WO2011050727A1 - 实现信道测量的方法及装置 - Google Patents

实现信道测量的方法及装置 Download PDF

Info

Publication number
WO2011050727A1
WO2011050727A1 PCT/CN2010/078181 CN2010078181W WO2011050727A1 WO 2011050727 A1 WO2011050727 A1 WO 2011050727A1 CN 2010078181 W CN2010078181 W CN 2010078181W WO 2011050727 A1 WO2011050727 A1 WO 2011050727A1
Authority
WO
WIPO (PCT)
Prior art keywords
subset
antenna ports
measured
state information
antenna port
Prior art date
Application number
PCT/CN2010/078181
Other languages
English (en)
French (fr)
Inventor
赵亚军
王建国
程型清
吴作敏
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2012535613A priority Critical patent/JP5504524B2/ja
Priority to EP10826090.2A priority patent/EP2496008B1/en
Priority to BR122018004895-6A priority patent/BR122018004895B1/pt
Priority to EP18161137.7A priority patent/EP3393165B1/en
Priority to EP19215599.2A priority patent/EP3684098B1/en
Priority to BR112012010218-4A priority patent/BR112012010218B1/pt
Priority to CN201080047842.2A priority patent/CN102845095B/zh
Publication of WO2011050727A1 publication Critical patent/WO2011050727A1/zh
Priority to US13/458,273 priority patent/US9673883B2/en
Priority to US15/591,890 priority patent/US10630362B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present invention claims the priority of the Chinese patent application filed on October 28, 2009, the Chinese Patent Application No. 200910208525.3, entitled “Method and Apparatus for Realizing Channel Measurement", the entire contents of which is hereby incorporated by reference. This is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of communications technologies, and in particular, to a method and apparatus for implementing channel measurement.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station in order to perform radio resource scheduling, the base station needs to acquire downlink channel state information of the UE.
  • the information is obtained by using a UE (User Equipment) measurement reporting method.
  • the method for reporting the measurement mainly includes: the base station transmitting the reference signal; the UE measuring the downlink channel state information by using the received reference signal; and then, the UE feeds back the measured downlink channel state information to the base station.
  • the base station performs radio resource scheduling according to the received downlink channel state information fed back by each UE, that is, determines how to allocate limited time-frequency resources to each UE to maximize radio resource utilization.
  • the present inventors have found that in the process of implementing the present invention, in the MIM0 (Multiple Input Multiple Output) system, the base station has multiple antenna ports, and each antenna port has a reference signal, and the UE needs The channel state information of all antenna ports is measured and fed back to the base station, so the measurement and feedback overhead is large.
  • MIM0 Multiple Input Multiple Output
  • the present invention provides a method and apparatus for implementing channel measurement, which can reduce UE feedback overhead for channel state information.
  • a method of implementing channel measurement comprising:
  • a device for implementing channel measurement comprising:
  • a determining unit configured to determine, according to current state information of the user equipment UE, a subset of antenna ports that need to be measured for the UE;
  • a notification unit configured to notify the UE to perform channel measurement on the subset of antenna ports that need to be measured, and feed back channel state information.
  • a user equipment including:
  • a notification receiving unit configured to receive a notification sent by the base station, and obtain a subset of the antenna ports that need to be measured; and the subset of the antenna ports that need to be measured is determined by the base station according to the current state information of the user equipment;
  • a measurement feedback unit configured to perform channel measurement and feed back channel state information for the subset of antenna ports that need to be measured.
  • a method of implementing channel measurement comprising:
  • a device for implementing channel measurement comprising:
  • a selecting unit configured to select a subset of antenna ports to be measured from the pre-divided subset of each antenna port according to the current state information obtained from the base station;
  • the embodiment of the present invention can select a subset of antenna ports to be measured for a UE according to current state information of the UE, and notify the UE of the antenna to be measured.
  • the port subset performs channel measurements and feeds back channel state information.
  • the UE can only measure the reference signal of a part of the antenna port when the state information of the UE meets certain conditions, and feed back the channel state information for the part of the antenna port, thereby reducing the channel state information of the UE. Feedback overhead.
  • Embodiment 1 is a flow chart of a method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a single cell distributed antenna system according to an embodiment of the present invention.
  • Embodiment 3 is a flowchart of a method provided by Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of still another apparatus according to an embodiment of the present invention.
  • Embodiment 1 Referring to FIG. 1, a method for measuring a channel according to Embodiment 1 of the present invention includes the following steps:
  • S 1 01 selecting, according to current state information of the user equipment UE, a subset of antenna ports that need to be measured for the UE;
  • S 1 02 The UE is notified to perform channel measurement on the subset of antenna ports that need to be measured and feed back channel state information.
  • the current state information of the UE may include a moving speed of the UE, a geographical relationship between the UE and each antenna port, a path loss relationship information between the UE and each antenna port, and a transmission mode in which the UE is currently located.
  • one or more antenna ports may be selected from all antenna ports of the base station according to the foregoing status information, and a subset of antenna ports to be measured are formed, and notified.
  • the UE only measures and feeds back channel state information between the subset of antenna ports that need to be measured and the UE.
  • the base station learns the geographical relationship between the UE and each antenna port from the signal strength and the like reported by the UE, and then selects one or more antenna ports closest to the UE to form a subset of the antenna ports to be measured, and notifies the UE. After receiving the notification, the UE only measures the subset of antenna ports that need to be measured, and other antenna ports outside the antenna port subset will not be measured, and then the UE obtains the measured channel state information corresponding to the corresponding antenna port subset. Feedback to the base station.
  • the set of the antenna ports of the base station may be divided into multiple antenna port subsets in advance, and then, when selecting the antenna port subset to be measured for the UE, according to the current state information of the UE, From these already divided subsets of antenna ports, a subset of antenna ports may be selected for the UE.
  • the base station can notify the UE of all possible aggregation modes in advance, and cooperate with each of the sets (for example, numbering).
  • the identifier of the subset of the antenna ports is notified to the UE according to the state of the UE, and the UE performs channel state information measurement and feedback based on the set of the corresponding identifiers.
  • base station A is configured with N antenna ports, and N antenna ports are divided into m antenna port subsets, respectively N. , ⁇ , , ⁇ 2 , . . . , N m , wherein each antenna port subset may overlap each other, for example, N Q may include antenna port 1 and antenna port 2; antenna port 2 may be included The antenna port 3, wherein the antenna port 2 is in the N 0 and in the N, and may be determined according to the actual situation, which is not limited herein.
  • the base station A may notify the UE to measure one or more or all antenna port subsets of the m antenna port subsets according to the state information of the UE. Then, the UE feeds back the measured channel state information to the base station A.
  • the specific embodiments are described in detail below.
  • a set of all antenna port combinations of a base station may be divided into antenna port subsets suitable for different UE moving speeds. That is, the set of antenna ports may be divided according to the time correlation of the channel. For example, the set of all antenna ports may be divided into two antenna port subsets, and one antenna port subset is suitable for high speed UE, at a higher frequency. The reference signal is transmitted, and another antenna port subset is suitable for the low speed UE to transmit the reference signal at a relatively low frequency.
  • the UE When the UE needs to report channel state information, it can notify the high-speed UE that only the measurement is suitable for high speed. a subset of antenna ports of the UE, and feeding back channel state information; notifying the low-speed UE to measure a subset of antenna ports suitable for the low-speed UE, and feeding back channel state information. In this way, it can ensure that the low-speed UE does not waste resources, and can ensure that the high-speed UE can reflect the channel state change to the base station in a timely manner at a sufficiently high frequency, and neither the low-speed UE nor the high-speed UE needs to be All antenna ports are measured, thus reducing feedback overhead and improving overall system performance.
  • all antenna ports of the base station may be divided into antenna port subset A and antenna port subset B in advance, antenna port subset A has a short transmission period (high frequency), and antenna port subset B has a long transmission period (for example, antenna port sub-
  • the set A transmission period is 5 ms
  • the antenna port subset B transmission period is 10 ms
  • both UE1 and UE2 belong to the base station, where UE1 is a high speed user and UE2 is a low speed user.
  • the base station may notify UE1 to measure antenna port subset A, notify UE2 to measure antenna port subset B, or may notify UE2 to simultaneously measure antenna port subset A and antenna port subset B.
  • the moving speed of the UE may be different in practical applications, for example, some users may be at a certain fixed position, some users may be walking, and some users may ride on a certain vehicle to be relatively fast.
  • Speed moves and more.
  • the moving speed of the UE corresponds to the time correlation of the channel. For example, when the UE moves at a low speed, the time correlation of the channel is strong, and the channel state information does not change with time. Therefore, the UE can feed back the channel with a lower frequency. State information; Conversely, when the UE moves at high speed, the channel is weak in time correlation, and the channel state information may change very much with time. Therefore, in order to obtain real-time channel state information more accurately, the UE may be required to be higher. Frequency measurement and feedback channel status information.
  • the frequency of the UE measurement and feedback channel state information is related to the frequency at which the base station transmits the reference signal, that is, when the base station transmits the reference signal at a high frequency, the frequency of the UE measurement and feedback may be higher, when the base station transmits the reference at a low frequency.
  • the UE can only use relatively low frequencies of measurement and feedback.
  • all antenna ports of a base station transmit reference signals at the same frequency.
  • each UE under the same base station may have different states at the same time, and there will always be a UE that moves faster, and also has a UE that moves at a slower speed or even does not move.
  • If all the antenna ports transmit the reference signal at a higher frequency for a UE that moves at a slower speed or even does not move, since the channel state changes slowly, no higher frequency is required for channel state measurement and feedback. Therefore, it will inevitably result in waste of resources.
  • all the antenna ports are The lower frequency transmits the reference signal, and for the UE with faster moving speed, the base station may not be able to obtain sufficiently accurate channel state information.
  • the antenna ports of the base station can transmit the reference signals at different frequencies. If the moving speed of the UE is fast, the UE can be notified to measure the parameter of the antenna port subset with a higher transmission frequency. Otherwise, the UE is notified to measure the reference signal of the antenna port subset with a lower transmission frequency. Therefore, the first embodiment has the following advantages: It can ensure that the UE with fast moving speed can feed back the channel state information with sufficient accuracy, and can ensure that the UE with low mobile speed does not waste resources.
  • the moving speed of the UE may include not only high speed and low speed.
  • the UE moving speed may be divided into several different intervals, and the antenna port is also divided into multiple antennas.
  • the port subset specifically when the UE selects the antenna port subset, can determine which interval the user's moving speed falls in, and select the corresponding antenna port subset.
  • the base station can obtain the moving speed information of the UE by using the uplink channel information of the UE.
  • the specific method can be implemented in the prior art, and details are not described herein again.
  • the set of all antenna ports of the base station may be divided into multiple antenna port subsets according to the geographic location of the antenna. For example, antenna ports that are geographically close to each other may be grouped into one antenna port subset, and antenna ports that are closer to each other at other geographical locations may form other antenna port subsets.
