WO2018059478A1 - Csi测量方法及装置 - Google Patents

Csi测量方法及装置 Download PDF

Info

Publication number
WO2018059478A1
WO2018059478A1 PCT/CN2017/103925 CN2017103925W WO2018059478A1 WO 2018059478 A1 WO2018059478 A1 WO 2018059478A1 CN 2017103925 W CN2017103925 W CN 2017103925W WO 2018059478 A1 WO2018059478 A1 WO 2018059478A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
csi
information
measurement
channel
Prior art date
Application number
PCT/CN2017/103925
Other languages
English (en)
French (fr)
Inventor
王婷
窦圣跃
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710184954.6A external-priority patent/CN107888268B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019006375A priority Critical patent/BR112019006375A2/pt
Priority to JP2019517837A priority patent/JP6828146B2/ja
Priority to EP17854928.3A priority patent/EP3534550B1/en
Publication of WO2018059478A1 publication Critical patent/WO2018059478A1/zh
Priority to US16/371,927 priority patent/US10939315B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a CSI (Channel State Information) measurement method and apparatus.
  • CSI Channel State Information
  • next-generation mobile communication systems require large-capacity and high-quality data transmission, and MIMO (Multiple-Input Multiple-Output) technology is adopted. It is considered to be one of the key technologies for realizing high-speed data transmission in the future. It has broad application prospects in the fourth generation (4G) and fifth generation (5G) mobile communication systems.
  • 4G fourth generation
  • 5G fifth generation
  • a plurality of transmit antennas of a conventional centralized MIMO system are concentrated on a base station (BS) side. Different from centralized MIMO, multiple transmit antennas of distributed MIMO systems are distributed in different geographical locations, and each pair of transceiver links is more independent, with large capacity, low power consumption, better coverage, and low body.
  • Advantages such as electromagnetic damage are considered to be one of the alternatives for future wireless communication systems.
  • CoMP Coordinatd Multipoint Transmission
  • Multiple neighbor cells in CoMP technology can jointly process or coordinate edge users to avoid interference and improve edge user throughput.
  • the downlink CoMP technologies mainly include JT (Joint Transmission), cooperative scheduling, CS/CB (Coordinated Scheduling and Beamforming), and DPS/DPB (Dynamic Point Selection/Dynamic Point Blanking).
  • JT Joint Transmission
  • CS/CB Coordinatd Scheduling and Beamforming
  • DPS/DPB Dynamic Point Selection/Dynamic Point Blanking
  • JT is divided into coherent JT and non-coherent JT.
  • the serving base station needs to know the downlink channel conditions of each station to the target user.
  • a reference signal that is, a CSI-RS (Channel State Information Reference Signal) is provided.
  • the terminal estimates the interference state of the channel by measuring the specific CSI-RS, and obtains a CSI-IM (Channel State Information Interference Measurement), and passes the PUCCH (Physical Uplink Control Channel) CSI.
  • the IM information will be reported to the serving base station.
  • the base station indicates the terminal by configuring high-level RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • JT is to simultaneously schedule multiple cells as one user to transmit data, which will result in different frequency domain location interference situations.
  • CSI-IM and CSI rate matching are generally configured in full bandwidth, and it is impossible to measure the interference in a specific frequency domain position in the bandwidth.
  • the present application provides a CSI measurement. method.
  • a CSI measurement method including: acquiring, by a first network device, CSI configuration information that is sent by a second network device, where the first frequency domain indication information is sent, where the CSI configuration information, Instructing the first network device to perform CSI measurement; the first frequency domain indication information is used to indicate a frequency domain location of the CSI measurement by the first network device; and the first network device is configured to measure the location according to the CSI configuration information.
  • the reference signal in the frequency domain indicated by the first frequency domain indication information is obtained, and CSI is obtained.
  • the first frequency domain indication information includes channel splitting information, where the channel splitting information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the method further includes: dividing, by the first network device, a channel bandwidth into multiple resource blocks according to a preset division manner.
  • the first frequency domain indication information includes: each of the multiple resource blocks of the channel bandwidth corresponding to one frequency domain measurement identifier.
  • the frequency domain measurement identifier includes a first measurement identifier and a second measurement identifier.
  • the first network device measures a reference signal on a resource block whose frequency bandwidth measurement identifier is the first measurement identifier in the channel bandwidth.
  • the first frequency domain indication information includes: an information identifier of the resource block to be measured; and the reference signal in the frequency domain indicated by the first frequency domain indication information, including: the first The network device acquires an information identifier of the resource block to be measured, where the information identifier is used to indicate a frequency domain location of the measurement resource; and the first network device measures a reference signal on the resource block corresponding to the frequency domain location.
  • the first network device acquires the CSI configuration information that is sent by the second network device and includes the first frequency domain indication information, where the first network device obtains the RRC or the physical layer signaling by using the RRC or the physical layer signaling.
  • the reference signal includes: a channel measurement reference signal and/or an interference measurement reference signal.
  • the method further includes: sending, by the first network device, the obtained CSI to the second network device, where the obtained CSI includes:
  • the first network device obtains CSI corresponding to the target resource blocks in the multiple resource blocks respectively; or the first network device obtains CSI corresponding to the target resource blocks in the multiple resource blocks, and the target
  • the CSI corresponding to the resource block is processed in a preset manner, and the processing result is taken as the CSI.
  • a method for measuring a CSI includes: transmitting, by a second network device, CSI configuration information including first frequency domain indication information to a first network device, where the CSI configuration information is used by Instructing the first network device to perform CSI measurement; the first frequency domain indication information is used to indicate a frequency domain location of the CSI measurement by the first network device, so that the first network device performs measurement according to the CSI configuration information.
  • the first frequency domain indicates a reference signal in a frequency domain indicated by the information.
  • the first frequency domain indication information includes channel division information, where the channel division information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the method further includes: the second network device, according to a preset division manner, mapping the channel bandwidth Divided into multiple resource blocks.
  • the first frequency domain indication information includes: each of the multiple resource blocks of the channel bandwidth corresponding to one frequency domain measurement identifier.
  • the frequency domain measurement identifier includes a first measurement identifier and a second measurement identifier, where the first measurement identifier is used to indicate that the first network device identifies the frequency domain measurement identifier in the channel bandwidth as the first The resource block of the measurement identifier is used for measurement; the second measurement identifier is used to indicate that the first network device does not measure the resource block whose frequency domain measurement identifier in the channel bandwidth is the second measurement identifier.
  • a CSI measurement method including: the first frequency domain indication information, including: an information identifier of a resource block to be measured, so that the first network device according to the information Identify the corresponding resource block in the measured channel bandwidth.
  • the sending, by the second network device, the CSI configuration information that includes the first frequency domain indication information to the first network device includes: the second network device, by using radio resource control, RRC or physical layer signaling, to the A network device sends CSI configuration information including the first frequency domain indication information.
  • the reference signal includes: a channel measurement reference signal and/or an interference measurement reference signal.
  • the method further includes: the second network device acquiring the CSI sent by the first network device.
  • the CSI includes: a CSI corresponding to the target resource block in the multiple resource blocks by the first network device; or the first network device acquiring a target resource block in the multiple resource blocks.
  • CSI and the CSI obtained by processing the CSI corresponding to the target resource block according to a preset manner.
  • a rate matching method including: acquiring, by a first network device, rate configuration information that is sent by a second network device, where the second frequency domain indication information is used; The first network device performs rate matching; the second frequency domain indication information is used to indicate a frequency domain location where the first network device performs rate matching; and the first network device determines, according to the rate configuration information, The second frequency domain indicates a resource location of a reference signal in a frequency domain corresponding to the information; the first network device performs rate matching on the received data according to the resource location.
  • the second frequency domain indication information includes channel splitting information, where the channel splitting information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the method further includes: dividing, by the first network device, the channel bandwidth into multiple resource blocks according to a preset division manner.
  • the second frequency domain indication information includes: each resource block of the multiple resource blocks of the channel bandwidth respectively corresponding to one rate matching identifier; the determining corresponding to the second frequency domain indication information
  • the resource location of the reference signal in the frequency domain includes: a rate matching identifier corresponding to each resource block of the plurality of resource blocks in which the first network device acquires the channel bandwidth, where the rate matching identifier includes a first rate a matching identifier and a second rate matching identifier; the first network device determines a resource location in the channel bandwidth that is a reference signal on a resource block identified by the first rate matching identifier.
  • the second frequency domain indication information includes: an information identifier of the to-be-matched resource block, and the resource location of the reference signal in the frequency domain corresponding to the second frequency domain indication information, including Obtaining, by the first network device, an information identifier of the to-be-matched resource block, where the information identifier includes a frequency domain location, where the first network device determines a resource of a reference signal on the resource block corresponding to the frequency domain location position.
  • the first network device acquires a rate configuration that is sent by the second network device and includes the second frequency domain indication information. And the first network device obtains the rate configuration information that is sent by the second network device and includes the second frequency domain indication information by using the radio resource control RRC or the physical layer signaling.
  • a rate matching method including: sending, by a second network device, rate configuration information including second frequency domain indication information to a first network device, where the rate configuration information is used to indicate The first network device performs rate matching; the second frequency domain indication information is used to indicate a frequency domain location where the first network device performs rate matching; so that the first network device determines according to the rate configuration information. a resource location of a reference signal in a frequency domain corresponding to the second frequency domain indication information and rate matching the received data according to the resource location.
  • the second frequency domain indication information includes channel splitting information, where the channel splitting information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the second frequency domain indication information includes: each resource block of the multiple resource blocks of the channel bandwidth respectively corresponding to one rate matching identifier.
  • the rate matching identifier includes a first measurement identifier and a second measurement identifier, where the first measurement identifier is used to indicate that the first network device identifies, as the first measurement identifier, a rate matching identifier in the channel bandwidth.
  • the data on the resource block is rate matched; the second measurement identifier is used to indicate that the first network device does not perform rate matching on data on the resource block whose rate matching identifier in the channel bandwidth is the second measurement identifier.
  • the second frequency domain indication information includes: an information identifier of the to-be-matched resource block.
  • the information identifier includes a frequency domain location, where the information identifier is used to instruct the first network device to determine a resource location of a reference signal on a resource block corresponding to the frequency domain location, and indicate the The first network device performs rate matching on the received data according to the resource location.
  • the second network device sends, to the first network device, rate configuration information that includes the second frequency domain indication information, where the second network device controls RRC or physical layer signaling by using radio resources. Transmitting rate configuration information including the second frequency domain indication information to the first network device.
  • a channel state information CSI measurement apparatus including: a receiving unit, configured to acquire CSI configuration information that is sent by a second network device and includes first frequency domain indication information, where the CSI configuration is performed.
  • the information includes: first frequency domain indication information, where the CSI configuration information is used to indicate that the first network device performs CSI measurement, and the first frequency domain indication information is used to indicate that the first network device performs CSI measurement.
  • a processing unit configured to measure, according to the CSI configuration information, a reference signal of a frequency domain indicated by the first frequency domain indication information.
  • the first frequency domain indication information includes channel division information, where the channel division information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the first frequency domain indication information includes channel partitioning information, where the channel partitioning information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the processing unit is further configured to divide the channel bandwidth into multiple resource blocks according to a preset division manner.
  • the first frequency domain indication information includes: each of the multiple resource blocks of the channel bandwidth corresponds to one frequency domain measurement identifier.
  • the processing unit is further configured to acquire a frequency domain measurement identifier corresponding to each of the plurality of resource blocks of the channel bandwidth, where the frequency domain measurement identifier includes a first measurement identifier and a second measurement identifier;
  • the processing unit is further configured to perform measurement on a reference signal on the resource block identified by the frequency domain measurement in the channel bandwidth as the first measurement identifier.
  • the first frequency domain indication information includes: an information identifier of the resource block to be measured; the processing unit is further configured to acquire an information identifier of the resource block to be measured, where the information identifier is used to indicate the measurement resource. a frequency domain location; the processing unit is further configured to measure a reference signal on a resource block corresponding to the frequency domain location.
  • the sending unit is configured to acquire, by the first network device, CSI configuration information that is sent by the second network device and includes the first frequency domain indication information by using radio resource control RRC or physical layer signaling.
  • the method further includes: the sending unit is further configured to send the obtained CSI to the second network device, where the obtained CSI includes:
  • the first network device obtains CSI corresponding to the target resource blocks in the multiple resource blocks respectively; or the first network device obtains CSI corresponding to the target resource blocks in the multiple resource blocks, and the target
  • the CSI corresponding to the resource block is processed in a preset manner, and the processing result is taken as the CSI.
  • a channel state information CSI measurement apparatus including: a sending unit, configured to send, by a second network device, CSI configuration information including first frequency domain indication information to a first network device;
  • the CSI configuration information is used to indicate that the first network device performs the CSI measurement, where the first frequency domain indication information is used to indicate the frequency domain location of the CSI measurement by the first network device, so that the first network device
  • channel division information is used, where the channel division information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the method further includes: a processing unit, configured to divide the channel bandwidth into multiple resource blocks according to a preset division manner.
  • the first frequency domain indication information includes: each of the multiple resource blocks of the channel bandwidth corresponds to one frequency domain measurement identifier.
  • the frequency domain measurement identifier includes a first measurement identifier and a second measurement identifier
  • the processing unit is further configured to indicate that the first network device identifies the frequency domain measurement identifier in the channel bandwidth as the first And measuring, by the processing unit, the first network device does not perform measurement on the resource block whose frequency domain measurement identifier in the channel bandwidth is the second measurement identifier.
  • the first frequency domain indication information includes: an information identifier of the resource block to be measured, so that the first network device determines a corresponding resource block in the channel bandwidth according to the information identifier.
  • the sending unit is further configured to send CSI configuration information including the first frequency domain indication information to the first network device by using radio resource control RRC or physical layer signaling.
  • the method further includes: the sending unit, configured to acquire CSI sent by the first network device.
  • the CSI includes: a CSI corresponding to the target resource block in the multiple resource blocks by the first network device; or the first network device acquiring a target resource block in the multiple resource blocks.
  • CSI and the CSI obtained by processing the CSI corresponding to the target resource block according to a preset manner.
  • an interference measurement method including: receiving, by a terminal, first information from a base station, where the first information includes frequency domain information of CSI interference measurement, and frequency of the CSI interference measurement The domain information has a corresponding relationship with the frequency domain information measured by the CSI channel; the terminal performs interference measurement on the CSI interference measurement resource in the frequency domain corresponding to the frequency domain information of the CSI interference measurement according to the frequency domain information of the CSI interference measurement.
  • the first information is CSI configuration information, where the CSI configuration information includes frequency domain information of the CSI channel measurement, frequency domain information of the CSI channel measurement, and / or the CSI
  • the frequency domain information of the interference measurement is a subset of the full bandwidth.
  • an interference measurement method including: determining, by a base station, frequency domain information of a CSI interference measurement, where frequency domain information of the CSI interference measurement has a correspondence relationship with frequency domain information of a CSI channel measurement
  • the base station sends first information to the terminal, where the first information includes frequency domain information of the CSI interference measurement.
  • the frequency domain information of the CSI channel measurement and the frequency domain information of the CSI interference measurement are a subset of the full bandwidth.
  • an interference measurement method including: receiving, by a terminal, second information from a base station, where the second information includes frequency domain information measured by a CSI channel, and frequency of the CSI interference measurement
  • the domain information has a corresponding relationship with the frequency domain information measured by the CSI channel; the terminal determines the frequency domain information of the CSI interference measurement according to the frequency domain information measured by the CSI channel, and corresponds to the frequency domain information of the CSI interference measurement.
  • the CSI interference measurement resources on the domain perform interference measurement.
  • the frequency domain information of the CSI channel measurement and the frequency domain information of the CSI interference measurement are a subset of the full bandwidth.
  • an interference measurement method includes: acquiring, by a base station, frequency domain information of a CSI channel measurement; the base station sending, to the terminal, second information, where the second information includes the The frequency domain information measured by the CSI channel, and the frequency domain information of the CSI channel measurement of the CSI interference measurement has a corresponding relationship.
  • the CSI interference measurement information and/or the frequency domain information of the CSI channel measurement is a subset of the full bandwidth.
  • an interference measurement apparatus includes: a transceiver unit, configured to receive first information from a base station, where the first information includes frequency domain information of CSI interference measurement, and the CSI The frequency domain information of the interference measurement has a corresponding relationship with the frequency domain information of the CSI channel measurement; the processing unit is configured to: according to the frequency domain information of the CSI interference measurement, the frequency domain information of the CSI interference measurement corresponds to the CSI in the frequency domain Interference measurement resources are used for interference measurement.
  • the first information is CSI configuration information, where the CSI configuration information includes frequency domain information of the CSI channel measurement, frequency domain information of the CSI channel measurement, and / or the frequency domain information of the CSI interference measurement is a subset of the full bandwidth.
  • an interference measurement apparatus includes: a processing unit, configured to determine frequency domain information of a CSI interference measurement, frequency domain information of the CSI interference measurement, and a frequency domain of a CSI channel measurement The information has a corresponding relationship; the transceiver unit is configured to send the first information to the terminal, where the first information includes frequency domain information of the CSI interference measurement.
  • the frequency domain information measured by the CSI channel and/or the frequency domain information of the CSI interference measurement is a subset of the full bandwidth.
  • an interference measurement apparatus includes: a transceiver unit, configured to receive second information from a base station, where the second information includes frequency domain information measured by a CSI channel, the CSI The frequency domain information of the interference measurement has a corresponding relationship with the frequency domain information measured by the CSI channel; the processing unit is configured to determine frequency domain information of the CSI interference measurement according to the frequency domain information measured by the CSI channel, and measure the CSI interference.
  • the frequency domain information corresponds to the CSI interference measurement resources in the frequency domain for interference measurement.
  • the CSI interference measurement information and/or the frequency domain information of the CSI channel measurement is a subset of the full bandwidth.
  • an interference measurement apparatus includes: a processing unit, configured to acquire frequency domain information of a CSI channel measurement; and a transceiver unit, configured to send second information to the terminal, where The second information includes frequency domain information of the CSI channel measurement, and the frequency domain information of the CSI interference measurement CSI channel measurement has a corresponding relationship.
  • the CSI interference measurement information and the frequency domain information of the CSI channel measurement are a subset of the full bandwidth.
  • the frequency domain information of the CSI channel measurement of the CSI interference measurement has a corresponding relationship, including: frequency domain information of the CSI interference measurement, and the CSI channel measurement.
  • the frequency domain information of the CSI channel measurement is the same as the frequency domain information of the CSI interference measurement; or the frequency domain information of the CSI interference measurement is not the frequency domain information of the CSI channel measurement. the same.
  • the CSI interference measurement resource includes a non-zero power channel state information reference signal NZP CSI-RS resource and/or a zero power channel state information reference signal ZP CSI-RS resource.
  • the subset of full bandwidth includes N resource units, where N is greater than or equal to 1, and is less than the total resource unit number of the full bandwidth.
  • the subset of full bandwidth includes M subbands, where M is greater than or equal to 1, and less than the total number of subbands of the full bandwidth.
  • the CSI channel measurement includes one or a combination of the following: channel quality indication CQI measurement, precoding matrix indication PMI measurement, rank indication RI measurement, and CRI measuring.
  • FIG. 1 is a schematic diagram of a scenario application according to an exemplary embodiment
  • FIG. 2 is a flowchart of a CSI measurement method according to an exemplary embodiment
  • FIG. 3 is a flow chart of step S220 of Figure 2;
  • FIG. 4 is another flow chart of step S220 of Figure 2;
  • FIG. 5 is a flowchart of a CSI measurement method according to an exemplary embodiment
  • FIG. 6 is a flowchart of a rate matching method according to an exemplary embodiment
  • FIG. 7 is a flow chart of step S620 of Figure 6;
  • Figure 8 is another flow chart of step S620 of Figure 6;
  • FIG. 9 is a flowchart of a rate matching method according to an exemplary embodiment
  • FIG. 10 is a flowchart of an interference measurement method according to an exemplary embodiment
  • FIG. 11 is a flowchart of an interference measurement method according to an exemplary embodiment
  • FIG. 12 is a flowchart of an interference measurement method according to an exemplary embodiment
  • FIG. 13 is a flowchart of an interference measurement method according to an exemplary embodiment
  • FIG. 14 is a schematic diagram of a scenario of interference measurement according to an exemplary embodiment
  • FIG. 15 is a schematic diagram of a scenario of interference measurement according to an exemplary embodiment
  • FIG. 16 is a schematic diagram of an interference measuring apparatus according to an exemplary embodiment
  • FIG. 17 is a schematic diagram of a first network device according to an exemplary embodiment
  • FIG. 18 is a schematic diagram of a second network device according to an exemplary embodiment
  • FIG. 19 is a schematic diagram of a first network device according to still another exemplary embodiment.
  • FIG. 20 is a schematic diagram of a second network device according to still another exemplary embodiment.
  • FIG. 21 is a schematic diagram of an apparatus according to still another exemplary embodiment.
  • the related art When performing CSI-IM measurement, the related art generally configures a CSI Process for a terminal of a serving cell through a base station of a serving cell according to an existing protocol, so that the terminal performs CSI-IM according to a CSI Process configured by the base station.
  • the CSI Process configured by the serving cell for the terminal is generally based on measurements of the entire channel bandwidth.
  • the terminal Even if the terminal measures interference information in the channel bandwidth, the terminal cannot determine which frequency band in the channel bandwidth the interference information is specifically.
  • some frequency bands generally have interference information, and some frequency bands have no interference information. If the terminal performs CSI-IM on the entire bandwidth, the terminal performs measurement according to the CSI Process configured by the serving cell to the terminal, which causes waste of resources. .
  • the terminal simultaneously communicates with the transmission point TP1 and the transmission point TP2.
  • the terminal needs to separately perform CSI-IM on the channel bandwidth of the two communication channels to obtain the optimal scheduling subband of the two channel bandwidths respectively. So that TP1 and TP2 respectively communicate with the terminal through the corresponding optimal subbands.
  • the two interfere with each other, so that the degree of interference of different sub-bands in the two communication channels is different, which causes the terminal to CSI in the related art.
  • the measurement result of the IM measurement may be inaccurate.
  • the CSI-IM of the full bandwidth by the terminal may also cause a large overhead of the pilot, resulting in waste of resources.
  • a CSI measurement method and apparatus are provided in the embodiment of the present application.
  • the embodiment of the present application is applicable to the process of measuring the CSI, and may be applied to the communication process between the terminal and the terminal, the terminal and the base station, and between the base station and the base station, and the embodiment of the present application is not limited thereto.
  • the present application is described by taking communication between a terminal and a base station as an example.
  • a network device such as a base station or other type of transmission point device, is of course not limited to the above two devices.
  • the second device may also be a terminal capable of performing configuration operations on other terminals.
  • the base station may be an evolved base station (Evolved Node B, referred to as an eNB or an e-NodeB), a macro base station, a micro base station (also referred to as a "small base station"), a pico base station, and an access in an LTE system or an evolved system thereof.
  • An access point (AP) or a transmission point (TP) may also be a base station in a future network, such as a base station in a 5G network.
  • the terminal may also be referred to as a user equipment (User Equipment, UE for short), or may be called a terminal, a mobile station (Mobile Station, MS for short), a mobile terminal (Mobile Terminal), etc.
  • the terminal may communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, or the like.
  • the terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • the terminal in the embodiment of the present application may also be a D2D (Device to Device) terminal or an M2M (Machine to Machine) terminal.
  • the base stations 100, 300 base station simultaneously communicate with the terminal 200, and the mobility of the terminal 200 is performed.
  • the CSI-IM is performed by the terminal 200, and the measurement result is reported by the base station 100 and/or the base station 300, which is an important way for the secondary base station to perform handover determination.
  • the CSI measurement of the channel bandwidth between the terminal 200 and the base station 100 in FIG. 1 is taken as an example, and the CSI measurement can be performed in the same manner for the channel bandwidth between the terminal 200 and the base station 300.
  • the terminal can also perform CSI measurement on the channel bandwidths of the base station 100 and the base station 300 at the same time.
  • the base station 100 In order for the terminal 200 to perform CSI measurement, the base station 100 also transmits a reference signal to the terminal.
  • a CSI reference signal that is, a CSI-RS, is provided for a terminal to measure CSI.
  • the base station 100 determines which frequency domain of the subband in the channel bandwidth needs to be measured. Therefore, the base station 100 generates the CSI configuration information, where the CSI configuration information includes the first frequency domain indication information, where the CSI configuration information is used to indicate that the terminal measures the reference signal in the frequency domain corresponding to the first frequency domain indication information in the channel bandwidth.
  • the CSI configuration information used by the related technology is as follows: the serving base station can configure multiple CSI processes for the target user, and in each CSI process, the terminal non-zero power (NZP) is used to measure channel information, and Indicates an Interference Measurement Resource (IMR) for measuring interference.
  • NZP terminal non-zero power
  • IMR Interference Measurement Resource
  • the user report content and/or report mode corresponding to each CSI process are also specified in the configuration.
  • the specific CSI configuration information may include: CSI process information, including a CSI process identifier csi-ProcessId, a configuration identifier csi-RS-ConfigNZPId of the measurement channel information, and a configuration identifier csi-IM-ConfigId of the measurement interference information. Therefore, in the embodiment of the present application, in order to implement the accurate measurement of the channel bandwidth by the terminal 200, the first frequency domain indication information is added to the existing CSI configuration information.
  • the channel bandwidth In order for the terminal 200 to perform CSI measurement on the reference signal in the corresponding frequency domain according to the CSI configuration information sent by the base station 100, the channel bandwidth needs to be divided.
  • the channel bandwidth may be divided in two ways.
  • the first channel bandwidth division manner is that the base station 100 and the terminal 200 perform division according to a preset manner, and in the second division manner, the base station The method of 100 can be used to define the channel bandwidth division.
  • the division mode is included in the CSI configuration information and sent to the terminal 200.
  • the terminal 200 can perform channel division according to the CSI configuration information sent by the base station 100.
  • the terminal 200 and the base station 100 may divide the channel bandwidth according to a predetermined manner, and divide the channel bandwidth into multiple resource blocks.
  • the channel bandwidth is divided into multiple resource blocks, and each resource block may be one RB, or may be two RBs, or multiple RBs.
  • the resources contained in each resource block should be smaller than the channel bandwidth.
  • a Resource Block (RB) is a resource unit (resource granularity) of the existing LTE technology.
  • resource elements may not be defined in terms of RBs.
  • the resource unit or resource granularity may be specified in other ways, and is not limited herein. Exemplarily, if the channel bandwidth is 100 RBs, if the channel bandwidth is divided by 2 RBs, the channel bandwidth can be divided into 50 resource blocks, and each resource block is 2 RBs.
  • the first channel bandwidth division manner is pre-negotiated by the terminal 200 and the base station 100, and the base station 100 may not determine the division rule again to the terminal.
  • the base station 100 may include the channel bandwidth division manner in the CSI configuration information, and the terminal 200 divides the channel bandwidth according to the CSI configuration information sent by the base station 100.
  • the CSI configuration information sent by the base station 100 to the terminal includes the first frequency domain indication information, and the terminal 200 divides the channel bandwidth according to the channel division information in the first frequency domain indication information.
  • the terminal 200 After dividing the channel bandwidth into a plurality of resource blocks, the terminal 200 measures the reference signal according to the CSI configuration information transmitted by the base station 100. It should be noted that the reference signal may be sent by the base station 100, or may be sent by the base station 300, or may be a reference signal sent by other base stations, transmission points, and the like.
  • the terminal 200 does not need to perform CSI measurement on the entire channel bandwidth according to the CSI configuration information, and may measure the corresponding frequency domain in the first frequency domain indication information.
  • the terminal 200 When the terminal 200 performs CSI measurement, there are two ways to measure the channel bandwidth divided into multiple resource blocks.
  • each of the plurality of resource blocks divided in the channel bandwidth corresponds to one frequency domain measurement identifier, and the frequency domain measurement identifier can be divided into a first measurement identifier and a second measurement identifier, and the terminal 200:
  • the resource block corresponding to the first measurement identifier is measured, and the resource block corresponding to the second measurement identifier is not measured.
  • the channel bandwidth is 100 RBs
  • the channel bandwidth is divided by 2 RBs
  • the channel bandwidth is divided into 50 resource blocks
  • each resource block is 2 RBs.
  • the CSI configuration information may include 50 bits, and the 50 resource blocks are respectively identified.
  • the bit information of the measurement identifier is 1 or 0, and the terminal 200 measures the resource block with the measurement identifier 1 and identifies the measurement as 0.
  • the resource blocks are not measured. In this way, the terminal 200 performs corresponding measurement according to the measurement identifier of the measurement resource block, and can accurately perform CSI measurement on the channel bandwidth.
  • the first measurement manner may be in the form of bit mapping.
  • the granularity of each resource block may be as follows:
  • the number of bits of the bit mapping indicated by the first frequency domain indication information is the number of RBs of the system bandwidth, that is, The number of RBs representing the channel bandwidth.
  • the number of bits of the bit mapping indicated by the first frequency domain indication information is half of the number of RBs of the system bandwidth, that is,
  • the number of bits of the bit mapping indicated by the first frequency domain indication information is that when the channel bandwidth is measured with the size of the existing RBG (Resource Block Group) size P RBs.
  • P is greater than or equal to 2 and is an integer. As shown in Table 1:
  • the number of bits of the bit mapping indicated by the first frequency domain indication information is Where K is a positive integer. As shown in table 2.
  • the first frequency domain indication information in the CSI configuration information may further include an information identifier of the resource block to be measured, where the information identifier includes a frequency domain location of the resource block to be measured.
  • the terminal 200 may measure the resource block in the corresponding frequency domain location according to the indication of the information identifier of the resource block to be measured.
  • the resource blocks in the corresponding frequency domain locations can be measured in the following manner:
  • All RBGs are divided into P subsets, and P is the size of the RBG.
  • P is the size of the RBG.
  • Each RBG subset p (0 ⁇ p ⁇ P) contains all RBGs starting from RBG p with an interval of P.
  • the RB resources allocated to a terminal must come from the same subset.
  • the first domain contains Bit, used to specify the selected RBG subset, ie the value of p.
  • the second field contains a shift bit that specifies whether the resources in the subset are offset, 1 indicates an offset, and 0 indicates no offset.
  • the third field contains a bitmap, and each bit of the bitmap corresponds to one RB in the selected RBG subset (note: not RBG).
  • the highest bit represents the first RB in the subset, the lowest bit represents the last RB in the subset, and so on. If an RB is assigned to a terminal, the corresponding bit in the bitmap is set to 1; otherwise, it is set to 0.
  • the size of the bitmap that is, the number of bits contained in the bitmap for
  • the RB of a selected RBG subset starts with the smallest RB number + offset ⁇ shift (p) in the subset and corresponds to the highest bit in the bitmap.
  • the offset is expressed in number of RBs and is the offset that occurs within the selected RBG subset. If the second field is 0, the offset ⁇ shift (p) of the RBG subset p is 0; if the second field is 1, the offset of the RBG subset p And the lowest bit in the bitmap is adjusted to correspond to the last RB in the RBG subset.
  • each bit in its bitmap can be calculated by the following formula:
  • the above RB may be a virtual resource block (VRB) or a physical resource block (PRB). Therefore, the frequency domain indication information can indicate the location of the VRB, and then the VRB is remapped to the PRB. Or you can directly indicate the location of the PRB, and there is no restriction here.
  • VRB virtual resource block
  • PRB physical resource block
  • the resource allocated to the terminal is a continuous RB, and the RB may be localized or distributed.
  • bit in the frequency domain indication field to indicate whether to use a centralized RB (such as the bit is 0) or a distributed RB (such as the bit is 1).
  • the centralized resource allocation is represented by a resource indication value RIV. From this value, the starting RB (RB start ) assigned to the terminal and the length of the continuously allocated RB (L CRBs ) can be derived. Calculated as follows:
  • Resources allocated to a terminal for distributed resource allocation can be Most up to RB. among them For increasing step values and with downstream system bandwidth Relevant, as shown in the table below.
  • the distributed resource allocation is also represented by a resource indication value RIV. With this value, the start assigned to the terminal can be derived And the length of consecutively allocated RBs Calculated as follows:
  • the above RB may be a virtual resource block (VRB) or a physical resource block (PRB). Therefore, the frequency domain indication information can indicate the location of the VRB, and then the VRB is remapped to the PRB. Or you can directly indicate the location of the PRB, and there is no restriction here.
  • VRB virtual resource block
  • PRB physical resource block
  • the resource indication method in the existing protocol may be used, and other indication methods may be used, which are not limited herein.
  • the terminal in this embodiment may be described by taking the terminal 200 in FIG. 1 as an example.
  • the terminal 200 acquires CSI configuration information sent by the base station 100 through RRC or physical layer signaling.
  • the specific frequency domain indication information may be configured for the CSI measurement resource, or may be configured for the CQI (Channel Quality Indicator) reporting. If the configuration is for the CSI measurement resource, the resource occupied by the reference signal is only located in the frequency domain indicated by the frequency domain indication information, and the UE only needs to measure the reference signal in the frequency domain location. If the CQI report is configured, the CQI reported by the UE is based on the CSI obtained by measuring only the reference signal at the frequency domain position indicated by the frequency domain indication information.
  • CQI Channel Quality Indicator
  • the base station configures frequency domain indication information for the interference measurement (CSI-IM) resource in the CSI Process, and informs the UE that the interference measured for the resource is only applicable to the indicated frequency domain location. After the UE receives the signaling, the interference measured by the UE for the resource only considers the impact on the location of the frequency domain.
  • CSI-IM interference measurement
  • the CSI information of the frequency domain may be reported in the frequency domain indication information configured for different interference measurement resources, or may be the average CSI information of the entire measurement bandwidth.
  • the specific frequency domain indication information is indicated by the frequencyConfig field, as follows:
  • the frequency domain indication information is configured for the CSI-RS resource in the CSI-RS-configNZPId.
  • the base station configures frequency domain indication information for the CSI-RS resource in the CSI-RS-config NZPId, instructs the UE to perform measurement for the resource and only applies to the frequency domain location indicated by the frequency domain indication information.
  • the base station configures the frequency domain indication information for the CQI report, and indicates that the CQI reported by the UE is based on the CSI measured by the reference signal in the frequency domain position indicated by the frequency domain indication information.
  • the terminal 200 measures the reference signal on the frequency domain corresponding to the first frequency domain indication information to obtain CSI, where the CSI may include a measurement result corresponding to each resource block measured in the channel bandwidth, or may be in each resource block to be measured.
  • the measurement results are processed in a preset manner, and the processed result is taken as CSI.
  • the preset mode may be The CSI is determined by measuring the measurement results of each resource block for averaging or taking the maximum value.
  • the terminal 200 can report the CSI to the base station 100 in the form of a measurement report.
  • the terminal is generally based on full-bandwidth rate matching, and cannot perform rate matching on signals in a specific frequency domain position in the channel bandwidth.
  • the result of the rate matching obtained by the terminal in the related art may be inaccurate and resource-consuming. Therefore, in another embodiment provided by the present application, a rate matching method is also provided for rate matching, in order to implement rate matching on the data in the specific frequency domain position in the channel bandwidth.
  • FIG. 1 as an example for explanation.
  • the process of the rate matching in the embodiment of the present application may be applied to the communication process between the terminal and the terminal, the terminal and the base station, and between the base station and the base station, and the embodiment of the present application is not limited thereto.
  • the present application is described by taking communication between a terminal and a base station as an example.
  • the base station 100 transmits rate configuration information to the terminal, where the rate matching information includes second frequency domain indication information.
  • the rate configuration information is used to indicate that the terminal 200 performs rate matching
  • the second frequency domain indication information is used to instruct the terminal 200 to perform data received on a resource location of a reference signal in a frequency domain corresponding to the second frequency domain indication information. Rate matching.
  • the second frequency domain indication information may be different from the first frequency domain indication information in the foregoing embodiment.
  • the first frequency domain indication information in the foregoing embodiment is used to indicate the frequency domain location of the CSI measurement by the terminal 200.
  • the second frequency domain indication information here mainly indicates the frequency domain location where the terminal 200 performs rate matching, and may be referred to as second frequency domain indication information.
  • the terminal 200 receives the rate configuration information sent by the base station 100, and performs rate matching on the data received at the resource location of the reference signal in the frequency domain corresponding to the second frequency domain indication information according to the rate configuration information.
