WO2011045833A1 - 樹脂被覆金属板の製造方法 - Google Patents

樹脂被覆金属板の製造方法 Download PDF

Info

Publication number
WO2011045833A1
WO2011045833A1 PCT/JP2009/005347 JP2009005347W WO2011045833A1 WO 2011045833 A1 WO2011045833 A1 WO 2011045833A1 JP 2009005347 W JP2009005347 W JP 2009005347W WO 2011045833 A1 WO2011045833 A1 WO 2011045833A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
coupling agent
silane coupling
heating
metal plate
Prior art date
Application number
PCT/JP2009/005347
Other languages
English (en)
French (fr)
Inventor
松原政信
田屋慎一
甲斐政浩
黒川亘
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to CN200980161925.1A priority Critical patent/CN102686778B/zh
Priority to PCT/JP2009/005347 priority patent/WO2011045833A1/ja
Priority to EP09850377.4A priority patent/EP2489760B1/en
Publication of WO2011045833A1 publication Critical patent/WO2011045833A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91935Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined lower than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • B29C65/46Joining a heated non plastics element to a plastics element heated by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8223Peel tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7426Tin or alloys of tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91655Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/16Tin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0091Peeling or tearing

Definitions

  • the present invention relates to a method for producing a resin-coated metal plate having excellent work adhesion.
  • a can body is manufactured by winding a top plate on a can body in which a can body portion and a can bottom portion are integrally formed.
  • excellent adhesion of the resin to the steel sheet is required so that the coating resin does not peel or break during or after the severe forming process. Therefore, a resin-coated chromate-treated steel sheet in which an organic resin is coated on a chromate-treated steel sheet such as tin-free steel having a chromate film excellent in processing adhesion formed on the surface has been used as a material for these cans.
  • Patent Document 1 discloses that a silane coupling agent coating layer is provided on a tin-plated layer of a no-reflow tin-plated steel sheet or a reflow tin-plated steel sheet, and an organic resin film is further laminated. A resin-coated tin-plated steel sheet is described.
  • An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a resin-coated tin-plated metal plate having excellent film processing adhesion even during severe molding.
  • the method for producing the resin-coated metal plate of the present invention comprises: Forming a tin plating layer on at least one side of the metal plate; Applying a silane coupling agent on the tin plating layer; Forming a resin layer on the silane coupling agent coating layer; And heating the metal plate to dissolve the resin surface on the side of the resin layer in contact with the silane coupling agent.
  • heating temperature does not rise too much so that the shape of a tin plating layer and a resin layer may not collapse, and a resin layer softens or melt
  • the manufacturing method of the resin-coated metal plate of the present invention includes: Forming a tin plating layer on at least one side of the metal plate; Applying a silane coupling agent on the tin plating layer; Forming a resin layer on the silane coupling agent coating layer; At least the interface region between the tin plating layer and the silane coupling agent coating layer, Silane coupling agent coating layer and the interface region between the silane coupling agent coating layer and the resin layer, Heating to a melting point of the resin of ⁇ 10 ° C.
  • the entire steel sheet is heated by high frequency heating to control high frequency current and direct current, and the output of the transmitter of the high frequency heating device is controlled to maximize heating.
  • the heating temperature is a melting point of the resin + 30 ° C. to a melting point of the resin + 60 ° C.
  • the method for producing a resin-coated metal sheet according to the present invention is characterized in that, in any one of (1) to (3), the heating is performed by high-frequency heating.
  • the method for producing a resin-coated metal plate of the present invention is the method according to any one of (1) to (4), wherein the resin crystallization temperature region is set to 5 ° C. / The heating is performed at a rate of at least seconds.
  • the method for producing a resin-coated metal sheet according to the present invention is the method according to any one of (1) to (5), wherein after the heating, the crystallization temperature region of the resin is 30 ° C./second or more. The resin is cooled.
  • the method for producing a resin-coated metal sheet according to the present invention is characterized in that, in any of the above (1) to (6), the tin plating layer has a tin plating amount of 0.5 to 13 g / m 2.
  • the silane coupling agent is a water-soluble amino silane coupling agent, Is 0.5 to 30 mg / m 2 .