  • the antenna port subset that meets the preset condition may be selected according to the current geographic location information of the UE; and/or may be according to the current UE and each antenna port subset.
  • Inter-path loss information (the path loss information may be derived from the geographic location information of the UE, or may be obtained from the uplink information of the UE), and select a subset of antenna ports that have a path loss with the UE that satisfies the preset condition.
  • the single-cell distributed antenna system shown in FIG. 2 is taken as an example: the antenna port subset N1 and the antenna port subset N2 geographically distributed at different locations belong to one base station A, and correspondingly, the base station A is used for the channel.
  • the measured reference signal is also split into two antenna port subsets A and B (the antenna ports are corresponding to the reference signal), which are transmitted by antenna port subsets N1 and N2, respectively.
  • the UE can use different antenna ports.
  • a possible antenna port allocation measurement scheme may be: UE1 measures a reference signal corresponding to antenna port subset N1; UE3 measures a reference signal corresponding to antenna port subset N2; UE2 simultaneously measures antenna port subsets N1 and N2 corresponding reference signal.
  • multiple antenna ports of a base station may be distributedly distributed in multiple locations, and the relative relationship between the current location of the UE and the location of the antenna port also determines the quality of the channel state information.
  • the path loss of the received signal of the UE may be relatively small, and the signal received by the UE may be stronger. Therefore, the channel state may be better; If an antenna port is very far, the path loss of the signal received by the UE may be relatively large. The signal received by the UE may be very weak. Therefore, the channel status may be poor.
  • the channel state information of the antenna port that is very far away may have a very small effect on the radio resource scheduling of the base station, and finally the service information carried by the antenna port is also very small, or even the antenna port is not used.
  • the service information of the UE Therefore, in the case where measurement is performed for all antenna ports and channel state information is fed back, the channel state measurement and feedback for the very far antenna port causes waste of resources.
  • the reference signal of the antenna port subset that is far away from the UE can be notified that the UE does not need to perform measurement, and the corresponding channel state information does not need to be fed back. Therefore, the measurement and feedback overhead is reduced.
  • the base station can obtain the geographic location information of the UE by using the uplink channel information of the UE.
  • the specific method can be implemented in the prior art, and details are not described herein again.
  • the base station may select different transmission modes for the UE according to the status information of the UE, so as to ensure that the UE obtains the best service quality and ensures the optimal performance of the system.
  • the transmission mode may include a CoMP (Coordina ted Mul t i-point Transm ss ion) mode, a JP (Joint Proces s ing) mode, and a CBF (Coordina ted beam forming) mode. , CBS (Coordina ted beam swi tching) mode, single cell monthly service mode, multi-user mode, and so on.
  • the set of all antenna ports of the base station may also be divided into antenna port subsets suitable for different transmission modes. For example, some antenna ports may be used as a subset of antenna ports suitable for CoMP mode, and Some antenna ports serve as antenna port antenna port subsets suitable for single cell service mode and the like.
  • the antenna port subset applicable to the UE's transmission mode may be selected according to the transmission mode currently used by the UE, and then the UE is notified to the antenna port suitable for the UE transmission mode.
  • the subset feeds back channel state information to the base station. For example, if the UE1 is in the CoMP mode, the base station notifies the UE1 that only the reference signal set of the CoMP mode is measured, and the corresponding channel state information is fed back.
  • the transmission of reference signals may require some special configuration.
  • the transmit power of the reference signal needs to be raised.
  • the transmit power of all antenna ports can be raised.
  • other UEs belonging to the base station may be in other modes such as single cell service. In these modes, high transmit power is not required, and therefore, in this case, the high transmit power of the reference signal is not for these.
  • the CoMP mode UE is obviously a waste.
  • the reference signals transmitted only for the antenna port subsets applicable to the CoMP mode may be configured according to the characteristics of the CoMP mode, and other antenna ports are configured. Subsets can be left without special handling.
  • another advantage of the third embodiment is that, in the case where the CoMP mode is present, the reference signals of all antenna ports can be avoided from being specially configured, thereby saving resources.
  • the data of the partial cell corresponding to the RE (re s ource el ement) of the reference signal is not transmitted;
  • the data of the neighboring cell on the RE corresponding to the reference signal is still sent, that is, no special configuration is performed.
  • the reference signal for the antenna port subset of the CoMP mode can be power boosted, while the non-CoMP mode antenna port subset reference signal is not power boosted.
  • each cell corresponding to the reference signal is configured to be code division orthogonal or frequency division orthogonal;
  • the non-CoMP mode antenna port subset reference signal, in the CoMP cell set, each cell corresponding to the reference signal may not be configured as code division orthogonal or frequency division orthogonal.
  • the reference signal sent by the antenna port subset applicable to the CoMP mode may be configured according to the characteristics of the CoMP mode; after the division and configuration, the antennas are configured.
  • the port subset will send the reference signal in the configured way, and will not be affected by the UE status.
  • the base station since the UE may be in some default transmission mode in the initial state, the base station needs to decide whether to change the transmission mode of the UE according to the channel state information fed back by the UE. Therefore, in the third embodiment, the UE may initially feed back the channel state information of all the antenna ports.
  • the base station selects a new transmission mode for the UE according to the channel state information of the UE, the UE is notified only For the antenna port applicable to the transmission mode, the channel state information may be fed back.
  • the corresponding antenna port subset may also be selected, and the UE is notified to the antenna port. Set for measurement and feedback.
  • the foregoing specific implementation manners may be combined to divide the antenna ports of the base station according to multiple divisions.
  • the antenna port subset is selected for the UE, one of the acquired UE state information may be selected in each antenna port subset in the corresponding partition mode.
  • the selected subset of the antenna ports to be measured may be only one, or may be multiple.
  • the UE may perform channel measurement based on the reference signal of the notified antenna port subset, and obtain channel state information corresponding to the antenna port subset.
  • the channel state information that the UE can feed back may include not only channel state information of each antenna port subset, but also may include each sub-instrument in order to more accurately reflect the state information of the channel.
  • the UE cannot arbitrarily perform feedback of the cross-correlation information, because the base station needs to be able to know what information the UE feeds back, otherwise the base The station will not be recognized. For this reason, in a specific implementation, a manner in which the base station notifies the UE of the information to be fed back may be used. For example, the UE may be notified to feed back the following information:
  • the UE may be notified to perform channel measurement on each reference signal of the antenna port subset to be measured, and respectively feed back channel state information of each antenna port subset to be measured; for example, notify UE1 that the antenna port subsets N1 and N2 need to be measured.
  • the reference signal of N3, UE1 can obtain channel state information CSI1/CQI2/PMI2/ between channel state information CSI1/CQI1/PMI1/RI UE1 and antenna port subset N2 between UE1 and antenna port subset N1.
  • the /PMI3/RI3 can be fed back to the base station; the base station performs radio resource scheduling on the UE1 and other UEs according to the channel state information fed back by the UE1 and other UEs.
  • the UE may be notified to perform channel measurement on each reference signal of each antenna port subset that needs to be measured, and respectively feed back channel state information of each antenna port subset to be measured, and between each antenna port subset to be measured.
  • Channel state cross-correlation information for example, to inform UE1 that the antenna port subsets N1, N2, and N3 need to be measured, then UE1 obtains channel state information CSI1, UE1 and antenna port subset N2 between UE1 and antenna port subset N1.
  • UE1 feeds back CSI1, CSI2, CSI3, R12, R13, R23, and R1 to the base station, respectively.
  • the base station performs radio resource scheduling on UE1 and other UEs according to channel state information fed back by UE1 and other UEs.
  • the channel state cross-correlation information is fed back, so that the base station can not only know the channel state information of each channel itself, but also can obtain the cross-correlation between the channels, so as to provide more effective information for the radio resource scheduling.
  • the channel state cross-correlation information may also be obtained by the base station after receiving the channel state information of each channel itself, but the channel state is calculated by the UE.
  • the UE usually needs to process the channel state information in order to transmit the channel state information, so that the base station acquires the channel state information processed by the UE, if the base station is in the base station. After receiving the channel state information, calculate the channel shape between the channels. State cross-correlation information is inaccurate.
  • the UE can calculate the channel state cross-correlation information according to the original channel measurement data, and therefore, the accuracy of the channel state cross-correlation information can be ensured.
  • the UE1 needs to measure the antenna port subsets N1 and N2, and the N1 includes the antenna ports 1, 2, and the N2 includes the antenna ports 3 and 4.
  • the UE1 simultaneously measures the antenna ports of the UE1 and N1 and N2 (the antenna).
  • the channel state information CSI 12 between the ports 1, 2, 3, and 4) is then fed back to the base station by the CSI 12; the base station performs radio resource scheduling on the U1 and other UEs according to the channel state information fed back by the UE1 and other UEs.
  • the UE1 is required to measure the antenna port subsets N1, N2, N3, and N4.
  • the base station can combine the 4 bar antenna port subsets N1 and N2, and combine N3 and N4.
  • the UE1 is notified to measure the combined antenna port with N1 and N2.
  • the channel state information of the subset N12 is obtained by CSI 12; and the channel state information of the combined antenna port subset N34 of N3 and N4 is measured to obtain CSI 34; and the channel state cross-correlation with N12 and N34 can also be measured. Information R1234. Then, the CSI 12, CS I 34, and R1234 are fed back to the base station A.
  • the base station may also notify the UE1 to measure channel state information of the combined antenna port subset N12 with N1 and N3 to obtain CSI 13; and measure the combined antenna port with N2 and N4.
  • the channel state information of the N24 is collected to obtain the CSI 24; and the channel state cross-correlation information R1324 between the N13 and the N24 can also be measured.
  • UE1 feeds back CSI 13, U2CSI 24, and R1324 to base station A.
  • the base station performs radio resource scheduling on UE1 and other UEs according to the channel state information fed back by UE1 and other UEs.
  • the partial combination may be varied. Due to space limitations, this is no longer the case.
  • the channel state information of a certain antenna port subset is obtained by measuring reference signals of each antenna port in the antenna port subset; the channel state cross-correlation information between the antenna port subsets is reflected by each antenna.
  • Cross-correlation of channels between port subsets for example, The channel state cross-correlation information between N1 and N2 may need to separately calculate the channel state information CSI 1 and CSI 2 of N1 and N2, and then calculate the correlation between the two; and the combined antenna port of N1 and N2
  • the channel state information of the set N12 is obtained by measuring the reference signals of the respective antenna ports in N1 and the reference signals of the respective antenna ports in N2, which is equivalent to sub-collecting the two antenna ports to obtain the channels of the combined set.
  • Status information for example, 1 includes antenna ports 1, 2, N2 includes antenna ports 3, 4, and channel state information of combined antenna port subset N12 is calculated directly from reference signals of antenna ports 1, 2, 3, and 4. of.
  • the method includes the following steps: determining, according to current state information of the user equipment UE, a subset of antenna ports that need to be measured for the UE; notifying the UE to perform channel measurement on the subset of antenna ports that need to be measured and feeding back channel state information.