  • the reference signal may be sent by the base station 100, and may also be sent by other base stations or transmission points.
  • the channel bandwidth is further divided, and the channel bandwidth is divided into multiple resource blocks.
  • the specific resource block can be divided by the channel division mode of the foregoing embodiment. No longer.
  • the specific indication method of the frequency domain indication information under the rate matching scheme is as follows:
  • the base station 100 configures frequency domain indication information in the information in the csi-RS-ConfigZPId-r11 in the PDSCH-RE-MappingQCL-Config field. That is, the base station 100 configures the frequency domain indication information for the ZP CSI-RS resource, and indicates that the UE only needs to consider the frequency band in which the ZP CSI-RS resource is rate matched.
  • the UE After the UE receives the signaling, the UE performs rate matching on the data according to the resource location where the ZP CSI-RS is located, and only considers the frequency domain in which it is located, without considering the full bandwidth for rate matching.
  • the specific RRC signaling (such as frequencyConfigList) is as follows:
  • the rate matching described above may be performed by puncturing the data after mapping to the resource, or the data may not be mapped on the resource, including but not limited to the above.
  • the frequency domain indication information and/or the rate matching frequency domain information of the CSI measurement are added in the DCI (Downlink Control Information).
  • the field is used to indicate frequency domain location information of a CSI measured reference signal or frequency domain location information used to indicate CSI reporting.
  • the base station may configure the frequency domain indication information for the different measurement resource identifiers.
  • the measurement resource identifier may be a CSI-process ID or a CSI-IM ID or an NZP CSI-RS ID, or other measurement resources, and is not limited herein.
  • the frequency domain indication is generally indicated by a relatively large granularity, which can reduce signaling overhead, such as subband granularity.
  • rate matching frequency domain indication information is as follows:
  • This field is used to indicate frequency domain location information of the rate matched reference signal.
  • the rate-matched reference signal may be a ZP CSI-RS, or other reference signal used to indicate that the UE performs rate matching, which is not limited herein.
  • the base station 100 can pre-configure multiple ZP CSI-RS IDs.
  • the UE is notified by physical layer signaling, and only the ZP CSI-RS ID is notified. That is, the base station can configure frequency domain indication information for different ZP CSI-RS IDs.
  • the second frequency domain indication information in the rate configuration information includes: each of the plurality of resource blocks of the channel bandwidth respectively corresponding to one rate matching identifier.
  • the rate matching identifier can be divided into a first rate matching identifier and a second rate matching identifier.
  • the terminal 200 determines the resource location of the reference signal in the frequency bandwidth matching identifier of the first rate matching identifier by using the rate matching identifier corresponding to each resource block in each of the multiple resource blocks in the channel bandwidth.
  • each resource block is respectively associated with a rate matching identifier, so that the terminal 200 performs rate matching on the data on the corresponding resource block according to the rate matching identifier.
  • the second frequency domain indication information may further include: an information identifier of the to-be-matched resource block, where the information identifier includes a frequency domain location, and when performing rate matching, the terminal 200 determines a resource block reference corresponding to the frequency domain location. The resource location of the signal and rate matching the data based on the location of the resource.
  • a CSI measurement method is also provided, which is applied to the first network.
  • the method may include the following steps:
  • step S210 the first network device acquires CSI configuration information that is sent by the second network device and includes the first frequency domain indication information.
  • the first network device terminal, the base station, and the like, and the second network device may also be a device such as a terminal or a base station.
  • the method can be applied in communication between a terminal and a terminal, a terminal and a base station, or a base station and a base station.
  • the CSI configuration information in the embodiment of the present application may include: first frequency domain indication information.
  • the CSI configuration information is used to indicate that the first network device performs CSI measurement
  • the first frequency domain indication information is used to indicate a frequency domain location where the first network device performs CSI measurement.
  • the first network device may obtain CSI configuration information that is sent by the second network device and includes the first frequency domain indication information by using RRC or physical layer signaling.
  • step S220 the first network device measures the reference signal in the frequency domain indicated by the first frequency domain indication information according to the CSI configuration information, to obtain CSI.
  • the reference signal in the embodiment of the present application may include: a channel measurement reference signal and/or an interference measurement reference signal.
  • the first frequency domain indication information includes channel division information, and the channel division information is used to indicate a manner of dividing the channel bandwidth into multiple resource blocks.
  • This channel bandwidth division manner is equivalent to the first channel bandwidth allocation in the above embodiment. The method is not described here. For details, refer to the above embodiments.
  • the first network device may divide the channel bandwidth into multiple resource blocks according to a preset division manner.
  • the channel bandwidth division manner is equivalent to the second channel division manner in the foregoing embodiment, and is not described here. For details, refer to the foregoing embodiment.
  • the first network device acquires measurement results corresponding to the target resource blocks in the multiple resource blocks, and uses the measurement result as the CSI.
  • the first network device acquires the measurement result corresponding to the target resource block in the multiple resource blocks, and processes the measurement result corresponding to the target resource block according to a preset manner to obtain CSI.
  • the first network device after acquiring the CSI, the first network device sends the CSI to the second network device.
  • the first frequency domain indication information includes: multiple resource blocks of the channel bandwidth. Each resource block corresponds to a frequency domain measurement identifier.
  • step S220 may further include the following steps:
  • step S221 the first network device acquires a frequency domain measurement identifier corresponding to each of the plurality of resource blocks of the channel bandwidth.
  • the frequency domain measurement identifier includes a first measurement identifier and a second measurement identifier.
  • step S222 the first network device measures the reference signal on the resource block whose frequency bandwidth measurement is identified as the first measurement identifier in the channel bandwidth.
  • the first network device is configured to measure the resource block in the channel bandwidth that is identified by the frequency domain measurement identifier as the first measurement identifier.
  • the first frequency domain indication information includes: an information identifier of the resource block to be measured.
  • step S220 may further include the following steps:
  • step S223 the first network device acquires an information identifier of the resource block to be measured, where the information identifier is used to indicate a frequency domain location of the measurement resource.
  • step S224 the first network device measures a reference signal on a resource block corresponding to the frequency domain location.
  • the embodiment of the present application is configured to obtain an information identifier of a resource block that needs to be measured, and the information identifier can correspond to a frequency domain location where the resource block to be measured is located, so that the first network device can perform measurement. .
  • the first network device sends the obtained CSI to the second network device, where the obtained CSI includes:
  • the first network device obtains the CSI corresponding to the target resource blocks in the plurality of resource blocks respectively; or the first network device obtains the CSI corresponding to the target resource block in the multiple resource blocks, and performs the CSI corresponding to the target resource block according to a preset manner. Processing, the processing result is taken as CSI.
  • a CSI measurement method is also provided, which is applied to the second network.
  • the method may include the following steps:
  • the second network device sends the CSI configuration including the first frequency domain indication information to the first network device.
  • the CSI configuration information is used to indicate that the first network device performs the CSI measurement
  • the first frequency domain indication information is used to indicate the frequency domain location of the CSI measurement by the first network device, so that the first network device is configured according to the CSI.
  • the configuration information is used to measure a reference signal in a frequency domain indicated by the first frequency domain indication information.
  • the first frequency domain indication information includes channel division information, and the channel division information is used to indicate a manner of dividing the channel bandwidth into multiple resource blocks.
  • the second network device divides the channel bandwidth between the second network device and the first network device into multiple resource blocks according to a preset division manner.
  • the two types of channel bandwidth division manners are equivalent to the first channel bandwidth division manner and the second channel bandwidth division manner in the foregoing embodiments.
  • the first frequency domain indication information includes: each of the multiple resource blocks of the channel bandwidth corresponding to one frequency domain measurement identifier, so that the first network device performs the resource block in the channel bandwidth according to the frequency domain measurement identifier. measuring.
  • the first frequency domain indication information includes: an information identifier of the resource block to be measured, so that the first network device measures a corresponding resource block in the channel bandwidth according to the information identifier.
  • the second network device may send the CSI configuration information including the first frequency domain indication information to the first network device by using RRC or physical layer signaling.
  • the reference signal may be a channel measurement reference signal and/or an interference measurement reference signal.
  • step S520 the second network device acquires the CSI sent by the first network device.
  • the CSI may be a measurement result corresponding to the target resource block in the multiple resource blocks by the first network device; or the first network device acquires the measurement result corresponding to the target resource block in the multiple resource blocks, and the target resource block is obtained.
  • the corresponding measurement result is processed according to a preset method.
  • the frequency domain measurement identifier includes a first measurement identifier and a second measurement identifier.
  • the first measurement identifier is used to instruct the first network device to perform measurement on the resource block whose frequency domain measurement identifier in the channel bandwidth is the first measurement identifier.
  • the second measurement identifier is used to indicate that the first network device does not perform measurement on the resource block whose frequency domain measurement identifier in the channel bandwidth is the second measurement identifier.
  • a rate matching method is further provided, which is applied to the first network device, and the method may include the following steps:
  • step S610 the second network device sends rate configuration information including the second frequency domain indication information to the first network device.
  • the rate configuration information is used to indicate that the first network device performs rate matching
  • the second frequency domain indication information is used to indicate a frequency domain location where the first network device performs rate matching, so that the first network device determines, according to the rate configuration information
  • the second frequency domain indicates the resource location of the reference signal in the frequency domain corresponding to the information and performs rate matching on the received data according to the resource location.
  • the second frequency domain indication information includes channel division information, and the channel division information is used to indicate a manner of dividing the channel bandwidth into multiple resource blocks.
  • the first network device divides the channel bandwidth into a plurality of resource blocks according to a preset division manner.
  • the first network device acquires rate configuration information that is sent by the second network device and includes the second frequency domain indication information by using the radio resource control RRC or the physical layer signaling. It is equivalent to the first channel bandwidth division manner and the second channel bandwidth division manner in the above embodiments.
  • step S620 the first network device determines, according to the rate configuration information, that the second frequency domain indication information is corresponding. The resource location of the reference signal on the frequency domain.
  • step S630 the first network device performs rate matching on the received data according to the resource location.
  • the first network device may divide the channel bandwidth into multiple resource blocks, and then perform rate matching on the data on the resource block to be tested.
  • the second frequency domain indication information includes: each resource block of the plurality of resource blocks of the channel bandwidth respectively corresponding to a rate Match the logo.
  • Step S620 can also include the following steps:
  • step S621 the first network device acquires a rate matching identifier corresponding to each of the plurality of resource blocks of the channel bandwidth.
  • step S622 the first network device determines a resource location in the channel bandwidth that matches the reference signal of the resource block identified as the first rate match identifier.
  • the rate matching identifier includes a first rate matching identifier and a second rate matching identifier.
  • the rate matching identifiers of the resource blocks to be rate matched are set to be the first rate matching identifier, and the rate matching identifier of the resource block that does not need the rate matching is set to the second. Rate match identifier.
  • the second frequency domain indication information includes: an information identifier of the to-be-matched resource block; and the step S620 may further include the following steps. :
  • step S623 the first network device acquires an information identifier of the to-be-matched resource block, where the information identifier includes a frequency domain location.
  • step S624 the first network device determines a resource location of the reference signal on the resource block corresponding to the frequency domain location.
  • the information identifier on the resource block corresponding to the frequency domain location in the information identifier is determined by the information identifier of the past rate matching resource block, so that the first network device performs rate matching on the data on the resource location.
  • a rate matching method is further provided, which is applied to the second network device, and the method may include the following steps:
  • step S910 the second network device determines rate configuration information.
  • the rate configuration information includes: second frequency domain indication information; the rate configuration information is used to indicate that the first network device performs rate matching; and the second frequency domain indication information is used to indicate a frequency domain location where the first network device performs rate matching.
  • the second frequency domain indication information may include channel division information, where the channel division information is used to divide the channel bandwidth into multiple resource blocks.
  • Each of the plurality of resource blocks of the channel bandwidth corresponds to a rate matching identifier, so that the first network device performs rate matching on the data blocks in the channel bandwidth according to the rate matching identifier.
  • the second frequency domain indication information may further include: an information identifier of the to-be-matched resource block, so that the first network device performs rate matching on the data on the corresponding resource block in the channel bandwidth according to the information identifier.
  • step S920 the second network device sends rate configuration information including the second frequency domain indication information to the first network device, so that the first network device performs rate matching according to the received rate configuration information.
  • the second network device may send rate configuration information including the second frequency domain indication information to the first network device by using RRC or physical layer signaling.
  • the rate matching identifier includes a first measurement identifier and a second measurement identifier; the first measurement identifier is used to refer to The first network device indicates that the rate matching identifier in the channel bandwidth is the rate matching on the data block of the first measurement identifier, and the second measurement identifier is used to indicate that the first network device identifies the rate matching identifier in the channel bandwidth as the second.
  • the data on the resource block of the measured identity is not rate matched.
  • the information identifier includes a frequency domain location, and the information identifier is used to instruct the first network device to determine a resource location of the reference signal on the resource block corresponding to the frequency domain location, and instruct the first network device to receive the data according to the resource location. Rate matching is performed.
  • different frequency domain position (or sub-band) channel matrices are different due to multipath fading and Doppler characteristics of the channel.
  • the base station performs cooperative non-coherent JT transmission, because different frequency domain location (or subband) channels are different, different precoding matrix transmissions may also result in different frequency domain location precoding matrices, and thus different frequency domain locations.
  • Inter-stream (or inter-layer or code-word) interference on (or sub-bands) is different.
  • the interference measurement is the interference result obtained by averaging the full bandwidth. In this case, the interference measurement is inaccurate.
  • the interference measurement method provided by this embodiment of the present application may include the following steps:
  • step S1001 the terminal receives the first information from the base station, where the first information includes frequency domain information of the CSI interference measurement, and the frequency domain information of the CSI interference measurement has a corresponding relationship with the frequency domain information measured by the CSI channel.
  • the frequency domain information measured by the channel may be frequency domain information of information related to channel measurement, and the information related to channel measurement may be, for example, at least one of the following: RI (Rank Indication), PMI Channel measurement information such as (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • RI Rank Indication
  • PMI Channel measurement information such as (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • the frequency domain information of the interference measurement may refer to frequency domain information of information related to the interference measurement, where the information related to the interference measurement may be, for example, at least one of the following: RI (Rank Indication), Interference measurement information such as PMI (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • CQI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • the first information may be CSI configuration information.
  • the CSI configuration information may include at least one of CSI reporting configuration information and reference signal configuration information.
  • the CSI configuration information may include at least one of a reference signal set (RS setting) configuration information, a CSI reporting setting configuration information, and a CSI measurement setting configuration information.
  • RS setting reference signal set
  • the frequency domain information of the CSI interference measurement may be carried by at least one of the above information, or any information having similar functions.
  • the specific form of the frequency domain information of the CSI interference measurement may be:
  • the CSI reports the CSI interference reporting mode in the configuration information or the CSI reporting set configuration information, where the CSI interference reporting mode indicates the frequency domain information of the CSI interference measurement; the frequency domain information of the CSI interference measurement reference signal in the reference signal configuration information; The frequency domain information of the CSI interference measurement reference signal in the signal set configuration information; the frequency domain information in the CSI measurement set configuration information.
  • the CSI interference reporting mode is used as an example.
  • the CSI interference reporting mode that can be configured by the base station includes: sub-band CSI The scrambling mode, the partial bandwidth CSI interference reporting mode, or the full CSI interference reporting mode.
  • the base station sends the configured CSI interference reporting mode to the terminal.
  • the terminal After receiving the CSI interference reporting mode, the terminal may determine the frequency domain information of the CSI interference measurement according to the CSI interference reporting mode, and then perform CSI interference measurement.
  • the terminal may determine the frequency domain information of the CSI interference measurement according to the CSI interference reporting mode.
  • the frequency domain information of the CSI interference measurement reference signal may also be used to indicate the frequency domain information of the interference measurement.
  • the CSI interference reporting mode may further include periodic, aperiodic, semi-persistent, and the like.
  • the base station can configure the terminal to receive the CQI and PMI interference reporting types.
  • mode 1-0 is a full-band CQI (wideband CQI), and the PMI is not reported.
  • Mode 1-1 is full-band CQI, full-band PMI;
  • mode 2-0 is sub-band CQI, and PMI is not reported;
  • mode 2-1 is sub-band CQI, sub-band PMI.
  • the RI can also be configured with a report type, such as a full-band RI or a sub-band RI.
  • the terminal After receiving the periodic CSI interference reporting mode, the terminal may determine frequency domain information of the CSI interference measurement according to the CSI interference reporting mode, and perform CSI interference measurement.
  • the representation of the above 2-4 can also be used to implement the indication of the frequency domain information of the CSI interference measurement.
  • the frequency domain information of the CSI interference measurement and the frequency domain information of the CSI channel measurement may have a corresponding relationship.
  • the corresponding relationship may be that the frequency domain information of one or more channel measurements corresponds to frequency domain information of one or more types of interference measurement, and in the case of multiple frequency domain information, a set of frequency domain bandwidths may be taken or taken. Its largest/minimum.
  • the object of the channel measurement may be RI, PMI, CQI, CRI, etc., and the object of the interference measurement may be one or more of the above channel measurement objects.
  • the base station can configure the frequency domain information of the CSI interference measurement and the frequency domain information measured by the CSI channel through a certain correspondence.
  • the channel measurement may be the information reported by the sub-band or the information reported by the sub-band. If the frequency domain information of the channel measurement is the information reported by the sub-band, the interference measurement is also performed by using the information reported by the sub-band. If the information measurement uses the information reported by the full-band report, the interference measurement also uses the information reported by the full-band to perform the interference measurement. In this manner, the frequency domain information of the interference measurement is the same as the frequency domain information of the channel measurement. It is worth noting that the frequency domain information can refer to the frequency domain (corresponding to a certain bandwidth).
  • the frequency domain information of the interference measurement and the frequency domain information of the channel measurement may also be different. There are several situations:
  • the frequency domain of the interference measurement is larger than the frequency domain of the channel measurement; 2) The frequency domain of the interference measurement and the frequency domain part of the channel measurement overlapping.
  • the frequency domain of the interference measurement in this case is partially the same as the frequency domain of the channel measurement, and is partially different.
  • the frequency domain of the interference measurement does not overlap with the frequency domain of the channel measurement at all.
  • the frequency domain of the interference measurement in this case is completely different from the frequency domain of the channel measurement.
  • the CSI configuration information may include frequency domain information of CSI interference measurement and/or frequency domain information of CSI channel measurement, frequency domain information of CSI channel measurement, and/or frequency of CSI interference measurement. Domain information is a subset of full bandwidth.
  • the subset of full bandwidth includes N resource units, where N is greater than or equal to 1, and is less than the total number of resource units of the full bandwidth.
  • the resource unit can be a Resource Block (RB).
  • a Resource Block (RB) is a resource unit (resource granularity) of the existing LTE technology. In 5G or subsequent protocols, resource elements may not be defined in terms of RBs.
  • the resource unit or resource granularity may be specified in other manners, such as related to the parameters of the frame structure (such as the subcarrier spacing or the length of the cyclic shift, etc.), and is not limited herein.
  • a subset of full bandwidth may also behave as a subband, or a subset of full bandwidth includes M subbands, where M is greater than or equal to one and less than the total number of subbands of the full bandwidth.
  • the specific subbands can be as follows:
  • the 1 subband size is 1 RB in size.
  • the 2 subband size is 2 RBs in size.
  • the size of the 3 subbands is the granularity of the existing RBG (Resource Block Group) size P RBs. Where P is greater than or equal to 2 and is an integer. As shown in Table 5:
  • the 4 subband size is the granularity of the Subband Size K measured by the existing CSI. Where K is a positive integer. As shown in Table 6.
  • Step S1002 The terminal measures, according to the frequency domain information of the CSI interference measurement, the CSI interference measurement resource in the frequency domain corresponding to the frequency domain information of the CSI interference measurement.
  • the reference signal may include: a channel measurement reference signal and/or an interference measurement reference signal.
  • the channel measurement reference signal is used for channel measurement of the terminal
  • the interference measurement reference signal is used for interference measurement of the terminal.
  • the terminal may perform channel measurement according to the frequency domain information of the channel measurement, and perform interference measurement according to the frequency domain information of the interference measurement.
  • the measuring, by the terminal, the CSI interference measurement resource in the corresponding frequency domain refers to measuring the interference measurement reference signal in the frequency domain.
  • the terminal can obtain the result of the CSI interference measurement. Further, the terminal may further perform channel measurement according to frequency domain information measured by the channel to obtain a result of CSI channel measurement, and comprehensively obtain CSI according to the measurement result of the CSI channel measurement and the CSI interference measurement.
  • the interference measurement reference signal may include: a NZP CSI-RS (Non-Zero Power Channel State Information-Reference Signal) and a ZP CSI-RS (Zero Power Channel State Information-Reference Signal, Zero power channel state information reference signal).
  • NZP CSI-RS Non-Zero Power Channel State Information-Reference Signal
  • ZP CSI-RS Zero power channel state information reference signal
  • the frequency domain information of the CSI interference measurement has a corresponding relationship with the frequency domain information measured by the CSI channel.
  • the correspondence may be defined or configured in advance.
  • the definition or configuration needs to be known to both the base station and the terminal.
  • the foregoing embodiments provide various alternative implementation manners, such as:
  • the measurement result is not very accurate, and since the difference in the frequency domain may not be large, the accuracy can be improved by the full bandwidth averaging method. Sex.
  • the interference measurement is performed by the NZP CSI-RS resource
  • the channel matrix information can be specifically obtained or the precoding matrix information can be further obtained, so that accurate measurement can be performed.
  • different frequency domains may make the difference of the obtained measurement results relatively large. Therefore, the full bandwidth averaging method may cause the interference measurement to be inaccurate, and the frequency domain information for the NZP CSI-RS resource measurement interference may be measured according to the frequency domain information of the channel measurement. It is determined that this not only reduces the signaling overhead, but also improves the accuracy of the CSI measurement.
  • the ZP CSI-RS resource is included in the interference measurement resource.
  • the neighboring area may use different precoding/beams for data transmission in different frequency bands, because precoding/beams of different data transmissions in the adjacent area cause the terminal
  • the interference conditions are different.
  • different precoding/beams may make the signal energy have different strengths at different positions, and the interference degree in different frequency domain information is different. Therefore, the frequency domain information when the interference measurement is performed by using the ZP CSI-RS resource may be determined according to the frequency domain information of the channel measurement, and the channel state information on the frequency domain information is correspondingly obtained, thereby improving the accuracy of channel state information measurement.
  • the frequency domain information at the time of interference measurement also determines the frequency domain information when the interference measurement is performed according to the ZP CSI-RS resource. That is, when the interference measurement is performed on the NZP CSI-RS resource and the ZP CSI-RS resource, the above correspondence relationship is adopted.
  • the frequency of interference measurement using the NZP CSI-RS resource may be considered.
  • the domain information may be determined according to the frequency domain information of the channel measurement, and the frequency domain information when the interference measurement is performed by using the ZP CSI-RS resource may also be determined according to the frequency domain information of the channel measurement, and the channel state information on the frequency domain information is correspondingly obtained. Improve the accuracy of channel state information measurement.
  • the NZP CSI-RS resource may be a CSI-RS resource of Class A or a CSI-RS resource of Class B.
  • the interference measurement method provided in this embodiment of the present application may include the following steps:
  • step S2001 the base station determines the frequency domain information of the CSI interference measurement, and the frequency domain information of the CSI interference measurement has a corresponding relationship with the frequency domain information measured by the CSI channel.
  • the frequency domain information of the CSI interference measurement and the frequency domain information of the CSI channel measurement may have a corresponding relationship.
  • the corresponding relationship may be that the frequency domain information of one or more channel measurements corresponds to frequency domain information of one or more types of interference measurement, and in the case of multiple frequency domain information, a set of frequency domain bandwidths may be taken or taken. Its largest/minimum.
  • the object of the channel measurement may be RI, PMI, CQI, CRI, etc., and the object of the interference measurement may be one or more of the above channel measurement objects.
  • the base station can configure the frequency domain information of the CSI interference measurement and the frequency domain information measured by the CSI channel through a certain correspondence.
  • the channel measurement may be the information reported by the sub-band or the information reported by the sub-band. If the frequency domain information of the channel measurement is the information reported by the sub-band, the interference measurement is also performed by using the information reported by the sub-band. If the information measurement uses the information reported by the full-band report, the interference measurement also uses the information reported by the full-band to perform the interference measurement. In this manner, the frequency domain information of the interference measurement is the same as the frequency domain information of the channel measurement. It is worth noting that the frequency domain information can refer to the frequency domain (corresponding to a certain bandwidth).
  • the frequency domain information of the interference measurement and the frequency domain information of the channel measurement may also be different. There are several situations:
  • the frequency domain of the interference measurement is larger than the frequency domain of the channel measurement; 2) The frequency domain of the interference measurement partially overlaps with the frequency domain of the channel measurement.
  • the frequency domain of the interference measurement in this case is partially the same as the frequency domain of the channel measurement, and is partially different.
  • the frequency domain of the interference measurement does not overlap with the frequency domain of the channel measurement at all.
  • the frequency domain of the interference measurement in this case is completely different from the frequency domain of the channel measurement.
  • step S2002 the base station sends the first information to the terminal, where the frequency domain information of the CSI interference measurement has a corresponding relationship with the frequency domain information measured by the CSI channel.
  • the CSI configuration information may include frequency domain information of CSI interference measurement and/or frequency domain information of CSI channel measurement, frequency domain information of CSI channel measurement, and/or frequency of CSI interference measurement. Domain information is a subset of full bandwidth.
  • the subset of full bandwidth includes N resource units, where N is greater than or equal to 1, and is less than the total number of resource units of the full bandwidth.
  • the resource unit can be a Resource Block (RB).
  • Resource Block (Resource Block, RB) is a resource unit (resource granularity) of the existing LTE technology. In 5G or subsequent protocols, resource elements may not be defined in terms of RBs.
  • the resource unit or resource granularity may be specified in other manners, such as related to the parameters of the frame structure (such as the subcarrier spacing or the length of the cyclic shift, etc.), and is not limited herein.
  • a subset of full bandwidth may also behave as a subband, or a subset of full bandwidth includes M subbands, where M is greater than or equal to one and less than the total number of subbands of the full bandwidth.
  • the specific subbands can be as follows:
  • the 1 subband size is 1 RB in size.
  • the 2 subband size is 2 RBs in size.
  • the size of the 3 subbands is the granularity of the existing RBG (Resource Block Group) size P RBs. Where P is greater than or equal to 2 and is an integer. As shown in Table 7:
  • the 4 subband size is the granularity of the Subband Size K measured by the existing CSI. Where K is a positive integer. As shown in Table 8.
  • the reference signal may include: a channel measurement reference signal and/or an interference measurement reference signal.
  • the channel measurement reference signal is used for channel measurement of the terminal
  • the interference measurement reference signal is used for interference measurement of the terminal.
  • the terminal may perform channel measurement according to the frequency domain information of the channel measurement, and perform interference measurement according to the frequency domain information of the interference measurement.
  • the interference measurement reference signal may include: a NZP CSI-RS (Non-Zero Power Channel State Information-Reference Signal) and a ZP CSI-RS (Zero Power Channel State Information-Reference Signal, Zero power channel state information reference signal).
  • NZP CSI-RS Non-Zero Power Channel State Information-Reference Signal
  • ZP CSI-RS Zero power channel state information reference signal
  • the frequency domain information of the CSI interference measurement has a corresponding relationship with the frequency domain information measured by the CSI channel.
  • the correspondence may be defined or configured in advance.
  • the definition or configuration needs to be known to both the base station and the terminal.
  • the foregoing embodiments provide various alternative implementation manners, such as:
  • the measurement result is not very accurate, and since the difference in the frequency domain may not be large, the accuracy can be improved by the full bandwidth averaging method. Sex.
  • the interference measurement is performed by the NZP CSI-RS resource
  • the channel matrix information can be specifically obtained or the precoding matrix information can be further obtained, so that accurate measurement can be performed.
  • different frequency domains may make the difference of the obtained measurement results relatively large. Therefore, the full bandwidth averaging method may cause the interference measurement to be inaccurate, and the frequency domain information for the NZP CSI-RS resource measurement interference may be measured according to the frequency domain information of the channel measurement. It is determined that this not only reduces the signaling overhead, but also improves the accuracy of the CSI measurement.
  • the ZP CSI-RS resource is included in the interference measurement resource.
  • the neighboring area may use different precoding/beams for data transmission in different frequency bands, because precoding/beams of different data transmissions in the adjacent area cause the terminal
  • the interference conditions are different.
  • different precoding/beams may make the signal energy have different strengths at different positions, and the interference degree in different frequency domain information is different. Therefore, the frequency domain information when the interference measurement is performed by using the ZP CSI-RS resource may be determined according to the frequency domain information of the channel measurement, and the channel state information on the frequency domain information is correspondingly obtained, thereby improving the accuracy of channel state information measurement.
  • the frequency of interference measurement using the NZP CSI-RS resource may be considered.
  • the domain information may be determined according to the frequency domain information of the channel measurement, and the frequency domain information when the interference measurement is performed by using the ZP CSI-RS resource may also be determined according to the frequency domain information of the channel measurement, and the channel state information on the frequency domain information is correspondingly obtained. Improve the accuracy of channel state information measurement.
  • the NZP CSI-RS resource may be a CSI-RS resource of Class A or a CSI-RS resource of Class B.
  • the base station may determine the frequency domain information of the interference measurement according to the frequency domain information of the channel measurement, and may also determine the frequency domain information of the channel measurement and the frequency domain information of the interference measurement at the same time. Not limited to this.
  • the interference measurement method provided by the embodiment The law can include the following steps:
  • Step S3001 The terminal receives the second information from the base station, where the second information includes frequency domain information measured by the CSI channel, and the frequency domain information of the CSI channel measurement of the CSI interference measurement has a corresponding relationship.
  • Step S3002 The terminal determines frequency domain information of the CSI interference measurement according to the frequency domain information measured by the CSI channel, and performs interference measurement on the CSI interference measurement resource in the frequency domain corresponding to the frequency domain information of the CSI interference measurement.
  • the frequency domain information measured by the channel may be frequency domain information of information related to channel measurement, and the information related to channel measurement may be, for example, at least one of the following: RI (Rank Indication), PMI Channel measurement information such as (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • RI Rank Indication
  • PMI Channel measurement information such as (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • the frequency domain information of the interference measurement may refer to frequency domain information of information related to the interference measurement, where the information related to the interference measurement may be, for example, at least one of the following: RI (Rank Indication), Interference measurement information such as PMI (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • CQI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • the frequency domain information of the CSI interference measurement and the frequency domain information of the CSI channel measurement may have a corresponding relationship.
  • the corresponding relationship may be that the frequency domain information of one or more channel measurements corresponds to frequency domain information of one or more types of interference measurement, and in the case of multiple frequency domain information, a set of frequency domain bandwidths may be taken or taken. Its largest/minimum.
  • the object of the channel measurement may be RI, PMI, CQI, CRI, etc., and the object of the interference measurement may be one or more of the above channel measurement objects.
  • the base station can configure the frequency domain information of the CSI interference measurement and the frequency domain information measured by the CSI channel through a certain correspondence.
  • the channel measurement may be the information reported by the sub-band or the information reported by the sub-band. If the frequency domain information of the channel measurement is the information reported by the sub-band, the interference measurement is also performed by using the information reported by the sub-band. If the information measurement uses the information reported by the full-band report, the interference measurement also uses the information reported by the full-band to perform the interference measurement. In this manner, the frequency domain information of the interference measurement is the same as the frequency domain information of the channel measurement. It is worth noting that the frequency domain information can refer to the frequency domain (corresponding to a certain bandwidth).
  • the frequency domain information of the interference measurement and the frequency domain information of the channel measurement may also be different. There are several situations:
  • the frequency domain of the interference measurement is larger than the frequency domain of the channel measurement; 2) The frequency domain of the interference measurement partially overlaps with the frequency domain of the channel measurement.
  • the frequency domain of the interference measurement in this case is partially the same as the frequency domain of the channel measurement, and is partially different.
  • the frequency domain of the interference measurement does not overlap with the frequency domain of the channel measurement at all.
  • the frequency domain of the interference measurement in this case is completely different from the frequency domain of the channel measurement.
  • the first information may be CSI configuration information.
  • the CSI configuration information may include at least one of CSI reporting configuration information and reference signal configuration information.
  • the CSI configuration information may include at least one of a reference signal set (RS setting) configuration information, a CSI reporting setting configuration information, and a CSI measurement setting configuration information.
  • RS setting reference signal set
  • the frequency domain information measured by the CSI channel can be carried by at least one of the above information, or any information having similar functions.
  • the specific representation of the frequency domain information measured by the CSI channel can be:
  • the CSI reports the CSI reporting mode in the configuration information or the CSI reporting set configuration information, where the CSI interference reporting mode indicates the frequency domain information measured by the CSI channel; and the frequency of the CSI channel measurement reference signal in the reference signal configuration information.
  • the CSI reporting mode is used as an example.
  • the CSI reporting mode that can be configured by the base station includes: a sub-band CSI reporting mode, a partial bandwidth CSI reporting mode, or a full-band CSI reporting mode.
  • the base station sends the configured CSI reporting mode to the terminal. After receiving the CSI reporting mode, the terminal may determine the frequency domain information measured by the CSI channel according to the CSI reporting mode, and then perform CSI channel measurement.
  • the terminal since the CSI reporting mode indicates the frequency domain information of the CSI channel measurement, the terminal may have a corresponding relationship between the frequency domain information of the CSI interference measurement information and the frequency domain information measured by the CSI channel, so the terminal may determine the frequency domain information of the interference measurement. .
  • the frequency domain information of the reference signal may also be measured by using a CSI channel.
  • CSI channel For specific indication, refer to the indication method of the previous embodiment.
  • the CSI reporting mode may include periodic, aperiodic, semi-persistent, and the like.
  • the base station can configure the terminal to receive the CQI and PMI reporting types, for example, mode 1-0 is a full-band CQI (wideband CQI), and no PMI is reported; 1-1 is full-band CQI, full-band PMI; mode 2-0 is sub-band CQI, and PMI is not reported; mode 2-1 is sub-band CQI, sub-band PMI.
  • the RI can also be configured with a report type, such as a full-band RI or a sub-band RI.
  • the terminal After receiving the periodic CSI interference reporting mode, the terminal may determine frequency domain information of the CSI channel measurement according to the CSI reporting mode, and perform CSI interference measurement.
  • the representation of the 2-4 channel may be used to implement the indication of the frequency domain information of the CSI channel measurement, and the terminal determines the CSI interference measurement according to the correspondence between the frequency domain information of the channel measurement and the frequency domain information of the interference measurement. Frequency domain information.
  • the CSI configuration information may include frequency domain information measured by the CSI channel, and the frequency domain information measured by the CSI channel is a subset of the full bandwidth.
  • the subset of full bandwidth includes N resource units, where N is greater than or equal to 1, and is less than the total number of resource units of the full bandwidth.