  • the method for producing a resin-coated metal plate of the present invention is a process superior to conventional processes because a silane coupling agent is applied onto a tin plating layer, and a resin film is thermally bonded and laminated thereon, followed by heat treatment.
  • a resin-coated metal plate showing adhesion can be provided.
  • Metal plate As a metal plate used for the resin-coated metal plate of the present invention, a cold rolled steel plate having a thickness of 0.15 to 0.3 mm is obtained by cold rolling, annealing, and tempering a normal hot rolled steel plate of aluminum killed steel. Alternatively, a cold-rolled steel sheet or the like that is further cold-rolled after annealing to increase the strength is used depending on the application. After these cold-rolled steel sheets are electrolytically degreased and pickled, a tin-plated layer is formed on the steel sheets to obtain tin-plated steel sheets.
  • tin plating is performed using a known ferrostan bath, halogen bath, or sulfuric acid bath, heated to a temperature higher than the melting temperature of tin, and then rapidly cooled (reflow treatment) between the Sn-Fe layers.
  • a tin-plated steel sheet on which an alloy layer is formed, a tin-plated steel sheet in which the tin-plated layer is not heat-melted (no reflow treatment), or the like can be applied.
  • nickel plating is performed on the cold-rolled steel sheet, and then tin plating is performed on the upper layer or on the upper layer in which Ni is diffused in the steel by heating after nickel plating to form a Ni—Fe alloy layer,
  • An island-shaped tin-plated steel sheet in which an island-shaped tin layer is formed using a method such as heating after the melting temperature of tin or higher and then rapidly cooling can also be used.
  • the amount of tin plating in the tin-plated steel sheet is preferably in the range of 0.5 to 13 g / m 2 from the viewpoint of corrosion resistance and economy. Less than 0.5 g / m 2 is not preferable because the corrosion resistance is insufficient. In particular, when the reflow treatment is performed, all of the plated tin becomes an Fe—Sn alloy, and not only the corrosion resistance but also the workability is remarkably deteriorated. Therefore, a tin plating amount of at least 0.5 g / m 2 or more is required.
  • silane coupling agent is applied on the tin plating layer formed as described above and dried.
  • examples of the silane coupling agent include vinyl, acrylic, epoxy, amino, mercapto, chloropyr, and the like, and water-soluble coupling agents are mentioned from the viewpoint of handling and environment. It is also important to have excellent storage stability, and the resin-coated metal plate must be non-toxic because it is applied to food cans and beverage cans. When these are judged comprehensively, it is most preferable to apply an amino silane coupling agent.
  • amino-based silane coupling agent aminopropyltrimethoxysilane, aminopropylmethyldiethoxysilane, aminopropyltriethoxysilane, phenylaminopropyltrimethoxysilane, etc. can be used.
  • Shin-Etsu Chemical Co., Ltd. KBM-903, KBM603, KBE903, and the like which are excellent in water solubility and storage stability, and have been approved by the FDA (Food and Drug Administration).
  • a 5 to 200 g / L aqueous solution of a silane coupling agent is applied to the tin-plated steel sheet and dried.
  • coating and drying method known methods can be applied, and examples thereof include a coating method such as a dipping method, a roll coating method, a method of squeezing the surplus using a squeezing roll after dipping, a spray method, an electrolytic treatment method, and the like.
  • a coating method such as a dipping method, a roll coating method, a method of squeezing the surplus using a squeezing roll after dipping, a spray method, an electrolytic treatment method, and the like.
  • a drying method using an oven at 100 ° C. for 5 minutes can be mentioned.
  • the resin-coated metal sheet of the present invention is obtained by laminating an organic resin film to be a resin layer on one side or both sides of the tin-plated steel sheet obtained as described above so as to be in contact with the silane coupling agent coating layer. It is done.
