the sublimation amount could not be suppressed. On the other hand, in the 1st mode of this indication, since the entrance refrigerant temperature (Tin) of the use side heat exchanger (61) is made into the controlled object, the amount of sublimation can be controlled.
- the discharge superheat (Tdsh) when the discharge superheat (Tdsh) is equal to or lower than the reference superheat during the second control, the discharge superheat (Tdsh) of the compressors (31a to 31c) is set to the reference superheat. Since the refrigerant circuit (20) is operated such that the superheat degree control is performed so that the discharge superheat degree (Tdsh) is maintained at the reference superheat degree, the defrosting ability is prevented from being lowered.
- the target value of the high pressure (HP) during the first control is set as the outlet refrigerant.
- the target discharge when the temperature (Tout) is set lower than the target value when it is lower than the outlet reference temperature, and the target discharge temperature in the temperature control during the second control is lower than the outlet reference temperature. Set lower than temperature.
- the outlet refrigerant temperature (Tout) is high, it is judged that the amount of frost formation is small, so the target value for high pressure (HP) and the target value for discharge temperature are set low, and the defrosting capacity becomes too large. Can be suppressed.
- the control since the second control for lowering the discharge refrigerant temperature (Td) of the compressor (31a to 31c) toward the target discharge temperature is performed by the injection operation, the control is simplified. it can.
- the discharge refrigerant temperature of the compressor (31a to 31c) of the refrigerant circuit (20) is higher than the reference superheat degree
- the discharge refrigerant temperature of the compressor (31a to 31c) is higher than the reference superheat degree
- the second control for lowering (Td) toward the target discharge temperature is based on the discharge superheat (Tdsh) instead of lowering the discharge refrigerant temperature (Td) of the compressor (31a-31c) toward the target discharge temperature. Since it is performed by lowering toward the degree of superheat, diversity can be given to the control.
- the refrigerant leak detector (95) is disposed in the vicinity of the liquid refrigerant pipe (71c) of the usage-side unit (12), so that the temperature of the refrigerant leak detector (95) is increased. Since it is kept high and moisture adhesion can be suppressed, it is possible to make it difficult to cause erroneous detection of the refrigerant leak detector (95).
- the temperature sensor (96) detects the temperature in the vicinity of the refrigerant leak detector (95), so that an erroneous detection is caused by a temperature change in the vicinity of the refrigerant leak detector (95). It is possible to determine whether there is an ignition risk in the case of failure.
- FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of a refrigeration apparatus according to an embodiment.
- FIG. 2 is a refrigerant circuit diagram showing the refrigeration apparatus during normal operation.
- FIG. 3 is a refrigerant circuit diagram illustrating the refrigeration apparatus during the defrost operation.
- FIG. 4 is a flowchart showing the operation of the defrost operation.
- the refrigeration apparatus (10) of the present embodiment is for cooling the refrigerator interior space.
- the refrigeration apparatus (10) includes one heat source side unit (11) and a plurality of (two in this embodiment) usage side units (12).
- the heat source side unit (11) is a so-called outdoor unit and is installed outdoors.
- the use side unit (12) is a so-called unit cooler and is installed in the refrigerator.
- the number of usage-side units (12) is merely an example.
- the heat source side unit (11) is provided with a heat source side circuit (21), a heat source side fan (22), and a controller (90).
- each use side unit (12) is provided with a use side circuit (23), a use side fan (24), and a drain pan (25).
- the heat source side circuit (21) of the heat source side unit (11) and the usage side circuit (23) of each usage side unit (12) are connected to the liquid side communication pipe (14) and the gas side communication pipe (
- the refrigerant circuit (20) is configured by connecting in 15).
- the refrigerant circuit (20) performs a vapor compression refrigeration cycle by circulating the refrigerant.
- R32 which is a slightly flammable refrigerant (flammable refrigerant) is used as the refrigerant.
- the heat source side circuit (21) is provided with a liquid closing valve (V1) at the liquid side end and a gas closing valve (V2) at the gas side end.
- the liquid side connection pipe (14) connects the liquid closing valve (V1) of the heat source side circuit (21) to the liquid side end of each use side circuit (23).
- the gas side communication pipe (15) connects the gas shut-off valve (V2) of the heat source side circuit (21) to the gas side end of each use side circuit (23).
- the usage side circuits (23) of the usage side units (12) are connected in parallel to each other.
- the heat source side circuit (21) includes first to third compressors (31a, 31b, 31c), a four-way switching valve (32), a heat source side heat exchanger (33), and a supercooling heat exchanger (34).
- the heat source side circuit (21) includes a discharge refrigerant pipe (51), an intake refrigerant pipe (52), a heat source side liquid refrigerant pipe (53), an injection pipe (injection circuit) (54), and a first A connection pipe (55), a second connection pipe (56), and an oil return pipe (57) are provided.
- the number of compressors (31a to 31c) provided in the heat source side unit (11) is merely an example.
- the first to third compressors (31a, 31b, 31c) are all scroll-type hermetic compressors. Each compressor (31a to 31c) is provided with a suction port, an intermediate port, and a discharge port. The compressors (31a to 31c) compress the refrigerant sucked from the suction port, and discharge the compressed refrigerant from the discharge port.
- the intermediate ports of the compressors (31a to 31c) are ports for introducing the refrigerant into the compression chamber that is being compressed.
- the capacity of the first compressor (31a) is variable. Electric power is supplied from an inverter (not shown) to the electric motor of the first compressor (31a). When the output frequency of the inverter is changed, the rotational speed of the first compressor (31a) changes, and the operating capacity of the first compressor (31a) changes. On the other hand, the capacity of each of the second compressor (31b) and the third compressor (31c) is fixed. The second compressor (31b) and the third compressor (31c) rotate at a constant rotational speed.
- the four-way selector valve (32) includes four ports, a first port to a fourth port, in a first state in which the first port communicates with the third port and the second port communicates with the fourth port (see FIG. 1 and a second state (state indicated by a broken line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. Has been.
- the four-way switching valve (32) has a first port connected to the discharge port of the compressor (31a to 31c) by a discharge refrigerant pipe (51), and a second port connected to the compressor (31a by a suction refrigerant pipe (52). To 31c) intake port.
- the four-way switching valve (32) has a third port connected to the gas side end of the heat source side heat exchanger (33), and a fourth port connected to the gas closing valve (V2).
- the discharge refrigerant pipe (51) is composed of the same number (three in this embodiment) of discharge pipes (51a, 51b, 51c) as the compressors (31a to 31c) and one discharge junction pipe (51d). ing.
- One end of the first discharge pipe (51a) is at the discharge port of the first compressor (31a)
- one end of the second discharge pipe (51b) is at the discharge port of the second compressor (31b)
- the third discharge pipe (51b ) Is connected to the discharge port of the third compressor (31b).
- the other end of each discharge pipe (51a, 51b, 51c) is connected to one end of the discharge junction pipe (51d).
- the other end of the discharge junction pipe (51d) is connected to the first port of the four-way switching valve (32).
- the suction refrigerant pipe (52) is composed of the same number (three in this embodiment) of suction pipes (52a, 52b, 52c) as the compressors (31a to 31c) and one suction main pipe (52d). Yes.
- One end of the first suction pipe (52a) is at the discharge port of the first compressor (31a)
- one end of the second suction pipe (52b) is at the discharge port of the second compressor (31b)
- the third suction pipe (52c ) Is connected to the discharge port of the third compressor (31b).
- the other end of each suction pipe (52a, 52b, 52c) is connected to one end of the suction main pipe (52d).
- the other end of the suction main pipe (52d) is connected to the second port of the four-way switching valve (32).
- the heat source side heat exchanger (33) is a cross-fin type fin-and-tube heat exchanger, and exchanges heat between the refrigerant and outdoor air.
- the liquid source end of the heat source side heat exchanger (33) is connected to the heat source side liquid refrigerant pipe (53), and the gas side end thereof is connected to the third port of the four-way switching valve (32).
- a heat source side fan (22) for supplying outdoor air to the heat source side heat exchanger (33) is disposed in the vicinity of the heat source side heat exchanger (33).
- the supercooling heat exchanger (34) is a so-called plate heat exchanger.
- a plurality of first flow paths (34a) and second flow paths (34b) are formed in the supercooling heat exchanger (34).
- the supercooling heat exchanger (34) exchanges heat between the refrigerant flowing through the first flow path (34a) and the refrigerant flowing through the second flow path (34b).
- the heat source side liquid refrigerant pipe (53) is composed of three heat source side liquid pipes (53a, 53b, 53c).
- the first heat source side liquid pipe (53a) connects the liquid side end of the heat source side heat exchanger (33) and the inlet of the receiver (37).
- the second heat source side liquid pipe (53b) connects the outlet of the receiver (37) and the inlet of the first flow path (34a) of the supercooling heat exchanger (34).
- the third heat source side liquid pipe (53c) connects the outlet of the first flow path (34a) of the supercooling heat exchanger (34) and the liquid closing valve (V1).
- the first heat source side liquid pipe (53a) is provided with a first check valve (CV1).
- the first check valve (CV1) allows the flow of refrigerant from the heat source side heat exchanger (33) to the receiver (37) and blocks the flow of refrigerant in the reverse direction.
- the third heat source side liquid pipe (53c) includes a heat source side expansion valve (38) and a second check valve (CV2) in order from the supercooling heat exchanger (34) to the liquid shut-off valve (V1). Is provided.
- the heat source side expansion valve (38) is an electric expansion valve with variable opening.
- the second check valve (CV2) allows the refrigerant flow from the supercooling heat exchanger (34) to the liquid closing valve (V1) and blocks the reverse refrigerant flow.
- the injection pipe (54) is composed of two injection main pipes (54m, 54n) and three injection branch pipes (54a, 54b, 54c).
- One end of the first injection main pipe (54m) is connected between the subcooling heat exchanger (34) and the heat source side expansion valve (38) in the third heat source side liquid pipe (53c), and the other end is subcooling heat exchange. Connected to the inlet of the second flow path (34b) of the vessel (34). One end of the second injection main pipe (54n) is connected to the outlet of the second flow path (34b) of the supercooling heat exchanger (34). One end of each injection branch pipe (54a, 54b, 54c) is connected to the other end of the second injection main pipe (54n).
- the other end of the first injection branch pipe (54a) is connected to the intermediate port of the first compressor (31a), and the other end of the second injection branch pipe (54b) is connected to the intermediate port of the second compressor (31b).
- the other end of the injection branch pipe (54c) is connected to the intermediate port of the third compressor (31c).
- Each injection branch pipe (54a to 54c) is provided with one intermediate expansion valve (36a, 36b, 36c).
- Each of the intermediate expansion valves (36a to 36c) is an electric expansion valve having a variable opening.
- the first connection pipe (55) is connected between the second check valve (CV2) and the liquid closing valve (V1) in the third heat source side liquid pipe (53c), and the other end is connected to the first heat source side liquid.
- the pipe (53a) is connected between the first check valve (CV1) and the receiver (37).
- the first connection pipe (55) is provided with a third check valve (CV3).
- the third check valve (CV3) allows the flow of refrigerant from one end of the first connection pipe (55) to the other end and blocks the flow of refrigerant in the reverse direction.