  • the resource unit can be a Resource Block (RB).
  • a Resource Block (RB) is a resource unit (resource granularity) of the existing LTE technology. In 5G or subsequent protocols, resource elements may not be defined in terms of RBs.
  • the resource unit or resource granularity may be specified in other manners, such as related to the parameters of the frame structure (such as the subcarrier spacing or the length of the cyclic shift, etc.), and is not limited herein.
  • a subset of full bandwidth may also behave as a subband, or a subset of full bandwidth includes M subbands, where M is greater than or equal to one and less than the total number of subbands of the full bandwidth.
  • the specific subbands can be as follows:
  • the 1 subband size is 1 RB in size.
  • the 2 subband size is 2 RBs in size.
  • the size of the 3 subbands is the granularity of the existing RBG (Resource Block Group) size P RBs. Where P is greater than or equal to 2 and is an integer. As shown in Table 10:
  • the 4 subband size is the granularity of the Subband Size K measured by the existing CSI. Where K is a positive integer. As shown in Table 11.
  • the frequency domain information of the CSI channel measurement and the frequency domain information of the CSI interference measurement have three corresponding manners. See the foregoing embodiment, and details are not described herein again.
  • the reference signal may include: a channel measurement reference signal and/or an interference measurement reference signal.
  • the channel measurement reference signal is used for channel measurement of the terminal
  • the interference measurement reference signal is used for interference measurement of the terminal.
  • the terminal may perform channel measurement according to the frequency domain information of the channel measurement, and perform interference measurement according to the frequency domain information of the interference measurement.
  • the measuring, by the terminal, the CSI interference measurement resource in the corresponding frequency domain refers to measuring the interference measurement reference signal in the frequency domain.
  • the terminal can get the result of CSI interference measurement. Further, the terminal may further perform channel measurement according to frequency domain information measured by the channel to obtain a result of CSI channel measurement, and comprehensively obtain CSI according to the measurement result of the CSI channel measurement and the CSI interference measurement.
  • the terminal may send the CSI to the base station.
  • the interference measurement method provided by the embodiment The law can include the following steps:
  • step S4001 the base station determines frequency domain information of the CSI channel measurement.
  • Step S4002 The base station sends the second information to the terminal, where the second information includes frequency domain information measured by the CSI channel, and the frequency domain information of the CSI interference measurement information has a corresponding relationship with the frequency domain information measured by the CSI channel.
  • the frequency domain information measured by the channel may be frequency domain information of information related to channel measurement, and the information related to channel measurement may be, for example, at least one of the following: RI (Rank Indication), PMI Channel measurement information such as (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • RI Rank Indication
  • PMI Channel measurement information such as (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • the frequency domain information of the interference measurement may refer to frequency domain information of information related to the interference measurement, where the information related to the interference measurement may be, for example, at least one of the following: RI (Rank Indication), Interference measurement information such as PMI (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • CQI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • the frequency domain information measured by the channel may be frequency domain information of information related to channel measurement, and the information related to channel measurement may be, for example, at least one of the following: RI (Rank Indication), PMI Channel measurement information such as (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • RI Rank Indication
  • PMI Channel measurement information such as (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • the frequency domain information of the interference measurement may refer to frequency domain information of information related to the interference measurement, where the information related to the interference measurement may be, for example, at least one of the following: RI (Rank Indication), Interference measurement information such as PMI (Precoding Matrix Indicator), CQI, and CRI (CSI-RS Resource Indicator).
  • RI Rank Indication
  • PMI Precoding Matrix Indicator
  • CQI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • the frequency domain information of the CSI interference measurement and the frequency domain information of the CSI channel measurement may have a corresponding relationship.
  • the corresponding relationship may be that the frequency domain information of one or more channel measurements corresponds to frequency domain information of one or more types of interference measurement, and in the case of multiple frequency domain information, a set of frequency domain bandwidths may be taken or taken. Its largest/minimum.
  • the object of the channel measurement may be RI, PMI, CQI, CRI, etc., and the object of the interference measurement may be one or more of the above channel measurement objects.
  • the base station can configure the frequency domain information of the CSI interference measurement and the frequency domain information measured by the CSI channel through a certain correspondence.
  • the channel measurement may be the information reported by the sub-band or the information reported by the sub-band. If the frequency domain information of the channel measurement is the information reported by the sub-band, the interference measurement is also performed by using the information reported by the sub-band. If the information measurement uses the information reported by the full-band report, the interference measurement also uses the information reported by the full-band to perform the interference measurement. In this manner, the frequency domain information of the interference measurement is the same as the frequency domain information of the channel measurement. It is worth noting that the frequency domain information can refer to the frequency domain (corresponding to a certain bandwidth).
  • the frequency domain information of the interference measurement and the frequency domain information of the channel measurement may also be different. There are several situations:
  • the frequency domain of the interference measurement is larger than the frequency domain of the channel measurement; 2) The frequency domain of the interference measurement partially overlaps with the frequency domain of the channel measurement.
  • the frequency domain of the interference measurement in this case is partially the same as the frequency domain of the channel measurement, and is partially different.
  • the frequency domain of the interference measurement does not overlap with the frequency domain of the channel measurement at all.
  • the frequency domain of the interference measurement in this case is completely different from the frequency domain of the channel measurement.
  • the first information may be CSI configuration information.
  • the CSI configuration information may include at least one of CSI reporting configuration information and reference signal configuration information.
  • the CSI configuration information The method may include at least one of reference signal set (RS setting) configuration information, CSI reporting setting configuration information, and CSI measurement setting configuration information.
  • RS setting reference signal set
  • the frequency domain information measured by the CSI channel can be carried by at least one of the above information, or any information having similar functions.
  • the specific representation of the frequency domain information measured by the CSI channel can be:
  • the CSI reports the CSI reporting mode in the configuration information or the CSI reporting set configuration information, where the CSI interference reporting mode indicates the frequency domain information of the CSI channel measurement; the frequency domain information of the CSI channel measurement reference signal in the reference signal configuration information; the reference signal The frequency domain information of the CSI channel measurement reference signal in the set configuration information; 4. The frequency domain information in the CSI measurement set configuration information.
  • the CSI reporting mode is used as an example.
  • the CSI reporting mode that can be configured by the base station includes: a sub-band CSI reporting mode, a partial bandwidth CSI reporting mode, or a full-band CSI reporting mode.
  • the base station sends the configured CSI reporting mode to the terminal. After receiving the CSI reporting mode, the terminal may determine the frequency domain information measured by the CSI channel according to the CSI reporting mode, and then perform CSI channel measurement.
  • the terminal since the CSI reporting mode indicates the frequency domain information of the CSI channel measurement, the terminal may have a corresponding relationship between the frequency domain information of the CSI interference measurement information and the frequency domain information measured by the CSI channel, so the terminal may determine the frequency domain information of the interference measurement. .
  • the frequency domain information of the reference signal may also be measured by using a CSI channel.
  • CSI channel For specific indication, refer to the indication method of the previous embodiment.
  • the CSI reporting mode may include periodic, aperiodic, semi-persistent, and the like.
  • the base station can configure the terminal to receive the CQI and PMI reporting types, for example, mode 1-0 is a full-band CQI (wideband CQI), and no PMI is reported; 1-1 is full-band CQI, full-band PMI; mode 2-0 is sub-band CQI, and PMI is not reported; mode 2-1 is sub-band CQI, sub-band PMI.
  • the RI can also be configured with a report type, such as a full-band RI or a sub-band RI.
  • the terminal After receiving the periodic CSI interference reporting mode, the terminal may determine frequency domain information of the CSI channel measurement according to the CSI reporting mode, and perform CSI interference measurement.
  • the representation of the 2-4 channel may be used to implement the indication of the frequency domain information of the CSI channel measurement, and the terminal determines the CSI interference measurement according to the correspondence between the frequency domain information of the channel measurement and the frequency domain information of the interference measurement. Frequency domain information.
  • the CSI configuration information may include frequency domain information measured by the CSI channel, and the frequency domain information measured by the CSI channel is a subset of the full bandwidth.
  • the subset of full bandwidth includes N resource units, where N is greater than or equal to 1, and is less than full bandwidth.
  • the resource unit can be a Resource Block (RB).
  • a Resource Block (RB) is a resource unit (resource granularity) of the existing LTE technology. In 5G or subsequent protocols, resource elements may not be defined in terms of RBs.
  • the resource unit or resource granularity may be specified in other manners, such as related to the parameters of the frame structure (such as the subcarrier spacing or the length of the cyclic shift, etc.), and is not limited herein.
  • a subset of full bandwidth may also behave as a subband, or a subset of full bandwidth includes M subbands, where M is greater than or equal to one and less than the total number of subbands of the full bandwidth.
  • the specific subbands can be as follows:
  • the 1 subband size is 1 RB in size.
  • the 2 subband size is 2 RBs in size.
  • the size of the 3 subbands is the granularity of the existing RBG (Resource Block Group) size P RBs. Where P is greater than or equal to 2 and is an integer. As shown in Table 13:
  • the 4 subband size is the granularity of the Subband Size K measured by the existing CSI. Where K is a positive integer. As shown in Table 14.
  • the frequency domain information of the CSI channel measurement and the frequency domain information of the CSI interference measurement have three corresponding manners. See the foregoing embodiment, and details are not described herein again.
  • the reference signal may include: a channel measurement reference signal and/or an interference measurement reference signal.
  • the channel measurement reference signal is used for channel measurement of the terminal
  • the interference measurement reference signal is used for interference measurement of the terminal.
  • the terminal may perform channel measurement according to the frequency domain information of the channel measurement, and perform interference measurement according to the frequency domain information of the interference measurement.
  • the measuring, by the terminal, the CSI interference measurement resource in the corresponding frequency domain refers to measuring the interference measurement reference signal in the frequency domain.
  • the terminal can get the result of CSI interference measurement. Further, the terminal may further perform channel measurement according to frequency domain information measured by the channel to obtain a result of CSI channel measurement, and comprehensively obtain CSI according to the measurement result of the CSI channel measurement and the CSI interference measurement.
  • the terminal may send the CSI to the base station.
  • the base station may receive the CSI sent by the terminal.
  • the base station may determine the frequency domain information of the interference measurement according to the frequency domain information of the channel measurement, and may also determine the frequency domain information of the channel measurement and the frequency domain information of the interference measurement at the same time. Not limited to this.
  • the base station may exchange frequency domain information of the CSI channel measurement and/or frequency domain information of the CSI interference measurement.
  • the sending of the information in the foregoing embodiments may be performed by at least one of higher layer signaling and physical layer signaling.
  • the CSI report there may be different frequency domain granularity reporting manners, such as full-band CSI (Wideband CSI) reporting, partial bandwidth CSI (Partial Band CSI) reporting, and sub-band CSI (Subband CSI). Reported.
  • full-band CSI Wideband CSI
  • Partial Band CSI Partial Band CSI
  • Subband CSI sub-band CSI
  • the full-band granularity may be determined based on the terminal's ability to receive downlink signals.
  • the full band position can be configured by the base station, and this scenario can be applied to beam management.
  • partial bandwidth CSI reporting it may be a terminal-level configurable bandwidth, or may be determined according to frame structure parameter information or scheduling time unit information.
  • sub-band CSI reporting For sub-band CSI reporting, the size of the sub-band is determined by dividing the bandwidth or part of the bandwidth into multiple sub-bands. Sub-band CSI reporting can be used for frequency domain selection scheduling and sub-band precoding measurements, and the like.
  • At least one of the following information may be configured for CSI acquisition:
  • CSI reporting setting configuration information which is used to indicate CSI reporting related information, for example, may include CSI reporting parameters (such as RI, PMI, CQI, CRI, etc.), CSI reporting type (CSI type-CSI Type) I or CSI type 2 CSI Type II), codebook configuration information, time domain information, frequency domain granularity information (such as full-band reporting, partial bandwidth reporting, sub-band reporting, etc.), measurement of restricted configuration information (activation/deactivation) At least one of information, etc.).
  • CSI reporting parameters such as RI, PMI, CQI, CRI, etc.
  • CSI reporting type CSI type-CSI Type I or CSI type 2 CSI Type II
  • codebook configuration information such as full-band reporting, partial bandwidth reporting, sub-band reporting, etc.
  • measurement of restricted configuration information activation/deactivation
  • Reference signal setting configuration information which is used to indicate related information of the reference signal of the CSI measurement, and may include, for example, one or more CSI-RS resource sets. Each set of settings may include one or more CSI-RS resource configuration information, where the configuration information includes mapped time-frequency resource location information, number of antenna ports, and time domain information (which may be periodic, aperiodic, semi-persistent, etc.) At least one of the others. Type indication information of the RS may also be included.
  • the CSI measurement setting configuration information is used to indicate the link-related information of the CSI measurement.
  • the CSI measurement set configuration information may include one or more link information, and each link information includes The CSI reports the set identifier, the reference signal set identifier, and the indication of the measured quantity (such as channel or interference).
  • One of the CSI report sets may be associated with one or more reference signal sets. Multiple CSI report sets may also be associated with one reference signal set.
  • one CSI measurement set may have one or more CSIs.
  • the reporting set; one or more CSI reporting sets are selected from the at least one reference signal set.
  • One or more CSI resources are generated from a selection of at least one CSI-RS resource set.
  • the specific indication information related to the frequency domain information may be placed in at least one of the above three configuration information.
  • the interference measurement method provided in the foregoing embodiment of the present application may be applicable to a collaboration scenario.
  • the downlink CoMP mainly includes JT (Joint Transmission), coordinated scheduling, and CS/CB (Coordinated Scheduling and Beamforming) and DPS/ DPB (Dynamic Point Selection/Dynamic Point Blanking), where JT is divided into coherent JT and non-coherent JT.
  • the resources between the base station 400 and the base station 500 have three cases, that is, the resources of the two are completely overlapped, partially overlapped, and not overlapped. If there is overlap between the two resources, the CSI reporting mode of the sub-band may be configured, and the terminal is performing the channel, so that the inter-stream (or inter-layer or code-word), for example, CSI in the case of measuring the overlap of the two base station resources is completed.
  • the frequency domain information of the sub-band is determined at the time of measurement, and the frequency domain information of the same sub-band is also measured by using the channel when performing the interference measurement, so that the inter-stream (or between layers or between code words) in the case of overlapping can be measured. Interference situation.
  • the interference measurement resource is the same as the channel measurement resource. Specifically, when the interference measurement resource is divided into the NZP CSI-RS and the ZP CSI-RS, the embodiment of the present application uses the NZP CSI-RS to measure the inter-stream (or the inter-layer or code).
  • ZP CSI-RS measures the interference caused by the base station 400 and base stations other than the base station 500, and can make the resource information of the NZP CSI-RS measurement interference the same as the channel measurement resource information, and the ZP CSI-RS Measurement of interference can be a full bandwidth measurement.
  • the terminal in order to measure accurate CSI, it is possible to configure the terminal to not consider inter-stream (or inter-layer or inter-codeword) interference in channel measurement of non-overlapping parts, and consider inter-stream (or inter-layer or Interference between codewords, specifically CSI when measuring data transmission of base station 1 can configure the terminal to measure channel subband 1 in the channel, regardless of inter-stream (or inter-layer or codeword) interference measurement; 2, consider the inter-stream (or inter-layer or codeword) interference measurement of the base station 2 on the measurement sub-band 2.
  • the interference measurement resource is the same as some resources of the channel measurement resource.
  • the NZP CSI-RS may be considered to measure the inter-flow (or inter-layer).
  • ZP CSI-RS measures the interference caused by base stations other than base station 1 and base station 2, and allows the NZP CSI-RS to measure the interference when the resource information is the same as the channel measurement resource information, and ZP CSI -RS can measure full interference when measuring interference.
  • ZP CSI-RS measures the interference caused by base stations other than base station 1 and base station 2 and allows the NZP CSI-RS to measure the interference when the resource information is the same as the channel measurement resource information
  • ZP CSI -RS can measure full interference when measuring interference.
  • NZP CSI-RS can be configured to measure inter-stream (or inter-layer or inter-codeword) interference on subband 2
  • configuration of ZP CSI-RS to measure interference can be a full bandwidth measurement.
  • the terminal can be configured to not consider inter-stream interference in the channel measurement of the non-overlapping part.
  • the CSI can be configured when the data transmission of the base station 1 is measured, and the terminal can perform channel measurement in the channel measurement sub-band 1
  • the interference measurement can be a full bandwidth measurement.
  • the interference measurement resource is the same as some resources of the channel measurement resource.
  • the frequency domain information for configuring the channel measurement is subband 1, and the ZP CSI-RS is configured to measure the interference when it is full bandwidth.
  • the NZP CSI-RS resource may be a CSI-RS resource of Class A or a CSI-RS resource of Class B.
  • the interference measurement method provided by the foregoing embodiment of the present application may be applied to a CS/CB scenario.
  • the base station 1 and the base station 2 perform CS/CB transmission
  • the base station is different
  • different interference conditions are caused.
  • the interference of beam 2 in the figure is greater than the interference of beam 3 is greater than the interference of beam 4.
  • the neighboring base stations in the data scheduling are different in different frequency domain resource scheduling users will use different precoding or beam transmission.
  • the CSI reporting mode of the subband can be configured, and the terminal determines the frequency domain information of the subband when performing channel measurement, and also uses the channel to measure the frequency domain of the same subband when performing interference measurement. Information, so that the interference situation in the corresponding frequency band can be measured.
  • the interference measurement resource is exactly the same as the channel measurement resource.
  • the interference measurement resource is divided into NZP CSI-RS and ZP CSI-RS, the NZP CSI-RS can be considered to measure the interference of the directional beam in the same frequency band.
  • the CSI-RS measures the interference caused by the base station 1 and the base station other than the base station 2, and can make the resource information of the NZP CSI-RS measurement interference the same as the resource information of the channel measurement, and the ZP CSI-RS can measure the interference. Measurement of bandwidth.
  • the base station determines the beam direction information of the neighboring area when transmitting data to the terminal, the frequency domain information of the interference measurement may be configured as the data of the beam direction or the frequency domain information of the signal. For example, TP2 uses beam 1 for beam 2 transmission, band 2 for beam 3, and band 3 for beam 4.
  • the frequency band in which the base station configures the terminal for channel measurement is the frequency band X, and if the interference beam is the beam 2, the frequency band in which the interference measurement can be configured is the frequency band 1; if the interference beam is the beam 3, the frequency band in which the interference measurement can be configured is the frequency band 2; If the interference beam is beam 4, the frequency band in which interference measurement can be configured is band 3.
  • the frequency band X of the channel measurement may be the same as or different from the frequency band of the interference measurement.
  • the frequency domain offset information can be configured by using the frequency domain offset information.
  • the frequency domain offset information of the interference measurement can be configured to be 0; if the channel measurement is frequency band 1, the interference measurement is In frequency band 2, the frequency domain offset information of the interference measurement can be configured to be 1. If the channel measurement is frequency band 1, and the interference measurement is frequency band 3, the frequency domain offset information of the interference measurement can be configured to be 2.
  • the terminal may determine frequency domain information of the interference measurement by using frequency domain information of the channel measurement and frequency domain offset information.
  • the interference measurement resource at this time may be an NZP CSI-RS resource or a ZP CSI-RS resource, where the NZP CSI-RS resource may be a Class A CSI-RS resource or a Class B CSI-RS resource.
  • an interference measuring device is also provided. As shown in FIG. 16, the device is applied to the terminal, and includes:
  • a transceiver unit configured to receive first information from a base station, where the first information includes frequency domain information of CSI interference measurement, and frequency domain information of the CSI interference measurement has a corresponding relationship with frequency domain information measured by a CSI channel; And performing, according to the frequency domain information of the CSI interference measurement, interference measurement on the frequency domain information of the CSI interference measurement corresponding to the CSI interference measurement resource in the frequency domain.
  • the first information is CSI configuration information, where the CSI configuration information includes frequency domain information of the CSI channel measurement, and frequency domain information of the CSI channel measurement. And/or the frequency domain information of the CSI interference measurement is a subset of the full bandwidth.
  • an interference measuring device is also provided. As shown in FIG. 16, the device is applied to a base station, and includes:
  • a processing unit configured to determine frequency domain information of the CSI interference measurement, where the frequency domain information of the CSI interference measurement has a corresponding relationship with the frequency domain information of the CSI channel measurement, and the transceiver unit is configured to send the first information to the terminal, where the A message includes frequency domain information of the CSI interference measurement.
  • the frequency domain information measured by the CSI channel and/or the frequency domain information of the CSI interference measurement is a subset of the full bandwidth.
  • an interference measuring device is also provided. As shown in FIG. 16, the device is applied to the terminal, and includes:
  • a transceiver unit configured to receive second information from a base station, where the second information includes frequency domain information measured by a CSI channel, where frequency domain information of the CSI interference measurement has a corresponding relationship with frequency domain information measured by a CSI channel; And determining frequency domain information of the CSI interference measurement according to the frequency domain information measured by the CSI channel, and performing interference measurement on the CSI interference measurement resource in the frequency domain corresponding to the frequency domain information of the CSI interference measurement.
  • the frequency domain information measured by the CSI channel and/or the frequency domain information of the CSI interference measurement is a subset of the full bandwidth.
  • an interference measuring device is also provided. As shown in FIG. 16, the device is applied to a base station, and includes:
  • a processing unit configured to acquire frequency domain information of a CSI channel measurement
  • a transceiver unit configured to send second information to the terminal, where the second information includes frequency domain information of the CSI channel measurement, where the CSI interference measurement
  • the frequency domain information of the frequency domain information CSI channel measurement has a corresponding relationship.
  • the CSI interference measurement information and the frequency domain information measured by the CSI channel are a subset of the full bandwidth.
  • the frequency domain information of the CSI channel measurement of the CSI interference measurement has a corresponding relationship, including:
  • the frequency domain information of the CSI interference measurement is the same as the frequency domain information of the CSI channel measurement; or the frequency domain information of the CSI interference measurement is the same as the frequency domain information of the CSI channel measurement; or the CSI interference measurement Frequency domain information
  • the frequency domain information measured by the CSI channel is different.
  • the CSI interference measurement resource includes a non-zero power channel state information reference signal NZP CSI-RS resource and/or a zero power channel state information reference signal ZP CSI-RS resource.
  • the subset of the full bandwidth includes N resource units, where N is greater than or equal to 1, and is less than the total resource unit number of the full bandwidth.
  • the subset of full bandwidth includes M subbands, where M is greater than or equal to 1, and less than the total number of subbands of the full bandwidth.
  • the CSI channel measurement includes one or a combination of the following: a channel quality indicator CQI measurement, a precoding matrix indication PMI measurement, a rank indication RI measurement, and CRI measurement.
  • a rate matching method is further applied to the first network device, where:
  • a rate matching method including:
  • the first network device acquires rate configuration information that is sent by the second network device and includes the second frequency domain indication information; the rate configuration information is used to indicate that the first network device performs rate matching; and the second frequency domain indication information is used by a frequency domain location indicating that the first network device performs rate matching; the first network device determining, according to the rate configuration information, a resource of a reference signal in a frequency domain corresponding to the second frequency domain indication information a location; the first network device performs rate matching on the received data according to the resource location.
  • the second frequency domain indication information including channel division information, where the channel division information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the first network device divides the channel bandwidth into multiple resource blocks according to a preset division manner.
  • the second frequency domain indication information comprises: each of the plurality of resource blocks of the channel bandwidth corresponding to a rate matching identifier; the determining and The resource location of the reference signal in the frequency domain corresponding to the second frequency domain indication information includes:
  • the first network device acquires a rate matching identifier corresponding to each of the plurality of resource blocks of the channel bandwidth, where the rate matching identifier includes a first rate matching identifier and a second rate matching identifier; The network device determines a resource location in the channel bandwidth that matches the reference signal on the resource block identified as the first rate match identifier.
  • the second frequency domain indication information comprising: an information identifier of a rate matching resource block; the determining a frequency corresponding to the second frequency domain indication information
  • the resource location of the reference signal on the domain including:
  • the first network device acquires rate configuration information that is sent by the second network device and includes the second frequency domain indication information, and includes:
  • the first network device acquires rate configuration information that is sent by the second network device and includes the second frequency domain indication information by using the radio resource control RRC or the physical layer signaling.
  • the second network side may include: A, a rate matching method, including: the second network device sends rate configuration information including the second frequency domain indication information to the first network device; Instructing the first network device to perform rate matching; the second frequency domain indication information is used to indicate a frequency domain location where the first network device performs rate matching; so that the first network device configures information according to the rate And determining a resource location of the reference signal on the frequency domain corresponding to the second frequency domain indication information and performing rate matching on the received data according to the resource location.
  • a rate matching method including: the second network device sends rate configuration information including the second frequency domain indication information to the first network device; Instructing the first network device to perform rate matching; the second frequency domain indication information is used to indicate a frequency domain location where the first network device performs rate matching; so that the first network device configures information according to the rate And determining a resource location of the reference signal on the frequency domain corresponding to the second frequency domain indication information and performing rate matching on the received data according to the resource location.
  • the second frequency domain indication information including channel division information, where the channel division information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the second frequency domain indication information comprising: each of the plurality of resource blocks of the channel bandwidth corresponding to a rate matching identifier.
  • the rate matching identifier includes a first measurement identifier and a second measurement identifier, where the first measurement identifier is used to indicate that the first network device matches the rate matching identifier in the channel bandwidth. Rate matching the data on the resource block identified by the first measurement; the second measurement identifier is used to indicate that the first network device identifies the rate matching in the channel bandwidth as a resource block of the second measurement identifier The data is not rate matched.
  • the second frequency domain indication information comprising: an information identifier of a rate matching resource block.
  • the information identifier includes a frequency domain location, and the information identifier is used to instruct the first network device to determine a resource location of a reference signal on a resource block corresponding to the frequency domain location. And instructing the first network device to perform rate matching on the received data according to the resource location.
  • the second network device sends the rate configuration information including the second frequency domain indication information to the first network device, where the second network device controls the RRC by using a radio resource.
  • the physical layer signaling sends the rate configuration information including the second frequency domain indication information to the first network device.
  • the present application can be Software plus the necessary general hardware platform to achieve, of course, can also be through the hardware, but in many cases the former is a better implementation.
  • the resource blocks of the technical solutions of the present application which are essential or contribute to the prior art, may be embodied in the form of a software product stored in a storage medium, including a number of instructions for making A computer device (which may be a personal computer, server, or network device, etc.) performs all or resource block steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various types of media that can store program codes, such as a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the embodiment of the present application further provides a first network device, as shown in FIG. 10, including: a receiving unit 11 configured to acquire a first frequency that is sent by the second network device.
  • the CSI configuration information of the domain indication information where the CSI configuration information includes: first frequency domain indication information, where the CSI configuration information is used to indicate that the first network device performs CSI measurement; the first frequency domain indication information, a frequency domain location for indicating a CSI measurement by the first network device; the processing unit 12, configured to measure, according to the CSI configuration information, a reference signal of a frequency domain indicated by the first frequency domain indication information.
  • the first frequency domain indication information includes channel division information, where the channel division information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the processing unit 12 is further configured to divide the channel bandwidth into multiple resource blocks according to a preset division manner.
  • the first frequency domain indication information includes: each of the multiple resource blocks of the channel bandwidth corresponds to one frequency domain measurement identifier.
  • the processing unit 12 is further configured to acquire a frequency domain measurement identifier corresponding to each of the plurality of resource blocks of the channel bandwidth, where the frequency domain measurement identifier includes a first measurement identifier and a second measurement identifier; The processing unit 12 is further configured to perform measurement on the resource block in the channel bandwidth that is identified by the frequency domain measurement identifier as the first measurement identifier.
  • the first frequency domain indication information includes: an information identifier of the resource block to be measured; the processing unit 12 is further configured to obtain an information identifier of the resource block to be measured, where the information identifier is used by And indicating the frequency domain location of the measurement resource; the processing unit 12 is further configured to measure a resource block corresponding to the frequency domain location.
  • the processing unit 12 is further configured to acquire, by the first network device, the first frequency domain indication information that is sent by the second network device by using a radio resource control RRC or physical layer signaling. CSI configuration information.
  • the reference signal comprises: a channel measurement reference signal and/or an interference measurement reference signal.
  • the processing unit 12 is further configured to acquire measurement results corresponding to the target resource blocks in the multiple resource blocks, and use the measurement result as CSI; in an optional embodiment.
  • the processing unit 12 is further configured to acquire a measurement result corresponding to the target resource block in the multiple resource blocks, and process the measurement result corresponding to the target resource block according to a preset manner to obtain CSI.
  • the first network device further includes a sending unit 13 configured to send the CSI to the second network device.
  • the processing unit 12 may be a processor 510
  • the receiving unit 11 may be a receiver 530
  • the transmitting unit 33 may be a transmitter 520
  • the receiver 530 or the transmitter 520 may be replaced by a transceiver.
  • the first network device may further include a memory 540, where the memory 540 is used to store program codes and data of the network device.
  • the network device includes a processor 510, a transmitter 520, and a receiver. 530, and a memory 540.
  • the embodiment of the present application further provides a second network device, as shown in FIG. 11, including: a sending unit 21, configured to send CSI configuration information including first frequency domain indication information,
  • the CSI configuration information includes: first frequency domain indication information, where the CSI configuration information is used to indicate that the first network device performs CSI measurement, and the first frequency domain indication information is used to indicate that the first network device performs a frequency domain location of the CSI measurement; such that the first network device measures the reference signal according to the received CSI configuration information.
  • the first frequency domain indication information includes channel splitting information, where the channel splitting information is used to indicate a manner of dividing a channel bandwidth into multiple resource blocks.
  • the second network device further includes a processing unit 22, configured to adjust a channel bandwidth between the second network device and the first network device according to a preset division manner. Divided into multiple resource blocks.
  • the first frequency domain indication information includes: each of the multiple resource blocks of the channel bandwidth respectively corresponding to one frequency domain measurement identifier, so that the first network device is configured according to the first network device The frequency domain measurement identifies measurements of resource blocks in the channel bandwidth.
  • the first frequency domain indication information includes: an information identifier of the resource block to be measured, so that the first network device determines a corresponding resource block in the channel bandwidth according to the information identifier.
  • the processing unit 22 is configured to send CSI configuration information including the first frequency domain indication information to the first network device by using radio resource control RRC or physical layer signaling.
  • the reference signal comprises: a channel measurement reference signal and/or an interference measurement reference signal.
  • the sending unit 21 is configured to acquire CSI sent by the first network device.
  • the CSI includes: a measurement result corresponding to the target resource block in the multiple resource blocks by the first network device; or the first network device acquires the multiple The measurement result corresponding to the target resource block in the resource block, and the measurement result corresponding to the target resource block is processed according to a preset manner.
  • the processing unit 22 may be the processor 510, the sending unit 21 may be the transmitter 520, the receiver 530 or the transmitter 520 may be replaced by a transceiver, and the second network device may further comprise a memory. 540.
  • the memory 540 is configured to store program codes and data of a network device. Specifically, as shown in FIG. 14, the network device includes a processor 510, a transmitter 520, a receiver 530, and a memory 540.
  • the embodiment of the present application further provides a first network device, as shown in FIG. 12, including: a receiving unit 31, configured to acquire, by the second network device, a second frequency domain indication
  • the rate configuration information of the information, the rate matching information includes: second frequency domain indication information; the rate configuration information is used to indicate that the first network device performs rate matching; and the second frequency domain indication information is used to indicate a frequency domain location of the first network device for performing rate matching;
  • the processing unit 32 configured to determine, according to the rate configuration information, a resource location of a reference signal in a frequency domain corresponding to the second frequency domain indication information;
  • the unit 32 is further configured to perform rate matching on the received data according to the resource location by the first network device.
  • the second frequency domain indication information includes channel division information, where the channel division information is used to divide the channel bandwidth into multiple resource blocks.
  • the processing unit 32 is further configured to divide the channel bandwidth into multiple resource blocks according to a preset division manner.
  • the second frequency domain indication information includes: each of the plurality of resource blocks of the channel bandwidth corresponding to a rate matching identifier; the processing unit 32 is further configured to acquire the Multiple resources for channel bandwidth a rate matching identifier corresponding to each resource block in the block, the rate matching identifier includes a first rate matching identifier and a second rate matching identifier, and the processing unit 32 is further configured to determine that the rate matching identifier is the first in the channel bandwidth. A rate matches the resource location of the reference signal of the identified resource block.
  • the second frequency domain indication information includes: an information identifier of the to-be-matched resource block; the processing unit 32 is further configured to obtain an information identifier of the to-be-matched resource block, where the information identifier includes the frequency The domain location; the processing unit 32 is further configured to determine a resource location of the reference signal on the resource block corresponding to the frequency domain location.
  • the processing unit 32 is further configured to acquire, by using the radio resource control RRC or the physical layer signaling, the rate configuration information that is sent by the second network device and includes the second frequency domain indication information.
  • the processing unit 32 may be a processor 510
  • the receiving unit 31 may be a receiver 530
  • the receiver 530 or the transmitter 520 may be replaced by a transceiver
  • the first network device further
  • a memory 540 can be included for storing program code and data of the network device.
  • the network device includes a processor 510, a transmitter 520, a receiver 530, and a memory 540.
  • the embodiment of the present application further provides a second network device, as shown in FIG. 13, including: a processing unit 41, configured to determine rate configuration information, where the rate configuration information includes: And the second frequency domain indication information is used to indicate that the first network device performs rate matching; the second frequency domain indication information is used to indicate a frequency domain location of the first network device for performing rate matching; The unit 42 is configured to send rate configuration information including the second frequency domain indication information, so that the first network device performs rate matching according to the received rate configuration information.
  • a processing unit 41 configured to determine rate configuration information, where the rate configuration information includes: And the second frequency domain indication information is used to indicate that the first network device performs rate matching; the second frequency domain indication information is used to indicate a frequency domain location of the first network device for performing rate matching;
  • the unit 42 is configured to send rate configuration information including the second frequency domain indication information, so that the first network device performs rate matching according to the received rate configuration information.
  • the second frequency domain indication information includes channel division information, where the channel division information is used to divide the channel bandwidth into multiple resource blocks.
  • the second frequency domain indication information includes: each of the multiple resource blocks of the channel bandwidth respectively corresponding to a rate matching identifier, so that the first network device is configured according to the The rate matching identifier performs rate matching on data on resource blocks in the channel bandwidth.
  • the second frequency domain indication information includes: an information identifier of the to-be-matched resource block, so that the first network device identifies the corresponding resource block in the channel bandwidth according to the information.
  • the data is rate matched.
  • the sending unit 42 is configured to send rate configuration information including the second frequency domain indication information to the first network device by using radio resource control RRC or physical layer signaling.
  • the processing unit 41 may be the processor 510
  • the sending unit 42 may be the transmitter 520
  • the receiver 530 or the transmitter 520 may be replaced by the transceiver
  • the second network device may further comprise a memory. 540.
  • the memory 540 is configured to store program codes and data of a network device.
  • the network device includes a processor 510, a transmitter 520, a receiver 530, and a memory 540.
  • the application can be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the present application can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请是关于一种CSI测量方法及装置,其方法包括:第一网络设备获取第二网络设备发送的包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;所述第一网络设备根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号,得到CSI。通过第一网络设备将该CSI发送给第二网络设备,可以实现对信道带宽中特定频域的参考信号进行测量。