  • thermoplastic resin excellent in processability after heating is preferable, Polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene terephthalate / ethylene isophthalate copolymer, butylene terephthalate / butylene isophthalate copolymer, or a blend of two or more of these polyester resins, polyethylene , Polypropylene, ethylene / propylene copolymers, and those modified with maleic acid, polyolefin resins such as ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, 6-nylon, 6,6-nylon, 6 , 10-nylon and other polyamide resins, polycarbonate, polymethylpentene, and a single layer resin film comprising a blend of the above polyester resin and ionomer, A resin film of a double layer consisting of two or more these resins.
  • Polyester resins such as polyethylene terephthalate, polybut
  • the thickness of the resin film is 10 to 100 ⁇ m from the viewpoint of ease of film laminating work, adhesion strength of the resin film in a molded body (can, etc.) after molding the resin-coated metal plate, corrosion resistance, and economy. It is preferable that
  • These resin films are obtained by heating and melting resin pellets, and extruding them from a T-die of an extruder to form a film having a desired thickness, which is applied to a tin-plated layer of a tin-plated steel sheet.
  • a resin layer is formed on the coupling agent coating layer.
  • this resin layer forming method for example, a thermal bonding method can be cited. The resin film is brought into contact with a tin-plated steel plate heated to a predetermined temperature range, and sandwiched between a pair of pressure rolls and pressed. Press contact. According to this method, it is possible to perform heat bonding at a temperature considerably lower than the melting temperature of tin by using the formed resin film without performing a drawing process.
  • the heating temperature of the coating resin film is less than “the melting point of the coating resin—10 ° C.”, the interface region is not sufficiently softened to improve the adhesion, and the adhesion effect of the silane coupling agent by heating is sufficient. It is not demonstrated.
  • the heating temperature is higher than “the melting point of the coating resin + 100 ° C.”, the temperature of the bulk layer in the resin layer is excessively increased, and bubbles are easily generated in the resin layer, which is not preferable.
  • the interface region becomes the temperature range while preventing bubbles from being generated in the resin layer, and the resin layer and the tin plating layer are softened and melted only in the interface region, thereby improving the adhesion. To do.
  • an apparatus as shown in FIG. 1 is used, and a high frequency coil is wound at right angles to the traveling direction on a resin-coated metal plate that is passed through after resin coating, as shown in FIG. It is preferable to carry out the treatment in a heating cycle in which heating is performed to a predetermined temperature, the high frequency coil is turned on, air-cooled, and then water-cooled to room temperature.
  • the coating amount of the silane coupling agent is preferably 0.5 to 30 mg / m 2 in terms of Si adhesion.
  • Si adhesion amount is less than 0.5 mg / m 2 , the processing adhesion of the coating resin laminated on the silane coupling agent coating layer is not improved, and the effect of the present invention cannot be obtained.
  • the Si adhesion amount exceeds 30 mg / m 2 , the coating resin is not further improved, and further application is unnecessary from the viewpoint of cost.
  • the dehydration condensation reaction of the silane coupling agent proceeds sufficiently as shown in FIG. Strength is increased and adhesion is significantly improved.
  • the resin layer started to soften at a temperature about 10 ° C. below the nominal melting point from the DSC (Differential Scanning Calorimetry) curve and the effect of this treatment was observed even at a temperature 10 ° C. below the resin melting point.
  • the heating temperature is equal to or higher than “the melting point of the coating resin—10 ° C.”.
  • the heating rate of the resin-coated resin-coated metal plate is From the viewpoint of preventing crystallization of the resin film, it is preferable to raise the crystallization temperature region (120 ° C. to 180 ° C.) of the resin film as quickly as possible. In this respect, heating such as high-frequency wave induction heating or electric heating is performed. It is preferable to employ a high-speed processing means. However, if the resin film is kept in the crystallization temperature region after coating, crystallization of the resin film proceeds, causing problems such as delamination during can body processing. Therefore, the heating rate of the resin-coated steel sheet is 5 It is desirable to set it to at least ° C / sec. A heating rate of less than 5 ° C./sec is not preferable because it takes a long time to pass through the crystallization temperature region and crystallization of the resin film proceeds.
  • FIG. 5 is a graph showing the relationship between the silane coupling agent application amount (horizontal axis) and the S peel strength (vertical axis).
  • the film adhesion is not so much in “no post-heating” and “oven heating (heating up to 260 ° C. at 2 ° C./sec....slow heating)” Does not improve.