- the second connection pipe (56) is connected between the heat source side expansion valve (38) and the second check valve (CV2) in the third heat source side liquid pipe (53c), and the other end is connected to the first heat source side. It is connected between the heat source side heat exchanger (33) and the first check valve (CV1) in the liquid pipe (53a).
- the second connection pipe (56) is provided with a fourth check valve (CV4).
- the fourth check valve (CV4) allows a refrigerant flow from one end of the second connection pipe (56) to the other end, and blocks a reverse refrigerant flow.
- the oil separator (41) is provided in the discharge junction pipe (51d) of the discharge refrigerant pipe (51). From the compressors (31a to 31c), a gas refrigerant containing mist-like refrigerating machine oil is discharged. The oil separator (41) separates the refrigerating machine oil from the refrigerant discharged from the compressors (31a to 31c).
- Oil return pipe (57) is a pipe for returning the refrigeration oil from the oil separator (41) to the compressors (31a to 31c). One end of the oil return pipe (57) is connected to the oil separator (41), and the other end is connected to the second injection main pipe (54n).
- the oil return pipe (57) is provided with a capillary tube (42).
- the heat source side circuit (21) is provided with a plurality of temperature sensors (81a, 81b, 81c, 82) and a plurality of pressure sensors (85, 86, 87).
- Each discharge pipe (51a, 51b, 51c) of the discharge refrigerant pipe (51) is provided with one discharge refrigerant temperature sensor (81a, 81b, 81c).
- the first discharge refrigerant temperature sensor (81a) is attached to the first discharge pipe (51a), and measures the temperature of the refrigerant discharged from the first compressor (31a).
- the second discharge refrigerant temperature sensor (81b) is attached to the second discharge pipe (51b) and measures the temperature of the refrigerant discharged from the second compressor (31b).
- the third discharge refrigerant temperature sensor (81c) is attached to the third discharge pipe (51c) and measures the temperature of the refrigerant discharged from the third compressor (31c).
- the liquid refrigerant temperature sensor (82) is provided in the heat source side liquid refrigerant pipe (53).
- the liquid refrigerant temperature sensor (82) is attached to the third heat source side liquid pipe (53c) and measures the temperature of the refrigerant flowing through the third heat source side liquid pipe (53c).
- the discharge pressure sensor (85) is connected to the discharge junction pipe (51d) of the discharge refrigerant pipe (51), and measures the pressure of the refrigerant discharged from the compressors (31a to 31c).
- the suction pressure sensor (86) is connected to the suction main pipe (52d) of the suction refrigerant pipe (52) and measures the pressure of the refrigerant sucked into the compressors (31a to 31c).
- the liquid refrigerant pressure sensor (87) is connected to the third heat source side liquid pipe (53c) of the heat source side liquid refrigerant pipe (53), and measures the pressure of the refrigerant flowing through the third heat source side liquid pipe (53c).
- Each usage side circuit (23) has a usage side heat exchanger (61), a drain pan heater (71b), a usage side solenoid valve (62), and a usage side expansion valve (63). Yes.
- Each use side circuit (23) is provided with one use side liquid refrigerant pipe (71) and one use side gas refrigerant pipe (72).
- the use side heat exchanger (61) is a cross-fin fin-and-tube heat exchanger, and exchanges heat between the refrigerant and the internal air.
- chamber to the utilization side heat exchanger (61) is arrange
- the usage side unit (12) is provided with a refrigerant leak detector (95) below the usage side heat exchanger (61) and in the vicinity of the liquid refrigerant pipe (second usage side liquid pipe (71c)). ing.
- a temperature sensor (96) is disposed in the vicinity of the refrigerant leak detector (95).
- the drain pan heater (71b) is constituted by a pipe provided in the drain pan (25) disposed below the use side heat exchanger (61).
- the drain pan heater (71b) is for warming the drain pan (25) to prevent the drain water from freezing.
- the use side liquid refrigerant pipe (71) is composed of a first use side liquid pipe (71a) and a second use side liquid pipe (71c).
- the first usage-side liquid pipe (71a) has one end connected to the liquid-side connecting pipe (14) and the other end connected to one end of the drain pan heater (71b).
- One end of the first usage side liquid pipe (71a) constitutes the liquid side end of the usage side circuit (23).
- the second usage side liquid pipe (71c) has one end connected to the other end of the drain pan heater (71b) and the other end connected to the liquid side end of the usage side heat exchanger (61).
- the use side gas refrigerant pipe (72) has one end connected to the gas side end of the use side heat exchanger (61) and the other end connected to the gas side connecting pipe (15).
- the other end of the use side gas refrigerant pipe (72) constitutes the gas side end of the use side circuit (23).
- the use side solenoid valve (62) and the use side expansion valve (63) are provided in the second use side liquid pipe (71c) of the use side liquid refrigerant pipe (71).
- the usage side expansion valve (63) is disposed between the usage side electromagnetic valve (62) and the usage side heat exchanger (61).
- the user side solenoid valve (62) switches between an open state and a closed state by intermittently energizing the solenoid.
- the use side unit (12) When the use side solenoid valve (62) is in the open state, the use side unit (12) is in a cooling state in which the use side heat exchanger (61) functions as an evaporator to cool the internal air.
- the use side solenoid valve (62) When the use side solenoid valve (62) is in the closed state, the use side unit (12) is in a dormant state in which the refrigerant flow in the use side heat exchanger (61) is blocked.
- the user side expansion valve (63) is an external pressure equalizing type temperature automatic expansion valve.
- the temperature sensing cylinder (63a) of the use side expansion valve (63) is attached in the vicinity of one end of the use side gas refrigerant pipe (72) (the end on the use side heat exchanger (61) side).
- the pressure equalizing pipe (63b) of the use side expansion valve (63) is connected to the vicinity of one end of the use side gas refrigerant pipe (72).
- the controller (90) includes a defrost control unit (91) that controls normal operation while controlling the defrost of the use side heat exchanger (61).
- the defrost control unit (91) causes the high pressure (HP) of the refrigerant circuit (20) to decrease.
- First control is performed to gradually increase the target value (for example, 2.5 MPa), the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is equal to or higher than the reference temperature, and the refrigerant circuit (20 ) Compressor (31a to 31c) discharge superheat degree (Tdsh) is higher than the reference superheat degree (for example, 5 deg), the discharge refrigerant temperature (Td) of the compressor (31a to 31c) is set to the target discharge temperature (for example, 60 degrees).
- the second control is performed to lower the temperature toward (° C.).
- the second control is performed by an injection operation for supplying intermediate pressure refrigerant to the compressors (31a to 31c).
- the defrost control unit (91) determines the discharge superheat degree (Tdsh) of the compressor (31a to 31c) when the discharge superheat degree (Tdsh) is equal to or lower than the reference superheat degree during the second control. Perform superheat control to increase toward superheat.
- the defrost control unit (91) is configured to perform high pressure (HP) during the first control. Is set to a target value (for example, 2.0 MPa) lower than the target value (2.5 MPa) when the outlet refrigerant temperature (Tout) is lower than the outlet reference temperature, and in the temperature control during the second control.
- the target discharge temperature (Td) is set to a target temperature (for example, 55 ° C.) lower than the target discharge temperature (60 ° C.) when the outlet refrigerant temperature (Tout) is lower than the outlet reference temperature.
- the four-way switching valve (32) is set to the first state.
- the supercooling expansion valve (35), the intermediate expansion valves (36a, 36b, 36c), and the heat source side expansion valve (38) are controlled by the controller (90).
- the use side solenoid valve (62) of each use side unit (12) is set to an open state.
- the refrigerant discharged from the compressors (31a to 31c) passes through the oil separator (41) in the discharge refrigerant pipe (51), and then passes through the four-way switching valve (32) to the heat source side heat exchanger (33). In the heat source side heat exchanger (33), it dissipates heat to the outdoor air and condenses.
- the refrigerant (high-pressure refrigerant) flowing out from the heat source side heat exchanger (33) passes through the first heat source side liquid pipe (53a), the receiver (37), and the second heat source side liquid pipe (53b) in this order, and is supercooled.
- the refrigerant flows into the first flow path (34a) of the heat exchanger (34) and is cooled by the refrigerant flowing through the second flow path (34b) of the supercooling heat exchanger (34).
- the remainder passes through the heat source side expansion valve (38) and the liquid closing valve (V1) in this order, and then flows into the liquid side connection pipe (14).
- the refrigerant flowing into the liquid side communication pipe (14) is distributed to the usage side circuit (23) of each usage side unit (12).
- each usage side circuit (23) the refrigerant flowing into the first usage side liquid pipe (71a) passes through the drain pan heater (71b) and then passes through the second usage side liquid pipe (71c) to the usage side solenoid valve (62 ).
- the refrigerant that has passed through the use-side electromagnetic valve (62) expands into a gas-liquid two-phase state when passing through the use-side expansion valve (63), and then flows into the use-side heat exchanger (61).
- the use side heat exchanger (61) the refrigerant that has flowed in absorbs heat from the inside air and evaporates, and the inside air is cooled.
- the use side unit (12) sends the internal air cooled by the use side heat exchanger (61) back to the internal space.
- the refrigerant evaporated in the use side heat exchanger (61) flows into the gas side communication pipe (15) through the use side gas refrigerant pipe (72).
- the refrigerant that flows into the gas side communication pipe (15) from each use side circuit (23) flows into the heat source side circuit (21) after merging, and passes through the gas shut-off valve (V2) and the four-way switching valve (32) in order. Later, the refrigerant is sucked into the compressors (31a to 31c) through the suction refrigerant pipe (52).
- the refrigerant that has flowed into the first injection main pipe (54m) expands into a gas-liquid two-phase state when passing through the supercooling expansion valve (35), and then enters the second phase of the supercooling heat exchanger (34).
- the refrigerant flows into the channel (34b), absorbs heat from the refrigerant (high-pressure refrigerant) flowing through the first channel (34a) of the supercooling heat exchanger (34), and evaporates.
- the refrigerant that has flowed into the second injection main pipe (54n) from the second flow path (34b) of the supercooling heat exchanger (34) is introduced into the intermediate ports of the compressors (31a to 31c).
- the defrost operation is performed when a predetermined condition (for example, a condition that the duration of the normal operation has reached a predetermined time) is satisfied during the normal operation.
- a predetermined condition for example, a condition that the duration of the normal operation has reached a predetermined time
- a refrigeration cycle is performed by circulating the refrigerant, the use side heat exchanger (61) functions as a condenser, and the heat source side heat exchanger (33) serves as an evaporator. Function.
- the four-way selector valve (32) is set to the second state.
- the supercooling expansion valve (35), the intermediate expansion valves (36a, 36b, 36c), and the heat source side expansion valve (38) are controlled by the main controller (90).
- the use side solenoid valve (62) is set in an open state, and the use side fan (24) is in a stopped state.
- the refrigerant discharged from the compressor (31a to 31c) passes through the four-way selector valve (32) and then flows into the gas side communication pipe (15) and is distributed to the usage side circuit (23) of each usage side unit (12). Is done.
- the refrigerant distributed to each use side circuit (23) flows into the use side heat exchanger (61), dissipates heat and condenses.
- the frost adhering to the use side heat exchanger (61) is heated and melted by the refrigerant.