  • the storage medium is, for example, R0M/RAM, a magnetic disk, an optical disk, or the like.
  • Embodiment 2 Referring to FIG. 3, a method for channel measurement provided by Embodiment 2 of the present invention includes the following steps:
  • S301 Select, according to the current state information obtained from the base station, a subset of antenna ports to be measured from the pre-divided subsets of the antenna ports;
  • the UE may obtain its own state information (including the current transmission state, geographic location, path loss, and moving speed of the UE) from the downlink channel message of the base station. These downlink channel messages may not be used exclusively. The channel measures the indicated message, but as long as the UE can receive these messages, the required status information can be obtained therefrom. In addition, since the status information is obtained from the downlink channel message of the base station, the base station can also be sure that the current state of the UE is also known, so that the base station can accurately learn the basis for the UE to select the antenna port subset, and correctly parse the UE feedback. information.
  • S302 Perform channel measurement on the subset of antenna ports that need to be measured and feed back channel state information. Specifically, when selecting a subset of antenna ports to be measured from the pre-divided subsets of antenna ports according to the current state information obtained from the base station, the UE may first acquire current state information of the UE from the base station; Pre-agreed the correspondence between the current state information of the self and the antenna port subset, and select a subset of antenna ports to be measured from the pre-divided subsets of the antenna ports. In addition, the UE may also feed back the antenna port subset identification information to the base station while feeding back channel state information to the base station.
  • the specific implementation manner may include: mode 1: when the UE feeds back the channel state information, according to a manner agreed in advance with the base station, for example, the base station notifies the channel state information feedback sequence and/or the combination manner of each antenna port subset in advance.
  • the UE (which can carry the information when the antenna port is allocated to the UE) can be used to facilitate the correct identification and resolution of the base station.
  • the feedback order of the channel state information and/or the antenna port can be selected by the UE. The combination of sets, etc.
  • the channel information of the antenna port and/or the combination information of the antenna port subset are fed back to the base station, so that the base station performs the correct operation.
  • Identification and analysis Specifically, information such as an antenna port subset identifier and/or a combined identifier may be added to the message for feeding back the channel state information, so as to notify the base station of the selected channel state information feedback sequence, the combination manner of each antenna port subset, and the like. .
  • the difference between the second embodiment and the first embodiment is that, in the first embodiment, when the UE needs to feed back the channel state information, the base station selects a subset of the antenna ports to be measured for the UE.
  • the UE is notified of the division and division of the antenna port in advance, and the UE may select a corresponding antenna port subset from the primary to perform measurement according to its own state information and feed back the channel state information. That is, the execution subject of each step in the first embodiment is a base station, and the execution subject of each step in the second embodiment is a UE.
  • the specific method for dividing the antenna port subset may be the same as that described in Embodiment 1, and details are not described herein again.
  • the second embodiment will be described in detail below by way of a specific example.
  • the base station may notify the UE of all possible aggregation modes in advance, and identify the transmission mode corresponding to each set.
  • the UE When the UE is in a certain transmission mode, the UE performs channel state information measurement and feedback by using a set of corresponding modes. Can And further setting a mode switching identifier. If the cell implementation notifies the UE that the handover identifier is automatically switched according to the transmission mode, when the UE is in a certain transmission mode, the UE uses the set of the corresponding mode to perform channel state information measurement and feedback; otherwise, even if The UE is in some transmission mode, and the UE does not automatically change the set of measurements.
  • the base station since the base station knows the transmission mode in which the UE is currently located, it can be known which channel state information of the antenna port subset is fed back by the UE. It can be seen that in the method provided in the second embodiment, the example is a preferred embodiment.
  • the method includes the following steps: selecting, according to the current state information obtained from the base station, a subset of the antenna ports to be measured from the pre-divided subsets of the antenna ports; performing channel measurement on the subset of the antenna ports that need to be measured And feedback channel status information.
  • the storage medium is, for example, R0M/RAM, a magnetic disk, an optical disk, or the like.
  • the embodiment of the present invention further provides a device for implementing channel measurement.
  • the device includes:
  • a determining unit U401 configured to determine, according to current state information of the UE, a subset of antenna ports that need to be measured for the UE;
  • the notification unit U402 is configured to notify the UE to perform channel measurement on the subset of antenna ports that need to be measured and feed back channel state information.
  • the base station can notify the UE to measure and feed back only the channel state information of the part of the antenna port, and therefore reduce the feedback overhead of the UE on the channel state information.
  • an antenna port suitable for the current state of the UE may be directly determined from multiple antenna ports of the base station, and the antenna ports (which may be one or more) are used as a subset of the antenna ports to be measured;
  • the port set is divided into a plurality of antenna port subsets, and then the antenna port subset to be measured is selected from the respective antenna port subsets according to the current state information of the UE.
  • the determining unit U402 may include:
  • the sub-unit U4021 is configured to select, according to current state information of the UE, a subset of antenna ports that need to be measured for the UE from a pre-divided subset of antenna ports. Or a second selection subunit, configured to select one or more antenna ports from all antenna ports of the base station according to the current state information of the UE, and form a subset of the antenna ports that need to be measured.
  • the antenna port set When the antenna port set is divided into multiple antenna port subsets in advance, it may be divided according to various factors, wherein the antenna port subset may be adapted to be different according to the time correlation of the channel.
  • the antenna port subset of the UE moving speed; the current state information of the UE includes the current moving speed of the UE; the selecting subunit U4021 may include:
  • a first selection subunit configured to select a subset of antenna ports suitable for the UE moving speed according to the current moving speed of the UE.
  • the antenna port subset may be divided according to the geographic location of the antenna port.
  • the antenna port subset may include a subset of antenna ports divided according to the geographic location of the antenna;
  • the current state information of the UE includes path loss information between the UE and each antenna port subset and/or current geographic location information of the UE.
  • the selecting subunit U4021 may include:
  • a second selecting subunit configured to select, according to path loss information between the UE and each antenna port subset, a subset of antenna ports that meet a preset condition with a path loss of the UE;
  • a third selection subunit configured to select, according to current geographic location information of the UE, a subset of antenna ports whose distance from the UE meets a preset condition.
  • the antenna port subset may be divided according to the transmission mode of the UE, where the respective antenna port subsets include antenna port subsets applicable to different transmission modes; the current state information of the UE includes the current transmission used by the UE. Mode; the selection subunit U4021 may include:
  • a fourth selection subunit configured to select, according to a transmission mode currently used by the UE, a subset of antenna ports applicable to a transmission mode of the UE.
  • the transmission mode may include a CoMP transmission mode, and when the division according to a transmission mode that the UE may use, the reference signal sent by the antenna port subset for the CoMP mode may be specifically configured, and the other antenna ports are configured.
  • the reference signal may not have to be specially configured.
  • the system may further include:
  • the configuration unit is configured to configure only the reference signal sent by the antenna port subset applicable to the CoMP transmission mode according to the characteristics of the CoMP transmission mode.
  • the notification unit U402 may include:
  • a first notification subunit configured to notify the UE to perform channel measurement on each reference signal of each antenna port subset that needs to be measured, and respectively feed back channel state information of each antenna port subset that needs to be measured;
  • a second notification subunit configured to notify the UE to perform channel measurement on each reference signal of the antenna port subset that needs to be measured, respectively, and respectively feed back channel state information of each antenna port subset to be measured, and each antenna port to be measured Collecting channel state cross-correlation information between two pairs;
  • a third notification subunit configured to perform a total combination of the antenna port subsets that need to be measured, and notify the UE to perform channel measurement based on the reference signals of the antenna port subsets that need to be measured, and feed back the antenna ports.
  • a fourth notification subunit configured to perform partial combination on the subset of antenna ports that need to be measured, and notify the UE to perform channel measurement based on the reference signal of the subset of antenna ports that need to be measured, and feed back each antenna port The combined channel state information, and/or the channel state cross-correlation information between the two antenna port subsets.
  • the embodiment of the present invention further provides a user equipment.
  • the user equipment includes:
  • the notification receiving unit U601 is configured to receive a notification sent by the base station, and obtain a subset of the antenna ports that need to be measured; and the subset of the antenna ports that need to be measured is determined by the base station according to current status information of the user equipment;
  • the measurement feedback unit U602 is configured to perform channel measurement and feed back channel state information for the subset of antenna ports that need to be measured.
  • the embodiment of the present invention further provides another device for implementing channel measurement.
  • the device includes:
  • the selecting unit U701 is configured to select, according to the current state information of the self obtained from the base station, a subset of the antenna ports to be measured from the pre-divided subsets of the antenna ports;
  • the feedback unit U702 is configured to perform channel measurement on the subset of antenna ports that need to be measured and feed back channel state information.
  • the UE can select a subset of the antenna ports to be measured from the division of the antenna port subset that is learned from the base station in advance according to the state information learned from the base station, so that only the measured antenna port subset can be measured.
  • the channel state information of the part of the antenna port is fed back, and therefore, the feedback overhead of the UE on the channel state information is reduced.
  • the selecting unit U702 may specifically include:
  • a self-status information obtaining sub-unit configured to acquire current status information of the antenna from the base station
  • a selecting sub-unit configured to: according to the correspondence between the current state information of the self and the subset of the antenna port, which is pre-agreed with the base station, Divide the subset of each antenna port and select the subset of antenna ports to be measured.
  • the UE may also feed back the identifier information of the actually measured antenna port subset to the base station.
  • the device may further include:
  • the feedback unit U702 includes:
  • a predetermined feedback subunit configured to perform channel measurement and feed back channel state information for the subset of antenna ports that need to be measured according to a feedback order of channel state information pre-agreed by the base station and/or a combination of antenna port subsets;
  • An autonomous feedback subunit a feedback sequence for autonomously selecting channel state information and/or a combination of antenna port subsets, performing channel measurement on the subset of antenna ports to be measured and feeding back channel state information; and feeding back the Identification information of the antenna port subset and/or combined identification information of the antenna port subset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