Description

CSI测量方法及装置
本申请要求于2016年9月30日提交中国专利局、申请号为201610878533.9、发明名称为“CSI测量方法及装置”的中国专利申请的优先权,并要求于2017年3月25日提交中国专利局、申请号为201710184954.6、发明名称为“CSI测量方法及装置”的中国专利申请的优先权,其全部内容均通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种CSI(Channel State Information,信道状态信息)测量方法及装置。
背景技术
随着移动通信技术朝着高速、大数据业务量等方向发展的同时,下一代移动通信系统要求大容量和高质量的数据传输,MIMO(Multiple-Input Multiple-Output,多入多出)技术被认为是可实现未来高速数据传输的关键技术之一,在第四代(4G)及第五代(5G)的移动通信系统中有着广阔的应用前景。传统的集中式MIMO系统的多根发射天线均集中于基站(BS)端。与集中式MIMO不同,分布式MIMO系统的多根发射天线分布于不同的地理位置,其各对收发链路之间更加独立,具有大容量、低功耗、更好的覆盖、对人体的低电磁损害等优势,被认为是未来无线通信系统的备选方案之一。
在分布式MIMO的情况下,CoMP(Coordinated Multipoint Transmission,协同多点传输)被认为是一种解决小区间干扰问题并提升边缘用户吞吐量的有效方法。CoMP技术中多个相邻小区可以联合处理或协调边缘用户来避免干扰并提升边缘用户吞吐量。下行CoMP技术主要包括JT(Joint Transmission,联合传输)、协同调度和CS/CB(Coordinated Scheduling and Beamforming,波束赋形)和DPS/DPB(Dynamic Point Selection/Dynamic Point Blanking,动态点选择/关闭),其中JT分为相干JT和非相干JT。为了实现这些CoMP调度,服务基站需要知道各站点到目标用户的下行信道条件。
在LTE(Long Term Evolution,长期演进)规范中,提供了一种参考信号,即CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)。终端通过对特定的CSI-RS的测量来估计信道的干扰状态,得到CSI-IM(Channel State Information Interference Measurement,信道状态信息干扰测量),并通过PUCCH(Physical uplink control channel,物理上行控制信道)CSI-IM信息将上报给服务基站。为了配置终端接收和处理指定的CSI-RS,并提供所需的反馈信息,基站通过配置高层RRC(Radio resource control,无线资源控制)信令来指示终端。然而,作为CoMP技术中一种,JT是将多个小区同时调度为一个用户传输数据,这将导致不同的频域位置干扰情况不同。或者在5G中,不同的频域位置传输不同的数据类型,也导致不同的频域位置干扰情况不同。由于现有技术当中,CSI-IM和CSI速率匹配一般都是全带宽配置的,无法对带宽中特定频域位置干扰情况进行测量。
发明内容
为克服相关技术中存在的由于现有技术当中,CSI-IM和CSI速率匹配一般都是全带宽配置的,无法对带宽中特定频域位置干扰情况进行测量的问题,本申请提供一种CSI测量方法。
根据本申请实施例的第一方面,提供一种CSI测量方法,包括:第一网络设备获取第二网络设备发送的包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;所述第一网络设备根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号,得到CSI。
可选的,所述第一频域指示信息包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
可选的,还包括:所述第一网络设备按照预先设定的划分方式,将信道带宽划分为多个资源块。
可选的,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识。
所述测量所述第一频域指示信息指示的频域上的参考信号,包括:所述第一网络设备获取所述信道带宽的多个资源块中每个资源块分别对应的频域测量标识,所述频域测量标识包括第一测量标识和第二测量标识;所述第一网络设备对所述信道带宽中频域测量标识为第一测量标识的资源块上的参考信号进行测量。
可选的,,所述第一频域指示信息,包括:待测量资源块的信息标识;所述测量所述第一频域指示信息指示的频域上的参考信号,包括:所述第一网络设备获取待测量资源块的信息标识,所述信息标识用于指示测量资源的频域位置;所述第一网络设备测量与所述频域位置相对应的资源块上的参考信号。
可选的,所述第一网络设备获取第二网络设备发送的包含第一频域指示信息的CSI配置信息,包括:所述第一网络设备通过无线资源控制RRC或者物理层信令获取所述第二网络设备发送的包含第一频域指示信息的CSI配置信息。
可选的,所述参考信号,包括:信道测量参考信号和/或者干扰测量参考信号。
可选的,还包括:所述第一网络设备将得到的CSI发送给所述第二网络设备;其中,所述得到的CSI,包括:
所述第一网络设备得到所述多个资源块中目标资源块分别对应的CSI;或者,所述第一网络设备得到所述多个资源块中目标资源块对应的CSI,并将所述目标资源块对应的CSI按照预设方式进行处理,将处理结果作为所述CSI。
根据本申请实施例的第二方面,提供一种CSI测量方法,包括:第二网络设备向第一网络设备发送包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;以使所述第一网络设备根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号。
可选的,所述第一频域指示信息,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
可选的,该方法还包括:所述第二网络设备按照预先设定的划分方式,将信道带宽划 分为多个资源块。
可选的,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识。
可选的,所述频域测量标识包括第一测量标识和第二测量标识;所述第一测量标识用于指示所述第一网络设备对所述信道带宽中的频域测量标识为第一测量标识的资源块进行测量;所述第二测量标识用于指示所述第一网络设备对所述信道带宽中的频域测量标识为第二测量标识的资源块不进行测量。
根据本申请实施例的第三方面,提供一种CSI测量方法,包括:所述第一频域指示信息,包括:待测量资源块的信息标识,以使所述第一网络设备根据所述信息标识测量信道带宽中相应的资源块。
可选的,所述第二网络设备向第一网络设备发送包含第一频域指示信息的CSI配置信息,包括:所述第二网络设备通过无线资源控制RRC或者物理层信令向所述第一网络设备发送包含第一频域指示信息的CSI配置信息。
可选的,所述参考信号,包括:信道测量参考信号和/或者干扰测量参考信号。
还包括:所述第二网络设备获取所述第一网络设备发送的CSI。
其中,所述CSI,包括:所述第一网络设备对所述多个资源块中目标资源块分别对应的CSI;或者,所述第一网络设备获取所述多个资源块中目标资源块对应的CSI,并将所述目标资源块对应的CSI按照预设方式进行处理得到的CSI。
根据本申请实施例的第四方面,提供一种速率匹配方法,包括:第一网络设备获取第二网络设备发送的包含第二频域指示信息的速率配置信息;所述速率配置信息用于指示所述第一网络设备进行速率匹配;所述第二频域指示信息用于指示所述第一网络设备进行速率匹配的频域位置;所述第一网络设备根据所述速率配置信息,确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置;所述第一网络设备根据所述资源位置对接收到的数据进行速率匹配。
可选的,所述第二频域指示信息,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
可选的,还包括:所述第一网络设备按照预先设定的划分方式,将所述信道带宽划分为多个资源块。
可选的,所述第二频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识;所述确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置,包括:所述第一网络设备获取所述信道带宽的多个资源块中每个资源块分别对应的速率匹配标识,所述速率匹配标识包括第一速率匹配标识和第二速率匹配标识;所述第一网络设备确定在所述信道带宽中速率匹配标识为第一速率匹配标识的资源块上的参考信号的资源位置。
可选的,所述第二频域指示信息,包括:待速率匹配资源块的信息标识;所述确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置,包括:所述第一网络设备获取待速率匹配资源块的信息标识,所述信息标识包括频域位置;所述第一网络设备确定与所述频域位置相对应的资源块上的参考信号的资源位置。
可选的,所述第一网络设备获取第二网络设备发送的包含第二频域指示信息的速率配 置信息,包括:所述第一网络设备通过无线资源控制RRC或者物理层信令获取所述第二网络设备发送的包含第二频域指示信息的速率配置信息。
根据本申请实施例的第五方面,提供一种速率匹配方法,包括:第二网络设备向第一网络设备发送包含第二频域指示信息的速率配置信息;所述速率配置信息用于指示所述第一网络设备进行速率匹配;所述第二频域指示信息用于指示所述第一网络设备进行速率匹配的频域位置;以使所述第一网络设备根据所述速率配置信息,确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置并根据所述资源位置对接收到的数据进行速率匹配。
可选的,所述第二频域指示信息,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
可选的,所述第二频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识。
可选的,所述速率匹配标识包括第一测量标识和第二测量标识;所述第一测量标识用于指示所述第一网络设备对所述信道带宽中的速率匹配标识为第一测量标识的资源块上的数据进行速率匹配;所述第二测量标识用于指示所述第一网络设备对所述信道带宽中的速率匹配标识为第二测量标识的资源块上的数据不进行速率匹配。
可选的,所述第二频域指示信息,包括:待速率匹配资源块的信息标识。
可选的,所述信息标识包括频域位置;所述信息标识用于指示所述第一网络设备确定与所述频域位置相对应的资源块上的参考信号的资源位置,并指示所述第一网络设备根据所述资源位置对接收到的数据进行速率匹配。
可选的,所述第二网络设备向所述第一网络设备发送包含所述第二频域指示信息的速率配置信息,包括:所述第二网络设备通过无线资源控制RRC或者物理层信令向所述第一网络设备发送包含所述第二频域指示信息的速率配置信息。
根据本申请实施例的第六方面,提供一种信道状态信息CSI测量装置,包括:接收单元,用于获取第二网络设备发送的包含第一频域指示信息的CSI配置信息,所述CSI配置信息包括:第一频域指示信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;处理单元,用于根据所述CSI配置信息,测量所述第一频域指示信息指示的频域的参考信号。
其中,所述第一频域指示信息包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
可以选的,所述第一频域指示信息包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
可以选的,还包括:所述处理单元,还用于按照预先设定的划分方式,将信道带宽划分为多个资源块。
可以选的,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识。
所述处理单元,还用于获取所述信道带宽的多个资源块中每个资源块分别对应的频域测量标识,所述频域测量标识包括第一测量标识和第二测量标识;所述处理单元,还用于对所述信道带宽中频域测量标识为第一测量标识的资源块上的参考信号进行测量。
可以选的,所述第一频域指示信息,包括:待测量资源块的信息标识;所述处理单元,还用于获取待测量资源块的信息标识,所述信息标识用于指示测量资源的频域位置;所述处理单元,还用于测量与所述频域位置相对应的资源块上的参考信号。
可以选的,发送单元,用于所述第一网络设备通过无线资源控制RRC或者物理层信令获取所述第二网络设备发送的包含第一频域指示信息的CSI配置信息。
可以选的,还包括:所述发送单元,还用于将得到的CSI发送给所述第二网络设备;其中,所述得到的CSI,包括:
所述第一网络设备得到所述多个资源块中目标资源块分别对应的CSI;或者,所述第一网络设备得到所述多个资源块中目标资源块对应的CSI,并将所述目标资源块对应的CSI按照预设方式进行处理,将处理结果作为所述CSI。
根据本申请实施例的第六方面,提供一种信道状态信息CSI测量装置,包括:发送单元,用于第二网络设备向第一网络设备发送包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;以使所述第一网络设备根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号。
可选地,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
可选地,还包括:处理单元,用于按照预先设定的划分方式,将信道带宽划分为多个资源块。
可选地,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识。
可选地,所述频域测量标识包括第一测量标识和第二测量标识;所述处理单元,还用于指示所述第一网络设备对所述信道带宽中的频域测量标识为第一测量标识的资源块进行测量;所述处理单元,还用于指示所述第一网络设备对所述信道带宽中的频域测量标识为第二测量标识的资源块不进行测量。
可选地,所述第一频域指示信息,包括:待测量资源块的信息标识,以使所述第一网络设备根据所述信息标识测量信道带宽中相应的资源块。
可选地,所述发送单元,还用于通过无线资源控制RRC或者物理层信令向所述第一网络设备发送包含第一频域指示信息的CSI配置信息。
可选地,还包括:所述发送单元,用于获取所述第一网络设备发送的CSI。
其中,所述CSI,包括:所述第一网络设备对所述多个资源块中目标资源块分别对应的CSI;或者,所述第一网络设备获取所述多个资源块中目标资源块对应的CSI,并将所述目标资源块对应的CSI按照预设方式进行处理得到的CSI。
根据本申请实施例的第又一方面,提供一种干扰测量方法,包括:终端接收来自基站的第一信息,所述第一信息包括CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;所述终端根据所述CSI干扰测量的频域信息,对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
在本申请实施例提供的一种可能的设计中,所述第一信息为CSI配置信息,所述CSI配置信息包括所述CSI信道测量的频域信息,所述CSI信道测量的频域信息和/或所述CSI 干扰测量的频域信息为全带宽的子集。
根据本申请实施例的第又一方面,提供一种干扰测量方法,包括:基站确定CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;所述基站向终端发送第一信息,所述第一信息包含所述CSI干扰测量的频域信息。
在本申请实施例提供的一种可能的设计中,所述CSI信道测量的频域信息和所述CSI干扰测量的频域信息为全带宽的子集。
根据本申请实施例的第又一方面,提供一种干扰测量方法,包括:终端接收来自基站的第二信息,所述第二信息包括CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;所述终端根据所述CSI信道测量的频域信息,确定CSI干扰测量的频域信息,并对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
在本申请实施例提供的一种可能的设计中,所述CSI信道测量的频域信息和所述CSI干扰测量的频域信息为全带宽的子集。
根据本申请实施例的第又一方面,提供一种干扰测量方法,包括:基站获取CSI信道测量的频域信息;所述基站向所述终端发送第二信息,所述第二信息包括所述CSI信道测量的频域信息,所述CSI干扰测量的频域信息CSI信道测量的频域信息具有对应关系。
在本申请实施例提供的一种可能的设计中,所述CSI干扰测量信息和/或CSI信道测量的频域信息为全带宽的子集。
根据本申请实施例的第又一方面,提供一种干扰测量装置,包括:收发单元,用于接收来自基站的第一信息,所述第一信息包括CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;处理单元,用于根据所述CSI干扰测量的频域信息,对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
在本申请实施例提供的一种可能的设计中,所述第一信息为CSI配置信息,所述CSI配置信息包括所述CSI信道测量的频域信息,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
根据本申请实施例的第又一方面,提供一种干扰测量装置,包括:处理单元,用于确定CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;收发单元,用于向终端发送第一信息,所述第一信息包含所述CSI干扰测量的频域信息。
在本申请实施例提供的一种可能的设计中,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
根据本申请实施例的第又一方面,提供一种干扰测量装置,包括:收发单元,用于接收来自基站的第二信息,所述第二信息包括CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;处理单元,用于根据所述CSI信道测量的频域信息,确定CSI干扰测量的频域信息,并对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
在本申请实施例提供的一种可能的设计中,所述CSI干扰测量信息和/或CSI信道测量的频域信息为全带宽的子集。
根据本申请实施例的第又一方面,提供一种干扰测量装置,包括:处理单元,用于获取CSI信道测量的频域信息;收发单元,用于向所述终端发送第二信息,所述第二信息包括所述CSI信道测量的频域信息,所述CSI干扰测量的频域信息CSI信道测量的频域信息具有对应关系。
在本申请实施例提供的一种可能的设计中,所述CSI干扰测量信息和CSI信道测量的频域信息为全带宽的子集。
在本申请实施例提供的一种可能的设计中,所述CSI干扰测量的频域信息CSI信道测量的频域信息具有对应关系,包括:所述CSI干扰测量的频域信息所述CSI信道测量的频域信息相同;或者,所述CSI干扰测量的频域信息所述CSI信道测量的频域信息部分相同;或者,所述CSI干扰测量的频域信息所述CSI信道测量的频域信息不相同。
在本申请实施例提供的一种可能的设计中,所述CSI干扰测量资源包括非零功率信道状态信息参考信号NZP CSI-RS资源和/或零功率信道状态信息参考信号ZP CSI-RS资源。
在本申请实施例提供的一种可能的设计中,所述全带宽的子集包括N个资源单位,其中,N大于或者等于1,且小于全带宽的总资源单位数量。或者,所述全带宽的子集包括M个子带,其中,M大于或者等于1,且小于全带宽的总的子带数量。
在本申请实施例提供的一种可能的设计中,所述CSI信道测量包括下述中的一种或者几种组合:信道质量指示CQI测量、预编码矩阵指示PMI测量、秩指示RI测量和CRI测量。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一资源块,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种场景应用示意图;
图2是根据一示例性实施例示出的一种CSI测量方法的流程图;
图3是图2中步骤S220的流程图;
图4是图2中步骤S220的另一流程图;
图5是根据一示例性实施例示出的一种CSI测量方法的流程图;
图6是根据一示例性实施例示出的一种速率匹配方法的流程图;
图7是图6中步骤S620的流程图;
图8是图6中步骤S620的另一流程图;
图9是根据一示例性实施例示出的一种速率匹配方法的流程图;
图10是根据一示例性实施例示出的一种干扰测量方法的流程图;
图11是根据一示例性实施例示出的一种干扰测量方法的流程图;
图12是根据一示例性实施例示出的一种干扰测量方法的流程图;
图13是根据一示例性实施例示出的一种干扰测量方法的流程图;
图14是根据一示例性实施例示出的一种干扰测量的场景示意图;
图15是根据一示例性实施例示出的一种干扰测量的场景示意图;
图16是根据一示例性实施例示出的一种干扰测量装置的示意图;
图17是根据一示例性实施例示出的一种第一网络设备的示意图;
图18是根据一示例性实施例示出的一种第二网络设备的示意图;
图19是根据又一示例性实施例示出的一种第一网络设备的示意图;
图20是根据又一示例性实施例示出的一种第二网络设备的示意图;
图21是根据又一示例性实施例示出的一种设备的示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述。
相关技术在进行CSI-IM进行测量时,一般是按照现有协议,通过服务小区的基站为服务小区的终端配置CSI Process(进程),使终端根据基站配置的CSI Process进行CSI-IM。然而,服务小区为终端配置的CSI Process一般是基于整个信道带宽的测量。这样即便终端测量到信道带宽中有干扰信息,终端也无法确定该干扰信息具体是在信道带宽中的哪个频段。另外,信道带宽中一般是有些频段有干扰信息,而有些频段没有干扰信息,如果终端对整个带宽都进行CSI-IM,那么终端按照服务小区给终端配置的CSI Process进行测量,会造成资源的浪费。
示例性的,如图1所示,通过CoMP技术,终端同时与传输点TP1、传输点TP2进行通信。这样终端与TP1之间存在通信信道,并且终端与TP2之间也有通信信道,终端需要分别对两个通信信道的信道带宽进行CSI-IM,以分别获取两个信道带宽中的最优调度子带,使得TP1和TP2分别通过相应的最优子带分别与终端进行通信。然而,由于这两个通信信道之间会存在重叠的情况,会造成二者相互干扰,使得这两个通信信道中不同的子带受到的干扰程度情况也不一样,造成相关技术中终端对CSI-IM测量的测量结果可能会不准确;另外,相关技术中通过终端对全带宽的CSI-IM,也会导致导频的开销较大,造成资源浪费。
因此,为了解决相关技术中不能准确对信道带宽进行CSI-IM及在测量过程中资源浪费的问题,本申请实施例中提供了一种CSI测量方法及装置。其中,本申请实施例在对CSI进行测量过程,可以应用到终端与终端、终端与基站以及基站与基站之间等的通信过程中,本申请实施例不限于此。为了便于理解,本申请以终端与基站之间的通信为例进行说明。
第一网络设备和第二网络设备的解释说明。
网络设备,比如基站或其他类型传输点设备,当然不也限于上述两种设备,比如第二设备也可以是能够实现对其他终端进行配置操作的终端。
其中,基站可以是LTE系统或其演进系统中的演进型基站(Evolutional Node B,简称为eNB或e-NodeB)、宏基站、微基站(也称为“小基站”)、微微基站、接入站点(Access Point,简称为AP)或传输站点(Transmission Point,简称为TP)等,也可以是未来网络中的基站,如5G网络中的基站。
在本申请实施例中,终端也可称为用户设备(User Equipment,简称为UE),或者可称之为Terminal、移动台(Mobile Station,简称为MS)、移动终端(Mobile Terminal)等,该终端可以经无线接入网(Radio Access Network,简称为RAN)与一个或多个核心网进行通信,例如,终端可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。本申请实施例中的终端还可以是D2D(Device to Device,设备与设备)终端或者M2M(Machine to Machine,机器与机器)终端。
如图1所示,基站100、300基站同时与终端200进行通信,在对终端200的移动性 管理和通信过程中,通过终端200进行CSI-IM,并将基站100和/基站300报告测量结果,是辅助基站进行切换判决的重要方式。实施例中,以图1中对终端200与基站100之间信道带宽的CSI测量为例进行说明,对终端200与基站300之间的信道带宽可以采用同样的方式进行CSI测量。另外,终端还可以同时对基站100和基站300的信道带宽进行CSI测量。
为了让终端200进行CSI测量,基站100还向终端发送参考信号。例如,LTE规范中,提供了一种CSI参考信号,即CSI-RS,用于终端对CSI进行测量。
在需要终端200对信道带宽进行CSI测量时,基站100会确定信道带宽中子带的哪个频域需要测量。因此,基站100会生成CSI配置信息,该CSI配置信息包括第一频域指示信息,该CSI配置信息用于指示终端测量信道带宽中与第一频域指示信息相对应频域上的参考信号。
相关技术采用的CSI配置信息如下:服务基站可以为目标用户配置多个CSI进程,在每个CSI进程中会指示终端非零功率(Non-zero power,NZP)用于测量信道信息,同时还会指示干扰测量资源(Interference measurement resource,IMR),用于测量干扰。此外,对于每个CSI进程对应的用户上报内容和/上报方式也会相应的在配置中指定。
具体的CSI配置信息,可以包括,CSI进程信息,包括CSI进程标识csi-ProcessId,测量信道信息的配置标识csi-RS-ConfigNZPId,测量干扰信息的配置标识csi-IM-ConfigId。因此,本申请实施例中为了实现终端200对信道带宽的准确测量,在已有的CSI配置信息中加入第一频域指示信息。
为了使终端200根据基站100发送的CSI配置信息对相应频域上的参考信号进行CSI测量,需要对信道带宽进行划分。在本申请提供的实施例中,可以有两种方式对信道带宽进行划分,第一种信道带宽划分方式是基站100和终端200按照预先设定的方式进行划分,第二种划分方式中,基站100可以定义信道带宽划分的方式,将该划分方式包含在CSI配置信息中发送给终端200,终端200可以根据基站100发送的CSI配置信息进行信道划分。
在第一种信道带宽划分方式中,终端200和基站100可以根据预先确定的方式对信道带宽进行划分,将信道带宽划分为多个资源块。
需要说明的是,本申请实施例中,将信道带宽划分为多个资源块,每个资源块可以是1个RB,还可以是2个RB,或者是多个RB。每个资源块所包含的资源应当小于信道带宽。划分后的资源块之间可以有部分资源重叠,或者各个资源块的资源不重叠。资源块(Resource Block,RB)是现有LTE技术的资源单元(资源粒度)。在5G或者后续协议中,可以不按照RB定义资源单元。资源单元或者资源粒度可以按照其他的方式规定,在此不做限制。示例性的,如果信道带宽为100个RB,如果将信道带宽以2个RB为粒度进行划分,那么可以将信道带宽划分为50个资源块,每个资源块为2个RB。
其中,第一种信道带宽划分方式为终端200和基站100预先协商的,基站100可以不向终端再次确定划分规则。
在第二种信道带宽划分方式中,基站100可以将信道带宽的划分方式包含在CSI配置信息中,终端200根据基站100发送的CSI配置信息,对信道带宽进行划分。
具体的,基站100向终端发送的CSI配置信息中包含第一频域指示信息,终端200根据第一频域指示信息中的信道划分信息对信道带宽进行划分。
在将信道带宽划分为多个资源块之后,终端200根据基站100发送的CSI配置信息对参考信号进行测量。需要说明的是,该参考信号可以是基站100发送的,还可以是基站300发送的,或者是其它基站、传输点等发送的参考信号。
终端200对参考信号进行测量过程中,根据CSI配置信息,不需要对整个信道带宽进行CSI测量,可以对第一频域指示信息中对应的频域进行测量。
在终端200进行CSI测量时,可以有两种方式对划分为多个资源块的信道带宽进行测量。
在第一种测量方式中,信道带宽中划分的多个资源块中,将各个资源块分别对应一个频域测量标识,该频域测量标识可以分为第一测量标识和第二测量标识,终端200对第一测量标识对应的资源块进行测量,对第二测量标识对应的资源块不进行测量。示例性的,如果信道带宽为100个RB,如果以2个RB为粒度对信道带宽进行划分,划分为50个资源块,每个资源块为2个RB。那么CSI配置信息中可以包含50个比特,对50个资源块分别进行标识,例如,测量标识的bit信息为1或者0,终端200将测量标识为1的资源块进行测量,将测量标识为0的资源块不进行测量。这样终端200根据测量资源块的测量标识进行相应测量,可以准确的对信道带宽进行CSI测量。
示例性的,第一种测量方式可以采用bit mapping的形式,在利用上述实施例中的方式将信道带宽划分为多个资源块时,每个资源块的粒度可以是如下所示:
①在以1个RB为粒度进行信道带宽测量时,第一频域指示信息指示的bit mapping的bit个数是系统带宽的RB数,即
Figure PCTCN2017103925-appb-000001
表示信道带宽的RB数。
②在以2个RB为粒度进行信道带宽测量时,第一频域指示信息指示的bit mapping的bit个数是系统带宽的RB数的一半,即
Figure PCTCN2017103925-appb-000002
③在以现有的RBG(Resource Block Group,资源块组)的大小P个RB为粒度进行信道带宽测量时,第一频域指示信息指示的bit mapping的bit个数是
Figure PCTCN2017103925-appb-000003
其中,P大于或等于2,且为整数。如表1所示:
表1
Figure PCTCN2017103925-appb-000004
④以现有的CSI测量的Subband Size(子带大小)大小K为粒度进行信道带宽测量时,第一频域指示信息指示的bit mapping的bit个数是
Figure PCTCN2017103925-appb-000005
其中,K为正整数。如表2所示。
表2
Figure PCTCN2017103925-appb-000006
在第二种测量方式中,CSI配置信息中的第一频域指示信息还可以包括待测量资源块的信息标识,该信息标识包括待测量资源块的频域位置。终端200可以根据待测量资源块的信息标识的指示,测量相应频域位置上的资源块。
示例性的,可以通过下述方式测量相应频域位置上的资源块:
方式1:
将所有的RBG被分为P个子集,P为RBG的大小。每个RBG子集p(0≤p<P)包含从RBG p开始,间隔为P的所有RBG。分配给某个终端的RB资源必须来自于同一个子集。
第一个域包含
Figure PCTCN2017103925-appb-000007
比特,用于指定所选的RBG子集,即p的值。
第二个域包含1比特(shift bit),用于指定子集内的资源是否偏移,1表示偏移,0表示不偏移。
第三个域包含一个bitmap,bitmap的每一比特对应所选RBG子集中的一个RB(注意:不是RBG)。最高位表示子集中的第一个RB,最低位表示子集中的最后一个RB,依此类推。如果某个RB分配给了某个终端,则bitmap中对应比特置为1;否则置为0。bitmap的大小,即bitmap包含的比特数
Figure PCTCN2017103925-appb-000008
Figure PCTCN2017103925-appb-000009
一个选定的RBG子集中的RB起始于该子集中的最小RB号+偏移量Δshift(p),并对应bitmap中的最高位。该偏移量以RB的数量表示,并且是发生在选定的RBG子集内的偏移。如果第二个域为0,则RBG子集p的偏移Δshift(p)=0;如果第二个域为1,则RBG子集p的偏移
Figure PCTCN2017103925-appb-000010
且bitmap中的最低比特位调整为对应RBG子集中的最后一个RB。
Figure PCTCN2017103925-appb-000011
为RBG子集p包含的RB数,计算公式如下:
Figure PCTCN2017103925-appb-000012
对于RBG子集p而言,其bitmap中的每一比特
Figure PCTCN2017103925-appb-000013
对应的RB可通过如下公式计算:
Figure PCTCN2017103925-appb-000014
上述的RB可以是虚拟资源块(VRB),也可以是物理资源块(PRB)。因此频域指示信息可以指示VRB的位置,然后VRB再映射为PRB。或者也可以直接指示PRB的位置,在此不做限制。
方式2:
在频域指示信息中,分配给终端的资源为一段连续的RB,其RB可以是集中式(localized),也可以是分布式的(distributed)。
首先频域指示域中有一个比特用于指示是使用集中式RB(比如该比特为0)还是使用分布式RB(比如该比特为1)。
对于集中式资源分配由一个资源指示值RIV来表示。通过这个值,可以推导出分配给终端的起始RB(RBstart)以及连续分配的RB的长度(LCRBs)。计算公式如下:
如果
Figure PCTCN2017103925-appb-000015
Figure PCTCN2017103925-appb-000016
否则
Figure PCTCN2017103925-appb-000017
其中LCRBs≥1且不超过
Figure PCTCN2017103925-appb-000018
通过
Figure PCTCN2017103925-appb-000019
可以知道是
Figure PCTCN2017103925-appb-000020
还是
Figure PCTCN2017103925-appb-000021
并最终计算出RBstart和LCRBs
由于LCRBs≥1且不超过
Figure PCTCN2017103925-appb-000022
且必定有
Figure PCTCN2017103925-appb-000023
Figure PCTCN2017103925-appb-000024
也就有
1、当
Figure PCTCN2017103925-appb-000025
时,
Figure PCTCN2017103925-appb-000026
2、当
Figure PCTCN2017103925-appb-000027
时,
Figure PCTCN2017103925-appb-000028
终端收到RIV后,计算
Figure PCTCN2017103925-appb-000029
的值x,
(1)如果
Figure PCTCN2017103925-appb-000030
则得知
Figure PCTCN2017103925-appb-000031
也就得到了最终结果
Figure PCTCN2017103925-appb-000032
(2)如果
Figure PCTCN2017103925-appb-000033
则得知
Figure PCTCN2017103925-appb-000034
也就得到了最终结果
Figure PCTCN2017103925-appb-000035
对于分布式资源分配分配给某个终端的资源可以从
Figure PCTCN2017103925-appb-000036
个到最多
Figure PCTCN2017103925-appb-000037
个RB。其中
Figure PCTCN2017103925-appb-000038
为增长的步进值,并与下行系统带宽
Figure PCTCN2017103925-appb-000039
相关,如下表所示。
表3
Figure PCTCN2017103925-appb-000040
对于分布式资源分配也是通过一个资源指示值RIV来表示。通过这个值,可以推导出分配给终端的起始
Figure PCTCN2017103925-appb-000041
以及连续分配的RB的长度
Figure PCTCN2017103925-appb-000042
计算公式如下:
如果
Figure PCTCN2017103925-appb-000043
Figure PCTCN2017103925-appb-000044
否则
Figure PCTCN2017103925-appb-000045
其中
Figure PCTCN2017103925-appb-000046
Figure PCTCN2017103925-appb-000047
并且
Figure PCTCN2017103925-appb-000048
而L′CRBs≥1且不超过
Figure PCTCN2017103925-appb-000049
终端收到一个RIV后计算RBstart和LCRBs的方式与上述类似,这里就不做介绍了。
上述的RB可以是虚拟资源块(VRB),也可以是物理资源块(PRB)。因此频域指示信息可以指示VRB的位置,然后VRB再映射为PRB。或者也可以直接指示PRB的位置,在此不做限制。
具体的频域指示信息中待测量信息块的信息标识,可以采用现有协议中的资源指示方法,也可以采用其他的指示方法,在此不做限定。其中,该实施例中的终端可以以图1中终端200为例进行说明。
另外,终端200通过RRC或者物理层信令获取基站100发送的CSI配置信息。