- the refrigerant flowing into the heat source side circuit (21) sequentially passes through the liquid closing valve (V1), the first connection pipe (55), and the receiver (37), and then the first of the supercooling heat exchanger (34). It flows into the channel (34a).
- the refrigerant that has flowed into the heat source side expansion valve (38) expands into a gas-liquid two-phase state when passing through the heat source side expansion valve (38), and then flows into the heat source side heat exchanger (33). It absorbs heat from the air and evaporates.
- the refrigerant evaporated in the heat source side heat exchanger (33) flows into the intake refrigerant pipe (52) after passing through the four-way switching valve (32), and is then sucked into the compressors (31a to 31c).
- the refrigerant flowing into the first injection main pipe (54m) passes through the second flow path (34b) of the supercooling heat exchanger (34) and then flows into the second injection main pipe (54n), and then each compressor. It is introduced to the intermediate port (31a-31c).
- this defrost control is referred to as supersaturation suppression defrost control.
- step ST1 it is determined whether or not the outlet refrigerant temperature (Tout) of the use side heat exchanger (61) is lower than 0 ° C. which is the outlet reference temperature. If a determination result is "YES”, it will progress to step ST2, and it will be determined whether the inlet-side refrigerant
- step ST3 the target high pressure of the refrigerant circuit (20) is set to 2.5 MPa, for example, until the inlet refrigerant temperature reaches 50 ° C. while ensuring the refrigerant circulation amount of the refrigerant circuit (20).
- Control first control is performed so as to gradually raise the temperature, and the process returns.
- step ST2 When the determination result of step ST2 is “NO”, the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is high and the outlet refrigerant temperature (Tout) is low, and the internal temperature is high. It is determined that the frost on the use side heat exchanger (61) is not sufficiently melted. In this case, the process proceeds to step ST4, and it is determined whether or not the discharge superheat degree (Tdsh) is larger than 5 deg. The discharge superheat (Tdsh) generally increases when the outside air temperature is low. When the determination result is “YES” and the discharge superheat degree (Tdsh) is larger than 5 deg, the process proceeds to step ST5. In step ST5, control (second control) is performed based on the target discharge gas temperature (60 ° C.) so that the discharge gas temperature (Td) does not increase too much, and the process returns.
- control second control
- step ST4 determines whether the discharge superheat degree (Tdsh) is 5 deg or less. If the determination result in step ST4 is “NO” and the discharge superheat degree (Tdsh) is 5 deg or less, the process proceeds to step ST6 to perform control based on the target discharge superheat degree (5 deg) and maintain the superheat degree at 5 deg. Perform superheat control and return.
- step ST1 determines whether the temperature (Tin) is lower than the inlet reference temperature (50 ° C.).
- the determination result is “YES”
- the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is lower than the reference temperature, but the outlet refrigerant temperature (Tout) is higher than the reference temperature.
- step ST8 the target high pressure of the refrigerant circuit (20) is set to 2.0 MPa, for example, and the refrigerant circulation amount of the refrigerant circuit (20) is made smaller than when the inlet refrigerant temperature is low. Control is performed so that the temperature is gradually increased until the inlet refrigerant temperature reaches 50 ° C. (first control), and the process returns.
- step ST7 When the determination result in step ST7 is “NO”, the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is low and the outlet refrigerant temperature (Tout) is also low. In this case, the process proceeds to step ST9, and it is determined whether or not the discharge superheat degree (Tdsh) is larger than 5 deg as in step ST4. If the determination result is “YES” and the discharge superheat degree (Tdsh) is larger than 5 deg, the process proceeds to step ST10. In step ST10, control (second control) is performed based on the target discharge gas temperature (55 ° C.) so that the discharge gas temperature (Td) does not increase too much, and the process returns.
- control second control
- step ST9 determines whether the discharge superheat degree (Tdsh) is 5 deg or less. If the determination result in step ST9 is “NO” and the discharge superheat degree (Tdsh) is 5 deg or less, the process proceeds to step ST11 to perform control based on the target discharge gas superheat degree (5 deg), and the superheat degree is set to 5 deg. Control the degree of superheat to maintain and return.
- the temperature difference between the inside temperature that is low during defrosting and the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is reduced, so that sublimation of moisture is suppressed.
- moisture hardly adheres to the refrigerant leak detector (95), and the refrigerant leak detector (95) can be prevented from erroneously detecting the refrigerant leak.
- the completion of defrost is detected by the liquid pipe temperature (outlet temperature at the time of defrost) of the use side heat exchanger (61), and control is performed so that the target high pressure is reached at that time. .
- the gas pipe temperature (inlet temperature at the time of defrost) of the utilization side heat exchanger (61) was not controlled, the inlet temperature was high and the sublimation amount could not be suppressed.
- the amount of sublimation can be suppressed because the inlet refrigerant temperature (Tin) of the use side heat exchanger (61) is controlled.