实现信道测量的方法及装置 本申请要求于 2009 年 10 月 28 日提交中国专利局、 申请号为 200910208525.3、发明名称为"实现信道测量的方法及装置 "的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 特别是涉及实现信道测量的方法及装置。
背景技术
OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复 用) 是一种特殊的多载波传输技术, 它将一个较宽的传输带宽分隔成 互相正交的多个子载波用于并行传输数据。
在 0FDM系统中, 为了进行无线资源调度, 基站需要获取 UE的下 行信道状态信息。 通常, 采用 UE ( User Equipment, 用户设备) 测量 上报的方法获得该信息。 该测量上报的方法主要包括: 基站发送参考 信号; UE利用接收到的参考信号测量得到下行信道状态信息; 然后, UE将测量到的下行信道状态信息反馈给基站。基站根据接收到的各 UE 反馈的下行信道状态信息进行无线资源调度, 即, 来决定如何向各 UE 分配有限的时频资源, 以最大化无线资源利用率。
但是, 本发明人在实现本发明的过程中发现, 在 MIM0 (Multiple Input Multiple Output, 多入多出) 系统中, 基站端有多个天线端口, 每个天线端口都有参考信号发送, UE需要测量所有天线端口的信道状 态信息, 并向基站反馈, 因此, 测量及反馈开销较大。
发明内容
本发明提供了实现信道测量的方法及装置, 能够降低 UE对信道状态信 息的反馈开销。
本发明提供了如下方案: 一种实现信道测量的方法, 包括:
根据用户设备 UE当前的状态信息,为 UE确定需要测量的天线端口子集; 通知 UE针对所述需要测量的天线端口子集进行信道测量并反馈信道状 态信息。
一种实现信道测量的装置, 包括:
确定单元,用于根据用户设备 UE当前的状态信息,为 UE确定需要测量 的天线端口子集;
通知单元, 用于通知 UE针对所述需要测量的天线端口子集进行信道测 量并反馈信道状态信息。
一种用户设备, 包括:
通知接收单元,用于接收基站发送的通知,获知需要测量的天线端口子 集; 所述需要测量的天线端口子集由所述基站根据所述用户设备当前的状 态信息确定;
测量反馈单元,用于针对所述需要测量的天线端口子集进行信道测量并 反馈信道状态信息。
一种实现信道测量的方法, 包括:
根据从基站获知的自身当前的状态信息,从预先划分好的各个天线端口 子集中, 选择需要测量的天线端口子集;
针对所述需要测量的天线端口子集进行信道测量并反馈信道状态信息。 一种实现信道测量的装置, 包括:
选择单元,用于根据从基站获知的自身当前的状态信息,从预先划分好 的各个天线端口子集中, 选择需要测量的天线端口子集;
反馈单元,用于针对所述需要测量的天线端口子集进行信道测量并反馈 信道状态信息。 根据本发明提供的具体实施例, 本发明公开了以下技术效果: 本发明实施例能够根据 UE当前的状态信息,为 UE选择需要测量的天线 端口子集, 并通知 UE针对所述需要测量的天线端口子集进行信道测量并反 馈信道状态信息。 通过本发明, 可以在 UE的状态信息在满足一定条件的情 况下, 使 UE仅测量部分天线端口的参考信号, 并针对这部分天线端口反馈 信道状态信息, 因此, 降低了 UE对信道状态信息的反馈开销。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的方法的流程图;
图 2是本发明实施例提供的单小区分布式天线系统示意图;
图 3是本发明实施例二提供的方法的流程图;
图 4是本发明实施例提供的装置的示意图;
图 5是本发明实施例提供的另一装置的示意图;
图 6是本发明实施例提供的用户设备的示意图;
图 7是本发明实施例提供的再一装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
实施例一、 参见图 1, 本发明实施例一提供的信道测量方法方法包括以 下步骤:
S 1 01 : 根据用户设备 UE当前的状态信息, 为 UE选择需要测量的天线 端口子集;
S 1 02 : 通知 UE针对所述需要测量的天线端口子集进行信道测量并反馈 信道状态信息。
其中, 所述 UE当前的状态信息可以包括 UE的移动速度、 UE与各天线 端口的地理位置关系、 UE与各天线端口的路径损耗关系信息、 UE当前处于 的传输模式等。 在进行选择时, 可以根据上述状态信息从基站的所有天线 端口中选择一个或多个天线端口, 组成需要测量的天线端口子集, 并通知 UE仅测量并反馈所述需要测量的天线端口子集与 UE之间的信道状态信息。 例如, 当基站从 UE上报的信号强度等信息获知 UE与各天线端口的地理位 置关系, 然后选择一个或多个与该 UE距离最近的天线端口组成需要测量的 天线端口子集, 并通知给 UE, UE接收到通知后, 仅测量该需要测量的天线 端口子集, 该天线端口子集外的其他天线端口将不会测量, 然后 UE把测量 得到的对应上述相应天线端口子集的信道状态信息反馈给基站。
在实际应用中, 为了便于选择, 可以预先将基站端的各个天线端口组 成的集合划分为多个天线端口子集, 然后在为 UE选择需要测量的天线端口 子集时, 根据 UE当前的状态信息, 从这些已经划分好的各个天线端口子集 中, 为所述 UE选择天线端口子集即可。
在这种方式下, 基站可以预先通知 UE所有的可能的集合方式, 并对各 种集合作标识(例如进行编号)。 在需要获取信道状态信息时, 根据 UE 所 处的状态将某个或多个天线端口子集的标识通知给 UE, UE基于相应标识的 集合进行信道状态信息测量和反馈。
例如,基站 A配置了 N个天线端口, N个天线端口被划分为 m个天线端 口子集合, 分别为 N。, Ν, , Ν2 , . . ., Nm , 其中, 各个天线端口子集之间 可以相互交叠, 例如, NQ中可以包括天线端口 1和天线端口 2 ; 中可以 包括天线端口 2和天线端口 3, 其中, 天线端口 2既在 N0中, 也在 N中, 具体划分时, 可以依据实际情况确定, 这里不做限定。 基站 A可以根据 UE 的状态信息通知 UE测量 m个天线端口子集中的一个或者多个或者全部的天 线端口子集; 然后, 上述 UE把测量的信道状态信息反馈给基站 A。 下面就 具体的实施方式进行详细地描述。
实施方式一、 在该具体实施方式一中, 可以将基站的所有天线端口组 成的集合, 划分为适用于不同 UE移动速度的天线端口子集。 即, 可以根据 信道的时间相关性划分天线端口的集合, 例如, 可以将所有天线端口的集 合划分为两个天线端口子集, 其中一个天线端口子集适用于高速的 UE, 以 较高的频率发送参考信号, 另一个天线端口子集适用于低速的 UE, 以相对 较低的频率发送参考信号。
在需要 UE上报信道状态信息时, 可以通知高速 UE仅测量适用于高速 UE 的天线端口子集, 并反馈信道状态信息; 通知低速 UE 测量适用于低速 UE的天线端口子集, 并反馈信道状态信息。 这样, 既可以保证低速的 UE不 会造成资源浪费, 又可以保证高速的 UE能够以足够高的频率及时向基站反 映信道状态的变化, 同时, 无论是低速的 UE, 还是高速的 UE, 都不必测量 所有的天线端口, 因此, 可以降低反馈开销, 从整体上提高系统的性能。 当然, 对于低速的 UE而言, 也可以同时测量高速的天线端口子集及低速的 天线端口子集。
例如, 可以预先将基站的所有天线端口划分为天线端口子集 A和天线 端口子集 B, 天线端口子集 A发送周期短(频率高), 天线端口子集 B发送 周期长(例如天线端口子集 A发送周期为 5ms, 天线端口子集 B发送周期为 1 0ms ), 并且 UE1及 UE2都属于该基站, 其中, UE1为高速用户, UE2为低 速用户。 则基站可以通知 UE1测量天线端口子集 A, 通知 UE2测量天线端口 子集 B, 或者可以通知 UE2同时测量天线端口子集 A和天线端口子集 B。
由于在实际应用中, UE的移动速度可能不同, 例如, 有的用户可能是 在某固定位置处, 有的用户可能在走动, 还有的用户可能乘坐在某种交通 工具上以相对较快的速度移动等等。 UE的移动速度与信道的时间相关性相 对应, 例如, UE在低速移动时, 信道的时间相关性较强, 信道状态信息随 时间的变化不明显, 因此, UE可以以较低的频率反馈信道状态信息; 反之, UE在高速移动时, 信道是时间相关性较弱, 信道状态信息随时间的变化可 能对非常明显, 因此, 为了更准确地获得实时的信道状态信息, 可能需要 UE以较高的频率测量和反馈信道状态信息。 其中, UE测量和反馈信道状态 信息的频率与基站发送参考信号的频率有关, 即, 当基站以高频率发送参 考信号时, UE测量和反馈的频率就可以较高, 当基站以低频率发送参考信 号时, UE只能采用相对较低的测量和反馈的频率。
在现有技术中, 基站的所有天线端口都以相同的频率发送参考信号。 而实际上, 同一基站下的各个 UE在同一时刻可能会有不同的状态, 总是会 有移动速度较快的 UE, 同时也有移动速度较慢甚至不移动的 UE。 如果所有 的天线端口都以较高的频率发送参考信号, 则对于移动速度较慢甚至不移 动的 UE而言, 由于其信道状态变化较慢, 不需要较高的频率进行信道状态 测量和反馈, 因此, 必然会造成资源的浪费。 而如果所有的天线端口都以 较低的频率发送参考信号, 而对于移动速度较快的 UE而言, 又可能会无法 使基站获得足够准确的信道状态信息。
而利用该实施方式一提供的方法, 基站的各个天线端口可以以不同的 频率发送参考信号, 如果 UE的移动速度较快, 则可以通知 UE测量发送频 率较高的天线端口子集的参信号; 否则, 通知 UE测量发送频率较低的天线 端口子集的参信号。 因此, 该实施方式一还具有以下优点: 既可以保证移 动速度快的 UE能够反馈足够准确的信道状态信息, 又可以保证对于移动速 度低的 UE不会造成资源的浪费。
需要说明的是, 在实际应用中, UE的移动速度可以不仅仅包括高速和 低速两种情况, 例如, 可以 UE移动速度分为几个不同的区间, 相应的也将 天线端口分为多个天线端口子集, 具体为 UE选择天线端口子集时, 可以判 断用户的移动速度落在哪个区间, 并选择相应的天线端口子集即可。
另外需要说明的是, 基站可以通过 UE的上行信道信息获取 UE的移动 速度信息, 具体的方法现有技术已经能够实现, 这里不再赘述。
实施方式二, 在该具体实施方式二中, 可以依据天线的地理位置, 将 基站的所有天线端口组成的集合划分为多个天线端口子集。 例如, 可以将 地理位置上彼此距离较靠近的天线端口组成一个天线端口子集, 其他地理 位置上彼此距离较靠近的天线端口可以组成其他的天线端口子集。 在需要 UE反馈信道状态信息时, 可以才艮据 UE 当前的地理位置信息, 选择与该 UE 的距离满足预置条件的天线端口子集; 和 /或, 可以根据当前 UE与各天线 端口子集间的路径损耗信息(该路径损耗信息可以由 UE的地理位置信息推 出, 也可以由 UE的上行信息得到), 选择与 UE之间的路径损耗满足预置条 件的天线端口子集。
以下图 2 所示的单小区分布式天线系统为例: 其中地理上分布于不同 位置的天线端口子集 N1和天线端口子集 N2都隶属于一个基站 A, 相应的, 该基站 A用于信道测量的参考信号也被分为两个天线端口子集 A和 B (天线 端口与参考信号是——对应的), 它们分别由天线端口子集 N1和 N2发射。
PL i j ( i= 1 , 2 ; j = 1 , 2 , 3 )为天线端口子集 i到 UEj的路径损耗。 考虑到 各个天线端口子集到 UE的路径损耗的差异, UE可以使用不同的天线端口子 集。 例如, 一个可能的天线端口分配测量方案可以为: UE1测量天线端口子 集 N1对应的参考信号; UE3测量天线端口子集 N2对应的参考信号; UE2同 时测量天线端口子集 N1和 N2对应的参考信号。
在实际应用中, 基站的多个天线端口可能是分布式地分散在多个位置, UE 当前所处的位置与天线端口所处位置的相对关系也决定着信道状态信息 的优劣。