  • high frequency induction heating hereinafter heating up to 260 ° C.
  • the resin-coated metal plate coated by the above processing method is formed into a shallow drawn cup, and the result of examining the size of the cup delamination width in that case in relation to the amount of silane coupling agent applied is shown in FIG. Show. Even if the silane coupling agent is applied, delamination is hardly eliminated by “no post-heating” and “oven heating (heating up to 260 ° C. at 2 ° C./second, low-speed heating)”. On the other hand, in the case of “high-frequency induction heating (heating up to 260 ° C.
  • the cup delamination width decreases as the coating amount of the silane coupling agent increases, but the coating amount of the silane coupling agent: Si
  • the cup delamination width means a value measured as follows. That is, the tip of the cup is enlarged and photographed with a microscope, and the end of the photograph is observed to measure the delamination width. Note that a fluorescent X-ray method or the like can be applied to the measurement of the Si adhesion amount.
  • a clear unstretched film of a transparent ethylene terephthalate / ethylene isophthalate copolymer (PETI) having a thickness of 28 ⁇ m is applied to one side of the tin-plated steel sheet shown in Examples 1 to 12 and Comparative Examples 1 to 3 (on the inner side of the can).
  • PETI transparent ethylene terephthalate / ethylene isophthalate copolymer
  • a white white unstretched film containing 20% by mass of a titanium-based white pigment in the same ethylene terephthalate / ethylene isophthalate copolymer was laminated on the other side (being the outer surface of the can) under the conditions shown in the table. .
  • the resin film was immediately cooled after the lamination.
  • Ihf in the high frequency induction heating setting conditions in Table 1 is a high frequency current before the output transformer
  • IdcL is a direct current obtained by converting the alternating current into a direct current by a rectifier
  • Vdc is a direct current voltage obtained by changing the power supply voltage to a direct current.
  • Ihf 38.5 [A]
  • IdcL 10.7 [A]
  • Vdc 280 [V].
  • the heating temperature can be increased by increasing Ihf and IdcL.
  • MAX plate temperature in the processing conditions of the material to be processed in Table 1 indicates the maximum value of the plate temperature during heating, and the heating rate from room temperature to MAX plate temperature is divided by the time taken for the rising temperature. Is required.
  • the “plate temperature heating rate” in Table 1 is a value indicating how much the temperature is increased per second, and is obtained by dividing the cooling temperature from the MAX plate temperature to the room temperature by the time taken for the temperature drop.
  • “Cooling temperature” in Table 1 is a value indicating how much the temperature is lowered per second.
  • the evaluation of the work adhesion of the coating resin to the tin-plated steel sheet is evaluated by employing the S peel strength as the peel strength.
  • the T peel strength was measured and evaluated in the state of the flat plate before processing, but it is considered that the processing adhesion is not necessarily accurately reflected.
  • adhesiveness during processing and after processing when subjected to strict molding processing such as forming into a can body by further combining drawing processing and ironing processing after drawing processing
  • the S peel strength is adopted as an evaluation method that accurately reflects.
  • the S peel strength is obtained by drawing a resin-coated metal plate into a cup, cutting the specimen from the side wall of the cup, and evaluating the work adhesion strength by the peel strength of the resin film of the specimen.
  • a specific method for measuring the S peel strength is shown below.
  • a blank having a diameter of 154 mm is punched out of the resin-coated metal plate, and a first-stage drawing is performed at a drawing ratio of 1.64 to form a drawn cup having a diameter of 96 mm and a height of 42 mm.
  • the side wall of the squeezed cup is cut out in a cup height direction: 30 mm and a cup circumferential direction: 120 mm, bent back into a flat plate shape, and then a T-shape having a size as shown in the plan view of FIG.
  • the test piece 71 is punched out using a press die.
  • a coating resin (on the back side in the figure) on the side opposite to the adhesion strength measuring surface (the front side in the figure) of one (right) end 71 a of the test piece 71 using a cutter knife is used.
  • a cut 72 is made in the surface) so as to reach the surface of the tin-plated steel plate.