- the discharge superheat degree (Tdsh) when the discharge superheat degree (Tdsh) is equal to or lower than the reference superheat degree during the second control, the discharge superheat degree (Tdsh) of the compressors (31a to 31c) is set to the reference superheat degree. Since the superheat degree control to be increased is performed and the refrigerant circuit (20) is controlled so that the discharge superheat degree (Tdsh) is maintained at the reference superheat degree, it is possible to suppress the defrosting ability from being lowered.
- the target value of the high pressure (HP) during the first control is set to the outlet refrigerant temperature ( Tout) is set lower than the target value when it is lower than the outlet reference temperature
- the target discharge temperature in the temperature control during the second control is set to the target discharge temperature when the outlet refrigerant temperature (Tout) is lower than the outlet reference temperature. Is set too low.
- the second control for lowering the discharge refrigerant temperature (Td) of the compressor (31a to 31c) toward the target discharge temperature is performed by the injection operation, so that the control can be simplified.
- the discharge superheat degree (Tdsh) of the compressor (31a to 31c) of the refrigerant circuit (20) is higher than the reference superheat degree, the discharge refrigerant temperature (Td) of the compressor (31a to 31c) ) Is reduced toward the target discharge temperature, instead of lowering the discharge refrigerant temperature (Td) of the compressor (31a to 31c) toward the target discharge temperature, the discharge superheat degree (Tdsh) is set to the reference superheat degree. Since it is performed by lowering toward, it is possible to give diversity to the control.
- the refrigerant leak detector (95) is disposed in the vicinity of the liquid refrigerant pipe (71c) of the use side unit (12), thereby increasing the temperature of the refrigerant leak detector (95). Since it is possible to maintain and suppress the adhesion of moisture, it is possible to prevent erroneous detection in the refrigerant leak detector (95).
- the temperature sensor (96) detects the temperature in the vicinity of the refrigerant leak detector (95), so that the temperature change (ignition, etc.) in the vicinity of the refrigerant leak detector (95) is erroneous. It can be determined whether the cause of detection.
- the defrost control unit (91) may be configured so that the compressors (31a to 31c) when the discharge superheat degree (Tdsh) of the compressors (31a to 31c) of the refrigerant circuit (20) is higher than the reference superheat degree. ),
- Tdsh may be controlled to decrease toward the reference superheat degree.
- the refrigerant leak detector (95) does not necessarily have to be arranged near the liquid refrigerant pipe (71c) of the use side unit (12), or a temperature sensor (95) near the refrigerant leak detector (95) ( 96) is not necessarily provided.
- the present invention is useful for a technique for suppressing erroneous detection of refrigerant leakage during defrost operation performed using a high-pressure gas refrigerant in a refrigeration apparatus that performs a refrigeration cycle by circulating a combustible refrigerant in a refrigerant circuit. It is.
- Refrigeration unit 11 Heat source side unit 12
- User side unit 14 Liquid side connection pipe 15 Gas side connection pipe 20
- Injection pipe (injection circuit) 61
- Second user side liquid pipe (liquid refrigerant pipe) 91
- Defrost controller 95
- Refrigerant leak detector 96
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Defrosting Systems (AREA)
Abstract
可燃性冷媒を用いた冷媒回路(20)を有する冷凍装置(10)において、利用側熱交換器(61)の入口冷媒温度が入口基準温度よりも低いと、冷媒回路(20)の高圧圧力が目標値となるように徐々に上昇させる第1制御を行い、利用側熱交換器(61)の入口冷媒温度が基準温度以上でありかつ圧縮機(31a~31c)の吐出過熱度が基準過熱度よりも高いと、吐出冷媒温度を目標吐出温度へ向かって下げる第2制御を行うデフロスト制御部(91)を設け、デフロスト運転時に冷媒漏洩の誤検知が生じるのを抑制する。
Description
本発明は、冷媒回路で可燃性冷媒を循環させて冷凍サイクルを行う冷凍装置に関し、特に、高圧ガス冷媒を用いて行うデフロスト運転中に冷媒漏洩の誤検知を抑制する技術に関するものである。
従来、ASHRAE(米国暖房冷凍空調学会)が設定している微燃性冷媒(可燃性冷媒)であるグレードA2Lの冷媒(例えばR32)を用いる冷凍装置においては、一般に冷媒漏洩検知器(センサ)が用いられている。ここで、上記冷媒漏洩検知器は、水滴が付着すると、冷媒が漏洩していなくても冷媒が漏洩していると誤検知する場合がある。
例えば、可燃性冷媒が循環する冷媒回路で庫内を冷却する冷凍装置では、利用側ユニットに設けられる利用側熱交換器が着霜した時に行うデフロスト運転を電気ヒータで行う場合がある(例えば、特許文献1参照)が、電気ヒータを用いる場合、その表面温度は一般に300℃前後まで上昇する。そして、電気ヒータの温度が高温であるため、利用側熱交換器に付着した霜が一気に蒸発して冷凍庫内に過飽和水蒸気が存在する状態となり、その水蒸気の水分が冷媒漏洩検知器に付着して、冷媒が漏洩したと誤検知するおそれがある。
デフロスト運転としては、上記電気ヒータよりは温度が低い、圧縮機から吐出された高圧ガス冷媒を利用側熱交換器に流して行うことも行われている。そこで、この高圧ガス冷媒によるデフロスト運転を、可燃性冷媒が循環する冷媒回路を用いた冷凍装置に適用することが考えられる。
しかしながら、高圧ガス冷媒を用いたデフロスト運転においては、デフロストを行う利用側熱交換器の入口冷媒温度が高いと水分が昇華し、庫内が過飽和になるおそれがある。したがって、この場合でも、冷媒漏洩検知器が誤検知するおそれがある。
本発明は、このような問題点に鑑みてなされたものであり、その目的は、可燃性冷媒を用いた冷媒回路を有する冷凍装置において、デフロスト運転時に冷媒漏洩の誤検知が生じるのを抑制することである。
本開示の第1の態様は、熱源側ユニット(11)と利用側ユニット(12)が液側連絡配管(14)及びガス側連絡配管(15)を介して接続され、可燃性冷媒が循環して冷凍サイクルを行う冷媒回路(20)を備え、上記利用側ユニット(12)の冷媒漏洩を検知する冷媒漏洩検知器(95)を備えた冷凍装置を前提としている。
そして、この冷凍装置は、上記利用側ユニット(12)に設けられている利用側熱交換器(61)のデフロストを制御するデフロスト制御部(91)を備え、上記デフロスト制御部(91)は、利用側熱交換器(61)の入口冷媒温度(Tin)が入口基準温度よりも低いと、冷媒回路(20)の高圧圧力(HP)が目標値となるように徐々に上昇させる第1制御を行い、利用側熱交換器(61)の入口冷媒温度(Tin)が上記基準温度以上でありかつ上記冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる第2制御を行うことを特徴としている。
この第1の態様では、利用側熱交換器(61)の入口冷媒温度(Tin)が入口基準温度よりも低いと、冷媒回路(20)の高圧圧力(HP)が目標値となるように徐々に上昇させる第1制御が行われる。また、利用側熱交換器(61)の入口冷媒温度(Tin)が上記基準温度以上でありかつ上記冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる第2制御が行われる。
つまり、第1制御では利用側熱交換器(61)の入口冷媒温度(Tin)が低いので、水分が昇華するおそれが少なく、高圧圧力(HP)を目標として制御が行われる。一方、第2制御では、利用側熱交換器(61)の入口冷媒温度(Tin)が高いと水分が昇華し、庫内が過飽和になるおそれがあるのに対して、圧縮機(31a~31c)の吐出冷媒温度(Td)を下げる制御が行われるので、利用側熱交換器(61)の入口冷媒温度(Tin)が低下する。
本開示の第2の態様は、第1の態様において、上記デフロスト制御部(91)が、第2制御中に上記吐出過熱度(Tdsh)が基準過熱度以下であると、圧縮機(31a~31c)の吐出過熱度(Tdsh)を上記基準過熱度へ向かって上げる過熱度制御を行うことを特徴している。
この第2の態様では、第2制御中に上記吐出過熱度(Tdsh)が基準過熱度以下であると、圧縮機(31a~31c)の吐出過熱度(Tdsh)を上記基準過熱度へ向かって上げる過熱度制御が行われる。
本開示の第3の態様は、第2の態様において、上記デフロスト制御部(91)が、上記利用側熱交換器(61)の出口冷媒温度(Tout)が出口基準温度より高いと、第1制御中の高圧圧力(HP)の目標値を出口冷媒温度(Tout)が出口基準温度より低いときの目標値よりも低く設定し、かつ、第2制御中の温度制御における目標吐出温度を出口冷媒温度(Tout)が出口基準温度より低いときの目標吐出温度よりも低く設定することを特徴としている。
この第3の態様では、利用側熱交換器(61)の出口冷媒温度(Tout)が出口基準温度より高いと、第1制御中の高圧圧力(HP)の目標値を出口冷媒温度(Tout)が出口基準温度より低いときの目標値よりも低く設定し、かつ、第2制御中の温度制御における目標吐出温度を出口冷媒温度(Tout)が出口基準温度より低いときの目標吐出温度よりも低く設定する。つまり、出口冷媒温度(Tout)が高いと着霜量が少ないと判断されるので、高圧圧力(HP)の目標値や吐出温度の目標値が低めに設定される。
本開示の第4の態様は、第1から第3の態様の何れか1つにおいて、上記冷媒回路(20)が上記圧縮機(31a~31c)へ低圧冷媒または中間圧冷媒を供給するインジェクション動作を行うインジェクション回路(54)を備え、上記デフロスト制御部(91)は、上記圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる第2制御を、インジェクション動作により行うことを特徴としている。