例如, 如果 UE距离某天线端口比较近, 则 UE接收信号的路径损耗可 能会比较小, UE接收到该天线端口的信号可能较强, 因此, 信道状态可能 也会比较好; 反之, 如果 UE距离某天线端口非常远, 则 UE接收信号的路 径损耗可能会比较大, UE接收到该天线端口的信号可能会非常弱, 因此, 信道状态可能也会比较差。 此时, 该距离非常远的天线端口的信道状态信 息对于基站进行无线资源调度的作用可能是非常小的, 最终也让该天线端 口承载的业务信息也会非常少, 甚至不使用该天线端口承载该 UE的业务信 息。 因此, 在针对所有天线端口都进行测量, 并反馈信道状态信息的情况 下, 这部分针对该非常远天线端口进行的信道状态测量及反馈就造成了资 源的浪费。
而利用该实施方式二提供的方法, 对于距离 UE非常远的天线端口子集 的参考信号,可以通知 UE不必进行测量,相应的信道状态信息也不必反馈, 因此, 降低了测量及反馈的开销。
需要说明的是, 基站可以通过 UE的上行信道信息获取 UE的地理位置 信息, 具体的方法现有技术已经能够实现, 这里不再赘述。
实施方式三、 在实际应用中, 基站可能会根据 UE 的状态信息等为 UE 选择不同的传输模式, 以保证 UE获得最佳的服务质量, 保证系统的最佳性 能。 其中 , 传输模式可以 包括 CoMP ( Coordina ted Mul t i-point Transmi s s ion, 协作多点传输)模式、 JP ( Joint Proces s ing , 共同处理) 模式、 CBF ( Coordina ted beam forming , 协同波束形成) 模式、 CBS ( Coordina ted beam swi tching , 十办同波束转换)模式、 单小区月良务模式、 多用户模式等等。 在该实施方式三中, 也可以将基站的所有天线端口的集合, 划分为适 用于不同传输模式的天线端口子集, 例如, 可以将一些天线端口作为适用 于 CoMP模式的天线端口子集, 另一些天线端口作为适用于单小区服务模式 的天线端口天线端口子集等等。 这样, 当需要 UE反馈信道状态信息时, 可 以根据 UE当前使用的传输模式, 选择适用于该 UE的传输模式的天线端口 子集, 然后通知该 UE针对所述适用于该 UE传输模式的天线端口子集, 向 基站反馈信道状态信息。 例如, UE1处于 CoMP模式, 则基站通知 UE1仅测 量 CoMP模式的参考信号集合, 并反馈相应的信道状态信息即可。
在实际应用中, 处于不同的传输模式下, 对参考信号的发送可能需要 进行一些特殊的配置。 例如, 当有 UE处于 CoMP模式时, 需要抬升(Power boos t i ng )参考信号的发射功率, 在现有技术方式下, 就只能让所有天线 端口的发射功率均抬升。 但是, 隶属于该基站的其他 UE可能是处于单小区 服务等其他模式, 在这些模式下, 不需要进行高的发射功率, 因此, 在这 种情况下, 参考信号的高发射功率对于这些不处于 CoMP模式的 UE而言显 然是一种浪费。
而在该实施方式三提供的方法中, 由于预先将天线端口进行了划分, 因此,可以仅对适用于 CoMP模式的天线端口子集发送的参考信号依据 CoMP 模式的特征进行配置, 其他的天线端口子集可以不进行特殊处理。 这样, 该实施方式三的另一个优点在于, 在存在 CoMP模式的情况下, 可以避免将 全部天线端口的参考信号都进行特殊的配置, 节省了资源。
例如, 对于用于 CoMP模式的天线端口子集的参考信号, 在 CoMP小区 集内, 部小区在对应上述参考信号的 RE ( re s ource e l ement , 资源单元) 上的数据不发送; 对于其他不用于 CoMP模式的天线端口子集的参考信号, 在 CoMP小区集内, 邻小区在对应上述参考信号的 RE上的数据仍然发送, 即不进行特殊配置。
或者,可以对用于 CoMP模式的天线端口子集的参考信号进行功率抬升, 而非 CoMP模式的天线端口子集的参考信号不进行功率抬升。
又如, 对于用于 CoMP模式的天线端口子集的参考信号, 在 CoMP小区 集内, 各小区对应上述参考信号配置为码分正交或者频分正交; 而对于其 他非 CoMP模式的天线端口子集的参考信号, 在 CoMP小区集内, 各小区对 应上述参考信号可以不用配置为码分正交或者频分正交。
需要说明的是, 可以在根据传输模式划分完天线端口子集之后, 就仅 对适用于 CoMP模式的天线端口子集发送的参考信号依据 CoMP模式的特征 进行配置; 划分及配置结束后, 各天线端口子集就会按照配置好的方式发 送参考信号, 不会受到 UE状态的影响。
另外需要说明的是, 由于 UE在初始状态下可能处于某种默认的传输模 式下, 基站需要根据 UE反馈的信道状态信息来决定是否改变 UE的传输模 式。 因此, 在该实施方式三中, UE最初可能是将所有天线端口的信道状态 信息都进行反馈的, 当基站根据 UE的信道状态信息为 UE选择了某种新的 传输模式时, 再通知 UE仅针对适用于该传输模式的天线端口, 反馈信道状 态信息即可。 当然, 在为 UE选择一种传输模式之后, 还可能再根据新的状 态信息为 UE选择其他的传输模式, 此时, 也可以再选择相应的天线端口子 集, 并通知 UE对该天线端口子集进行测量及反馈。
当然, 也可以将上述各种具体的实施方式相结合, 根据多种划分依据 对基站的天线端口进行划分。 在为 UE选择天线端口子集时, 可以从获取到 的 UE的状态信息中任选一种, 在相应划分方式下的各天线端口子集中进行 选择。
在前述根据 UE当前的状态信息,从预先划分好的各个天线端口子集中, 为所述 UE选择天线端口子集时, 选择出来的需要测量的天线端口子集可能 只有一个, 也可能是多个。
当所述需要测量的天线端口子集为一个时, UE可以基于通知的天线端 口子集的参考信号进行信道测量, 得到对应该天线端口子集的信道状态信 息即可。 当所述需要测量的天线端口子集为多个时, UE可以反馈的信道状 态信息不仅可以包括各个天线端口子集的信道状态信息, 为了更准确地反 映信道的状态信息, 还可以包括各个子集之间的信道状态互相关信息。 由 于互相关信息涉及到的组合方式可能会有多种。 但是, UE不能任意进行互 相关信息的反馈, 因为需要使基站能够知道 UE反馈的是何种信息, 否则基 站将无法识别。 为此, 具体实现时, 可以采用基站通知 UE需要反馈哪些信 息的方式, 例如, 可以通知 UE反馈以下信息:
一、 可以通知 UE对各个需要测量的天线端口子集的参考信号分别进行 信道测量, 并分别反馈各个需要测量的天线端口子集的信道状态信息; 例 如通知 UE1需要测量天线端口子集 Nl、 N2和 N3的参考信号, 则 UE1可以 得到 UE 1与天线端口子集 N1之间的信道状态信息 CSI1/CQI1/PMI1/RI UE1 与天线端口子集 N2之间的信道状态信息 CSI2/CQI2/PMI2/RI2、 UE1与天线 端口子集 N3之间的信道状态信息 CSI3/CQI3/PMI3/RI3; 然后, UE1分别将 测 量 得 到 的 CSI1/CQI1/PMI1/RI1 、 CSI2/CQI2/PMI2/RI2 和 CSI3/CQI3/PMI3/RI3反馈给基站即可;基站根据 UE1和其他 UE反馈的信道 状态信息, 对 UE1及其他 UE进行无线资源调度。
二、 可以通知 UE对各个需要测量的天线端口子集的参考信号分别进行 信道测量, 分别反馈各个需要测量的天线端口子集的信道状态信息, 以及 各个需要测量的天线端口子集两两之间的信道状态互相关信息; 例如通知 UE1需要测量天线端口子集 Nl、 N2和 N3, 则 UE1得到 UE1与天线端口子集 N1之间的信道状态信息 CSI1、 UE1与天线端口子集 N2之间的信道状态信息 CSI2、UE1与天线端口子集 N3之间的信道状态信息 CSI3;同时测量得到 UE1 与 N1和 N2的信道状态互相关信息 R12, 和 /或 UE1与 N1和 N3的信道状态 互相关信息 R13, 和 /或 UE1与 N2和 N3的信道状态互相关信息 R23, 和 /或 UE1与 Nl、 N2和 N3的信道状态互相关信息 R123。 然后, UE1分别把 CSI1、 CSI2、 CSI3、 R12、 R13、 R23、 Rl 23反馈给基站; 基站根据 UE1和其他 UE 反馈的信道状态信息, 对 UE1及其他 UE进行无线资源调度。
其中, 通过反馈所述信道状态互相关信息, 使得基站不仅可以获知每 条信道自身的信道状态信息, 还可以获知各信道之间的互相关性, 以便为 无线资源调度提供更多的有效信息。 需要说明的是, 理论上讲, 关于所述 信道状态互相关信息, 也可以由基站在接收到每条信道自身的信道状态信 息之后,进行计算获得,但是,之所以由 UE计算获得信道状态互相关信息, 是因为 UE在向基站反馈信道状态信息之前, 通常需要对信道状态信息进行 等处理, 以便于在信道中传输, 因此基站获取到的是 UE处理后的信道状态 信息, 如果由基站在收到信道状态信息后, 再计算各个信道之间的信道状 态互相关信息, 则是不准确的。 而 UE则可以根据原始的信道测量数据计算 得到所述信道状态互相关信息, 因此, 可以保证信道状态互相关信息的准 确性。
三、 对所述需要测量的天线端口子集进行全部组合, 通知 UE基于所述 全部组合的需要测量的天线端口子集的参考信号进行信道测量, 反馈所述 天线端口子集全部组合的信道状态信息; 例如通知 UE1 需要测量天线端口 子集 Nl、 N2 , N1中包括天线端口 1、 2, N2中包括天线端口 3、 4,则 UE1同 时测量得到 UE1与 Nl、 N2中的各个天线端口(天线端口 1、 2、 3、 4)之间的 信道状态信息 CSI 12, 然后将 CSI 12反馈给基站; 基站根据 UE1和其他 UE 反馈的信道状态信息, 对 U1及其他 UE进行无线资源调度。
四、 对所述需要测量的天线端口子集进行部分组合, 通知 UE基于所述 部分组合的需要测量的天线端口子集的参考信号进行信道测量, 并反馈各 个天线端口子集组合的信道状态信息, 和 /或, 各个天线端口子集组合两两 之间的信道状态互相关信息。 例如通知 UE1需要测量天线端口子集 Nl、 N2、 N3和 N4, 基站可以 4巴天线端口子集 Nl、 N 2进行组合、 N3、 N 4进行组合; 通知 UE1测量与 N1和 N2的组合天线端口子集 N12的信道状态信息, 得到 CSI 12 ; 并测量与 N3和 N4的组合天线端口子集 N34的信道状态信息, 得到 CSI 34 ; 同时还可以测量得到与 N12 和 N34 之间的信道状态互相关信息 R1234。 然后, 将 CSI 12、 CS I 34、 R1234反馈给基站 A。
当然, 也可以采用其他的部分组合方式, 例如, 基站也可以通知 UE1 测量与 N1和 N3的组合天线端口子集 N12的信道状态信息,得到 CSI 13; 并 测量与 N2和 N4的组合天线端口子集 N24的信道状态信息,得到 CSI 24 ; 同 时还可以测量得到与 N13和 N24之间的信道状态互相关信息 R1324。 然后, UE1将 CSI 13、 U2CSI 24、 R1324反馈给基站 A。 基站才艮据 UE1和其他 UE反 馈的信道状态信息, 对 UE1及其他 UE进行无线资源调度。 当然, 根据天线 端口子集的数目的不同, 部分组合的方式可能会是多种多样的, 鉴于篇幅 限制, 这里不再——例举。
需要说明的是, 某个天线端口子集的信道状态信息, 是通过测量该天 线端口子集中各个天线端口的参考信号得到的; 天线端口子集之间的信道 状态互相关信息体现的是各个天线端口子集之间信道的互相关性, 例如, Nl与 N2之间的信道状态互相关信息, 可能需要先分别计算出 Nl、 N2的信 道状态信息 CSI 1、 CSI 2 , 然后计算两者之间的相关性; 而 Nl、 N2 的组合 天线端口子集 N12的信道状态信息是通过测量 N1中的各个天线端口的参考 信号, 以及 N2中的各个天线端口的参考信号得到的, 相当于将两个天线端 口子集合并, 获得合并后的集合的信道状态信息, 例如, 1 中包括天线端 口 1、 2, N2中包括天线端口 3、 4, 组合天线端口子集 N12的信道状态信息 是直接根据天线端口 1、 2、 3、 4的参考信号进行计算的。
另外需要说明的是, 对于 UE而言, 如何根据各个天线端口的参考信号 计算天线端口子集的信道状态信息, 以及各天线端口子集之间的信道状态 互相关系信息, 都能够基于现有技术找到解决方案, 这里不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计 算机可读取存储介质中, 该程序在执行时, 包括如下步骤: 根据用户设备 UE当前的状态信息, 为 UE确定需要测量的天线端口子集; 通知 UE针对所 述需要测量的天线端口子集进行信道测量并反馈信道状态信息。 所述的存 储介质, 如: R0M/RAM、 磁碟、 光盘等。