  • the upper part 74 b of the specimen holder 74 and the specimen 74 are arranged.
  • the other end 71b of the piece 71 is pulled between both chuck portions of a tensile tester, the coating resin is forcibly peeled from the tin-plated steel sheet, the tensile strength is measured, and the S peel strength is evaluated to evaluate the work adhesion strength. .
  • the S peel strength measured as described above is preferably 0.6 kg / 15 mm or more when the width of the specimen is 15 mm.
  • the S peel strength is less than 0.6 Kg / 15 mm, stable and good work adhesion cannot be obtained in severe molding processes such as a can-making process using a combination of a stretch process and an iron process after drawing.
  • the resin-coated metal plates of Examples 1 to 12 and Comparative Examples 1 to 3 shown in Table 1 were punched into a blank having a diameter of 151 mm, and then the transparent resin film-coated surface was on the cup inner surface side.
  • the surface coated with a resin film containing a white pigment is the outer surface of the can
  • a 1st drawing cup, B / M can, and Fi can are made by performing a one-stage drawing process with a drawing ratio of 1.64.
  • Specimens for measuring S peel strength were prepared so that the transparent resin film-coated surface was the measurement surface. Next, the S peel strength was measured using a tensile tester.
  • 1st cup means what was manufactured by squeezing a board
  • B / M can is a thing formed by further squeezing and squeezing the 1st cup to form a can with a small can diameter and a high side wall height.
  • Fi cans are manufactured by trimming, flange and neck processing of B / M cans.
  • the results are shown in Table 2.
  • the cups of Examples 1 to 12 show that the inner surface S peel strength is 0.7 kg / 15 mm or more in any of the 1st cup, the B / M can, and the Fi can, and the resin during severe can molding processing. Excellent film processing adhesion. Furthermore, the cup tip delamination of the 1st cup and the B / M can was not observed, and the retort scratch delamination of the Fi can was not observed. On the other hand, in Comparative Examples 1 to 3, when the 1st cup was molded, the resin film at the tip of the cup and the tin-plated steel sheet had poor adhesion, and delamination occurred at the tip of the cup. Note that Comparative Examples 1 and 2 were unsuitable as materials for can body processing due to the occurrence of broken bodies during B / M can processing. In addition, the up arrow in a table
  • the resin-coated metal plate of the present invention obtained by laminating a resin film on a tin-plated steel sheet provided with a silane coupling coating layer and then subjecting it to a post-heating treatment is a resin film that is not subjected to a post-heating treatment.