この第4の態様では、上記圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる第2制御が、インジェクション動作により行われる。
本開示の第5の態様は、第1から第4の態様の何れか1つにおいて、上記デフロスト制御部(91)が、冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる上記第2制御を、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる代わりに吐出過熱度(Tdsh)を基準過熱度へ向かって下げることで行うことを特徴としている。
この第5の態様では、冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる上記第2制御が、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる代わりに、吐出過熱度(Tdsh)を基準過熱度へ向かって下げることで行われる。
本開示の第6の態様は、第1から第5の態様の何れか1つにおいて、上記冷媒漏洩検知器(95)が、上記利用側ユニット(12)の液冷媒管(71c)の近傍に配置されていることを特徴としている。
この第6の態様では、冷媒漏洩検知器(95)が利用側ユニット(12)の液冷媒管(71c)の近傍に配置されているので、冷媒漏洩検知器(95)の温度を高めに維持することができ、水分の付着を押さえられる。
本開示の第7の態様は、第1から第6の態様の何れか1つにおいて、上記冷媒漏洩検知器(95)の近傍に温度センサ(96)が配置されていることを特徴としている。
この第7の態様では、温度センサ(96)で冷媒漏洩検知器(95)の近傍の温度を検知することにより、冷媒漏洩検知器(95)の近傍の温度変化を検知し着火源の有無を判定することに用いる。
本開示の第1の態様によれば、第1制御では利用側熱交換器(61)の入口冷媒温度(Tin)が低いので、水分が昇華するおそれが少なく、高圧圧力(HP)を目標として制御が行われる。一方、第2制御では、利用側熱交換器(61)の入口冷媒温度(Tin)が高いと水分が昇華し、庫内が過飽和になるおそれがあるのに対して、圧縮機(31a~31c)の吐出冷媒温度(Td)を下げる制御が行われるので、利用側熱交換器(61)の入口冷媒温度(Tin)が低下する。したがって、デフロスト時に低温になっている庫内温度と利用側熱交換器(61)の入口冷媒温度(Tin)の温度差が小さくなるので、水分の昇華が抑制される。その結果、冷媒漏洩検知器(95)に水分が付着しにくくなり、冷媒漏洩検知器(95)が冷媒漏洩を誤検知するのを抑えられる。
また、従来のデフロスト運転では、利用側熱交換器(61)の液管温度(デフロスト時の出口温度)でデフロスト完了を検知し、また、その時に目標の高圧になるように制御していた。このため、利用側熱交換器(61)のガス管温度(デフロスト時の入口温度)は、制御対象としていなかったため、入口温度が高くなり、昇華量が抑制できていなかった。これに対し、本開示の第1の態様では、利用側熱交換器(61)の入口冷媒温度(Tin)を制御対象にしているので、昇華量を抑制できる。
本開示の第2の態様によれば、第2制御中に上記吐出過熱度(Tdsh)が基準過熱度以下であると、圧縮機(31a~31c)の吐出過熱度(Tdsh)を上記基準過熱度へ向かって上げる過熱度制御が行われる、吐出過熱度(Tdsh)が基準過熱度に保持するように冷媒回路(20)が操作されるので、デフロスト能力が低下するのが押さえられる。
本開示の第3の態様によれば、利用側熱交換器(61)の出口冷媒温度(Tout)が出口基準温度より高いと、第1制御中の高圧圧力(HP)の目標値を出口冷媒温度(Tout)が出口基準温度より低いときの目標値よりも低く設定し、かつ、第2制御中の温度制御における目標吐出温度を出口冷媒温度(Tout)が出口基準温度より低いときの目標吐出温度よりも低く設定する。つまり、出口冷媒温度(Tout)が高いと着霜量が少ないと判断されるので、高圧圧力(HP)の目標値や吐出温度の目標値が低めに設定されて、デフロスト能力が大きくなりすぎるのを押さえられる。
本開示の第4の態様によれば、上記圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる第2制御が、インジェクション動作により行われるので、制御を簡素化できる。
本開示の第5の態様によれば、冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる上記第2制御を、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる代わりに、吐出過熱度(Tdsh)を基準過熱度へ向かって下げることで行うので、制御に多様性を持たせることができる。
本開示の第6の態様によれば、冷媒漏洩検知器(95)を利用側ユニット(12)の液冷媒管(71c)の近傍に配置したことにより、冷媒漏洩検知器(95)の温度を高めに維持し、水分の付着を抑えられるから、冷媒漏洩検知器(95)の誤検知を生じにくくすることができる。
本開示の第7の態様によれば、温度センサ(96)で冷媒漏洩検知器(95)の近傍の温度を検知することにより、冷媒漏洩検知器(95)の近傍の温度変化にて誤検知した場合にも着火リスクがあるか判定できる。
本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
本実施形態の冷凍装置(10)は、冷蔵庫の庫内空間を冷却するためのものである。図1に示すように、冷凍装置(10)は、一台の熱源側ユニット(11)と、複数台(本実施形態では二台)の利用側ユニット(12)とを備えている。熱源側ユニット(11)は、いわゆる室外ユニットであって、屋外に設置される。利用側ユニット(12)は、いわゆるユニットクーラーであって、冷蔵庫の庫内に設置される。なお、利用側ユニット(12)の台数は、単なる例示である。
熱源側ユニット(11)には、熱源側回路(21)と熱源側ファン(22)と制御器(90)とが設けられている。一方、各利用側ユニット(12)には、利用側回路(23)と利用側ファン(24)とドレンパン(25)とが設けられている。
冷凍装置(10)では、熱源側ユニット(11)の熱源側回路(21)と各利用側ユニット(12)の利用側回路(23)とを液側連絡配管(14)及びガス側連絡配管(15)で接続することによって、冷媒回路(20)が構成されている。冷媒回路(20)は、冷媒を循環させることによって蒸気圧縮式の冷凍サイクルを行う。冷媒には、微燃性冷媒(可燃性冷媒)であるR32が用いられている。
熱源側回路(21)は、その液側端に液閉鎖弁(V1)が設けられ、そのガス側端にガス閉鎖弁(V2)が設けられている。液側連絡配管(14)は、熱源側回路(21)の液閉鎖弁(V1)を、各利用側回路(23)の液側端に接続している。ガス側連絡配管(15)は、熱源側回路(21)のガス閉鎖弁(V2)を、各利用側回路(23)のガス側端に接続している。冷媒回路(20)では、各利用側ユニット(12)の利用側回路(23)が互いに並列に接続されている。
-熱源側回路-
熱源側回路(21)は、第1~第3圧縮機(31a,31b,31c)と、四方切換弁(32)と、熱源側熱交換器(33)と、過冷却熱交換器(34)と、過冷却膨張弁(35)と、第1~第3中間膨張弁(36a,36b,36c)と、レシーバ(37)と、熱源側膨張弁(38)と、第1~第3逆止弁(CV1~CV3)と、油分離器(41)とを有している。また、熱源側回路(21)には、吐出冷媒配管(51)と、吸入冷媒配管(52)と、熱源側液冷媒配管(53)と、インジェクション配管(インジェクション回路)(54)と、第1接続配管(55)と、第2接続配管(56)と、油戻し配管(57)とが設けられている。なお、熱源側ユニット(11)に設けられる圧縮機(31a~31c)の台数は、単なる例示である。
熱源側回路(21)は、第1~第3圧縮機(31a,31b,31c)と、四方切換弁(32)と、熱源側熱交換器(33)と、過冷却熱交換器(34)と、過冷却膨張弁(35)と、第1~第3中間膨張弁(36a,36b,36c)と、レシーバ(37)と、熱源側膨張弁(38)と、第1~第3逆止弁(CV1~CV3)と、油分離器(41)とを有している。また、熱源側回路(21)には、吐出冷媒配管(51)と、吸入冷媒配管(52)と、熱源側液冷媒配管(53)と、インジェクション配管(インジェクション回路)(54)と、第1接続配管(55)と、第2接続配管(56)と、油戻し配管(57)とが設けられている。なお、熱源側ユニット(11)に設けられる圧縮機(31a~31c)の台数は、単なる例示である。
〈圧縮機〉
第1~第3圧縮機(31a,31b,31c)は、いずれもスクロール式の全密閉型圧縮機である。各圧縮機(31a~31c)には、吸入ポートと、中間ポートと、吐出ポートとが設けられている。圧縮機(31a~31c)は、吸入ポートから吸い込んだ冷媒を圧縮し、圧縮した冷媒を吐出ポートから吐き出す。また、圧縮機(31a~31c)の中間ポートは、圧縮途中の圧縮室へ冷媒を導入するためのポートである。
第1~第3圧縮機(31a,31b,31c)は、いずれもスクロール式の全密閉型圧縮機である。各圧縮機(31a~31c)には、吸入ポートと、中間ポートと、吐出ポートとが設けられている。圧縮機(31a~31c)は、吸入ポートから吸い込んだ冷媒を圧縮し、圧縮した冷媒を吐出ポートから吐き出す。また、圧縮機(31a~31c)の中間ポートは、圧縮途中の圧縮室へ冷媒を導入するためのポートである。
第1圧縮機(31a)は、その容量が可変である。第1圧縮機(31a)の電動機には、図外のインバータから電力が供給される。インバータの出力周波数を変更すると、第1圧縮機(31a)の回転速度が変化し、第1圧縮機(31a)の運転容量が変化する。一方、第2圧縮機(31b)と第3圧縮機(31c)のそれぞれは、その容量が固定である。第2圧縮機(31b)及び第3圧縮機(31c)は、一定の回転速度で回転する。
〈四方切換弁〉
四方切換弁(32)は、第1ポートから第4ポートの4つのポートを備え、第1ポートと第3ポートとが連通し且つ第2ポートと第4ポートとが連通する第1状態(図1に実線で示す状態)と、第1ポートと第4ポートとが連通し且つ第2ポートと第3ポートとが連通する第2状態(図1に破線で示す状態)とに切り換え可能に構成されている。
四方切換弁(32)は、第1ポートから第4ポートの4つのポートを備え、第1ポートと第3ポートとが連通し且つ第2ポートと第4ポートとが連通する第1状態(図1に実線で示す状態)と、第1ポートと第4ポートとが連通し且つ第2ポートと第3ポートとが連通する第2状態(図1に破線で示す状態)とに切り換え可能に構成されている。
四方切換弁(32)は、その第1ポートが吐出冷媒配管(51)によって圧縮機(31a~31c)の吐出ポートに接続され、その第2ポートが吸入冷媒配管(52)によって圧縮機(31a~31c)の吸入ポートに接続されている。また、四方切換弁(32)は、その第3ポートが熱源側熱交換器(33)のガス側端に接続され、その第4ポートがガス閉鎖弁(V2)に接続されている。
〈吐出冷媒配管,吸入冷媒配管〉
吐出冷媒配管(51)は、圧縮機(31a~31c)と同数(本実施形態では三本)の吐出管(51a,51b,51c)と、一本の吐出合流管(51d)とによって構成されている。第1吐出管(51a)の一端は第1圧縮機(31a)の吐出ポートに、第2吐出管(51b)の一端は第2圧縮機(31b)の吐出ポートに、第3吐出管(51b)の一端は第3圧縮機(31b)の吐出ポートに、それぞれ接続されている。各吐出管(51a,51b,51c)の他端は、吐出合流管(51d)の一端に接続されている。吐出合流管(51d)の他端は、四方切換弁(32)の第1ポートに接続されている。
吐出冷媒配管(51)は、圧縮機(31a~31c)と同数(本実施形態では三本)の吐出管(51a,51b,51c)と、一本の吐出合流管(51d)とによって構成されている。第1吐出管(51a)の一端は第1圧縮機(31a)の吐出ポートに、第2吐出管(51b)の一端は第2圧縮機(31b)の吐出ポートに、第3吐出管(51b)の一端は第3圧縮機(31b)の吐出ポートに、それぞれ接続されている。各吐出管(51a,51b,51c)の他端は、吐出合流管(51d)の一端に接続されている。吐出合流管(51d)の他端は、四方切換弁(32)の第1ポートに接続されている。
吸入冷媒配管(52)は、圧縮機(31a~31c)と同数(本実施形態では三本)の吸入管(52a,52b,52c)と、一本の吸入主管(52d)とによって構成されている。第1吸入管(52a)の一端は第1圧縮機(31a)の吐出ポートに、第2吸入管(52b)の一端は第2圧縮機(31b)の吐出ポートに、第3吸入管(52c)の一端は第3圧縮機(31b)の吐出ポートに、それぞれ接続されている。各吸入管(52a,52b,52c)の他端は、吸入主管(52d)の一端に接続されている。吸入主管(52d)の他端は、四方切換弁(32)の第2ポートに接続されている。
〈熱源側熱交換器〉
熱源側熱交換器(33)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、冷媒を室外空気と熱交換させる。熱源側熱交換器(33)は、その液側端が熱源側液冷媒配管(53)に接続され、そのガス側端が四方切換弁(32)の第3ポートに接続されている。また、熱源側熱交換器(33)の近傍には、熱源側熱交換器(33)へ室外空気を供給するための熱源側ファン(22)が配置されている。
熱源側熱交換器(33)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、冷媒を室外空気と熱交換させる。熱源側熱交換器(33)は、その液側端が熱源側液冷媒配管(53)に接続され、そのガス側端が四方切換弁(32)の第3ポートに接続されている。また、熱源側熱交換器(33)の近傍には、熱源側熱交換器(33)へ室外空気を供給するための熱源側ファン(22)が配置されている。