实施例二、 参见图 3, 本发明实施例二提供的信道测量的方法包括以下 步骤:
S301 : 根据从基站获知的自身当前的状态信息, 从预先划分好的各个 天线端口子集中, 选择需要测量的天线端口子集;
需要说明的是, UE可以从基站的下行信道消息中获取自身的状态信息 (包括 UE当前所处的传输状态、 地理位置、 路径损耗、 移动速度等信息), 这些下行信道消息可能不是专门用作信道测量指示的消息, 但是, 只要 UE 能够接收到这些消息, 就能从中获取到所需的状态信息。 此外, 由于状态 信息是从基站的下行信道消息中获取的, 因此, 可以保证基站也知悉 UE当 前的状态, 以便基站能够准确地获知 UE选择天线端口子集的依据, 并正确 地解析 UE反馈的信息。
S302 : 针对所述需要测量的天线端口子集进行信道测量并反馈信道状 态信息。 具体在根据从基站获知的自身当前的状态信息, 从预先划分好的各个 天线端口子集中, 选择需要测量的天线端口子集时, UE 可以首先从基站获 取 UE的当前状态信息; 然后根据与基站预先约定的所述自身当前的状态信 息与所述天线端口子集的对应关系, 从预先划分好的各个天线端口子集中, 选择需要测量的天线端口子集。 此外, UE在向所述基站反馈信道状态信息 的同时, 还可以向所述基站反馈所述天线端口子集标识信息。
当所述需要测量的天线端口子集为多个时, UE在反馈信道状态时, 需 要按照基站可以识别的方式进行反馈。 具体的实现方式可以包括: 方式一, UE在反馈信道状态信息时, 按照与基站预先约定的方式进行, 例如基站预 先将信道状态信息反馈顺序和 /或各天线端口子集的组合方式等信息通知 给 UE (可以在向 UE通知天线端口划分情况时, 携带这些信息), 以便于基 站进行正确的识别及解析; 方式二, 可以由 UE自主选择信道状态信息的反 馈顺序和 /或各天线端口子集的组合方式等。 但是在该方式二下, 需要在反 馈信道状态信息的同时, 向所述基站反馈所述天线端口子集的标识信息和 / 或所述天线端口子集的组合的标识信息, 以便于基站进行正确的识别及解 析。 具体的, 可以在反馈信道状态信息的消息中加入天线端口子集标识和 / 或组合标识等信息, 以此来通知基站所述选择的信道状态信息反馈顺序、 各天线端口子集的组合方式等。
该实施例二与实施例一的区别在于, 实施例一中, 是在需要 UE反馈信 道状态信息时, 由基站为 UE选择需要测量的天线端口子集。 而该实施例二 中, 是预先将天线端口的划分情况及划分依据通知给 UE, UE可以根据自身 的状态信息, 来自主选择相应的天线端口子集进行测量并反馈信道状态信 息。 即, 实施例一中各步骤的执行主体是基站, 而实施例二中各步骤的执 行主体是 UE。
具体的划分天线端口子集的方法可以与实施例一中描述的相同, 这里 不再赘述。
下面通过一个具体的例子对该实施例二进行详细地描述。
例如, 在根据 UE的传输模式进行划分时, 基站可以预先通知 UE所有 可能的集合方式, 并且标识了每种集合对应的传输模式。 当 UE处于某种传 输模式时, 则 UE采用对应模式的集合进行信道状态信息测量和反馈。 可以 进一步设置一个模式切换标识, 如果小区实现通知 UE切换标识为根据传输 模式自动切换, 则当 UE处于某种传输模式时, 则 UE采用对应模式的集合 进行信道状态信息测量和反馈; 否则即使则当 UE处于某种传输模式, UE也 不会自动变换测量的集合。
在该例子中, 由于基站知晓 UE当前所处的传输模式, 因此, 能够获知 UE反馈的是哪个天线端口子集的信道状态信息。 可见, 在该实施例二提供 的方法中, 该例子是一种优选的实施方式。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计 算机可读取存储介质中, 该程序在执行时, 包括如下步骤: 根据从基站获 知的自身当前的状态信息, 从预先划分好的各个天线端口子集中, 选择需 要测量的天线端口子集; 针对所述需要测量的天线端口子集进行信道测量 并反馈信道状态信息。 所述的存储介质, 如: R0M/RAM、 磁碟、 光盘等。
与本发明实施例一提供的方法相对应, 本发明实施例还提供了一种实 现信道测量的装置, 参见图 4, 该装置包括:
确定单元 U401, 用于根据 UE当前的状态信息, 为 UE确定需要测量的 天线端口子集;
通知单元 U402,用于通知 UE针对所述需要测量的天线端口子集进行信 道测量并反馈信道状态信息。
通过本发明实施例提供的装置,基站能够针对 UE的状态信息,通知 UE 仅测量并反馈部分天线端口的信道状态信息, 因此, 降低了 UE对信道状态 信息的反馈开销。
具体实现时, 可以直接从基站的多个天线端口中确定适合于 UE当前状 态的天线端口, 将这些天线端口 (可以是一个或多个)作为需要测量的天 线端口子集; 也可以预先将天线端口集合划分为多个天线端口子集, 然后 根据 UE当前的状态信息, 从各个天线端口子集中选择出需要测量的天线端 口子集, 此时, 参见图 5, 确定单元 U402可以包括:
选择子单元 U4021 , 用于根据 UE当前的状态信息, 从预先划分好的各 个天线端口子集中, 为所述 UE选择需要测量的天线端口子集。 或第二选择子单元,用于根据 UE当前的状态信息,从基站的所有天线 端口中选择一个或多个天线端口, 组成需要测量的天线端口子集
在预先将天线端口集合划分为多个天线端口子集时, 可以依据多方面 的因素, 其中, 可以根据信道的时间相关性进行划分, 此时, 所述各个天 线端口子集可以包括适用于不同 UE移动速度的天线端口子集; 所述 UE 当 前的状态信息包括 UE当前的移动速度; 选择子单元 U4021可以包括:
第一选择子单元, 用于根据 UE当前的移动速度, 选择适合该 UE移动 速度的天线端口子集。
在分布式的天线系统中, 也可以根据天线端口的地理位置进行天线端 口子集的划分, 此时, 所述各个天线端口子集可以包括依据天线的地理位 置划分的天线端口子集; 所述 UE 当前的状态信息包括 UE与各天线端口子 集之间的路径损耗信息和 /或 UE 当前的地理位置信息; 选择子单元 U4021 可以包括:
第二选择子单元,用于根据 UE与各天线端口子集之间的路径损耗信息, 选择与该 UE的路径损耗满足预置条件的天线端口子集;
和 /或,
第三选择子单元, 用于根据 UE当前的地理位置信息, 选择与该 UE的 距离满足预置条件的天线端口子集。
还可以根据 UE的传输模式进行天线端口子集的划分, 此时, 所述各个 天线端口子集包括适用于不同传输模式的天线端口子集; 所述 UE当前的状 态信息包括 UE当前使用的传输模式; 选择子单元 U4021可以包括:
第四选择子单元,用于根据 UE当前使用的传输模式,选择适用于该 UE 的传输模式的天线端口子集。
其中, 所述传输模式可以包括 CoMP传输模式, 在根据 UE可能使用的 传输模式进行划分时, 可以仅对用于 CoMP模式的天线端口子集发送的参考 信号进行特殊的配置, 其他的天线端口的参考信号可以不必进行此特殊的 配置, 此时, 该系统还可以包括:
配置单元, 用于仅对适用于 CoMP传输模式的天线端口子集发送的参考 信号依据 CoMP传输模式的特征进行配置。 当所述从预先划分好的各个天线端口子集中选择的需要测量的天线端 口子集为至少两个时, 通知单元 U402可以包括:
第一通知子单元, 用于通知 UE对各个需要测量的天线端口子集的参考 信号分别进行信道测量, 并分别反馈各个需要测量的天线端口子集的信道 状态信息;
或者,
第二通知子单元, 用于通知 UE对各个需要测量的天线端口子集的参考 信号分别进行信道测量, 分别反馈各个需要测量的天线端口子集的信道状 态信息, 以及各个需要测量的天线端口子集两两之间的信道状态互相关信 息;
或者,
第三通知子单元, 用于对所述需要测量的天线端口子集进行全部组合, 通知 UE基于所述全部组合的需要测量的天线端口子集的参考信号进行信道 测量, 并反馈所述天线端口子集全部组合的信道状态信息;
或者,
第四通知子单元, 用于对所述需要测量的天线端口子集进行部分组合, 通知 UE基于所述部分组合的需要测量的天线端口子集的参考信号进行信道 测量, 并反馈各个天线端口子集组合的信道状态信息, 和 /或, 各个天线端 口子集组合两两之间的信道状态互相关信息。
与本发明实施例一提供的方法及装置相对应, 本发明实施例还提供了 一种用户设备, 参见图 6, 该用户设备包括:
通知接收单元 U601, 用于接收基站发送的通知, 获知需要测量的天线 端口子集; 所述需要测量的天线端口子集由所述基站根据所述用户设备当 前的状态信息确定;
测量反馈单元 U602, 用于针对所述需要测量的天线端口子集进行信道 测量并反馈信道状态信息。
其中, 基站根据所述用户设备当前的状态信息确定需要测量的天线端 口子集的具体方法等内容如前文所述, 这里不再赘述。 与本发明实施例二提供的方法相对应, 本发明实施例还提供了另一种 实现信道测量的装置, 参见图 7, 该装置包括:
选择单元 U701, 用于根据从基站获知的自身当前的状态信息, 从预先 划分好的各个天线端口子集中, 选择需要测量的天线端口子集;
反馈单元 U702, 用于针对所述需要测量的天线端口子集进行信道测量 并反馈信道状态信息。
通过本发明实施例提供的装置, UE能够根据从基站获知的自身的状态 信息, 从预先从基站获知的天线端口子集的划分情况, 选择需要测量的天 线端口子集, 这样就可以仅测量并反馈部分天线端口的信道状态信息, 因 此, 降低了 UE对信道状态信息的反馈开销。
其中, 选择单元 U702具体可以包括:
自身状态信息获取子单元, 用于从基站获取自身当前的状态信息; 选择子单元, 用于根据与基站预先约定的所述自身当前的状态信息与 所述天线端口子集的对应关系, 从预先划分好的各个天线端口子集中, 选 择需要测量的天线端口子集。
UE在向基站反馈信道状态信息时, 还可以向基站反馈实际测量的天线 端口子集的标识信息, 此时, 该装置还可以包括:
标识信息反馈单元, 用于向所述基站反馈所述天线端口子集标识信息。 其中, 当所述需要测量的天线端口子集为至少两个时, 反馈单元 U702 包括:
按规定反馈子单元, 用于按照与基站预先约定的信道状态信息的反馈 顺序和 /或天线端口子集的组合方式, 针对所述需要测量的天线端口子集进 行信道测量并反馈信道状态信息;
或者,
自主反馈子单元, 用于自主选择信道状态信息的反馈顺序和 /或各天线 端口子集的组合方式, 针对所述需要测量的天线端口子集进行信道测量并 反馈信道状态信息; 并反馈所述天线端口子集的标识信息和 /或所述天线端 口子集的组合标识信息。 以上对本发明所提供的实现信道测量的方法及装置, 进行了详细介绍, 例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领 域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围上均 会有改变之处。 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求
1、 一种实现信道测量的方法, 其特征在于, 包括:
根据用户设备 UE当前的状态信息,为 UE确定需要测量的天线端口子 通知 UE针对所述需要测量的天线端口子集进行信道测量并反馈信道 状态信息。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据 UE当前的状 态信息, 为所述 UE确定需要测量的天线端口子集包括:
根据 UE当前的状态信息,从预先划分好的各个天线端口子集中,为所 述 UE选择需要测量的天线端口子集。
3、 根据权利要求 2所述的方法, 其特征在于, 所述各个天线端口子集 包括适用于不同 UE移动速度的天线端口子集;所述 UE当前的状态信息包 括 UE当前的移动速度; 所述根据 UE当前的状态信息, 从预先划分好的各 个天线端口子集中, 为所述 UE选择需要测量的天线端口子集包括:
根据 UE当前的移动速度, 选择适合该 UE移动速度的天线端口子集。