具体的频域指示信息可以是针对CSI测量资源进行配置,也可以是针对CQI(Channel Quality Indicator,信道质量信息)上报进行配置。如果是针对CSI测量资源配置,则指示该参考信号所占的资源仅位于频域指示信息所指示的频域位置,UE仅需要测量该频域位置上的参考信号即可。如果是针对CQI上报进行配置,则指示UE上报的CQI是基于仅测量该频域指示信息所指示的频域位置上的参考信号得到的CSI。
具体的可以按照,如下信令域进行配置:
针对CSI Process中的干扰测量(CSI-IM)资源配置频域指示信息
基站针对CSI Process中的干扰测量(CSI-IM)资源配置频域指示信息,告知UE针对该资源测量的干扰仅适用于所指示的频域位置。当UE接收到该信令后,UE针对该资源测量的干扰仅考虑对所在频域位置的影响。
上报的时候可以是针对不同的干扰测量资源配置的频域指示信息上报该频域的CSI信息,也可以是上报整个测量带宽的平均的CSI信息。
具体的频域指示信息通过frequencyConfig域进行指示,如下:
Figure PCTCN2017103925-appb-000050
Figure PCTCN2017103925-appb-000051
针对该CSI-RS-configNZPId中的CSI-RS资源配置频域指示信息。
基站针对CSI-RS-configNZPId中的CSI-RS资源配置频域指示信息,指示UE针对该资源进行测量并且仅适用于频域指示信息所指示的频域位置。
具体的RRC信令通知(如新增frequencyConfig),如下所示:
Figure PCTCN2017103925-appb-000052
Figure PCTCN2017103925-appb-000053
针对CQI上报配置频域指示信息。
基站针对CQI上报配置频域指示信息,指示UE该上报的CQI是基于对频域指示信息所指示的频域位置上的参考信号进行测量得到的CSI。
具体的RRC信令通知(如新增frequencyConfig),如下所示:
Figure PCTCN2017103925-appb-000054
终端200对第一频域指示信息对应频域上的参考信号测量,得到CSI,该CSI可以包括信道带宽中测量的各个资源块分别对应的测量结果,还可以是将测量的各个资源块中的测量结果按照预设方式进行处理,将处理后的结果作为CSI。其中,该预设方式可以是将 测量各个资源块的测量结果进行求平均或取最大值等方式,来确定CSI。终端200可以以测量报告的形式将CSI上报给基站100。
相关技术中,一般也是终端基于全带宽的速率匹配,而不能对信道带宽中特定频域位置上的信号进行速率匹配。导致相关技术中终端得到的速率匹配结果可能不准确,并且耗费资源。因此,根据需要,为了可以实现对信道带宽中特定频域位置上对应的数据进行速率匹配,在本申请提供的又一实施例中,还提供了一种速率匹配方法,用于进行速率匹配,仍旧以图1为例进行说明。其中,本申请实施例速率匹配的过程,可以应用到终端与终端、终端与基站以及基站与基站之间等的通信过程中,本申请实施例不限于此。为了便于理解,本申请以终端与基站之间的通信为例进行说明。
结合图1所示,基站100向终端发送速率配置信息,该速率匹配信息包括第二频域指示信息。其中,速率配置信息用于指示终端200进行速率匹配;第二频域指示信息,用于指示终端200对第二频域指示信息相对应的频域上的参考信号的资源位置上接收的数据进行速率匹配。
其中,这里的第二频域指示信息,与上述实施例中的第一频域指示信息可以不同,上述实施例中的第一频域指示信息主要用于指示终端200进行CSI测量的频域位置,这里的第二频域指示信息主要指示终端200进行速率匹配的频域位置,可以称为第二频域指示信息。
终端200接收基站100发送的速率配置信息,并根据该速率配置信息,对第二频域指示信息相对应的频域上的参考信号的资源位置上接收的数据进行速率匹配。其中,参考信号可以由基站100发送的,还可以由其它基站或传输点等发送。
在终端200根据速率配置信息进行速率匹配的过程中,还需要对信道带宽进行划分,将信道带宽划分为多个资源块,具体资源块的划分方式,可以采用上述实施例的信道划分方式,这里不再赘述。
速率匹配方案下的频域指示信息的具体指示方法如下:
基站100在PDSCH-RE-MappingQCL-Config域中的csi-RS-ConfigZPId-r11中的信息中配置频域指示信息。即基站100针对ZP CSI-RS资源配置频域指示信息,指示UE针对该ZP CSI-RS资源进行速率匹配时仅考虑其所在频段即可。
当UE接收到该信令后,UE根据ZP CSI-RS所在的资源位置对数据进行速率匹配时仅考虑其所在频域即可,而不需要考虑全带宽进行速率匹配。
具体RRC信令(如frequencyConfigList)如下所示:
Figure PCTCN2017103925-appb-000055
Figure PCTCN2017103925-appb-000056
上述的速率匹配既可以是数据映射到该资源后进行打孔,也可以是数据不在该资源上进行映射,包括但不限于上述情形。
针对物理层信令通知的方法:
在DCI(Downlink Control Information,下行控制信息)中增加CSI测量的频域指示信息和/或速率匹配频域信息。
CSI测量的频域指示信息举例如下所示:
-CSI frequency information field–4or 5bits
如果有多个CSI process配置需指示CSI-process ID
如果有多个CSI-IM配置需指示CSI-IM ID
如果有多个NZP CSI-RS配置需指示NZP CSI-RS ID
该域用于指示CSI测量的参考信号的频域位置信息或者用于指示CSI上报的频域位置信息。同时基站可以针对不同的测量资源标识配置频域指示信息,测量资源标识可以为CSI-process ID或者CSI-IM ID或者NZP CSI-RS ID,或者其他的测量资源,在此不做限制。
频域指示一般采用粒度相对较大的方式指示,这样可以减小信令的开销,比如subband(子带)粒度等。
速率匹配的频域指示信息举例如下所示:
-rata matching frequency information field–2or 3bits
该域用于指示速率匹配的参考信号的频域位置信息。
速率匹配的参考信号可以是ZP CSI-RS,或者其他用于指示UE进行速率匹配的参考信号,在此不做限制。
下面以速率匹配信号为ZP CSI-RS为例,基站100可以预先配置多个ZP CSI-RS ID,当给UE发送数据时的ZP CSI-RS与之前配置的RRC信令中的不一致时,可以通过物理层信令通知UE,仅通知ZP CSI-RS ID即可。即基站可以针对不同的ZP CSI-RS ID配置频域指示信息。
需要说明的是,本申请实施例中的上述配置方法包括但不限于上述方案。
速率配置信息中的第二频域指示信息,包括:信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识。该速率匹配标识可以分为第一速率匹配标识和第二速率匹配标识。终端200通过获取信道带宽中多个资源块中每个资源块分别对应的速率匹配标识,来确定信道带宽中频域匹配标识为第一速率匹配标识的参考信号的资源位置。这里可以采用上述实施例中bit mapping的方式,将每个资源块分别对应一个速率匹配标识,以便终端200根据该速率匹配标识,对相应资源块上的数据进行速率匹配。
另外,第二频域指示信息还可以包括:待速率匹配资源块的信息标识,该信息标识中包括频域位置,终端200在进行速率匹配时,确定与频域位置相对应的资源块上参考信号的资源位置,并根据该资源位置对数据进行速率匹配。
为了详述上述各实施例的分别在终端侧和基站侧的执行流程,在本申请提供的又一实施例中,如图2所示,还提供了一种CSI测量方法,应用于第一网络设备中,该方法可以包括如下步骤:
在步骤S210中,第一网络设备获取第二网络设备发送的包含第一频域指示信息的CSI配置信息。
第一网络设备终端、基站等设备,第二网络设备也可以是终端、基站等设备。示例性的,该方法可以应用在终端与终端,终端与基站,或基站与基站的通信当中。
其中,本申请实施例中的CSI配置信息可以包括:第一频域指示信息。CSI配置信息,用于指示第一网络设备进行CSI测量;第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置。
另外,第一网络设备可以RRC或者物理层信令获取第二网络设备发送的包含第一频域指示信息的CSI配置信息。
在步骤S220中,第一网络设备根据CSI配置信息,测量第一频域指示信息指示的频域上的参考信号,得到CSI。
本申请实施例中的参考信号,可以包括:信道测量参考信号和/或者干扰测量参考信号。
其中,第一频域指示信息包括信道划分信息,信道划分信息用于指示将信道带宽划分为多个资源块的方式。这种信道带宽划分方式,相当于上述实施例中的第一种信道带宽划 分方式,这里不再赘述,具体可以参见上述实施例。
第一网络设备可以按照预先设定的划分方式,将信道带宽划分为多个资源块。这种信道带宽划分方式,相当于上述实施例中的第二种信道划分方式,这里不再赘述,具体可以参见上述实施例。
第一网络设备获取多个资源块中目标资源块分别对应的测量结果,并将测量结果作为CSI。
或者,第一网络设备获取多个资源块中目标资源块对应的测量结果,并将目标资源块对应的测量结果按照预设方式进行处理,得到CSI。
本申请实施例中,在获取CSI后,第一网络设备会将CSI发送给第二网络设备。
为了详细阐述第一网络设备如何对信道带宽进行CSI测量,作为图2方法的细化,在本申请提供的又一实施例中,第一频域指示信息,包括:信道带宽的多个资源块中每个资源块分别对应一个频域测量标识。如图3所示,步骤S220还可以包括如下步骤:
在步骤S221中,第一网络设备获取信道带宽的多个资源块中每个资源块分别对应的频域测量标识。
其中,频域测量标识包括第一测量标识和第二测量标识。
本申请实施例中的这种方式相当于上述实施例中的采用bit mapping的形式,具体可以参见上述实施例。
在步骤S222中,第一网络设备对信道带宽中频域测量标识为第一测量标识的资源块上的参考信号进行测量。
在将信道带宽划分为多个资源块后,将需要测量的资源块对应设置为第一测量标识,将不需要测量的资源块对应设置为第二测量标识。便于第一网络设备对信道带宽中频域测量标识为第一测量标识的资源块进行测量。
为了详细阐述第一网络设备如何对信道带宽进行CSI测量,作为图2方法的细化,在本申请提供的又一实施例中,第一频域指示信息,包括:待测量资源块的信息标识;如图4所示,步骤S220还可以包括如下步骤:
在步骤S223中,第一网络设备获取待测量资源块的信息标识,信息标识用于指示测量资源的频域位置。
在步骤S224中,第一网络设备测量与频域位置相对应的资源块上的参考信号。
本申请实施例相当于将信道带宽中的多个资源块中,获取需要测量的资源块的信息标识,该信息标识可以对应需要测量的资源块所在的频域位置,便于第一网络设备进行测量。
另外,第一网络设备还将得到的CSI发送给第二网络设备;其中,得到的CSI,包括:
第一网络设备得到多个资源块中目标资源块分别对应的CSI;或者,第一网络设备得到多个资源块中目标资源块对应的CSI,并将目标资源块对应的CSI按照预设方式进行处理,将处理结果作为CSI。
为了详述上述各实施例的分别在终端侧和基站侧的执行流程,在本申请提供的又一实施例中,如图5所示,还提供了一种CSI测量方法,应用于第二网络设备中,该方法可以包括如下步骤:
在步骤S510中,第二网络设备向第一网络设备发送包含第一频域指示信息的CSI配 置信息;其中,CSI配置信息,用于指示第一网络设备进行CSI测量;第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;以使第一网络设备根据CSI配置信息,测量第一频域指示信息指示的频域上的参考信号。
第一频域指示信息,包括信道划分信息,信道划分信息用于指示将信道带宽划分为多个资源块的方式。
第二网络设备按照预先设定的划分方式,将第二网络设备和第一网络设备之间的信道带宽划分为多个资源块。
这里的两种信道带宽划分方式,相当于上述实施例中的第一种信道带宽划分方式和第二种信道带宽划分方式,具体实现方式详见上述各实施例。
其中,第一频域指示信息,包括:信道带宽的多个资源块中每个资源块分别对应一个频域测量标识,以使第一网络设备根据频域测量标识对信道带宽中的资源块进行测量。第一频域指示信息,包括:待测量资源块的信息标识,以使第一网络设备根据信息标识测量信道带宽中相应的资源块。
另外,第二网络设备可以通过RRC或者物理层信令向第一网络设备发送包含第一频域指示信息的CSI配置信息。参考信号可以是信道测量参考信号和/或者干扰测量参考信号。
在步骤S520中,第二网络设备获取第一网络设备发送的CSI。
其中,该CSI可以是第一网络设备对多个资源块中目标资源块分别对应的测量结果;或者,第一网络设备获取多个资源块中目标资源块对应的测量结果,并将目标资源块对应的测量结果按照预设方式进行处理得到的结果。
另外,频域测量标识包括第一测量标识和第二测量标识。
第一测量标识用于指示第一网络设备对信道带宽中的频域测量标识为第一测量标识的资源块进行测量。
第二测量标识用于指示第一网络设备对信道带宽中的频域测量标识为第二测量标识的资源块不进行测量。
在本申请提供的又一实施例中,如图6所示,还提供了一种速率匹配方法,应用于第一网络设备中,该方法可以包括如下步骤:
在步骤S610中,第二网络设备向第一网络设备发送包含第二频域指示信息的速率配置信息。
其中,速率配置信息用于指示第一网络设备进行速率匹配;第二频域指示信息用于指示第一网络设备进行速率匹配的频域位置;以使第一网络设备根据速率配置信息,确定与第二频域指示信息相对应的频域上的参考信号的资源位置并根据资源位置对接收到的数据进行速率匹配
第二频域指示信息,包括信道划分信息,信道划分信息用于指示将信道带宽划分为多个资源块的方式。
第一网络设备按照预先设定的划分方式,将信道带宽划分为多个资源块。或者,第一网络设备通过无线资源控制RRC或者物理层信令获取第二网络设备发送的包含第二频域指示信息的速率配置信息。相当于上述实施例中的第一种信道带宽划分方式和第二种信道带宽划分方式。
在步骤S620中,第一网络设备根据速率配置信息,确定与第二频域指示信息相对应 的频域上的参考信号的资源位置。
在步骤S630中,第一网络设备根据资源位置对接收到的数据进行速率匹配。
在本申请提供的实施例中,第一网络设备可以将信道带宽划分为多个资源块,然后对待测资源块上的数据进行速率匹配。
作为图6方法的细化,在本申请提供的又一实施例中,如图7所示,第二频域指示信息,包括:信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识。步骤S620还可以包括如下步骤:
在步骤S621中,第一网络设备获取信道带宽的多个资源块中每个资源块分别对应的速率匹配标识。
在步骤S622中,第一网络设备确定在信道带宽中速率匹配标识为第一速率匹配标识的资源块的参考信号的资源位置。
其中,速率匹配标识包括第一速率匹配标识和第二速率匹配标识。
可以将信道带宽中的多个资源块进行速率匹配标识,例如将待速率匹配资源块的速率匹配标识设置为第一速率匹配标识,将不需要速率匹配的资源块的速率匹配标识设置为第二速率匹配标识。
作为图6方法的细化,在本申请提供的又一实施例中,如图8所示,第二频域指示信息,包括:待速率匹配资源块的信息标识;步骤S620还可以包括如下步骤:
在步骤S623中,第一网络设备获取待速率匹配资源块的信息标识,信息标识包括频域位置。
在步骤S624中,第一网络设备确定与频域位置相对应的资源块上参考信号的资源位置。
本申请实施例中,通过过去待速率匹配资源块的信息标识,来确定信息标识中频域位置对应资源块上的资源位置,以便第一网络设备对该资源位置上的数据进行速率匹配。
在本申请提供的又一实施例中,如图9所示,还提供了一种速率匹配方法,应用于第二网络设备中,该方法可以包括如下步骤:
在步骤S910中,第二网络设备确定速率配置信息。
其中,速率配置信息包括:第二频域指示信息;速率配置信息用于指示第一网络设备进行速率匹配;第二频域指示信息用于指示第一网络设备进行速率匹配的频域位置。
第二频域指示信息,可以包括信道划分信息,信道划分信息用于将信道带宽划分为多个资源块。
其中,信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识,以使第一网络设备根据速率匹配标识对信道带宽中的资源块上的数据进行速率匹配。
另外,第二频域指示信息,还可以包括:待速率匹配资源块的信息标识,以使第一网络设备根据信息标识对信道带宽中相应的资源块上的数据进行速率匹配。
在步骤S920中,第二网络设备向第一网络设备发送包含第二频域指示信息的速率配置信息,以使第一网络设备根据接收到的速率配置信息进行速率匹配。
具体的,第二网络设备可以通过RRC或者物理层信令向第一网络设备发送包含第二频域指示信息的速率配置信息。
另外,另外,速率匹配标识包括第一测量标识和第二测量标识;第一测量标识用于指 示第一网络设备对信道带宽中的速率匹配标识为第一测量标识的资源块上的数据进行速率匹配;第二测量标识用于指示第一网络设备对信道带宽中的速率匹配标识为第二测量标识的资源块上的数据不进行速率匹配。
其中,信息标识包括频域位置;信息标识用于指示第一网络设备确定与频域位置相对应的资源块上的参考信号的资源位置,并指示第一网络设备根据资源位置对接收到的数据进行速率匹配。
在本申请提供的又一实施例中,由于信道的多径衰落和多普勒特性等,会导致不同的频域位置(或者子带)信道矩阵不同。在基站进行协作非相干JT传输时,因为不同的频域位置(或者子带)信道不同,在选择预编码矩阵传输时也会导致不同的频域位置预编码矩阵不同,因此在不同频域位置(或者子带)上的流间(或者层间或者码字间)干扰不同。
相关技术中,干扰测量是全带宽进行平均得到的干扰结果,这种情况下,干扰测量是不准确的。
针对协作传输下,为了让终端在CSI测量的时候可以得到准确的流间(或者层间或者码字间)干扰下的信道状态信息,需要考虑频域受限的干扰测量或者是子带干扰测量。
本申请实施例提供的干扰测量方法,可以包括以下几种具体实现方式:
方式一,如图10所示,在本申请提供的一实施例中,本申请该实施例提供的干扰测量方法,可以包括以下步骤:
步骤S1001,终端接收来自基站的第一信息,其中,第一信息包括CSI干扰测量的频域信息,该CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系。
该信道测量的频域信息可以是与信道测量相关的信息的频域信息,其中,与信道测量相关的信息,可以为例如下述中的至少一种:RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI和CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)等信道测量信息。
该干扰测量的频域信息可以是指与干扰测量相关的信息的频域信息,其中,与干扰测量相关的信息,可以为例如下述中的至少一种:RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI和CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)等干扰测量的信息。
第一信息可以是CSI配置信息。例如在LTE系统中,该CSI配置信息可以包括:CSI上报配置信息、参考信号配置信息中的至少一种。在NR(5G系统)中,该CSI配置信息可以包括:参考信号集合(RS setting)配置信息、CSI上报集合(CSI reporting setting)配置信息和CSI测量集合(CSI measurement setting)配置信息中的至少一种。
基于此,作为举例,CSI干扰测量的频域信息可以由上述信息、或任何具有类似功能的信息的至少一种进行承载。
而CSI干扰测量的频域信息的具体表现形式,可以为:
CSI上报配置信息或CSI上报集合配置信息中的CSI干扰上报模式,其中,CSI干扰上报模式指示了CSI干扰测量的频域信息;参考信号配置信息中的CSI干扰测量参考信号的频域信息;参考信号集合配置信息中的CSI干扰测量参考信号的频域信息;CSI测量集合配置信息中的频域信息。
以CSI干扰上报模式为例,比如基站可以配置的CSI干扰上报模式包括:子带CSI干 扰上报模式、部分带宽CSI干扰上报模式或全带CSI干扰上报模式等。基站向终端发送配置的CSI干扰上报模式,终端在接收到该CSI干扰上报模式后,可以根据该CSI干扰上报模式,确定CSI干扰测量的频域信息,进而进行CSI干扰测量。
具体的,由于CSI干扰上报模式指示了CSI干扰测量的频域信息,所以终端可以根据该CSI干扰上报模式,确定CSI干扰测量的频域信息。
作为另外一个例子,也可以采用CSI干扰测量参考信号的频域信息,来指示干扰测量的频域信息。
具体如何指示,可以参考之前实施例的指示方法。
进一步的,CSI干扰上报模式又可以包括周期性、非周期性、半持续性等。以针对周期性的CSI干扰上报模式为例(以表3为例),基站可以配置终端接收CQI和PMI的干扰上报类型,比如:模式1-0为全带CQI(wideband CQI),不上报PMI;模式1-1为全带CQI,全带PMI;模式2-0为子带CQI,不上报PMI;模式2-1为子带CQI,子带PMI。其他上报类型不限。另外针对RI也可以配置上报类型,比如全带RI或者子带RI等。
终端在接收到该周期性的CSI干扰上报模式后,可以根据该CSI干扰上报模式,确定CSI干扰测量的频域信息,进而进行CSI干扰测量。
Figure PCTCN2017103925-appb-000057
表4
当然,还可以采用上述2-4的表现形式,来实现CSI干扰测量的频域信息的指示。其中,在上述实施方式中,CSI干扰测量的频域信息与CSI信道测量的频域信息可以具有对应关系。上述对应关系,可以是1种或多种信道测量的频域信息对应1种或多种干扰测量的频域信息,在多种频域信息的情况下,可以取其频域带宽的集合或者取其最大/最小者。其中,信道测量的对象可以是RI、PMI、CQI和CRI等,干扰测量的对象可以是上述信道测量对象中的一种或多种。
从基站配置的角度,基站可以通过一定的对应关系,对CSI干扰测量的频域信息与CSI信道测量的频域信息进行配置。比如,信道测量可以为子带上报的信息或者全带上报的信息,如果信道测量的频域信息为子带上报的信息,干扰测量也采用子带上报的信息进行测量。如果信息测量采用全带上报的信息进行测量,那么干扰测量也采用全带上报的信息进行干扰测量。在这种方式中,干扰测量的频域信息与信道测量的频域信息相同。值得说明的是,频域信息可以指代频域(对应一定的带宽)。
当然,干扰测量的频域信息与信道测量的频域信息也可以不相同。可以有以下几种情况:
1)干扰测量的频域大于信道测量的频域;2)干扰测量的频域与信道测量的频域部分 重叠。这种情况的干扰测量的频域与信道测量的频域有部分相同,有部分不相同。
3)干扰测量的频域与信道测量的频域完全不重叠。这种情况的干扰测量的频域与信道测量的频域完全不相同。
另外,在第一信息为CSI配置信息时,CSI配置信息可以包括CSI干扰测量的频域信息和/或CSI信道测量的频域信息,CSI信道测量的频域信息和/或CSI干扰测量的频域信息为全带宽的子集。
其中,全带宽的子集包括N个资源单位,其中,N大于或者等于1,且小于全带宽的总资源单位数量。该资源单位可以是资源块(Resource Block,RB)。资源块(Resource Block,RB)是现有LTE技术的资源单元(资源粒度)。在5G或者后续协议中,可以不按照RB定义资源单元。资源单元或者资源粒度可以按照其他的方式规定,比如与帧结构的参数有关(比如子载波间隔或者循环移位的长度等)在此不做限制。
全带宽的子集还可以表现为子带,或者说全带宽的子集包括M个子带,其中,M大于或者等于1,且小于全带宽的总的子带数量。
具体的子带可以有如下所示几种方式:
①子带大小以1个RB为粒度。
②子带大小以2个RB为粒度。
③子带大小以现有的RBG(Resource Block Group,资源块组)的大小P个RB为粒度。其中,P大于或等于2,且为整数。如表5所示:
表5
Figure PCTCN2017103925-appb-000058
④子带大小以现有的CSI测量的Subband Size(子带大小)大小K为粒度。其中,K为正整数。如表6所示。
表6
Figure PCTCN2017103925-appb-000059
或者其他的子带定义,在此不做限定。
步骤S1002,终端根据CSI干扰测量的频域信息,对该CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行测量。
具体的,参考信号可以包括:信道测量参考信号和/或干扰测量参考信号。其中,信道测量参考信号用于终端的信道测量,干扰测量参考信号用于终端的干扰测量。在CSI测量过程中,终端可以根据信道测量的频域信息进行信道测量,根据干扰测量的频域信息进行干扰测量。
在本申请实施例中,终端对对应频域上的CSI干扰测量资源进行测量指的是,在该频域上对干扰测量参考信号进行测量。
据此,终端可以得到CSI干扰测量的结果。进一步的,终端还可以根据信道测量的频域信息进行信道测量,以得到CSI信道测量的结果,并根据上述CSI信道测量和CSI干扰测量的测量结果,综合得到CSI。
进一步的,干扰测量参考信号可以包括:NZP CSI-RS(Non-Zero Power Channel State Information-Reference Signal,非零功率信道状态信息参考信号)和ZP CSI-RS(Zero Power Channel State Information-Reference Signal,零功率信道状态信息参考信号)。
从基站配置的角度,CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系,该对应关系可以预先定义或配置,该定义或配置对于基站和终端两侧均需要知悉。针对不同的CSI-RS资源,关于上述对应关系,本申请实施例又提供了多种可选的实现方式,比如:
1)在有NZP CSI-RS资源和ZP CSI-RS资源时,仅确定NZP CSI-RS资源进行干扰测量时的频域信息,根据ZP CSI-RS资源进行干扰测量时仍然采用全带宽测量的方式。即,对NZP CSI-RS资源进行干扰测量时,采用上述对应关系。
由于在通过ZP CSI-RS资源进行干扰测量时仅进行干扰功率的测量,会造成测量结果不是很准确,并且由于不同的频域可能差别不会很大,所以可以通过全带宽平均的方式提高准确性。而通过NZP CSI-RS资源进行干扰测量时,可以具体得到信道矩阵信息或者进一步可以得到预编码矩阵信息,因此可以进行准确的测量。而且不同的频域可能会使得到的测量结果差别比较大,因此全带宽平均的方式会导致干扰测量不准确,进而针对NZP CSI-RS资源测量干扰的频域信息可以按照信道测量的频域信息确定,这样不但降低信令开销,又可以提高CSI测量的准确性。
2)在没有NZP CSI-RS资源而有ZP CSI-RS资源时,确定根据ZP CSI-RS资源进行干扰测量时的频域信息。即,对ZP CSI-RS资源进行干扰测量时,采用上述对应关系。
示例性的,比如干扰测量资源中仅包含ZP CSI-RS资源。
在CS/CB场景中,在具体的数据调度时,邻区可能会在不同的频段会采用不同的预编码/波束进行数据传输,因为邻区不同的数据传输的预编码/波束,对终端造成的干扰情况不同,例如不同的预编码/波束会使得信号能量在不同的位置强度不同,进而不同的频域信息上的干扰程度不同。因此可以在用ZP CSI-RS资源进行干扰测量时的频域信息可以按照信道测量的频域信息确定,对应的得到该频域信息上的信道状态信息,提高信道状态信息测量的准确性。
3)在有NZP CSI-RS资源和ZP CSI-RS资源时,不但确定根据NZP CSI-RS资源进行 干扰测量时的频域信息,还确定根据ZP CSI-RS资源进行干扰测量时的频域信息。即,对NZP CSI-RS资源和ZP CSI-RS资源进行干扰测量时,都采用上述对应关系。
当NZP CSI-RS资源上不同频域信息对应不同干扰情况,而且ZP CSI-RS资源上不同频域信息也会对应不同干扰情况时,可以考虑在用NZP CSI-RS资源进行干扰测量时的频域信息可以按照信道测量的频域信息确定,用ZP CSI-RS资源进行干扰测量时的频域信息也可以按照信道测量的频域信息确定,对应的得到该频域信息上的信道状态信息,提高信道状态信息测量的准确性。
4)在有NZP CSI-RS资源和ZP CSI-RS资源时,仅确定根据ZP CSI-RS资源进行干扰测量时的频域信息,根据NZP CSI-RS资源进行干扰测量时仍然采用全带宽测量的方式。
再进一步的,其中NZP CSI-RS资源可以是Class A的CSI-RS资源或者Class B的CSI-RS资源。
方式二,如图11所示,作为基站侧的执行流程,在本申请提供的又一实施例中,本申请该实施例提供的干扰测量方法,可以包括以下步骤:
步骤S2001,基站确定CSI干扰测量的频域信息,CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系。
其中,在上述实施方式中,CSI干扰测量的频域信息与CSI信道测量的频域信息可以具有对应关系。上述对应关系,可以是1种或多种信道测量的频域信息对应1种或多种干扰测量的频域信息,在多种频域信息的情况下,可以取其频域带宽的集合或者取其最大/最小者。其中,信道测量的对象可以是RI、PMI、CQI和CRI等,干扰测量的对象可以是上述信道测量对象中的一种或多种。
从基站配置的角度,基站可以通过一定的对应关系,对CSI干扰测量的频域信息与CSI信道测量的频域信息进行配置。比如,信道测量可以为子带上报的信息或者全带上报的信息,如果信道测量的频域信息为子带上报的信息,干扰测量也采用子带上报的信息进行测量。如果信息测量采用全带上报的信息进行测量,那么干扰测量也采用全带上报的信息进行干扰测量。在这种方式中,干扰测量的频域信息与信道测量的频域信息相同。值得说明的是,频域信息可以指代频域(对应一定的带宽)。
当然,干扰测量的频域信息与信道测量的频域信息也可以不相同。可以有以下几种情况:
1)干扰测量的频域大于信道测量的频域;2)干扰测量的频域与信道测量的频域部分重叠。这种情况的干扰测量的频域与信道测量的频域有部分相同,有部分不相同。
3)干扰测量的频域与信道测量的频域完全不重叠。这种情况的干扰测量的频域与信道测量的频域完全不相同。
步骤S2002,基站向终端发送第一信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系。
另外,在第一信息为CSI配置信息时,CSI配置信息可以包括CSI干扰测量的频域信息和/或CSI信道测量的频域信息,CSI信道测量的频域信息和/或CSI干扰测量的频域信息为全带宽的子集。
其中,全带宽的子集包括N个资源单位,其中,N大于或者等于1,且小于全带宽的总资源单位数量。该资源单位可以是资源块(Resource Block,RB)。资源块(Resource Block, RB)是现有LTE技术的资源单元(资源粒度)。在5G或者后续协议中,可以不按照RB定义资源单元。资源单元或者资源粒度可以按照其他的方式规定,比如与帧结构的参数有关(比如子载波间隔或者循环移位的长度等)在此不做限制。
全带宽的子集还可以表现为子带,或者说全带宽的子集包括M个子带,其中,M大于或者等于1,且小于全带宽的总的子带数量。
具体的子带可以有如下所示几种方式:
①子带大小以1个RB为粒度。
②子带大小以2个RB为粒度。
③子带大小以现有的RBG(Resource Block Group,资源块组)的大小P个RB为粒度。其中,P大于或等于2,且为整数。如表7所示:
表7
Figure PCTCN2017103925-appb-000060
④子带大小以现有的CSI测量的Subband Size(子带大小)大小K为粒度。其中,K为正整数。如表8所示。
表8
Figure PCTCN2017103925-appb-000061
或者其他的子带定义,在此不做限定。
具体的,参考信号可以包括:信道测量参考信号和/或干扰测量参考信号。其中,信道测量参考信号用于终端的信道测量,干扰测量参考信号用于终端的干扰测量。在CSI测量过程中,终端可以根据信道测量的频域信息进行信道测量,根据干扰测量的频域信息进行干扰测量。
进一步的,干扰测量参考信号可以包括:NZP CSI-RS(Non-Zero Power Channel State Information-Reference Signal,非零功率信道状态信息参考信号)和ZP CSI-RS(Zero Power Channel State Information-Reference Signal,零功率信道状态信息参考信号)。
从基站配置的角度,CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系,该对应关系可以预先定义或配置,该定义或配置对于基站和终端两侧均需要知悉。针对不同的CSI-RS资源,关于上述对应关系,本申请实施例又提供了多种可选的实现方式,比如:
1)在有NZP CSI-RS资源和ZP CSI-RS资源时,仅确定NZP CSI-RS资源进行干扰测量时的频域信息,根据ZP CSI-RS资源进行干扰测量时仍然采用全带宽测量的方式。即,对NZP CSI-RS资源进行干扰测量时,采用上述对应关系。
由于在通过ZP CSI-RS资源进行干扰测量时仅进行干扰功率的测量,会造成测量结果不是很准确,并且由于不同的频域可能差别不会很大,所以可以通过全带宽平均的方式提高准确性。而通过NZP CSI-RS资源进行干扰测量时,可以具体得到信道矩阵信息或者进一步可以得到预编码矩阵信息,因此可以进行准确的测量。而且不同的频域可能会使得到的测量结果差别比较大,因此全带宽平均的方式会导致干扰测量不准确,进而针对NZP CSI-RS资源测量干扰的频域信息可以按照信道测量的频域信息确定,这样不但降低信令开销,又可以提高CSI测量的准确性。
2)在没有NZP CSI-RS资源而有ZP CSI-RS资源时,确定根据ZP CSI-RS资源进行干扰测量时的频域信息。即,对ZP CSI-RS资源进行干扰测量时,采用上述对应关系。
示例性的,比如干扰测量资源中仅包含ZP CSI-RS资源。
在CS/CB场景中,在具体的数据调度时,邻区可能会在不同的频段会采用不同的预编码/波束进行数据传输,因为邻区不同的数据传输的预编码/波束,对终端造成的干扰情况不同,例如不同的预编码/波束会使得信号能量在不同的位置强度不同,进而不同的频域信息上的干扰程度不同。因此可以在用ZP CSI-RS资源进行干扰测量时的频域信息可以按照信道测量的频域信息确定,对应的得到该频域信息上的信道状态信息,提高信道状态信息测量的准确性。
3)在有NZP CSI-RS资源和ZP CSI-RS资源时,不但确定根据NZP CSI-RS资源进行干扰测量时的频域信息,还确定根据ZP CSI-RS资源进行干扰测量时的频域信息。即,对NZP CSI-RS资源和ZP CSI-RS资源进行干扰测量时,都采用上述对应关系。
当NZP CSI-RS资源上不同频域信息对应不同干扰情况,而且ZP CSI-RS资源上不同频域信息也会对应不同干扰情况时,可以考虑在用NZP CSI-RS资源进行干扰测量时的频域信息可以按照信道测量的频域信息确定,用ZP CSI-RS资源进行干扰测量时的频域信息也可以按照信道测量的频域信息确定,对应的得到该频域信息上的信道状态信息,提高信道状态信息测量的准确性。
4)在有NZP CSI-RS资源和ZP CSI-RS资源时,仅确定根据ZP CSI-RS资源进行干扰测量时的频域信息,根据NZP CSI-RS资源进行干扰测量时仍然采用全带宽测量的方式。
再进一步的,其中NZP CSI-RS资源可以是Class A的CSI-RS资源或者Class B的CSI-RS资源。
需要说明的是,本申请实施例中,基站可以根据信道测量的频域信息确定干扰测量的频域信息,还可以同时确定信道测量的频域信息和干扰测量的频域信息,本申请实施例不限于此。
方式三,如图12所示,在本申请提供的又一实施例中,该实施例提供的干扰测量方 法,可以包括以下步骤:
步骤S3001,终端接收来自基站的第二信息,第二信息包括CSI信道测量的频域信息,CSI干扰测量的频域信息CSI信道测量的频域信息具有对应关系。
步骤S3002,终端根据CSI信道测量的频域信息,确定CSI干扰测量的频域信息,并对CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
该信道测量的频域信息可以是与信道测量相关的信息的频域信息,其中,与信道测量相关的信息,可以为例如下述中的至少一种:RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI和CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)等信道测量信息。
该干扰测量的频域信息可以是指与干扰测量相关的信息的频域信息,其中,与干扰测量相关的信息,可以为例如下述中的至少一种:RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI和CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)等干扰测量的信息。
其中,在上述实施方式中,CSI干扰测量的频域信息与CSI信道测量的频域信息可以具有对应关系。上述对应关系,可以是1种或多种信道测量的频域信息对应1种或多种干扰测量的频域信息,在多种频域信息的情况下,可以取其频域带宽的集合或者取其最大/最小者。其中,信道测量的对象可以是RI、PMI、CQI和CRI等,干扰测量的对象可以是上述信道测量对象中的一种或多种。
从基站配置的角度,基站可以通过一定的对应关系,对CSI干扰测量的频域信息与CSI信道测量的频域信息进行配置。比如,信道测量可以为子带上报的信息或者全带上报的信息,如果信道测量的频域信息为子带上报的信息,干扰测量也采用子带上报的信息进行测量。如果信息测量采用全带上报的信息进行测量,那么干扰测量也采用全带上报的信息进行干扰测量。在这种方式中,干扰测量的频域信息与信道测量的频域信息相同。值得说明的是,频域信息可以指代频域(对应一定的带宽)。