〈過冷却熱交換器〉
過冷却熱交換器(34)は、いわゆるプレート式熱交換器である。過冷却熱交換器(34)には、第1流路(34a)と第2流路(34b)とが複数ずつ形成されている。過冷却熱交換器(34)は、第1流路(34a)を流れる冷媒を、第2流路(34b)を流れる冷媒と熱交換させる。
過冷却熱交換器(34)は、いわゆるプレート式熱交換器である。過冷却熱交換器(34)には、第1流路(34a)と第2流路(34b)とが複数ずつ形成されている。過冷却熱交換器(34)は、第1流路(34a)を流れる冷媒を、第2流路(34b)を流れる冷媒と熱交換させる。
〈熱源側液冷媒配管〉
熱源側液冷媒配管(53)は、その一端が熱源側熱交換器(33)に接続され、その他端が液閉鎖弁(V1)に接続されている。熱源側液冷媒配管(53)は、三本の熱源側液管(53a,53b,53c)によって構成されている。第1熱源側液管(53a)は、熱源側熱交換器(33)の液側端とレシーバ(37)の入口を接続する。第2熱源側液管(53b)は、レシーバ(37)の出口と過冷却熱交換器(34)の第1流路(34a)の入口を接続する。第3熱源側液管(53c)は、過冷却熱交換器(34)の第1流路(34a)の出口と液閉鎖弁(V1)を接続する。
熱源側液冷媒配管(53)は、その一端が熱源側熱交換器(33)に接続され、その他端が液閉鎖弁(V1)に接続されている。熱源側液冷媒配管(53)は、三本の熱源側液管(53a,53b,53c)によって構成されている。第1熱源側液管(53a)は、熱源側熱交換器(33)の液側端とレシーバ(37)の入口を接続する。第2熱源側液管(53b)は、レシーバ(37)の出口と過冷却熱交換器(34)の第1流路(34a)の入口を接続する。第3熱源側液管(53c)は、過冷却熱交換器(34)の第1流路(34a)の出口と液閉鎖弁(V1)を接続する。
第1熱源側液管(53a)には、第1逆止弁(CV1)が設けられている。第1逆止弁(CV1)は、熱源側熱交換器(33)からレシーバ(37)へ向かう冷媒の流れを許容し、逆向きの冷媒の流れを阻止する。
第3熱源側液管(53c)には、過冷却熱交換器(34)から液閉鎖弁(V1)へ向かって順に、熱源側膨張弁(38)と第2逆止弁(CV2)とが設けられている。熱源側膨張弁(38)は、開度可変の電動膨張弁である。第2逆止弁(CV2)は、過冷却熱交換器(34)から液閉鎖弁(V1)へ向かう冷媒の流れを許容し、逆向きの冷媒の流れを阻止する。
〈インジェクション配管〉
インジェクション配管(54)は、二本のインジェクション主管(54m,54n)と、三本のインジェクション分岐管(54a,54b,54c)とによって構成されている。
インジェクション配管(54)は、二本のインジェクション主管(54m,54n)と、三本のインジェクション分岐管(54a,54b,54c)とによって構成されている。
第1インジェクション主管(54m)は、一端が第3熱源側液管(53c)における過冷却熱交換器(34)と熱源側膨張弁(38)の間に接続され、他端が過冷却熱交換器(34)の第2流路(34b)の入口に接続されている。第2インジェクション主管(54n)は、その一端が過冷却熱交換器(34)の第2流路(34b)の出口に接続されている。第2インジェクション主管(54n)の他端には、各インジェクション分岐管(54a,54b,54c)の一端が接続されている。
第1インジェクション分岐管(54a)の他端は第1圧縮機(31a)の中間ポートに、第2インジェクション分岐管(54b)の他端は第2圧縮機(31b)の中間ポートに、第3インジェクション分岐管(54c)の他端は第3圧縮機(31c)の中間ポートに、それぞれ接続されている。各インジェクション分岐管(54a~54c)には、中間膨張弁(36a,36b,36c)が一つずつ設けられている。各中間膨張弁(36a~36c)は、開度可変の電動膨張弁である。
〈接続配管〉
第1接続配管(55)は、一端が第3熱源側液管(53c)における第2逆止弁(CV2)と液閉鎖弁(V1)の間に接続され、他端が第1熱源側液管(53a)における第1逆止弁(CV1)とレシーバ(37)の間に接続されている。第1接続配管(55)には、第3逆止弁(CV3)が設けられている。第3逆止弁(CV3)は、第1接続配管(55)の一端から他端へ向かう冷媒の流れを許容し、逆向きの冷媒の流れを阻止する。
第1接続配管(55)は、一端が第3熱源側液管(53c)における第2逆止弁(CV2)と液閉鎖弁(V1)の間に接続され、他端が第1熱源側液管(53a)における第1逆止弁(CV1)とレシーバ(37)の間に接続されている。第1接続配管(55)には、第3逆止弁(CV3)が設けられている。第3逆止弁(CV3)は、第1接続配管(55)の一端から他端へ向かう冷媒の流れを許容し、逆向きの冷媒の流れを阻止する。
第2接続配管(56)は、一端が第3熱源側液管(53c)における熱源側膨張弁(38)と第2逆止弁(CV2)の間に接続され、他端が第1熱源側液管(53a)における熱源側熱交換器(33)と第1逆止弁(CV1)の間に接続されている。第2接続配管(56)には、第4逆止弁(CV4)が設けられている。第4逆止弁(CV4)は、第2接続配管(56)の一端から他端へ向かう冷媒の流れを許容し、逆向きの冷媒の流れを阻止する。
〈油分離器、油戻し配管〉
油分離器(41)は、吐出冷媒配管(51)の吐出合流管(51d)に設けられている。圧縮機(31a~31c)からは、ミスト状の冷凍機油を含んだガス冷媒が吐出される。油分離器(41)は、圧縮機(31a~31c)から吐出された冷媒から冷凍機油を分離する。
油分離器(41)は、吐出冷媒配管(51)の吐出合流管(51d)に設けられている。圧縮機(31a~31c)からは、ミスト状の冷凍機油を含んだガス冷媒が吐出される。油分離器(41)は、圧縮機(31a~31c)から吐出された冷媒から冷凍機油を分離する。
油戻し配管(57)は、油分離器(41)から圧縮機(31a~31c)へ冷凍機油を戻すための配管である。この油戻し配管(57)は、一端が油分離器(41)に接続され、他端が第2インジェクション主管(54n)に接続されている。また、油戻し配管(57)には、キャピラリチューブ(42)が設けられている。
〈温度センサ、圧力センサ〉
熱源側回路(21)には、温度センサ(81a,81b,81c,82)と圧力センサ(85,86,87)とが複数ずつ設けられている。
熱源側回路(21)には、温度センサ(81a,81b,81c,82)と圧力センサ(85,86,87)とが複数ずつ設けられている。
吐出冷媒配管(51)の各吐出管(51a,51b,51c)には、吐出冷媒温度センサ(81a,81b,81c)が一つずつ設けられている。第1吐出冷媒温度センサ(81a)は、第1吐出管(51a)に取り付けられ、第1圧縮機(31a)から吐出された冷媒の温度を計測する。第2吐出冷媒温度センサ(81b)は、第2吐出管(51b)に取り付けられ、第2圧縮機(31b)から吐出された冷媒の温度を計測する。第3吐出冷媒温度センサ(81c)は、第3吐出管(51c)に取り付けられ、第3圧縮機(31c)から吐出された冷媒の温度を計測する。
熱源側液冷媒配管(53)には、液冷媒温度センサ(82)が設けられている。液冷媒温度センサ(82)は、第3熱源側液管(53c)に取り付けられ、第3熱源側液管(53c)を流れる冷媒の温度を計測する。
吐出圧力センサ(85)は、吐出冷媒配管(51)の吐出合流管(51d)に接続され、圧縮機(31a~31c)から吐出された冷媒の圧力を計測する。吸入圧力センサ(86)は、吸入冷媒配管(52)の吸入主管(52d)に接続され、圧縮機(31a~31c)へ吸入される冷媒の圧力を計測する。液冷媒圧力センサ(87)は、熱源側液冷媒配管(53)の第3熱源側液管(53c)に接続され、第3熱源側液管(53c)を流れる冷媒の圧力を計測する。
-利用側回路-
各利用側回路(23)は、利用側熱交換器(61)と、ドレンパンヒーター(71b)と、利用側電磁弁(62)と、利用側膨張弁(63)と一つずつを有している。また、各利用側回路(23)には、利用側液冷媒配管(71)と、利用側ガス冷媒配管(72)とが一つずつ設けられている。
各利用側回路(23)は、利用側熱交換器(61)と、ドレンパンヒーター(71b)と、利用側電磁弁(62)と、利用側膨張弁(63)と一つずつを有している。また、各利用側回路(23)には、利用側液冷媒配管(71)と、利用側ガス冷媒配管(72)とが一つずつ設けられている。
〈利用側熱交換器〉
利用側熱交換器(61)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、冷媒を庫内空気と熱交換させる。また、利用側熱交換器(61)の近傍には、利用側熱交換器(61)へ庫内空気を供給するための利用側ファン(24)が配置されている。
利用側熱交換器(61)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、冷媒を庫内空気と熱交換させる。また、利用側熱交換器(61)の近傍には、利用側熱交換器(61)へ庫内空気を供給するための利用側ファン(24)が配置されている。
〈冷媒漏洩検知器〉
上記利用側ユニット(12)には、利用側熱交換器(61)の下方でかつ液冷媒管(第2利用側液管(71c))の近傍に、冷媒漏洩検知器(95)が設けられている。また、この冷媒漏洩検知器(95)の近傍には温度センサ(96)が配置されている。
上記利用側ユニット(12)には、利用側熱交換器(61)の下方でかつ液冷媒管(第2利用側液管(71c))の近傍に、冷媒漏洩検知器(95)が設けられている。また、この冷媒漏洩検知器(95)の近傍には温度センサ(96)が配置されている。
〈ドレンパンヒーター〉
ドレンパンヒーター(71b)は、利用側熱交換器(61)の下方に配置されたドレンパン(25)に設けられた配管によって構成されている。このドレンパンヒーター(71b)は、ドレンパン(25)を暖めてドレン水の凍結を防ぐためのものである。
ドレンパンヒーター(71b)は、利用側熱交換器(61)の下方に配置されたドレンパン(25)に設けられた配管によって構成されている。このドレンパンヒーター(71b)は、ドレンパン(25)を暖めてドレン水の凍結を防ぐためのものである。
〈利用側液冷媒配管、利用側ガス冷媒配管〉
利用側液冷媒配管(71)は、第1利用側液管(71a)と第2利用側液管(71c)とによって構成されている。第1利用側液管(71a)は、一端が液側連絡配管(14)に接続され、他端がドレンパンヒーター(71b)の一端に接続されている。第1利用側液管(71a)の一端は、利用側回路(23)の液側端を構成している。第2利用側液管(71c)は、一端がドレンパンヒーター(71b)の他端に接続され、他端が利用側熱交換器(61)の液側端に接続されている。
利用側液冷媒配管(71)は、第1利用側液管(71a)と第2利用側液管(71c)とによって構成されている。第1利用側液管(71a)は、一端が液側連絡配管(14)に接続され、他端がドレンパンヒーター(71b)の一端に接続されている。第1利用側液管(71a)の一端は、利用側回路(23)の液側端を構成している。第2利用側液管(71c)は、一端がドレンパンヒーター(71b)の他端に接続され、他端が利用側熱交換器(61)の液側端に接続されている。
利用側ガス冷媒配管(72)は、その一端が利用側熱交換器(61)のガス側端に接続され、その他端がガス側連絡配管(15)に接続されている。利用側ガス冷媒配管(72)の他端は、利用側回路(23)のガス側端を構成している。
〈利用側電磁弁,利用側膨張弁〉
利用側電磁弁(62)及び利用側膨張弁(63)は、利用側液冷媒配管(71)の第2利用側液管(71c)に設けられている。第2利用側液管(71c)において、利用側膨張弁(63)は、利用側電磁弁(62)と利用側熱交換器(61)の間に配置されている。
利用側電磁弁(62)及び利用側膨張弁(63)は、利用側液冷媒配管(71)の第2利用側液管(71c)に設けられている。第2利用側液管(71c)において、利用側膨張弁(63)は、利用側電磁弁(62)と利用側熱交換器(61)の間に配置されている。
利用側電磁弁(62)は、ソレノイドへの通電を断続することによって、開状態と閉状態に切り換わる。利用側電磁弁(62)が開状態になると、利用側ユニット(12)は、利用側熱交換器(61)が蒸発器として機能して庫内空気を冷却する冷却状態となる。利用側電磁弁(62)が閉状態になると、利用側ユニット(12)は、利用側熱交換器(61)における冷媒の流通が遮断される休止状態となる。
利用側膨張弁(63)は、外部均圧形の温度自動膨張弁である。利用側膨張弁(63)の感温筒(63a)は、利用側ガス冷媒配管(72)の一端(利用側熱交換器(61)側の端部)近傍に取り付けられている。また、利用側膨張弁(63)の均圧管(63b)は、利用側ガス冷媒配管(72)の一端近傍に接続されている。
-制御器-
上記制御器(90)は、通常運転の制御を行う一方、上記利用側熱交換器(61)のデフロストを制御するデフロスト制御部(91)を備えている。
上記制御器(90)は、通常運転の制御を行う一方、上記利用側熱交換器(61)のデフロストを制御するデフロスト制御部(91)を備えている。
上記デフロスト制御部(91)は、利用側熱交換器(61)の入口冷媒温度(Tin)が入口基準温度(例えば50℃)よりも低いと、冷媒回路(20)の高圧圧力(HP)が目標値(例えば2.5MPa)となるように徐々に上昇させる第1制御を行い、利用側熱交換器(61)の入口冷媒温度(Tin)が上記基準温度以上でありかつ上記冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度(例えば5deg)よりも高いと、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度(例えば60℃)へ向かって下げる第2制御を行う。この第2制御は、圧縮機(31a~31c)へ中間圧冷媒を供給するインジェクション動作により行われる。