4、 根据权利要求 2所述的方法, 其特征在于, 所述各个天线端口子集 包括依据天线的地理位置划分的天线端口子集;所述 UE当前的状态信息包 括 UE与各天线端口子集之间的路径损耗信息和 /或 UE当前的地理位置信 息; 所述根据 UE当前的状态信息, 从预先划分好的各个天线端口子集中, 为所述 UE选择需要测量的天线端口子集包括:
根据 UE与各天线端口子集之间的路径损耗信息,选择与该 UE的路径 损耗满足预置条件的天线端口子集;
和 /或,
根据 UE当前的地理位置信息,选择与该 UE的距离满足预置条件的天 线端口子集。
5、 根据权利要求 2所述的方法, 其特征在于, 所述各个天线端口子集 包括适用于不同传输模式的天线端口子集; 所述 UE 当前的状态信息包括 UE当前使用的传输模式; 所述根据 UE当前的状态信息, 从预先划分好的 各个天线端口子集中, 为所述 UE选择需要测量的天线端口子集包括: 根据 UE当前使用的传输模式,选择适用于该 UE的传输模式的天线端 口子集。
6、 根据权利要求 5所述的方法, 其特征在于, 所述传输模式包括协作 多点传输 CoMP传输模式, 还包括:
仅对适用于 CoMP 传输模式的天线端口子集发送的参考信号依据 CoMP传输模式的特征进行配置。
7、 根据权利要求 2所述的方法, 其特征在于, 当所述从预先划分好的 各个天线端口子集中选择的需要测量的天线端口子集为至少两个时, 所述 通知 UE针对所述需要测量的天线端口子集进行信道测量并反馈信道状态 信息包括:
通知 UE对各个需要测量的天线端口子集的参考信号分别进行信道测 量, 并分别反馈各个需要测量的天线端口子集的信道状态信息;
或者,
通知 UE对各个需要测量的天线端口子集的参考信号分别进行信道测 量, 分别反馈各个需要测量的天线端口子集的信道状态信息, 以及各个需 要测量的天线端口子集两两之间的信道状态互相关信息;
或者,
对所述需要测量的天线端口子集进行全部组合,通知 UE基于所述全部 组合的需要测量的天线端口子集的参考信号进行信道测量, 并反馈所述天 线端口子集全部组合的信道状态信息;
或者,
对所述需要测量的天线端口子集进行部分组合,通知 UE基于所述部分 组合的需要测量的天线端口子集的参考信号进行信道测量, 并反馈各个天 线端口子集组合的信道状态信息, 和 /或, 各个天线端口子集组合两两之间 的信道状态互相关信息。
8、 根据权利要求 1所述的方法, 其特征在于, 所述根据 UE当前的状 态信息, 为所述 UE确定需要测量的天线端口子集包括:
根据 UE当前的状态信息,从基站的所有天线端口中选择一个或多个天 线端口, 组成需要测量的天线端口子集。
9、 一种实现信道测量的装置, 其特征在于, 包括:
确定单元, 用于根据用户设备 UE当前的状态信息, 为 UE确定需要测 量的天线端口子集;
通知单元,用于通知 UE针对所述需要测量的天线端口子集进行信道测 量并反馈信道状态信息。
10、 根据权利要求 9所述的装置, 其特征在于, 所述确定单元包括: 选择子单元,用于根据 UE当前的状态信息,从预先划分好的各个天线 端口子集中, 为所述 UE选择需要测量的天线端口子集。
11、 根据权利要求 10所述的装置, 其特征在于, 所述各个天线端口子 集包括适用于不同 UE移动速度的天线端口子集;所述 UE当前的状态信息 包括 UE当前的移动速度; 所述选择子单元包括:
第一选择子单元, 用于根据 UE当前的移动速度, 选择适合该 UE移动 速度的天线端口子集。
12、 根据权利要求 10所述的装置, 其特征在于, 所述各个天线端口子 集包括依据天线的地理位置划分的天线端口子集;所述 UE当前的状态信息 包括 UE与各天线端口子集之间的路径损耗信息和 /或 UE当前的地理位置 信息; 所述选择子单元包括:
第二选择子单元, 用于根据 UE 与各天线端口子集之间的路径损耗信 息, 选择与该 UE的路径损耗满足预置条件的天线端口子集; 和 /或,
第三选择子单元, 用于根据 UE当前的地理位置信息, 选择与该 UE的 距离满足预置条件的天线端口子集。
13、 根据权利要求 10所述的装置, 其特征在于, 所述各个天线端口子 集包括适用于不同传输模式的天线端口子集;所述 UE当前的状态信息包括 UE当前使用的传输模式; 所述选择子单元包括:
第四选择子单元, 用于根据 UE 当前使用的传输模式, 选择适用于该 UE的传输模式的天线端口子集。
14、 根据权利要求 13 所述的装置, 其特征在于, 所述传输模式包括 CoMP传输模式, 还包括:
配置单元, 用于仅对适用于 CoMP传输模式的天线端口子集发送的参 考信号依据 CoMP传输模式的特征进行配置。
15、 根据权利要求 10所述的装置, 其特征在于, 当所述从预先划分好 的各个天线端口子集中选择的需要测量的天线端口子集为至少两个时, 所 述通知单元包括:
第一通知子单元,用于通知 UE对各个需要测量的天线端口子集的参考 信号分别进行信道测量, 并分别反馈各个需要测量的天线端口子集的信道 状态信息;
或者,
第二通知子单元,用于通知 UE对各个需要测量的天线端口子集的参考 信号分别进行信道测量, 分别反馈各个需要测量的天线端口子集的信道状 态信息, 以及各个需要测量的天线端口子集两两之间的信道状态互相关信 息;
或者,
第三通知子单元, 用于对所述需要测量的天线端口子集进行全部组合, 通知 UE基于所述全部组合的需要测量的天线端口子集的参考信号进行信 道测量, 并反馈所述天线端口子集全部组合的信道状态信息; 或者,
第四通知子单元, 用于对所述需要测量的天线端口子集进行部分组合, 通知 UE基于所述部分组合的需要测量的天线端口子集的参考信号进行信 道测量, 并反馈各个天线端口子集组合的信道状态信息, 和 /或, 各个天线 端口子集组合两两之间的信道状态互相关信息。
16、 根据权利要求 9所述的装置, 其特征在于, 所述确定单元包括: 第二选择子单元,用于根据 UE当前的状态信息,从基站的所有天线端 口中选择一个或多个天线端口, 组成需要测量的天线端口子集。
17、 一种用户设备, 其特征在于, 包括:
通知接收单元, 用于接收基站发送的通知, 获知需要测量的天线端口 子集; 所述需要测量的天线端口子集由所述基站根据所述用户设备当前的 状态信息确定;
测量反馈单元, 用于针对所述需要测量的天线端口子集进行信道测量 并反馈信道状态信息。
18、 一种实现信道测量的方法, 其特征在于, 包括:
根据从基站获知的自身当前的状态信息, 从预先划分好的各个天线端 口子集中, 选择需要测量的天线端口子集;
针对所述需要测量的天线端口子集进行信道测量并反馈信道状态信 息。
19、 根据权利要求 18所述的方法, 其特征在于, 所述根据从基站获知 的自身当前的状态信息, 从预先划分好的各个天线端口子集中, 选择需要 测量的天线端口子集, 包括:
从基站获取自身当前的状态信息;
根据与基站预先约定的所述自身当前的状态信息与所述天线端口子集 的对应关系, 从预先划分好的各个天线端口子集中, 选择需要测量的天线 端口子集。
20、 根据权利要求 18所述的方法, 其特征在于, 还包括:
向所述基站反馈所述天线端口子集标识信息。
21、 根据权利要求 18或 19所述的方法, 其特征在于, 当所述需要测 量的天线端口子集为至少两个时, 所述针对所述需要测量的天线端口子集 进行信道测量并反馈信道状态信息包括:
按照与基站预先约定的信道状态信息的反馈顺序和 /或各天线端口子集 的组合方式, 针对所述需要测量的天线端口子集进行信道测量并反馈信道 状态信息;
或者,
自主选择信道状态信息的反馈顺序和 /或各天线端口子集的组合方式, 针对所述需要测量的天线端口子集进行信道测量并反馈信道状态信息; 并 反馈所述天线端口子集的标识信息和 /或所述天线端口子集的组合的标识信 息。
22、 一种实现信道测量的装置, 其特征在于, 包括:
选择单元, 用于根据从基站获知的自身当前的状态信息, 从预先划分 好的各个天线端口子集中, 选择需要测量的天线端口子集;
反馈单元, 用于针对所述需要测量的天线端口子集进行信道测量并反 馈信道状态信息。
23、 根据权利要求 22所述的装置, 其特征在于, 所述选择单元包括: 自身状态信息获取子单元, 用于从基站获取自身当前的状态信息; 选择子单元, 用于根据与基站预先约定的所述自身当前的状态信息与 所述天线端口子集的对应关系, 从预先划分好的各个天线端口子集中, 选 择需要测量的天线端口子集。
24、 根据权利要求 23所述的装置, 其特征在于, 还包括:
标识信息反馈单元, 用于向所述基站反馈所述天线端口子集标识信息。
25、 根据权利要求 22或 23所述的装置, 其特征在于, 当所述需要测 量的天线端口子集为至少两个时, 所述反馈单元包括:
按规定反馈子单元, 用于按照与基站预先约定的信道状态信息的反馈 顺序和 /或天线端口子集的组合方式, 针对所述需要测量的天线端口子集进 行信道测量并反馈信道状态信息;
自主反馈子单元, 用于自主选择信道状态信息的反馈顺序和 /或天线端 口子集组合方式, 针对所述需要测量的天线端口子集进行信道测量并反馈 信道状态信息; 并反馈所述天线端口子集的标识信息和 /或所述天线端口子 集的组合标识信息。
PCT/CN2010/078181 2009-10-28 2010-10-28 实现信道测量的方法及装置 WO2011050727A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012535613A JP5504524B2 (ja) 2009-10-28 2010-10-28 チャネル測定を可能にする方法およびデバイス
EP10826090.2A EP2496008B1 (en) 2009-10-28 2010-10-28 Method and device for enabling channel measurement
BR122018004895-6A BR122018004895B1 (pt) 2009-10-28 2010-10-28 Método para implementar medição de canal e equipamento de usuário para implementar medição de canal
EP18161137.7A EP3393165B1 (en) 2009-10-28 2010-10-28 Method and apparatus for implementing channel measurement
EP19215599.2A EP3684098B1 (en) 2009-10-28 2010-10-28 Method and apparatus for implementing channel measurement
BR112012010218-4A BR112012010218B1 (pt) 2009-10-28 2010-10-28 Método e aparelho para implementar uma medição de canal e equipamento de usuário
CN201080047842.2A CN102845095B (zh) 2009-10-28 2010-10-28 实现信道测量的方法及装置
US13/458,273 US9673883B2 (en) 2009-10-28 2012-04-27 Method and apparatus for implementing channel measurement
US15/591,890 US10630362B2 (en) 2009-10-28 2017-05-10 Method and apparatus for implementing channel measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910208525.3A CN102056220B (zh) 2009-10-28 2009-10-28 实现信道测量的方法及装置
CN200910208525.3 2009-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/458,273 Continuation US9673883B2 (en) 2009-10-28 2012-04-27 Method and apparatus for implementing channel measurement