当然,干扰测量的频域信息与信道测量的频域信息也可以不相同。可以有以下几种情况:
1)干扰测量的频域大于信道测量的频域;2)干扰测量的频域与信道测量的频域部分重叠。这种情况的干扰测量的频域与信道测量的频域有部分相同,有部分不相同。
3)干扰测量的频域与信道测量的频域完全不重叠。这种情况的干扰测量的频域与信道测量的频域完全不相同。
第一信息可以是CSI配置信息。例如在LTE系统中,该CSI配置信息可以包括:CSI上报配置信息、参考信号配置信息中的至少一种。在NR(5G系统)中,该CSI配置信息可以包括:参考信号集合(RS setting)配置信息、CSI上报集合(CSI reporting setting)配置信息和CSI测量集合(CSI measurement setting)配置信息中的至少一种。
基于此,作为举例,CSI信道测量的频域信息可以由上述信息、或任何具有类似功能的信息的至少一种进行承载。
而CSI信道测量的频域信息的具体表现形式,可以为:
CSI上报配置信息或CSI上报集合配置信息中的CSI上报模式,其中,CSI干扰上报模式指示了CSI信道测量的频域信息;参考信号配置信息中的CSI信道测量参考信号的频 域信息;参考信号集合配置信息中的CSI信道测量参考信号的频域信息;4、CSI测量集合配置信息中的频域信息。
以CSI上报模式为例,比如基站可以配置的CSI上报模式包括:子带CSI上报模式、部分带宽CSI上报模式或全带CSI上报模式等。基站向终端发送配置的CSI上报模式,终端在接收到该CSI上报模式后,可以根据该CSI上报模式,确定CSI信道测量的频域信息,进而进行CSI信道测量。
具体的,由于CSI上报模式指示了CSI信道测量的频域信息,终端可以根据CSI干扰测量信息的频域信息与CSI信道测量的频域信息具有对应关系,因此终端可以确定干扰测量的频域信息。
作为另外一个例子,也可以采用CSI信道测量参考信号的频域信息,具体如何指示,可以参考之前实施例的指示方法。
进一步的,CSI上报模式又可以包括周期性、非周期性、半持续性等。以针对周期性的CSI上报模式为例(以表9为例),基站可以配置终端接收CQI和PMI的上报类型,比如:模式1-0为全带CQI(wideband CQI),不上报PMI;模式1-1为全带CQI,全带PMI;模式2-0为子带CQI,不上报PMI;模式2-1为子带CQI,子带PMI。其他上报类型不限。另外针对RI也可以配置上报类型,比如全带RI或者子带RI等。
终端在接收到该周期性的CSI干扰上报模式后,可以根据该CSI上报模式,确定CSI信道测量的频域信息,进而进行CSI干扰测量。
表9
Figure PCTCN2017103925-appb-000062
当然,还可以采用上述2-4的表现形式,来实现CSI信道测量的频域信息的指示,终端根据信道测量的频域信息与干扰测量的频域信息的对应关系,来确定CSI干扰测量的频域信息。
另外,在第二信息为CSI配置信息时,CSI配置信息可以包括CSI信道测量的频域信息,CSI信道测量的频域信息为全带宽的子集。
其中,全带宽的子集包括N个资源单位,其中,N大于或者等于1,且小于全带宽的总资源单位数量。该资源单位可以是资源块(Resource Block,RB)。资源块(Resource Block,RB)是现有LTE技术的资源单元(资源粒度)。在5G或者后续协议中,可以不按照RB定义资源单元。资源单元或者资源粒度可以按照其他的方式规定,比如与帧结构的参数有关(比如子载波间隔或者循环移位的长度等)在此不做限制。
全带宽的子集还可以表现为子带,或者说全带宽的子集包括M个子带,其中,M大于或者等于1,且小于全带宽的总的子带数量。
具体的子带可以有如下所示几种方式:
①子带大小以1个RB为粒度。
②子带大小以2个RB为粒度。
③子带大小以现有的RBG(Resource Block Group,资源块组)的大小P个RB为粒度。其中,P大于或等于2,且为整数。如表10所示:
表10
Figure PCTCN2017103925-appb-000063
④子带大小以现有的CSI测量的Subband Size(子带大小)大小K为粒度。其中,K为正整数。如表11所示。
表11
Figure PCTCN2017103925-appb-000064
或者其他的子带定义,在此不做限定。
CSI信道测量的频域信息和CSI干扰测量的频域信息,具有三种对应方式,参见上述实施例,这里不再赘述。
具体的,参考信号可以包括:信道测量参考信号和/或干扰测量参考信号。其中,信道测量参考信号用于终端的信道测量,干扰测量参考信号用于终端的干扰测量。在CSI测量过程中,终端可以根据信道测量的频域信息进行信道测量,根据干扰测量的频域信息进行干扰测量。
在本申请实施例中,终端对对应频域上的CSI干扰测量资源进行测量指的是,在该频域上对干扰测量参考信号进行测量。
终端可以得到CSI干扰测量的结果。进一步的,终端还可以根据信道测量的频域信息进行信道测量,以得到CSI信道测量的结果,并根据上述CSI信道测量和CSI干扰测量的测量结果,综合得到CSI。
进一步,可选的,终端可用向基站发送CSI。
方式四,如图13所示,在本申请提供的又一实施例中,该实施例提供的干扰测量方 法,可以包括以下步骤:
步骤S4001,基站确定CSI信道测量的频域信息。
步骤S4002,基站向终端发送第二信息,第二信息包括CSI信道测量的频域信息,CSI干扰测量信息的频域信息与CSI信道测量的频域信息具有对应关系。
该信道测量的频域信息可以是与信道测量相关的信息的频域信息,其中,与信道测量相关的信息,可以为例如下述中的至少一种:RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI和CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)等信道测量信息。
该干扰测量的频域信息可以是指与干扰测量相关的信息的频域信息,其中,与干扰测量相关的信息,可以为例如下述中的至少一种:RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI和CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)等干扰测量的信息。
该信道测量的频域信息可以是与信道测量相关的信息的频域信息,其中,与信道测量相关的信息,可以为例如下述中的至少一种:RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI和CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)等信道测量信息。
该干扰测量的频域信息可以是指与干扰测量相关的信息的频域信息,其中,与干扰测量相关的信息,可以为例如下述中的至少一种:RI(Rank Indication,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、CQI和CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)等干扰测量的信息。
其中,在上述实施方式中,CSI干扰测量的频域信息与CSI信道测量的频域信息可以具有对应关系。上述对应关系,可以是1种或多种信道测量的频域信息对应1种或多种干扰测量的频域信息,在多种频域信息的情况下,可以取其频域带宽的集合或者取其最大/最小者。其中,信道测量的对象可以是RI、PMI、CQI和CRI等,干扰测量的对象可以是上述信道测量对象中的一种或多种。
从基站配置的角度,基站可以通过一定的对应关系,对CSI干扰测量的频域信息与CSI信道测量的频域信息进行配置。比如,信道测量可以为子带上报的信息或者全带上报的信息,如果信道测量的频域信息为子带上报的信息,干扰测量也采用子带上报的信息进行测量。如果信息测量采用全带上报的信息进行测量,那么干扰测量也采用全带上报的信息进行干扰测量。在这种方式中,干扰测量的频域信息与信道测量的频域信息相同。值得说明的是,频域信息可以指代频域(对应一定的带宽)。
当然,干扰测量的频域信息与信道测量的频域信息也可以不相同。可以有以下几种情况:
1)干扰测量的频域大于信道测量的频域;2)干扰测量的频域与信道测量的频域部分重叠。这种情况的干扰测量的频域与信道测量的频域有部分相同,有部分不相同。
3)干扰测量的频域与信道测量的频域完全不重叠。这种情况的干扰测量的频域与信道测量的频域完全不相同。
第一信息可以是CSI配置信息。例如在LTE系统中,该CSI配置信息可以包括:CSI上报配置信息、参考信号配置信息中的至少一种。在NR(5G系统)中,该CSI配置信息 可以包括:参考信号集合(RS setting)配置信息、CSI上报集合(CSI reporting setting)配置信息和CSI测量集合(CSI measurement setting)配置信息中的至少一种。
基于此,作为举例,CSI信道测量的频域信息可以由上述信息、或任何具有类似功能的信息的至少一种进行承载。
而CSI信道测量的频域信息的具体表现形式,可以为:
CSI上报配置信息或CSI上报集合配置信息中的CSI上报模式,其中,CSI干扰上报模式指示了CSI信道测量的频域信息;参考信号配置信息中的CSI信道测量参考信号的频域信息;参考信号集合配置信息中的CSI信道测量参考信号的频域信息;4、CSI测量集合配置信息中的频域信息。
以CSI上报模式为例,比如基站可以配置的CSI上报模式包括:子带CSI上报模式、部分带宽CSI上报模式或全带CSI上报模式等。基站向终端发送配置的CSI上报模式,终端在接收到该CSI上报模式后,可以根据该CSI上报模式,确定CSI信道测量的频域信息,进而进行CSI信道测量。
具体的,由于CSI上报模式指示了CSI信道测量的频域信息,终端可以根据CSI干扰测量信息的频域信息与CSI信道测量的频域信息具有对应关系,因此终端可以确定干扰测量的频域信息。
作为另外一个例子,也可以采用CSI信道测量参考信号的频域信息,具体如何指示,可以参考之前实施例的指示方法。
进一步的,CSI上报模式又可以包括周期性、非周期性、半持续性等。以针对周期性的CSI上报模式为例(以表12为例),基站可以配置终端接收CQI和PMI的上报类型,比如:模式1-0为全带CQI(wideband CQI),不上报PMI;模式1-1为全带CQI,全带PMI;模式2-0为子带CQI,不上报PMI;模式2-1为子带CQI,子带PMI。其他上报类型不限。另外针对RI也可以配置上报类型,比如全带RI或者子带RI等。
终端在接收到该周期性的CSI干扰上报模式后,可以根据该CSI上报模式,确定CSI信道测量的频域信息,进而进行CSI干扰测量。
表12
Figure PCTCN2017103925-appb-000065
当然,还可以采用上述2-4的表现形式,来实现CSI信道测量的频域信息的指示,终端根据信道测量的频域信息与干扰测量的频域信息的对应关系,来确定CSI干扰测量的频域信息。
另外,在第二信息为CSI配置信息时,CSI配置信息可以包括CSI信道测量的频域信息,CSI信道测量的频域信息为全带宽的子集。
其中,全带宽的子集包括N个资源单位,其中,N大于或者等于1,且小于全带宽的 总资源单位数量。该资源单位可以是资源块(Resource Block,RB)。资源块(Resource Block,RB)是现有LTE技术的资源单元(资源粒度)。在5G或者后续协议中,可以不按照RB定义资源单元。资源单元或者资源粒度可以按照其他的方式规定,比如与帧结构的参数有关(比如子载波间隔或者循环移位的长度等)在此不做限制。
全带宽的子集还可以表现为子带,或者说全带宽的子集包括M个子带,其中,M大于或者等于1,且小于全带宽的总的子带数量。
具体的子带可以有如下所示几种方式:
①子带大小以1个RB为粒度。
②子带大小以2个RB为粒度。
③子带大小以现有的RBG(Resource Block Group,资源块组)的大小P个RB为粒度。其中,P大于或等于2,且为整数。如表13所示:
表13
Figure PCTCN2017103925-appb-000066
④子带大小以现有的CSI测量的Subband Size(子带大小)大小K为粒度。其中,K为正整数。如表14所示。
表14
Figure PCTCN2017103925-appb-000067
或者其他的子带定义,在此不做限定。
CSI信道测量的频域信息和CSI干扰测量的频域信息,具有三种对应方式,参见上述实施例,这里不再赘述。
具体的,参考信号可以包括:信道测量参考信号和/或干扰测量参考信号。其中,信道测量参考信号用于终端的信道测量,干扰测量参考信号用于终端的干扰测量。在CSI测量过程中,终端可以根据信道测量的频域信息进行信道测量,根据干扰测量的频域信息进行干扰测量。
在本申请实施例中,终端对对应频域上的CSI干扰测量资源进行测量指的是,在该频域上对干扰测量参考信号进行测量。
终端可以得到CSI干扰测量的结果。进一步的,终端还可以根据信道测量的频域信息进行信道测量,以得到CSI信道测量的结果,并根据上述CSI信道测量和CSI干扰测量的测量结果,综合得到CSI。
进一步,可选的,终端可用向基站发送CSI,可选的,基站可以接收终端发送的CSI。
需要说明的是,本申请实施例中,基站可以根据信道测量的频域信息确定干扰测量的频域信息,还可以同时确定信道测量的频域信息和干扰测量的频域信息,本申请实施例不限于此。
结合上述各实施例,本申请提供的又一实施例中,基站间可以交互上述的CSI信道测量的频域信息和/或CSI干扰测量的频域信息。上述各实施例中的信息的发送可以通过高层信令和物理层信令中的至少一种。
本申请提供的实施例中,对于CSI上报,可以有不同的频域粒度的上报方式,比如全带CSI(Wideband CSI)上报,部分带宽CSI(Partial band CSI)上报,子带CSI(Subband CSI)上报。
对于全带CSI上报,全带的粒度可以是根据终端的可接收下行信号的能力决定。全带的位置可以是基站配置的,这种场景可以应用于波束管理中。
对于部分带宽CSI上报,可以是终端级的可配的带宽,也可以是根据帧结构参数信息或者调度时间单位信息确定的。
对于子带CSI上报,子带的大小是通过带宽或者部分带宽划分为多个子带确定的。子带的CSI上报可用于频域选择调度和子带预编码测量等等。
结合上述实施例,本申请提供的实施例中,为了CSI的获取,可以配置如下信息中的至少一项:
1)CSI上报集合(CSI reporting setting)配置信息,用于指示CSI上报相关的信息,比如可以包括CSI上报参数(比如RI,PMI,CQI,CRI等等),CSI上报类型(CSI类型一CSI Type I或者CSI类型二CSI Type II),码本配置信息,时域信息,频域粒度信息(比如全带上报,部分带宽上报,子带上报等等),测量受限配置信息(激活/去激活信息等)中的至少一项。
2)参考信号集合(Resource setting)配置信息,用于指示CSI测量的参考信号的相关的信息,比如可以包括一个或者多个CSI-RS资源集合(CSI-RS resource set)。每个集合set中可以包括一个或者多个CSI-RS资源配置信息,配置信息中包括映射的时频资源位置信息,天线端口数,时域信息(可以是周期,非周期,半持续性等等)等中的至少一项。还可以包括RS的类型指示信息。
3)CSI测量集合(CSI measurement setting)配置信息,用于指示CSI测量的关联(link)相关的信息,比如在CSI测量集合配置信息中可以包括一条或者多条link信息,每一条link信息中包括CSI上报集合标识,参考信号集合标识,测量量的指示(比如信道还是干扰)。其中一个CSI上报集合可以关联一个或者多个参考信号集合。多个CSI上报集合也可以关联到一个参考信号集合。
需要说明的是,在本申请提供的实施例中,一个CSI测量集合可以有一个或者多个CSI 上报集合;一个或者多个CSI上报集合是从至少一个参考信号集合中选择产生的。一个或者多个CSI资源是从至少一个CSI-RS资源集合中选择产生的。具体的与频域信息相关的指示信息可以放在上述3个配置信息中的至少一项中。
本申请上述实施例提供的干扰测量方法,可以适用于协作场景,比如下行CoMP主要包括JT(Joint Transmission,联合传输)、协同调度和CS/CB(Coordinated Scheduling and Beamforming,波束赋形)和DPS/DPB(Dynamic Point Selection/Dynamic Point Blanking,动态点选择/关闭),其中JT分为相干JT和非相干JT。
如图14所示,在JT场景下基站400与基站500在进行联合传输时,基站400与基站500之间的资源有三种情况,即二者资源完全重叠、部分重叠和不重叠。如果二者资源有重叠,则会导致流间(或者层间或者码字间)比如为了测量两个基站资源完成重叠的情况下的CSI,则可以配置子带的CSI上报模式,终端在进行信道测量的时候确定子带的频域信息,同时在进行干扰测量的时候也采用信道测量相同的子带的频域信息,这样可以测得重叠情况下的流间(或者层间或者码字间)干扰情况。此时干扰测量资源与信道测量资源完全相同,具体的,在干扰测量资源分为NZP CSI-RS和ZP CSI-RS时,本申请实施例采用NZP CSI-RS测量流间(或者层间或者码字间)干扰,ZP CSI-RS测量基站400和基站500之外的基站带来的干扰,而且可以让NZP CSI-RS测量干扰时的资源信息与信道测量的资源信息相同,而ZP CSI-RS测量干扰时可以是全带宽的测量。
在两个基站资源部分重叠的情况下,因为重叠的部分是有流间干扰,而不重叠的地方是没有流间(或者层间或者码字间)干扰的。因此为了测量准确的CSI,可以配置终端在非重叠的部分的信道测量时不考虑流间(或者层间或者码字间)干扰,在重叠的部分的信道测量时考虑流间(或者层间或者码字间)干扰,具体的可以在测量基站1的数据传输时的CSI可以配置终端在信道测量子带1,不考虑流间(或者层间或者码字间)干扰测量;在信道测量子带2上,考虑基站2在测量子带2上的流间(或者层间或者码字间)干扰测量。(此时干扰测量资源与信道测量资源的部分资源相同)具体的,干扰测量资源分为NZP CSI-RS和ZP CSI-RS时,此时可以考虑用NZP CSI-RS测量流间(或者层间或者码字间)干扰,ZP CSI-RS测量基站1和基站2之外的基站带来的干扰,而且可以让NZP CSI-RS测量干扰时的资源信息与信道测量的资源信息相同,而ZP CSI-RS测量干扰时可以是全带宽的测量。比如在测量子带1时,仅配置ZP CSI-RS测量干扰,而且是全带宽测量。在测量子带2时,可以配置NZP CSI-RS测量子带2上的流间(或者层间或者码字间)干扰,配置ZP CSI-RS测量干扰时可以是全带宽的测量。
在两个基站资源完全不重叠的情况下,因为不重叠的地方是没有流间干扰的。因此为了测量准确的CSI,可以配置终端在非重叠的部分的信道测量时不考虑流间干扰,具体的可以在测量基站1的数据传输时的CSI可以配置终端在信道测量子带1进行信道测量,而干扰测量可以是全带宽测量。(此时干扰测量资源与信道测量资源的部分资源相同)具体的,配置信道测量的频域信息为子带1,而配置ZP CSI-RS测量干扰时可以是全带宽的测量。
其中NZP CSI-RS资源可以是Class A的CSI-RS资源或者Class B的CSI-RS资源。
本申请上述实施例提供的干扰测量方法,可以适用于CS/CB场景中,在本申请提供的实施例中,如图15所示,基站1与基站2在进行CS/CB传输时,因为邻基站在进行不同 的波束方向传输时会导致不同的干扰情况,比如图中波束2的干扰大于波束3的干扰大于波束4的干扰。而邻基站在数据调度是在不同的频域资源调度不同的用户是会采用不同的预编码或波束进行传输。因此为了测量准确的CSI信息,可以配置子带的CSI上报模式,终端在进行信道测量的时候确定子带的频域信息,同时在进行干扰测量的时候也采用信道测量相同的子带的频域信息,这样可以测得对应频段下的干扰情况。(此时干扰测量资源与信道测量资源完全相同)具体的,干扰测量资源分为NZP CSI-RS和ZP CSI-RS时,此时可以考虑用NZP CSI-RS测量同频段定向波束的干扰,ZP CSI-RS测量基站1和基站2之外的基站带来的干扰,而且可以让NZP CSI-RS测量干扰时的资源信息与信道测量的资源信息相同,而ZP CSI-RS测量干扰时可以是全带宽的测量。另外也如果基站确定给终端传输数据时邻区的波束方向信息,可以配置干扰测量的频域信息为该波束方向的数据或者信号的频域信息。比如TP2用频段1进行波束2的传输,用频段2进行波束3的传输,用频段3进行波束4的传输。基站配置终端进行信道测量的频段为频段X,而如果干扰波束为波束2,则可以配置干扰测量的频段为频段1;如果干扰波束为波束3,则可以配置干扰测量的频段为频段2;如果干扰波束为波束4,则可以配置干扰测量的频段为频段3。而信道测量的频段X可以与干扰测量的频段相同或者不同。不同时可以通过配置频域偏移信息实现,比如如果信道测量为频段1,干扰测量为频段1,则可以配置干扰测量的频域偏移信息为0;如果信道测量为频段1,干扰测量为频段2,则可以配置干扰测量的频域偏移信息为1;如果信道测量为频段1,干扰测量为频段3,则可以配置干扰测量的频域偏移信息为2。终端可以通过信道测量的频域信息以及频域偏移信息确定干扰测量的频域信息。(新增)此时的干扰测量资源可以是NZP CSI-RS资源也可以是ZP CSI-RS资源,其中NZP CSI-RS资源可以是Class A的CSI-RS资源或者Class B的CSI-RS资源。
在本申请提供的又一实施例中,还提供了一种干扰测量装置,如图16,该装置应用于终端中,包括:
收发单元,用于接收来自基站的第一信息,所述第一信息包括CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;处理单元,用于根据所述CSI干扰测量的频域信息,对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
在本申请实施例提供的一种可能的实现方式中,所述第一信息为CSI配置信息,所述CSI配置信息包括所述CSI信道测量的频域信息,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
在本申请提供的又一实施例中,还提供了一种干扰测量装置,如图16,该装置应用于基站中,包括:
处理单元,用于确定CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;收发单元,用于向终端发送第一信息,所述第一信息包含所述CSI干扰测量的频域信息。
在本申请实施例提供的一种可能的实现方式中,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
在本申请提供的又一实施例中,还提供了一种干扰测量装置,如图16,该装置应用于终端中,包括:
收发单元,用于接收来自基站的第二信息,所述第二信息包括CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;处理单元,用于根据所述CSI信道测量的频域信息,确定CSI干扰测量的频域信息,并对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
在本申请实施例提供的一种可能的实现方式中,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
在本申请提供的又一实施例中,还提供了一种干扰测量装置,如图16,该装置应用于基站中,包括:
处理单元,用于获取CSI信道测量的频域信息;收发单元,用于向所述终端发送第二信息,所述第二信息包括所述CSI信道测量的频域信息,所述CSI干扰测量的频域信息CSI信道测量的频域信息具有对应关系。
在本申请实施例提供的一种可能的实现方式中,所述CSI干扰测量信息和CSI信道测量的频域信息为全带宽的子集。
本申请实施例中提供的上述干扰测量装置中:
在本申请实施例提供的一种可能的实现方式中,所述CSI干扰测量的频域信息CSI信道测量的频域信息具有对应关系,包括:
所述CSI干扰测量的频域信息所述CSI信道测量的频域信息相同;或者,所述CSI干扰测量的频域信息所述CSI信道测量的频域信息部分相同;或者,所述CSI干扰测量的频域信息所述CSI信道测量的频域信息不相同。
在本申请实施例提供的一种可能的实现方式中,所述CSI干扰测量资源包括非零功率信道状态信息参考信号NZP CSI-RS资源和/或零功率信道状态信息参考信号ZP CSI-RS资源。
在本申请实施例提供的一种可能的实现方式中,所述全带宽的子集包括N个资源单位,其中,N大于或者等于1,且小于全带宽的总资源单位数量。或者,所述全带宽的子集包括M个子带,其中,M大于或者等于1,且小于全带宽的总的子带数量。
在本申请实施例提供的一种可能的实现方式中,所述CSI信道测量包括下述中的一种或者几种组合:信道质量指示CQI测量、预编码矩阵指示PMI测量、秩指示RI测量和CRI测量。
另外,本申请实施例中还提供了一种速率匹配方法,应用于第一网络设备,其中:
A一种速率匹配方法,包括:
第一网络设备获取第二网络设备发送的包含第二频域指示信息的速率配置信息;所述速率配置信息用于指示所述第一网络设备进行速率匹配;所述第二频域指示信息用于指示所述第一网络设备进行速率匹配的频域位置;所述第一网络设备根据所述速率配置信息,确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置;所述第一网络设备根据所述资源位置对接收到的数据进行速率匹配。
B、根据A所述的方法,所述第二频域指示信息,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
C、根据A所述的方法,还包括:
所述第一网络设备按照预先设定的划分方式,将所述信道带宽划分为多个资源块。
D、根据A至C中任一所述的方法,所述第二频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识;所述确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置,包括:
所述第一网络设备获取所述信道带宽的多个资源块中每个资源块分别对应的速率匹配标识,所述速率匹配标识包括第一速率匹配标识和第二速率匹配标识;所述第一网络设备确定在所述信道带宽中速率匹配标识为第一速率匹配标识的资源块上的参考信号的资源位置。
E、根据A至C中任一所述的方法,所述第二频域指示信息,包括:待速率匹配资源块的信息标识;所述确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置,包括:
所述第一网络设备获取待速率匹配资源块的信息标识,所述信息标识包括频域位置;所述第一网络设备确定与所述频域位置相对应的资源块上的参考信号的资源位置。
F、根据A所述的方法,所述第一网络设备获取第二网络设备发送的包含第二频域指示信息的速率配置信息,包括:
所述第一网络设备通过无线资源控制RRC或者物理层信令获取所述第二网络设备发送的包含第二频域指示信息的速率配置信息。
另外,在第二网络侧,可以包括:A、一种速率匹配方法,包括:第二网络设备向第一网络设备发送包含第二频域指示信息的速率配置信息;所述速率配置信息用于指示所述第一网络设备进行速率匹配;所述第二频域指示信息用于指示所述第一网络设备进行速率匹配的频域位置;以使所述第一网络设备根据所述速率配置信息,确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置并根据所述资源位置对接收到的数据进行速率匹配。
B、根据A所述的方法,所述第二频域指示信息,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
C、根据A所述的方法,所述第二频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识。
D、根据C所述的方式,所述速率匹配标识包括第一测量标识和第二测量标识;所述第一测量标识用于指示所述第一网络设备对所述信道带宽中的速率匹配标识为第一测量标识的资源块上的数据进行速率匹配;所述第二测量标识用于指示所述第一网络设备对所述信道带宽中的速率匹配标识为第二测量标识的资源块上的数据不进行速率匹配。
E、根据A所述的方法,所述第二频域指示信息,包括:待速率匹配资源块的信息标识。
F、根据E所述的方法,所述信息标识包括频域位置;所述信息标识用于指示所述第一网络设备确定与所述频域位置相对应的资源块上的参考信号的资源位置,并指示所述第一网络设备根据所述资源位置对接收到的数据进行速率匹配。
G、根据A所述的方法,所述第二网络设备向所述第一网络设备发送包含所述第二频域指示信息的速率配置信息,包括:所述第二网络设备通过无线资源控制RRC或者物理层信令向所述第一网络设备发送包含所述第二频域指示信息的速率配置信息。
通过以上的方法实施例的描述,所属领域的技术人员可以清楚地了解到本申请可借助 软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的资源块可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或资源块步骤。而前述的存储介质包括:只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,作为对上述各实施例的实现,本申请实施例还提供了一种第一网络设备,如图10所示,包括:接收单元11,用于获取第二网络设备发送的包含第一频域指示信息的CSI配置信息,所述CSI配置信息包括:第一频域指示信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;处理单元12,用于根据所述CSI配置信息,测量所述第一频域指示信息指示的频域的参考信号。
其中,所述第一频域指示信息包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
在可选的实施例中,所述处理单元12,还用于按照预先设定的划分方式,将信道带宽划分为多个资源块。
在可选的实施例中,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识。
所述处理单元12,还用于获取所述信道带宽的多个资源块中每个资源块分别对应的频域测量标识,所述频域测量标识包括第一测量标识和第二测量标识;所述处理单元12,还用于对所述信道带宽中频域测量标识为第一测量标识的资源块进行测量。
在可选的实施例中,所述第一频域指示信息,包括:待测量资源块的信息标识;所述处理单元12,还用于获取待测量资源块的信息标识,所述信息标识用于指示测量资源的频域位置;所述处理单元12,还用于测量与所述频域位置相对应的资源块。
在可选的实施例中,所述处理单元12,还用于所述第一网络设备通过无线资源控制RRC或者物理层信令获取所述第二网络设备发送的包含第一频域指示信息的CSI配置信息。
在可选的实施例中,所述参考信号,包括:信道测量参考信号和/或者干扰测量参考信号。
在可选的实施例中,所述处理单元12,还用于获取所述多个资源块中目标资源块分别对应的测量结果,并将所述测量结果作为CSI;在可选的实施例中所述处理单元12,还用于获取所述多个资源块中目标资源块对应的测量结果,并将所述目标资源块对应的测量结果按照预设方式进行处理,得到CSI。
在可选的实施例中,第一网络设备还包括发送单元13,用于将所述CSI发送给所述第二网络设备。
在可选的实施例中,所述处理单元12可以为处理器510,所述接收单元11可以为接收器530,发送单元33可以发送器520,接收器530或发送器520可以由收发器替换,同时,第一网络设备还可以包括存储器540,所述存储器540用于存储网络设备的程序代码和数据,具体如图14所示,所述网络设备包括处理器510,发送器520,接收器530,以及存储器540。
作为对上述各实施例的实现,本申请实施例还提供了一种第二网络设备,如图11所示,包括:发送单元21,用于发送包含第一频域指示信息的CSI配置信息,所述CSI配置信息包括:第一频域指示信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;以使所述第一网络设备根据接收到的所述CSI配置信息,对所述参考信号进行测量。
在可选的实施例中,所述第一频域指示信息,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
在可选的实施例中,所述第二网络设备,还包括处理单元22,用于按照预先设定的划分方式,将所述第二网络设备和所述第一网络设备之间的信道带宽划分为多个资源块。
在可选的实施例中,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识,以使所述第一网络设备根据所述频域测量标识对信道带宽中的资源块进行测量。
在可选的实施例中,所述第一频域指示信息,包括:待测量资源块的信息标识,以使所述第一网络设备根据所述信息标识测量信道带宽中相应的资源块。
在可选的实施例中,所述处理单元22,用于通过无线资源控制RRC或者物理层信令向所述第一网络设备发送包含第一频域指示信息的CSI配置信息。
在可选的实施例中,所述参考信号,包括:信道测量参考信号和/或者干扰测量参考信号。
在可选的实施例中,所述发送单元21,用于获取所述第一网络设备发送的CSI。
在可选的实施例中,所述CSI,包括:所述第一网络设备对所述多个资源块中目标资源块分别对应的测量结果;或者,所述第一网络设备获取所述多个资源块中目标资源块对应的测量结果,并将所述目标资源块对应的测量结果按照预设方式进行处理得到的结果。
在可选的实施例中,所述处理单元22可以为处理器510,发送单元21可以发送器520,接收器530或发送器520可以由收发器替换,同时,第二网络设备还可以包括存储器540,所述存储器540用于存储网络设备的程序代码和数据,具体如图14所示,所述网络设备包括处理器510,发送器520,接收器530,以及存储器540。
作为对上述各实施例的实现,本申请实施例还提供了一种第一网络设备,如图12所示,包括:接收单元31,用于获取第二网络设备发送的包含第二频域指示信息的速率配置信息,所述速率匹配信息包括:第二频域指示信息;所述速率配置信息用于指示所述第一网络设备进行速率匹配;所述第二频域指示信息用于指示所述第一网络设备进行速率匹配的频域位置;处理单元32,用于根据所述速率配置信息,确定与所述第二频域指示信息相对应的频域上的参考信号的资源位置;处理单元32,还用于所述第一网络设备根据所述资源位置对接收到的数据进行速率匹配。
在可选的实施例中,所述第二频域指示信息,包括信道划分信息,所述信道划分信息用于将信道带宽划分为多个资源块。
在可选的实施例中,处理单元32,还用于按照预先设定的划分方式,将所述信道带宽划分为多个资源块。
在可选的实施例中,所述第二频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识;处理单元32,还用于获取所述信道带宽的多个资源 块中每个资源块分别对应的速率匹配标识,所述速率匹配标识包括第一速率匹配标识和第二速率匹配标识;处理单元32,还用于确定在所述信道带宽中速率匹配标识为第一速率匹配标识的资源块的参考信号的资源位置。
在可选的实施例中,述第二频域指示信息,包括:待速率匹配资源块的信息标识;处理单元32,还用于获取待速率匹配资源块的信息标识,所述信息标识包括频域位置;处理单元32,还用于确定与所述频域位置相对应的资源块上参考信号的资源位置。
在可选的实施例中,处理单元32,还用于通过无线资源控制RRC或者物理层信令获取所述第二网络设备发送的包含第二频域指示信息的速率配置信息。
在可选的实施例中,所述处理单元32可以为处理器510,所述接收单元31可以为接收器530,接收器530或发送器520可以由收发器替换,同时,第一网络设备还可以包括存储器540,所述存储器540用于存储网络设备的程序代码和数据,具体如图14所示,所述网络设备包括处理器510,发送器520,接收器530,以及存储器540。
作为对上述各实施例的实现,本申请实施例还提供了一种第二网络设备,如图13所示,包括:处理单元41,用于确定速率配置信息,所述速率配置信息包括:第二频域指示信息;所述速率配置信息用于指示所述第一网络设备进行速率匹配;所述第二频域指示信息用于指示所述第一网络设备进行速率匹配的频域位置;发送单元42,用于发送包含所述第二频域指示信息的速率配置信息,以使所述第一网络设备根据接收到的所述速率配置信息进行速率匹配。
在可选的实施例中,所述第二频域指示信息,包括信道划分信息,所述信道划分信息用于将信道带宽划分为多个资源块。
在可选的实施例中,所述第二频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个速率匹配标识,以使所述第一网络设备根据所述速率匹配标识对信道带宽中的资源块上的数据进行速率匹配。
在可选的实施例中,所述第二频域指示信息,包括:待速率匹配资源块的信息标识,以使所述第一网络设备根据所述信息标识对信道带宽中相应的资源块上的数据进行速率匹配。
在可选的实施例中,所述发送单元42,用于通过无线资源控制RRC或者物理层信令向所述第一网络设备发送包含所述第二频域指示信息的速率配置信息。
在可选的实施例中,所述处理单元41可以为处理器510,发送单元42可以发送器520,接收器530或发送器520可以由收发器替换,同时,第二网络设备还可以包括存储器540,所述存储器540用于存储网络设备的程序代码和数据,具体如图14所示,所述网络设备包括处理器510,发送器520,接收器530,以及存储器540。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
可以理解的是,本申请可用于众多通用或专用的计算系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。 一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (56)