また、上記デフロスト制御部(91)は、第2制御中に上記吐出過熱度(Tdsh)が上記基準過熱度以下であると、圧縮機(31a~31c)の吐出過熱度(Tdsh)を上記基準過熱度へ向かって上げる過熱度制御を行う。
さらに、上記デフロスト制御部(91)は、上記利用側熱交換器(61)の出口冷媒温度(Tout)が出口基準温度(例えば0℃)より高いと、第1制御中の高圧圧力(HP)の目標値を出口冷媒温度(Tout)が出口基準温度より低いときの目標値(2.5MPa)よりも低い目標値(例えば2.0MPa)に設定し、かつ、第2制御中の温度制御における目標吐出温度(Td)を出口冷媒温度(Tout)が出口基準温度より低いときの目標吐出温度(60℃)よりも低い目標温度(例えば55℃)に設定する。
-冷凍装置の運転動作-
冷凍装置(10)では、庫内を冷却する通常運転と、利用側熱交換器(61)に付着した霜を融かすためのデフロスト運転とを、選択的に実行する。
冷凍装置(10)では、庫内を冷却する通常運転と、利用側熱交換器(61)に付着した霜を融かすためのデフロスト運転とを、選択的に実行する。
〈通常運転〉
冷凍装置(10)の通常運転について、図2を参照しながら説明する。通常運転中の冷媒回路(20)では、冷媒を循環させることによって冷凍サイクルが行われ、熱源側熱交換器(33)が凝縮器として機能し、利用側熱交換器(61)が蒸発器として機能する。
冷凍装置(10)の通常運転について、図2を参照しながら説明する。通常運転中の冷媒回路(20)では、冷媒を循環させることによって冷凍サイクルが行われ、熱源側熱交換器(33)が凝縮器として機能し、利用側熱交換器(61)が蒸発器として機能する。
ここでは、両方の利用側ユニット(12)が冷却状態となり、全ての圧縮機(31a~31c)が作動している場合を例に、通常運転について説明する。
図2に示すように、通常運転では、四方切換弁(32)が第1状態に設定される。過冷却膨張弁(35)、中間膨張弁(36a,36b,36c)、及び熱源側膨張弁(38)は、制御器(90)によって制御される。また、図2に示す場合には、各利用側ユニット(12)の利用側電磁弁(62)が開状態に設定される。
圧縮機(31a~31c)から吐出された冷媒は、吐出冷媒配管(51)において油分離器(41)を通過した後に、四方切換弁(32)を通過して熱源側熱交換器(33)に流入し、熱源側熱交換器(33)において室外空気へ放熱して凝縮する。熱源側熱交換器(33)から流出した冷媒(高圧冷媒)は、第1熱源側液管(53a)とレシーバ(37)と第2熱源側液管(53b)とを順に通過して過冷却熱交換器(34)の第1流路(34a)へ流入し、過冷却熱交換器(34)の第2流路(34b)を流れる冷媒によって冷却される。過冷却熱交換器(34)の第1流路(34a)から第3熱源側液管(53c)へ流入した過冷却状態の液冷媒は、その一部が第1インジェクション主管(54m)に流入し、残りが熱源側膨張弁(38)と液閉鎖弁(V1)を順に通過した後に液側連絡配管(14)へ流入する。
液側連絡配管(14)に流入した冷媒は、各利用側ユニット(12)の利用側回路(23)へ分配される。各利用側回路(23)において、第1利用側液管(71a)に流入した冷媒は、ドレンパンヒーター(71b)を通過後に第2利用側液管(71c)を通って利用側電磁弁(62)へ流入する。利用側電磁弁(62)を通過した冷媒は、利用側膨張弁(63)を通過する際に膨張して気液二相状態となり、その後に利用側熱交換器(61)へ流入する。利用側熱交換器(61)では、流入した冷媒が庫内空気から吸熱して蒸発し、庫内空気が冷却される。利用側ユニット(12)は、利用側熱交換器(61)で冷却された庫内空気を、庫内空間へ送り返す。
利用側熱交換器(61)で蒸発した冷媒は、利用側ガス冷媒配管(72)を通ってガス側連絡配管(15)へ流入する。各利用側回路(23)からガス側連絡配管(15)へ流入した冷媒は、合流後に熱源側回路(21)へ流入し、ガス閉鎖弁(V2)と四方切換弁(32)とを順に通過後に吸入冷媒配管(52)を通って圧縮機(31a~31c)へ吸入される。
一方、第1インジェクション主管(54m)へ流入した冷媒は、過冷却膨張弁(35)を通過する際に膨張して気液二相状態となり、その後に過冷却熱交換器(34)の第2流路(34b)に流入し、過冷却熱交換器(34)の第1流路(34a)を流れる冷媒(高圧冷媒)から吸熱して蒸発する。過冷却熱交換器(34)の第2流路(34b)から第2インジェクション主管(54n)へ流入した冷媒は、各圧縮機(31a~31c)の中間ポートへ導入される。
〈デフロスト運転〉
冷凍装置(10)のデフロスト運転について、図3を参照しながら説明する。このデフロスト運転は、通常運転中に所定の条件(例えば、通常運転の継続時間が所定時間に達したという条件)が成立したときに行われる。デフロスト運転中の冷媒回路(20)では、冷媒を循環させることによって冷凍サイクルが行われ、利用側熱交換器(61)が凝縮器として機能し、熱源側熱交換器(33)が蒸発器として機能する。
冷凍装置(10)のデフロスト運転について、図3を参照しながら説明する。このデフロスト運転は、通常運転中に所定の条件(例えば、通常運転の継続時間が所定時間に達したという条件)が成立したときに行われる。デフロスト運転中の冷媒回路(20)では、冷媒を循環させることによって冷凍サイクルが行われ、利用側熱交換器(61)が凝縮器として機能し、熱源側熱交換器(33)が蒸発器として機能する。
図3に示すように、デフロスト運転では、四方切換弁(32)が第2状態に設定される。過冷却膨張弁(35)、中間膨張弁(36a,36b,36c)、及び熱源側膨張弁(38)は、主制御器(90)によって制御される。また、各利用側ユニット(12)では、利用側電磁弁(62)が開状態に設定され、利用側ファン(24)が停止状態となる。
圧縮機(31a~31c)から吐出された冷媒は、四方切換弁(32)を通過後にガス側連絡配管(15)へ流入し、各利用側ユニット(12)の利用側回路(23)へ分配される。各利用側回路(23)へ分配された冷媒は、利用側熱交換器(61)へ流入し、放熱して凝縮する。利用側熱交換器(61)では、利用側熱交換器(61)に付着した霜が冷媒によって暖められて融解する。
各利用側回路(23)の利用側熱交換器(61)を通過した冷媒は、液側連絡配管(14)へ流入し、合流後に熱源側回路(21)へ流入する。熱源側回路(21)へ流入した冷媒は、液閉鎖弁(V1)と第1接続配管(55)とレシーバ(37)とを順に通過し、その後に過冷却熱交換器(34)の第1流路(34a)へ流入する。過冷却熱交換器(34)の第1流路(34a)から流出した冷媒は、その一部が第1インジェクション主管(54m)に流入し、残りが熱源側膨張弁(38)へ流入する。
熱源側膨張弁(38)へ流入した冷媒は、熱源側膨張弁(38)を通過する際に膨張して気液二相状態となり、その後に熱源側熱交換器(33)へ流入し、室外空気から吸熱して蒸発する。熱源側熱交換器(33)において蒸発した冷媒は、四方切換弁(32)を通過後に吸入冷媒配管(52)へ流入し、その後に圧縮機(31a~31c)へ吸入される。
一方、第1インジェクション主管(54m)へ流入した冷媒は、過冷却熱交換器(34)の第2流路(34b)を通過後に第2インジェクション主管(54n)へ流入し、その後に各圧縮機(31a~31c)の中間ポートへ導入される。
〈デフロスト制御の具体的な動作〉
次に、図4のフローチャートを用いてデフロスト運転の具体的な制御について説明する。なお、本実施形態では、このデフロスト制御を、過飽和抑制デフロスト制御と称する。
次に、図4のフローチャートを用いてデフロスト運転の具体的な制御について説明する。なお、本実施形態では、このデフロスト制御を、過飽和抑制デフロスト制御と称する。
このフローチャートの動作において、ステップST1では、利用側熱交換器(61)の出口冷媒温度(Tout)が出口基準温度である0℃より低いかどうかを判別する。判別結果が「YES」であればステップST2に進み、利用側熱交換器(61)の入口冷媒温度(Tin)が入口基準温度(50℃)より低いかどうかを判別する。判別結果が「YES」である場合、利用側熱交換器(61)の入口冷媒温度(Tin)も出口冷媒温度(Tout)も基準温度より低い状態であり、庫内が冷えていて着霜が多いと判断される。この場合、ステップST3に進み、冷媒回路(20)の目標高圧圧力を例えば2.5MPaに設定して、冷媒回路(20)の冷媒循環量を確保しつつ上記入口冷媒温度が50℃になるまで温度を徐々に上げるように制御(第1制御)を行い、リターンする。
ステップST2の判別結果が「NO」である場合は、利用側熱交換器(61)の入口冷媒温度(Tin)が高くて出口冷媒温度(Tout)が低い状態であり、庫内温度は高いが利用側熱交換器(61)の霜が十分には溶けていないと判断される。この場合、ステップST4に進み、吐出過熱度(Tdsh)が5degより大きいかどうかを判別する。吐出過熱度(Tdsh)は一般に外気温度が低い時に大きくなる。そして、判別結果が「YES」で吐出過熱度(Tdsh)が5degよりも大きい場合は、ステップST5に進む。ステップST5では、吐出ガス温度(Td)が上がりすぎないように目標吐出ガス温度(60℃)に基づいて制御(第2制御)を行い、リターンする。
また、ステップST4の判別結果が「NO」で吐出過熱度(Tdsh)が5deg以下の場合は、ステップST6へ進んで目標吐出過熱度(5deg)に基づいた制御を行い、過熱度を5degに維持する過熱度制御を行い、リターンする。
一方、ステップST1の判別結果が「NO」で利用側熱交換器(61)の出口冷媒温度が低い場合はステップST7へ進み、ステップST2と同様に、利用側熱交換器(61)の入口冷媒温度(Tin)が入口基準温度(50℃)より低いかどうかを判別する。判別結果が「YES」である場合、利用側熱交換器(61)の入口冷媒温度(Tin)は基準温度より低いが出口冷媒温度(Tout)は基準温度より高い状態である。この場合、ステップST8に進み、冷媒回路(20)の目標高圧圧力を例えば2.0MPaに設定して、冷媒回路(20)の冷媒循環量を上記入口冷媒温度が低い時よりは少なくし、上記入口冷媒温度が50℃になるまで温度を徐々に上げるように制御(第1制御)を行い、リターンする。
ステップST7の判別結果が「NO」である場合は、利用側熱交換器(61)の入口冷媒温度(Tin)が低くて出口冷媒温度(Tout)も低い状態である。この場合、ステップST9に進み、ステップST4と同様に吐出過熱度(Tdsh)が5degより大きいかどうかを判別する。そして、判別結果が「YES」で吐出過熱度(Tdsh)が5degよりも大きい場合は、ステップST10に進む。ステップST10では、吐出ガス温度(Td)が上がりすぎないように目標吐出ガス温度(55℃)に基づいて制御(第2制御)を行い、リターンする。
また、ステップST9の判別結果が「NO」で吐出過熱度(Tdsh)が5deg以下の場合は、ステップST11へ進んで目標吐出ガス過熱度(5deg)に基づいた制御を行い、過熱度を5degに維持する過熱度制御を行い、リターンする。
以上のように、本実施形態では、デフロスト運転中に目標高圧圧力に基づいた制御だけでなく、吐出ガス温度を所定の温度に下げる制御も行う。
-実施形態の効果-
本実施形態によれば、第1制御では利用側熱交換器(61)の入口冷媒温度(Tin)が低いので、水分が昇華するおそれが少なく、高圧圧力(HP)を目標として制御が行われる。一方、第2制御では、利用側熱交換器(61)の入口冷媒温度(Tin)が高いと水分が昇華し、庫内が過飽和になるおそれがあるのに対して、圧縮機(31a~31c)の吐出冷媒温度(Td)を下げる制御が行われるので、利用側熱交換器(61)の入口冷媒温度(Tin)が低下する。したがって、デフロスト時に低温になっている庫内温度と利用側熱交換器(61)の入口冷媒温度(Tin)の温度差が小さくなるので、水分の昇華が抑制される。その結果、冷媒漏洩検知器(95)に水分が付着しにくくなり、冷媒漏洩検知器(95)が冷媒漏洩を誤検知するのを抑えられる。
本実施形態によれば、第1制御では利用側熱交換器(61)の入口冷媒温度(Tin)が低いので、水分が昇華するおそれが少なく、高圧圧力(HP)を目標として制御が行われる。一方、第2制御では、利用側熱交換器(61)の入口冷媒温度(Tin)が高いと水分が昇華し、庫内が過飽和になるおそれがあるのに対して、圧縮機(31a~31c)の吐出冷媒温度(Td)を下げる制御が行われるので、利用側熱交換器(61)の入口冷媒温度(Tin)が低下する。したがって、デフロスト時に低温になっている庫内温度と利用側熱交換器(61)の入口冷媒温度(Tin)の温度差が小さくなるので、水分の昇華が抑制される。その結果、冷媒漏洩検知器(95)に水分が付着しにくくなり、冷媒漏洩検知器(95)が冷媒漏洩を誤検知するのを抑えられる。
また、従来のデフロスト運転では、利用側熱交換器(61)の液管温度(デフロスト時の出口温度)でデフロスト完了を検知し、また、その時に目標の高圧圧力になるように制御していた。このため、利用側熱交換器(61)のガス管温度(デフロスト時の入口温度)は制御対象としていなかったため、入口温度が高くなり、昇華量が抑制できていなかった。これに対し、本発明では、利用側熱交換器(61)の入口冷媒温度(Tin)を制御対象にしているので、昇華量を抑制できる。
また、本実施形態によれば、第2制御中に上記吐出過熱度(Tdsh)が基準過熱度以下であると、圧縮機(31a~31c)の吐出過熱度(Tdsh)を上記基準過熱度へ向かって上げる過熱度制御が行われ、吐出過熱度(Tdsh)が基準過熱度に維持されるように冷媒回路(20)が制御されるので、デフロスト能力が低下するのも押さえられる。
また、本実施形態によれば、利用側熱交換器(61)の出口冷媒温度(Tout)が出口基準温度より高いと、第1制御中の高圧圧力(HP)の目標値を出口冷媒温度(Tout)が出口基準温度より低いときの目標値よりも低く設定され、かつ、第2制御中の温度制御における目標吐出温度を出口冷媒温度(Tout)が出口基準温度より低いときの目標吐出温度よりも低く設定される。つまり、出口冷媒温度(Tout)が高いと着霜量が少ないと判断され、高圧圧力(HP)の目標値や吐出温度(Td)の目標値が低めに設定されるので、デフロスト能力が大きくなりすぎて冷媒漏洩検知器(95)に水分が付着するのを抑えられる。したがって、冷媒漏洩検知器(95)が冷媒漏洩を誤検知するのを抑えられる。