Publications (1)

Publication Number Publication Date
WO2011050727A1 true WO2011050727A1 (zh) 2011-05-05

Family

ID=43921342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078181 WO2011050727A1 (zh) 2009-10-28 2010-10-28 实现信道测量的方法及装置

Country Status (7)

Country Link
US (2) US9673883B2 (zh)
EP (3) EP2496008B1 (zh)
JP (1) JP5504524B2 (zh)
CN (2) CN102056220B (zh)
BR (2) BR112012010218B1 (zh)
ES (1) ES2922531T3 (zh)
WO (1) WO2011050727A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765809A4 (en) * 2011-10-03 2015-05-06 Ntt Docomo Inc MOBILE COMMUNICATION METHOD, WIRELESS BASE STATION, AND MOBILE STATION
JP2016028493A (ja) * 2015-09-17 2016-02-25 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America チャネル品質インジケータを決定するための方法およびユーザ機器
CN105917594A (zh) * 2014-12-11 2016-08-31 华为技术有限公司 基站、移动台及其方法
US9872279B2 (en) 2011-09-29 2018-01-16 Sun Patent Trust Method for determining channel quality indicator, base station and user equipment therefor

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129547A2 (ko) * 2010-04-12 2011-10-20 엘지전자 주식회사 다중 노드 시스템에서 단말의 피드백 정보 전송 방법 및 장치
US9338672B2 (en) * 2010-09-13 2016-05-10 Blinq Wireless Inc. System and method for coordinating hub-beam selection in fixed wireless backhaul networks
WO2012102558A2 (ko) * 2011-01-26 2012-08-02 엘지전자 주식회사 채널상태정보 전송방법 및 사용자기기와, 채널상태정보 수신방법 및 기지국
JP5749542B2 (ja) * 2011-03-31 2015-07-15 ソフトバンクモバイル株式会社 移動通信システム及び基地局装置
WO2012150748A1 (en) * 2011-05-04 2012-11-08 Lg Electronics Inc. Method for transmitting channel status information and user equipment, and method for receiving channel status information and base station
WO2012153352A2 (en) * 2011-05-09 2012-11-15 Centre Of Excellence In Wireless Technology Interference management for a distributed spatial network
CN102868500A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 信道信息的反馈方法、终端和基站
RU2600727C2 (ru) * 2011-09-28 2016-10-27 Фудзицу Лимитед Способ измерения для информации состояния канала, пользовательское оборудование и базовая станция
CN102377469B (zh) * 2011-09-30 2018-08-28 中兴通讯股份有限公司 一种多点信道信息反馈方法、系统及终端
WO2013067672A1 (en) * 2011-11-07 2013-05-16 Nokia Siemens Networks Oy Flexible configuration of channel measurement
CN103188710B (zh) * 2011-12-30 2016-05-18 华为技术有限公司 信道状态信息测量方法及系统、基站与用户设备
EP3389194B1 (en) 2012-03-19 2023-07-19 Panasonic Intellectual Property Corporation of America Receiving device and receiving method
WO2013166714A1 (en) * 2012-05-11 2013-11-14 Nokia Corporation Complexity restricted feedback for cooperative multipoint operation
CN103581996B (zh) * 2012-07-20 2017-04-12 华为技术有限公司 测量结果上报方法及终端、基站
WO2014047794A1 (zh) * 2012-09-26 2014-04-03 华为技术有限公司 反馈csi-rs资源组合的方法和装置、用户设备和基站
CN103843274B (zh) * 2012-09-26 2017-04-19 华为技术有限公司 信道状态信息的测量方法、设备及系统
GB2519456B (en) 2013-01-15 2017-05-31 Zte Wistron Telecom Ab Operation of a heterogeneous wireless network by determining location of a wireless device
EP2790332B1 (en) * 2013-04-08 2019-09-11 Acer Incorporated Communication station with elevation beamforming and related communication device
KR101893455B1 (ko) * 2013-06-26 2018-08-30 후아웨이 테크놀러지 컴퍼니 리미티드 참조 신호를 전송하는 방법 및 장치
WO2015008993A1 (ko) * 2013-07-15 2015-01-22 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
US10116371B2 (en) 2013-10-24 2018-10-30 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus therefor
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置
EP3155744B1 (en) * 2014-06-16 2020-11-25 Nec Corporation Method and system for mu-mimo communication
CN105471790B (zh) * 2014-08-04 2020-05-15 北京三星通信技术研究有限公司 适用于分布式天线系统的协作传输方法、基站及终端
US9608711B2 (en) * 2014-08-07 2017-03-28 Google Technology Holdings LLC Apparatus and methods for antenna correlation estimation in a multi-antenna system
CN107148792A (zh) * 2014-11-06 2017-09-08 夏普株式会社 基站装置、终端装置及通信方法
WO2016076657A1 (ko) * 2014-11-13 2016-05-19 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 참조 신호 송신 방법 및 이를 위한 장치
US10644903B2 (en) * 2015-07-06 2020-05-05 Samsung Electronics Co., Ltd. Method and apparatus for measuring channel in mobile communication system
CN106470096B (zh) 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
WO2017028315A1 (en) * 2015-08-20 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for measurement and report
JP2017050758A (ja) 2015-09-03 2017-03-09 ソニー株式会社 端末装置及び無線通信装置
WO2017065653A1 (en) * 2015-10-12 2017-04-20 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device, a network node and methods therein for determining channel state measurements in a wireless communications network
US10840991B2 (en) * 2016-02-03 2020-11-17 Ntt Docomo, Inc. User equipment and method for selection of CSI reference signal and CSI reporting in a beam forming system with multiple beams
CN108012274B (zh) 2016-11-01 2019-10-29 上海朗帛通信技术有限公司 一种被用于范围扩展的ue、基站中的方法和设备
US10321421B2 (en) * 2016-11-03 2019-06-11 Futurewei Technologies, Inc. System and method for synchronization and link acquisition in cellular wireless systems with directional antennas
CN108271240B (zh) * 2017-01-02 2019-10-29 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
JP6972136B2 (ja) * 2017-01-09 2021-11-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハイブリッドsrs組合せシグナリング
WO2018171786A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 信息的传输方法和设备
CN109257153B (zh) 2017-03-24 2020-03-20 华为技术有限公司 一种参考信号发送方法、接收方法和装置
CN108631831B (zh) 2017-03-24 2021-10-26 华为技术有限公司 信息的传输方法和设备
CN113472410B (zh) * 2018-01-12 2023-07-18 华为技术有限公司 无线通信系统中信道状态信息反馈方法和装置
US11350269B2 (en) 2019-10-31 2022-05-31 Qualcomm Incorporated Antenna correlation feedback for partial reciprocity
CN112867049B (zh) * 2019-11-12 2023-06-09 维沃移动通信有限公司 一种测量配置方法、装置及系统
CN111245528B (zh) * 2020-01-13 2022-04-29 普联国际有限公司 一种基于信道状态信息的天线检测方法和天线检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276937A (zh) * 1997-08-22 2000-12-13 艾利森公司 用于自动信道测量的方法和设备
CN1918840A (zh) * 2004-02-13 2007-02-21 艾利森电话股份有限公司 用于多输入多输出通信系统的自适应反馈
WO2008096997A2 (en) * 2007-02-05 2008-08-14 Lg Electronics Inc. Method for transmitting channel quality information based on differential scheme

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142864B2 (en) 2003-04-23 2006-11-28 Qualcomm, Incorporated Methods and apparatus of enhancing performance in wireless communication systems
EP1639765A1 (en) 2003-06-17 2006-03-29 Koninklijke Philips Electronics N.V. Coordinating radio resource usage in unlicensed frequency bands
US8249518B2 (en) * 2003-12-29 2012-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Network controlled feedback for MIMO systems
WO2006005220A1 (fr) * 2004-07-09 2006-01-19 Shanghai Research Centre For Wireless Technologies Reseau sans fil de cellules logicielles hierarchiques et procede de controle d'acces associe
JP4884722B2 (ja) 2005-03-31 2012-02-29 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
US8483200B2 (en) 2005-04-07 2013-07-09 Interdigital Technology Corporation Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
US7603141B2 (en) 2005-06-02 2009-10-13 Qualcomm, Inc. Multi-antenna station with distributed antennas
CN1921463B (zh) 2005-08-23 2010-05-05 中兴通讯股份有限公司 正交频分复用移动通信系统的信道估计方法和实现装置
CN100550685C (zh) * 2005-10-05 2009-10-14 中兴通讯股份有限公司 多用户多输入多输出系统中下行链路自适应的方法及系统
US8068872B2 (en) * 2005-10-06 2011-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Signaling support for antenna selection using subset lists and subset masks
JP4898786B2 (ja) * 2006-03-24 2012-03-21 パナソニック株式会社 無線通信端末装置及び無線通信基地局装置
EP2025072A1 (en) * 2006-06-02 2009-02-18 Qualcomm Incorporated Multi-antenna station with distributed antennas
KR100847015B1 (ko) * 2006-12-08 2008-07-17 한국전자통신연구원 빔 포밍 방법 및 그 장치
US7899015B2 (en) * 2007-03-02 2011-03-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for resource reuse in a communication system
KR101307123B1 (ko) 2007-05-04 2013-09-10 삼성전자주식회사 직교 주파수 분할 다중 접속 시스템에서의 데이터 송수신방법 및 장치
CN101689958B (zh) * 2007-07-06 2013-07-17 艾利森电话股份有限公司 用于在电信系统中传送信道质量信息的方法和设备
EP2237460A4 (en) * 2007-12-25 2014-05-28 Panasonic Corp Radio communication device, radio communication system and radio communication method
WO2010017101A2 (en) * 2008-08-05 2010-02-11 Interdigital Patent Holdings, Inc. Method and apparatus for implementing multi-cell cooperation techniques
US8547954B2 (en) * 2008-08-28 2013-10-01 Qualcomm Incorporated Methods and apparatus of adapting number of advertised transmit antenna ports
US8948704B2 (en) * 2008-10-22 2015-02-03 Qualcomm Incorporated Scope of channel quality reporting region in a multi-carrier system
KR101236920B1 (ko) * 2008-11-04 2013-02-25 노키아 코포레이션 비대칭 빔 조향 프로토콜
US8761834B2 (en) * 2008-12-31 2014-06-24 Motorola Mobility Llc Method and apparatus for antenna selection and power control in a multiple input multiple output wireless communication system
JP5607143B2 (ja) * 2009-04-21 2014-10-15 マーベル ワールド トレード リミテッド 通信方法、通信装置、携帯通信端末、チップセット、および、通信システム
US8515363B2 (en) * 2009-06-19 2013-08-20 Sharp Kabushiki Kaisha Systems and methods for providing a reduced power amplifier transmission mode
US8879602B2 (en) * 2009-07-24 2014-11-04 At&T Mobility Ii Llc Asymmetrical receivers for wireless communication
US20110194504A1 (en) * 2009-08-12 2011-08-11 Qualcomm Incorporated Method and apparatus for supporting single-user multiple-input multiple-output (su-mimo) and multi-user mimo (mu-mimo)
KR101416783B1 (ko) * 2009-08-14 2014-07-08 노키아 솔루션스 앤드 네트웍스 오와이 협력형 멀티포인트 전송을 위한 개선들
US8948097B2 (en) * 2009-09-30 2015-02-03 Qualcomm Incorporated UE-RS sequence initialization for wireless communication systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276937A (zh) * 1997-08-22 2000-12-13 艾利森公司 用于自动信道测量的方法和设备
CN1918840A (zh) * 2004-02-13 2007-02-21 艾利森电话股份有限公司 用于多输入多输出通信系统的自适应反馈
WO2008096997A2 (en) * 2007-02-05 2008-08-14 Lg Electronics Inc. Method for transmitting channel quality information based on differential scheme

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2496008A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9872279B2 (en) 2011-09-29 2018-01-16 Sun Patent Trust Method for determining channel quality indicator, base station and user equipment therefor
US10390336B2 (en) 2011-09-29 2019-08-20 Sun Patent Trust Method for determining channel quality indicator, base station and user equipment therefor
EP2765809A4 (en) * 2011-10-03 2015-05-06 Ntt Docomo Inc MOBILE COMMUNICATION METHOD, WIRELESS BASE STATION, AND MOBILE STATION
RU2573602C2 (ru) * 2011-10-03 2016-01-20 Нтт Докомо, Инк. Способ мобильной связи, базовая радиостанция и мобильная станция
US9438391B2 (en) 2011-10-03 2016-09-06 Ntt Docomo, Inc. Mobile communication method, radio base station, and mobile station
CN105917594A (zh) * 2014-12-11 2016-08-31 华为技术有限公司 基站、移动台及其方法
JP2016028493A (ja) * 2015-09-17 2016-02-25 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America チャネル品質インジケータを決定するための方法およびユーザ機器

Also Published As

Publication number Publication date
EP3393165B1 (en) 2020-01-22
EP3684098B1 (en) 2022-05-11
US10630362B2 (en) 2020-04-21
EP2496008B1 (en) 2018-05-16
BR112012010218B1 (pt) 2021-07-13
ES2922531T3 (es) 2022-09-16
EP3393165A1 (en) 2018-10-24
CN102056220B (zh) 2014-02-19
JP5504524B2 (ja) 2014-05-28
BR122018004895B1 (pt) 2021-08-24
BR112012010218A2 (pt) 2016-04-26
EP2496008A1 (en) 2012-09-05
US20170244463A1 (en) 2017-08-24
EP2496008A4 (en) 2012-10-10
CN102056220A (zh) 2011-05-11
CN102845095A (zh) 2012-12-26
JP2013511169A (ja) 2013-03-28
CN102845095B (zh) 2016-10-05
US20120213113A1 (en) 2012-08-23
US9673883B2 (en) 2017-06-06
EP3684098A1 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2011050727A1 (zh) 实现信道测量的方法及装置
US10644777B2 (en) Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
US20170353985A1 (en) Method of transceiving for device to device communication
JP5592567B2 (ja) 多地点協調通信における協調セルセット確立方法
US9882816B2 (en) Method of mapping CSI-RS ports to resource blocks, base station and user equipment
CN108683474B (zh) 传输公共信号的方法及其装置
KR101487375B1 (ko) 간섭을 측정하는 방법, 시스템 및 장치
CN110089145B (zh) 用于进行测量报告的方法、用户设备及网络节点
WO2013004128A1 (zh) 一种配置参考信号的方法、UE及eNB
WO2013107389A1 (zh) 测量方法,csi-rs资源共享方法和装置
WO2011038695A1 (zh) 对小区进行信道测量的方法和装置
WO2014047794A1 (zh) 反馈csi-rs资源组合的方法和装置、用户设备和基站
TWI756259B (zh) 通訊方法、終端裝置和網路裝置
US11228356B2 (en) Configuration of resources for downlink CSI measurements
CN110121913A (zh) 波束选择方法、装置及系统
WO2018059478A1 (zh) Csi测量方法及装置
WO2013116977A1 (zh) 确定下行协作多点测量集合的方法及其装置
WO2016082224A1 (zh) 一种资源配置的方法、用户设备及基站
WO2014000206A1 (zh) 信道状态信息处理方法及终端
WO2013185512A1 (zh) 提供csi-rs信息的方法及通信终端
JP2023535801A (ja) マルチtrp urllc方式のためのcsiフィードバック
US9660838B2 (en) Device and method for adaptive channel estimation
CN113596782A (zh) 一种数据传输方法及通信装置
WO2022153264A1 (en) Csi feedback for single dci based multi-trp transmission
WO2015070457A1 (zh) 一种提高信道测量准确性的方法、基站和用户设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047842.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012535613

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1051/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010826090

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010218

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010218

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120430