  1. 一种信道状态信息CSI测量方法,其特征在于,包括:
    第一网络设备获取第二网络设备发送的包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;
    所述第一网络设备根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号,得到CSI。
  2. 根据权利要求1所述的方法,其特征在于,所述第一频域指示信息包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    所述第一网络设备按照预先设定的划分方式,将信道带宽划分为多个资源块。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识;
    所述测量所述第一频域指示信息指示的频域上的参考信号,包括:
    所述第一网络设备获取所述信道带宽的多个资源块中每个资源块分别对应的频域测量标识,所述频域测量标识包括第一测量标识和第二测量标识;
    所述第一网络设备对所述信道带宽中频域测量标识为第一测量标识的资源块上的参考信号进行测量。
  5. 根据权利要求1所述的方法,其特征在于,所述第一频域指示信息,包括:待测量资源块的信息标识;
    所述测量所述第一频域指示信息指示的频域上的参考信号,包括:
    所述第一网络设备获取待测量资源块的信息标识,所述信息标识用于指示测量资源的频域位置;
    所述第一网络设备测量与所述频域位置相对应的资源块上的参考信号。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一网络设备获取第二网络设备发送的包含第一频域指示信息的CSI配置信息,包括:
    所述第一网络设备通过无线资源控制RRC或者物理层信令获取所述第二网络设备发送的包含第一频域指示信息的CSI配置信息。
  7. 根据权利要求2至4中任一项所述的方法,其特征在于,还包括:
    所述第一网络设备将得到的CSI发送给所述第二网络设备;
    其中,所述得到的CSI,包括:
    所述第一网络设备得到所述多个资源块中目标资源块分别对应的CSI;
    或者,所述第一网络设备得到所述多个资源块中目标资源块对应的CSI,并将所述目标资源块对应的CSI按照预设方式进行处理,将处理结果作为所述CSI。
  8. 一种信道状态信息CSI测量方法,其特征在于,包括:
    第二网络设备向第一网络设备发送包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;以使所述第一网络设备根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述第一频域指示信息,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
  10. 根据权利要求8所述的方法,其特征在于,还包括:
    所述第二网络设备按照预先设定的划分方式,将信道带宽划分为多个资源块。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识。
  12. 根据权利要求11所述的方法,其特征在于,所述频域测量标识包括第一测量标识和第二测量标识;
    所述第一测量标识用于指示所述第一网络设备对所述信道带宽中的频域测量标识为第一测量标识的资源块进行测量;
    所述第二测量标识用于指示所述第一网络设备对所述信道带宽中的频域测量标识为第二测量标识的资源块不进行测量。
  13. 根据权利要求8所述的方法,其特征在于,所述第一频域指示信息,包括:待测量资源块的信息标识,以使所述第一网络设备根据所述信息标识测量信道带宽中相应的资源块。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,所述第二网络设备向第一网络设备发送包含第一频域指示信息的CSI配置信息,包括:
    所述第二网络设备通过无线资源控制RRC或者物理层信令向所述第一网络设备发送包含第一频域指示信息的CSI配置信息。
  15. 根据权利要求9至11中任一项所述的方法,其特征在于,还包括:
    所述第二网络设备获取所述第一网络设备发送的CSI;
    其中,所述CSI,包括:
    所述第一网络设备对所述多个资源块中目标资源块分别对应的CSI;
    或者,所述第一网络设备获取所述多个资源块中目标资源块对应的CSI,并将所述目标资源块对应的CSI按照预设方式进行处理得到的CSI。
  16. 一种信道状态信息CSI测量装置,其特征在于,包括:
    接收单元,用于获取第二网络设备发送的包含第一频域指示信息的CSI配置信息,所述CSI配置信息包括:第一频域指示信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;
    处理单元,用于根据所述CSI配置信息,测量所述第一频域指示信息指示的频域的参考信号;
    其中,所述第一频域指示信息包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
  17. 根据权利要求16所述的装置,其特征在于,所述第一频域指示信息包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
  18. 根据权利要求16所述的装置,其特征在于,还包括:
    所述处理单元,还用于按照预先设定的划分方式,将信道带宽划分为多个资源块。
  19. 根据权利要求16至18中任一项所述的装置,其特征在于,所述第一频域指 示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识;
    所述处理单元,还用于获取所述信道带宽的多个资源块中每个资源块分别对应的频域测量标识,所述频域测量标识包括第一测量标识和第二测量标识;
    所述处理单元,还用于对所述信道带宽中频域测量标识为第一测量标识的资源块上的参考信号进行测量。
  20. 根据权利要求16所述的装置,其特征在于,所述第一频域指示信息,包括:待测量资源块的信息标识;
    所述处理单元,还用于获取待测量资源块的信息标识,所述信息标识用于指示测量资源的频域位置;
    所述处理单元,还用于测量与所述频域位置相对应的资源块上的参考信号。
  21. 根据权利要求16至20中任一项所述的装置,其特征在于,还包括:
    发送单元,用于所述第一网络设备通过无线资源控制RRC或者物理层信令获取所述第二网络设备发送的包含第一频域指示信息的CSI配置信息。
  22. 根据权利要求17至19中任一项所述的装置,其特征在于,还包括:
    所述发送单元,还用于将得到的CSI发送给所述第二网络设备;
    其中,所述得到的CSI,包括:
    所述第一网络设备得到所述多个资源块中目标资源块分别对应的CSI;
    或者,所述第一网络设备得到所述多个资源块中目标资源块对应的CSI,并将所述目标资源块对应的CSI按照预设方式进行处理,将处理结果作为所述CSI。
  23. 一种信道状态信息CSI测量装置,其特征在于,包括:
    发送单元,用于第二网络设备向第一网络设备发送包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;以使所述第一网络设备根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号。
  24. 根据权利要求23所述的装置,其特征在于,所述第一频域指示信息,包括信道划分信息,所述信道划分信息用于指示将信道带宽划分为多个资源块的方式。
  25. 根据权利要求23所述的装置,其特征在于,还包括:
    处理单元,用于按照预先设定的划分方式,将信道带宽划分为多个资源块。
  26. 根据权利要求23至25中任一项所述的装置,其特征在于,所述第一频域指示信息,包括:所述信道带宽的多个资源块中每个资源块分别对应一个频域测量标识。
  27. 根据权利要求26所述的装置,其特征在于,所述频域测量标识包括第一测量标识和第二测量标识;
    所述处理单元,还用于指示所述第一网络设备对所述信道带宽中的频域测量标识为第一测量标识的资源块进行测量;
    所述处理单元,还用于指示所述第一网络设备对所述信道带宽中的频域测量标识为第二测量标识的资源块不进行测量。
  28. 根据权利要求23所述的装置,其特征在于,所述第一频域指示信息,包括:待测量资源块的信息标识,以使所述第一网络设备根据所述信息标识测量信道带宽中相应的资源块。
  29. 根据权利要求23至28中任一项所述的装置,其特征在于,
    所述发送单元,还用于通过无线资源控制RRC或者物理层信令向所述第一网络设备发送包含第一频域指示信息的CSI配置信息。
  30. 根据权利要求24至26中任一项所述的装置,其特征在于,还包括:
    所述发送单元,用于获取所述第一网络设备发送的CSI;
    其中,所述CSI,包括:
    所述第一网络设备对所述多个资源块中目标资源块分别对应的CSI;
    或者,所述第一网络设备获取所述多个资源块中目标资源块对应的CSI,并将所述目标资源块对应的CSI按照预设方式进行处理得到的CSI。
  31. 一种干扰测量方法,其特征在于,包括:
    终端接收来自基站的第一信息,所述第一信息包括CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;
    所述终端根据所述CSI干扰测量的频域信息,对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
  32. 根据权利要求31所述的方法,其特征在于,所述第一信息为CSI配置信息,所述CSI配置信息包括所述CSI信道测量的频域信息,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
  33. 一种干扰测量方法,其特征在于,包括:
    基站确定CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;
    所述基站向终端发送第一信息,所述第一信息包含所述CSI干扰测量的频域信息。
  34. 根据权利要求33所述的方法,其特征在于,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
  35. 一种干扰测量方法,其特征在于,包括:
    终端接收来自基站的第二信息,所述第二信息包括CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;
    所述终端根据所述CSI信道测量的频域信息,确定CSI干扰测量的频域信息,并对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
  36. 根据权利要求35所述的方法,其特征在于,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
  37. 一种干扰测量方法,其特征在于,包括:
    基站获取CSI信道测量的频域信息;
    所述基站向所述终端发送第二信息,所述第二信息包括所述CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系。
  38. 根据权利要求37所述的方法,其特征在于,所述CSI干扰测量信息和/或CSI信道测量的频域信息为全带宽的子集。
  39. 一种干扰测量装置,其特征在于,包括:
    收发单元,用于接收来自基站的第一信息,所述第一信息包括CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;
    处理单元,用于根据所述CSI干扰测量的频域信息,对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
  40. 根据权利要求39所述的装置,其特征在于,所述第一信息为CSI配置信息,所述CSI配置信息包括所述CSI信道测量的频域信息,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
  41. 一种干扰测量装置,其特征在于,包括:
    处理单元,用于确定CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;
    收发单元,用于向终端发送第一信息,所述第一信息包含所述CSI干扰测量的频域信息。
  42. 根据权利要求41所述的装置,其特征在于,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
  43. 一种干扰测量装置,其特征在于,包括:
    收发单元,用于接收来自基站的第二信息,所述第二信息包括CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;
    处理单元,用于根据所述CSI信道测量的频域信息,确定CSI干扰测量的频域信息,并对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
  44. 根据权利要求43所述的装置,其特征在于,所述CSI信道测量的频域信息和/或所述CSI干扰测量的频域信息为全带宽的子集。
  45. 一种干扰测量装置,其特征在于,包括:
    处理单元,用于获取CSI信道测量的频域信息;
    收发单元,用于向所述终端发送第二信息,所述第二信息包括所述CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系。
  46. 根据权利要求45所述的装置,其特征在于,所述CSI干扰测量信息和/或CSI信道测量的频域信息为全带宽的子集。
  47. 根据权利要求31至38任一所述的方法、39至46任一项的装置,其特征在于,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系,包括:
    所述CSI干扰测量的频域信息所述CSI信道测量的频域信息相同;
    或者,所述CSI干扰测量的频域信息所述CSI信道测量的频域信息部分相同;
    或者,所述CSI干扰测量的频域信息所述CSI信道测量的频域信息不相同。
  48. 根据权利要求31至38任一所述的方法、39至46任一项的装置以及权利要求47,其特征在于,所述CSI干扰测量资源包括非零功率信道状态信息参考信号NZPCSI-RS资源和/或零功率信道状态信息参考信号ZP CSI-RS资源。
  49. 根据权利要求31至38任一所述的方法、39至46任一项的装置以及权利要求47或48,其特征在于,所述全带宽的子集包括N个资源单位,其中,N大于或者等于1,且小于全带宽的总资源单位数量;
    或者,所述全带宽的子集包括M个子带,其中,M大于或者等于1,且小于全带宽的总的子带数量。
  50. 根据权利要求31至38任一所述的方法、39至46任一项的装置以及权利要 求47或48或49,其特征在于,所述CSI信道测量包括下述中的一种或者几种组合:信道质量指示CQI测量、预编码矩阵指示PMI测量、秩指示RI测量和CRI测量。
  51. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法,或,使得计算机执行如权利要求8至15中任一项所述的方法,或,使得计算机执行如权利要求31至32中任一项所述的方法,或,使得计算机执行如权利要求33至34中任一项所述的方法,或,使得计算机执行如权利要求35至36中任一项所述的方法,或,使得计算机执行如权利要求37至38中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法,或,使得计算机执行如权利要求8至15中任一项所述的方法,或,使得计算机执行如权利要求31至32中任一项所述的方法,或,使得计算机执行如权利要求33至34中任一项所述的方法,或,使得计算机执行如权利要求35至36中任一项所述的方法,或,使得计算机执行如权利要求37至38中任一项所述的方法。
  53. 一种网络设备,其特征在于,包括处理器,所述处理器用于,获取第二网络设备发送的包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号,得到CSI。
  54. 一种网络设备,其特征在于,包括处理器,所述处理器用于,向第一网络设备发送包含第一频域指示信息的CSI配置信息;其中,所述CSI配置信息,用于指示第一网络设备进行CSI测量;所述第一频域指示信息,用于指示第一网络设备进行CSI测量的频域位置;以使所述第一网络设备根据所述CSI配置信息,测量所述第一频域指示信息指示的频域上的参考信号。
  55. 一种终端设备,其特征在于,包括处理器,所述处理器用于,获取来自基站的第一信息,所述第一信息包括CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;根据所述CSI干扰测量的频域信息,对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量;或者,所述处理器用于,获取来自基站的第二信息,所述第二信息包括CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;根据所述CSI信道测量的频域信息,确定CSI干扰测量的频域信息,并对所述CSI干扰测量的频域信息对应频域上的CSI干扰测量资源进行干扰测量。
  56. 一种基站,其特征在于,包括处理器,所述处理器用于,确定CSI干扰测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系;向终端发送第一信息,所述第一信息包含所述CSI干扰测量的频域信息;或者,所述处理器用于,获取CSI信道测量的频域信息;向所述终端发送第二信息,所述第二信息包括所述CSI信道测量的频域信息,所述CSI干扰测量的频域信息与CSI信道测量的频域信息具有对应关系。
PCT/CN2017/103925 2016-09-30 2017-09-28 Csi测量方法及装置 WO2018059478A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112019006375A BR112019006375A2 (pt) 2016-09-30 2017-09-28 csi método de medição e aparelhos
JP2019517837A JP6828146B2 (ja) 2016-09-30 2017-09-28 Csi測定方法および装置
EP17854928.3A EP3534550B1 (en) 2016-09-30 2017-09-28 Csi measurement method and apparatus
US16/371,927 US10939315B2 (en) 2016-09-30 2019-04-01 Channel state information (CSI) obtaining method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610878533.9 2016-09-30
CN201610878533 2016-09-30
CN201710184954.6A CN107888268B (zh) 2016-09-30 2017-03-25 Csi测量方法及装置
CN201710184954.6 2017-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/371,927 Continuation US10939315B2 (en) 2016-09-30 2019-04-01 Channel state information (CSI) obtaining method and apparatus