また、上記実施形態によれば、上記圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる第2制御が、インジェクション動作により行われるので、制御を簡素化できる。
また、上記実施形態によれば、冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる上記第2制御を、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる代わりに、吐出過熱度(Tdsh)を基準過熱度へ向かって下げることで行うので、制御に多様性を持たせることができる。
また、上記実施形態によれば、冷媒漏洩検知器(95)を利用側ユニット(12)の液冷媒管(71c)の近傍に配置したことにより、冷媒漏洩検知器(95)の温度を高めに維持して水分の付着を抑えられるから、冷媒漏洩検知器(95)において誤検知が生じにくくすることができる。
また、上記実施形態によれば、温度センサ(96)で冷媒漏洩検知器(95)の近傍の温度を検知することにより、冷媒漏洩検知器(95)の近傍の温度変化(着火など)が誤検知の原因かどうか判定できる。
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
上記実施形態については、以下のような構成としてもよい。
例えば、上記実施形態において、上記デフロスト制御部(91)を、冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる上記第2制御を、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる代わりに吐出過熱度(Tdsh)を基準過熱度へ向かって下げる制御にしてもよい。
また、冷媒漏洩検知器(95)は、必ずしも上記利用側ユニット(12)の液冷媒管(71c)の近傍に配置しなくてもよいし、冷媒漏洩検知器(95)の近傍の温度センサ(96)は必ずしも設けなくてもよい。
以上説明したように、本発明は、冷媒回路で可燃性冷媒を循環させて冷凍サイクルを行う冷凍装置において、高圧ガス冷媒を用いて行うデフロスト運転中に冷媒漏洩の誤検知を抑制する技術について有用である。
10 冷凍装置
11 熱源側ユニット
12 利用側ユニット
14 液側連絡配管
15 ガス側連絡配管
20 冷媒回路
31a 第1圧縮機
31b 第2圧縮機
31c 第3圧縮機
54 インジェクション配管(インジェクション回路)
61 利用側熱交換器
71c第2利用側液管(液冷媒管)
91 デフロスト制御部
95 冷媒漏洩検知器
96 温度センサ
11 熱源側ユニット
12 利用側ユニット
14 液側連絡配管
15 ガス側連絡配管
20 冷媒回路
31a 第1圧縮機
31b 第2圧縮機
31c 第3圧縮機
54 インジェクション配管(インジェクション回路)
61 利用側熱交換器
71c第2利用側液管(液冷媒管)
91 デフロスト制御部
95 冷媒漏洩検知器
96 温度センサ
Claims (7)
- 熱源側ユニット(11)と利用側ユニット(12)が液側連絡配管(14)及びガス側連絡配管(15)を介して接続され、可燃性冷媒が循環して冷凍サイクルを行う冷媒回路(20)を備え、
上記利用側ユニット(12)の冷媒漏洩を検知する冷媒漏洩検知器(95)を備えた冷凍装置であって、
上記利用側ユニット(12)に設けられている利用側熱交換器(61)のデフロストを制御するデフロスト制御部(91)を備え、
上記デフロスト制御部(91)は、利用側熱交換器(61)の入口冷媒温度(Tin)が入口基準温度よりも低いと、冷媒回路(20)の高圧圧力(HP)が目標値となるように徐々に上昇させる第1制御を行い、利用側熱交換器(61)の入口冷媒温度(Tin)が上記基準温度以上でありかつ上記冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる第2制御を行うことを特徴とする冷凍装置。 - 請求項1において、
上記デフロスト制御部(91)は、第2制御中に上記吐出過熱度(Tdsh)が上記基準過熱度以下であると、上記圧縮機(31a~31c)の吐出過熱度(Tdsh)を上記基準過熱度へ向かって上げる過熱度制御を行うことを特徴とする冷凍装置。 - 請求項2において、
上記デフロスト制御部(91)は、上記利用側熱交換器(61)の出口冷媒温度(Tout)が出口基準温度より高いと、第1制御中の高圧圧力(HP)の目標値を出口冷媒温度(Tout)が出口基準温度より低いときの目標値よりも低く設定し、かつ、第2制御中の温度制御における目標吐出温度を出口冷媒温度(Tout)が出口基準温度より低いときの目標吐出温度よりも低く設定することを特徴とする冷凍装置。 - 請求項1から3の何れか1つにおいて、
上記冷媒回路(20)が上記圧縮機(31a~31c)へ低圧冷媒または中間圧冷媒を供給するインジェクション動作を行うインジェクション回路(54)を備え、
上記デフロスト制御部(91)は、上記圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる第2制御を、インジェクション動作により行うことを特徴とする冷凍装置。 - 請求項1から4の何れか1つにおいて、
上記デフロスト制御部(91)は、上記冷媒回路(20)の圧縮機(31a~31c)の吐出過熱度(Tdsh)が基準過熱度よりも高いと圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる上記第2制御を、圧縮機(31a~31c)の吐出冷媒温度(Td)を目標吐出温度へ向かって下げる代わりに吐出過熱度(Tdsh)を基準過熱度へ向かって下げることで行うことを特徴とする冷凍装置。 - 請求項1から5の何れか1つにおいて、
上記冷媒漏洩検知器(95)は、上記利用側ユニット(12)の液冷媒管(71c)の近傍に配置されていることを特徴とする冷凍装置。 - 請求項1から6の何れか1つにおいて、
上記冷媒漏洩検知器(95)の近傍に温度センサ(96)が配置されていることを特徴とする冷凍装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015194644A JP6137262B2 (ja) | 2015-09-30 | 2015-09-30 | 冷凍装置 |
JP2015-194644 | 2015-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056394A1 true WO2017056394A1 (ja) | 2017-04-06 |
Family
ID=58422970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004007 WO2017056394A1 (ja) | 2015-09-30 | 2016-09-02 | 冷凍装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6137262B2 (ja) |
WO (1) | WO2017056394A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113167520A (zh) * | 2018-11-29 | 2021-07-23 | 大金工业株式会社 | 制冷剂泄漏判定系统以及冷冻循环装置 |
CN113366273A (zh) * | 2019-02-05 | 2021-09-07 | 三菱电机株式会社 | 制冷装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020130285B4 (de) * | 2019-12-10 | 2022-06-09 | Hanon Systems | Druckentlastungsanordnung in Kältemittelkreisläufen |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277769U (ja) * | 1985-11-01 | 1987-05-18 | ||
JP2009174800A (ja) * | 2008-01-25 | 2009-08-06 | Mitsubishi Electric Corp | 再熱除湿装置および空気調和装置 |
JP2009270822A (ja) * | 2009-08-21 | 2009-11-19 | Mitsubishi Electric Corp | ヒートポンプ装置及びヒートポンプ装置の室外機 |
JP2013167398A (ja) * | 2012-02-15 | 2013-08-29 | Mitsubishi Electric Corp | 室外機及びヒートポンプサイクル装置 |
WO2015063846A1 (ja) * | 2013-10-29 | 2015-05-07 | 三菱電機株式会社 | 空気調和装置 |
-
2015
- 2015-09-30 JP JP2015194644A patent/JP6137262B2/ja active Active
-
2016
- 2016-09-02 WO PCT/JP2016/004007 patent/WO2017056394A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277769U (ja) * | 1985-11-01 | 1987-05-18 | ||
JP2009174800A (ja) * | 2008-01-25 | 2009-08-06 | Mitsubishi Electric Corp | 再熱除湿装置および空気調和装置 |
JP2009270822A (ja) * | 2009-08-21 | 2009-11-19 | Mitsubishi Electric Corp | ヒートポンプ装置及びヒートポンプ装置の室外機 |
JP2013167398A (ja) * | 2012-02-15 | 2013-08-29 | Mitsubishi Electric Corp | 室外機及びヒートポンプサイクル装置 |
WO2015063846A1 (ja) * | 2013-10-29 | 2015-05-07 | 三菱電機株式会社 | 空気調和装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113167520A (zh) * | 2018-11-29 | 2021-07-23 | 大金工业株式会社 | 制冷剂泄漏判定系统以及冷冻循环装置 |
CN113167520B (zh) * | 2018-11-29 | 2022-04-29 | 大金工业株式会社 | 制冷剂泄漏判定系统以及冷冻循环装置 |
CN113366273A (zh) * | 2019-02-05 | 2021-09-07 | 三菱电机株式会社 | 制冷装置 |
EP3922927A4 (en) * | 2019-02-05 | 2022-01-19 | Mitsubishi Electric Corporation | FREEZER |
Also Published As
Publication number | Publication date |
---|---|
JP6137262B2 (ja) | 2017-05-31 |
JP2017067384A (ja) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6269756B1 (ja) | 冷凍装置 | |
JP4462387B1 (ja) | 冷凍装置 | |
EP3252402B1 (en) | Heat pump | |
JPWO2014192140A1 (ja) | 空気調和装置 | |
JPWO2013111177A1 (ja) | 空気調和装置 | |
JP2017142038A (ja) | 冷凍サイクル装置 | |
JP6052456B2 (ja) | 冷凍装置 | |
JP5062039B2 (ja) | 冷凍装置 | |
WO2017056394A1 (ja) | 冷凍装置 | |
JP2009293899A (ja) | 冷凍装置 | |
US11486616B2 (en) | Refrigeration device | |
JP2015068571A (ja) | 冷凍装置 | |
JP2009144967A (ja) | 冷凍装置 | |
JP2010002112A (ja) | 冷凍装置 | |
JP2009293887A (ja) | 冷凍装置 | |
WO2021033426A1 (ja) | 熱源ユニット及び冷凍装置 | |
JP6238202B2 (ja) | 空気調和機 | |
JP2018197616A (ja) | 冷凍装置 | |
JP2017067397A (ja) | 冷凍装置 | |
JP2009115336A (ja) | 冷凍装置 | |
JP2007298188A (ja) | 冷凍装置 | |
CN109564034B (zh) | 制冷装置 | |
JP5194842B2 (ja) | 冷凍装置 | |
JP2008175528A5 (ja) | ||
WO2020202519A1 (ja) | 冷凍サイクル装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16850575 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16850575 Country of ref document: EP Kind code of ref document: A1 |