Publications (1)

Publication Number Publication Date
WO2018059478A1 true WO2018059478A1 (zh) 2018-04-05

Family

ID=61762473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103925 WO2018059478A1 (zh) 2016-09-30 2017-09-28 Csi测量方法及装置

Country Status (1)

Country Link
WO (1) WO2018059478A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020052491A1 (zh) * 2018-09-12 2020-03-19 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN110972184A (zh) * 2018-09-28 2020-04-07 北京展讯高科通信技术有限公司 Csi计算方法、用户终端及计算机可读存储介质
CN111315013A (zh) * 2018-12-11 2020-06-19 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021022464A1 (en) * 2019-08-06 2021-02-11 Qualcomm Incorporated Channel state information reference signal (csi-rs) resources and ports occupation for finer precoding matrix indication (pmi) granularity
CN114928386A (zh) * 2019-03-30 2022-08-19 华为技术有限公司 一种上报终端设备能力的方法和通信装置
WO2024008064A1 (zh) * 2022-07-07 2024-01-11 上海朗帛通信技术有限公司 用于无线通信的方法和装置
WO2024012340A1 (zh) * 2022-07-13 2024-01-18 上海朗帛通信技术有限公司 用于无线通信的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300244A (zh) * 2011-07-15 2011-12-28 中兴通讯股份有限公司 一种干扰测量参考信息的通知方法、干扰测量方法及装置
CN103313294A (zh) * 2012-03-13 2013-09-18 中兴通讯股份有限公司 接收信号质量的测量、及其集合的配置方法及装置
US20140126402A1 (en) * 2012-11-02 2014-05-08 Samsung Electronics Co., Ltd. Configuration of interference measurement resources for enhanced downlink measurements and mu-mimo
CN104038320A (zh) * 2013-03-04 2014-09-10 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置
CN104081813A (zh) * 2012-01-30 2014-10-01 华为技术有限公司 无线通信测量和csi反馈的系统和方法
CN104935389A (zh) * 2014-03-21 2015-09-23 中兴通讯股份有限公司 信道状态信息测量方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300244A (zh) * 2011-07-15 2011-12-28 中兴通讯股份有限公司 一种干扰测量参考信息的通知方法、干扰测量方法及装置
CN104081813A (zh) * 2012-01-30 2014-10-01 华为技术有限公司 无线通信测量和csi反馈的系统和方法
CN103313294A (zh) * 2012-03-13 2013-09-18 中兴通讯股份有限公司 接收信号质量的测量、及其集合的配置方法及装置
US20140126402A1 (en) * 2012-11-02 2014-05-08 Samsung Electronics Co., Ltd. Configuration of interference measurement resources for enhanced downlink measurements and mu-mimo
CN104038320A (zh) * 2013-03-04 2014-09-10 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置
CN104935389A (zh) * 2014-03-21 2015-09-23 中兴通讯股份有限公司 信道状态信息测量方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534550A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020052491A1 (zh) * 2018-09-12 2020-03-19 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
US11991542B2 (en) 2018-09-12 2024-05-21 Sony Corporation Electronic device and method for wireless communication, and computer-readable storage medium
CN110972184A (zh) * 2018-09-28 2020-04-07 北京展讯高科通信技术有限公司 Csi计算方法、用户终端及计算机可读存储介质
CN111315013A (zh) * 2018-12-11 2020-06-19 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN114928386A (zh) * 2019-03-30 2022-08-19 华为技术有限公司 一种上报终端设备能力的方法和通信装置
WO2021022464A1 (en) * 2019-08-06 2021-02-11 Qualcomm Incorporated Channel state information reference signal (csi-rs) resources and ports occupation for finer precoding matrix indication (pmi) granularity
CN114175519A (zh) * 2019-08-06 2022-03-11 高通股份有限公司 用于更精细的预编码矩阵指示(pmi)粒度的信道状态信息参考信号(csi-rs)资源和端口占用
CN114175519B (zh) * 2019-08-06 2024-03-15 高通股份有限公司 用于更精细的pmi粒度的csi-rs资源和端口占用
WO2024008064A1 (zh) * 2022-07-07 2024-01-11 上海朗帛通信技术有限公司 用于无线通信的方法和装置
WO2024012340A1 (zh) * 2022-07-13 2024-01-18 上海朗帛通信技术有限公司 用于无线通信的方法和装置

Similar Documents

Publication Publication Date Title
US10939315B2 (en) Channel state information (CSI) obtaining method and apparatus
US11936584B2 (en) System and method for control signaling
CN110521135B (zh) 用于通信波束恢复的系统和方法
US10771118B2 (en) Channel state measurement method and apparatus
WO2018059478A1 (zh) Csi测量方法及装置
US9531457B2 (en) Interference management of device-to-device communication in a cellular communication system
KR102291457B1 (ko) 셀룰러 시스템에서 간섭 제어 및 협력 통신을 고려한 채널 품질 추정 방법 및 장치
JP2020506572A (ja) ハイブリッドsrs組合せシグナリング
US20200162134A1 (en) User equipment and method of channel state information (csi) acquisition
US11723058B2 (en) Method of frequency resource allocation
WO2020029233A1 (zh) 上报信道状态信息的方法和装置
EP2763446B1 (en) Method, user device and base station for measuring channel state information
KR20170020270A (ko) 통신 시스템에서 기준 신호를 송수신하는 방법 및 장치
CN107078774B (zh) Pucch上的高程pmi报告
US9450662B2 (en) Evolved node-B, user equipment, and methods for channel quality indicator (CQI) feedback
WO2017198142A1 (zh) 一种cqi确定方法、用户设备和基站
US10419097B2 (en) CSI receiving method and access network device
WO2018028687A1 (zh) 一种信道状态反馈的方法及装置
CN110268668B (zh) 用户设备和无线通信方法
CN116980096A (zh) 信息传输方法、装置、终端、网络侧设备及介质
WO2019195653A1 (en) User equipment and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006375

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017854928

Country of ref document: EP

Effective date: 20190408

ENP Entry into the national phase

Ref document number: 112019006375

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190329