  • the resin film Compared to a resin-coated metal plate laminated on a tin-plated steel sheet provided with a layer, the resin film has excellent work adhesion to a tin-plated steel sheet, and the industrial applicability is extremely high.
  • Specimen 71a One end 71b of the specimen: The other end 72 of the specimen: Cut 73: Score 74: Specimen holder 74a: Specimen insertion part 74b: Upper part of the specimen holder

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】 厳しい成形加工時においても、フィルム加工密着性に優れた樹脂被覆金属板の製造方法を提供すること。 【解決手段】 金属板の少なくとも片面に錫めっき層を形成させる工程と、前記錫めっき層上にシランカップリング剤を塗布する工程と、前記シランカップリング剤塗布層上に樹脂層を形成する工程と、前記金属板を加熱して、前記樹脂層の前記シランカップリング剤と接している側の樹脂表面を溶解させる工程と、を有する。また、少なくとも、前記錫めっき層と前記シランカップリング剤塗布層との界面領域、シランカップリング剤塗布層及び前記シランカップリング剤塗布層と前記樹脂層との界面領域を、前記樹脂の融点-10℃~前記樹脂の融点+100℃に加熱する工程と、を有する。

Description

樹脂被覆金属板の製造方法
本発明は、加工密着性に優れた樹脂被覆金属板の製造方法に関する。
近年、樹脂を被覆してなる鋼板を絞り加工や絞り加工後のさらなるストレッチ加工、絞り加工後のさらなるしごき加工、絞り加工後のさらなるストレッチ加工としごき加工を併用する加工、などの厳しい加工を施してなる缶胴部と、缶底部とが一体で加工成形された缶体に天板を巻締めた缶が製造されている。
これらの缶体においては、厳しい成形加工中および成形加工後に被覆樹脂が剥離もしくは破断することがないように、鋼板に対する樹脂の優れた密着性が要求される。
そのため、これらの缶体用の素材として、加工密着性に優れるクロメート皮膜を表面に形成させたティンフリースチールなどのクロメート処理鋼板に有機樹脂を被覆した樹脂被覆クロメート処理鋼板が用いられていた。
しかし、樹脂被覆クロメート処理鋼板を用いた缶体においては、樹脂層に鋼板面に達する微細な孔や亀裂が生じた場合、クロメート処理鋼板が耐食性に乏しいために、特に酸性度の大きな内容物を充填した場合に、鋼板の腐食が急速に進行しやすいという問題点があった。
そのため、酸性度の大きな内容物を缶に充填した場合においても、優れた耐食性を示す錫めっき鋼板に樹脂を被覆してなる樹脂被覆錫めっき鋼板の適用が試みられたが、錫めっき層に対する樹脂の密着性、特に缶体加工時におけるフィルム加工密着性に乏しく、上記のような厳しい加工用途であってもフィルム加工密着性に優れた材料の開発が求められていた。
このような問題点を解決するため、特許文献1には、ノーリフロー錫めっき鋼板またはリフロー錫めっき鋼板の錫めっき層上にシランカップリング剤塗布層を設け、さらに有機樹脂皮膜を積層してなる樹脂被覆錫めっき鋼板が記載されている。
特開2002-285354号公報
しかし、特許文献1の樹脂被覆錫めっき鋼板を、絞り加工後にさらにストレッチ加工としごき加工を併用して缶体に成形加工した場合、成形加工途中で缶体の上部で樹脂が剥離することがあり、缶体加工時におけるフィルム加工密着性に問題があった。
本発明は、上記の問題点を解決し、厳しい成形加工時においても、フィルム加工密着性に優れた樹脂被覆錫めっき金属板の製造方法を提供することを目的とする。
(1)本発明の樹脂被覆金属板の製造方法は、
金属板の少なくとも片面に錫めっき層を形成させる工程と、
前記錫めっき層上にシランカップリング剤を塗布する工程と、
前記シランカップリング剤塗布層上に樹脂層を形成する工程と、
前記金属板を加熱して、前記樹脂層の前記シランカップリング剤と接している側の樹脂表面を溶解させる工程と、を有することを特徴とする。
 なお、前記錫めっき層及び前記樹脂層が形状変化を起こさない条件については、錫めっき層及び樹脂層の形状がくずれてしまわないように加熱温度が上がりすぎず、樹脂層が軟化や融解して密着性が向上するように制御することで実現できる。これは例えば、高周波加熱であれば、高周波電流、直流電流、直流電圧を制御することで、高周波加熱装置の発信機の出力を制御し、最大加熱温度、加熱時間を変更することで制御可能である。
(2)また、本発明の樹脂被覆金属板の製造方法は、
金属板の少なくとも片面に錫めっき層を形成させる工程と、
前記錫めっき層上にシランカップリング剤を塗布する工程と、
前記シランカップリング剤塗布層上に樹脂層を形成する工程と、
少なくとも、前記錫めっき層と前記シランカップリング剤塗布層との界面領域、
シランカップリング剤塗布層及び前記シランカップリング剤塗布層と前記樹脂層との界面領域を、
前記樹脂の融点-10℃~前記樹脂の融点+100℃に加熱する工程と、
を有することを特徴とする。
「少なくとも、前記錫めっき層と前記シランカップリング剤塗布層との界面領域、シランカップリング剤塗布層及び前記シランカップリング剤塗布層と前記樹脂層との界面領域を、前記樹脂の融点-10℃~前記樹脂の融点+100℃に加熱する」ことについては、例えば、高周波加熱により鋼板全体を加熱して高周波電流、直流電流を制御し、高周波加熱装置の発信機の出力を制御して最大加熱温度、加熱時間を変更することで、溶解を起こさせたい箇所の温度を高くし、他の箇所については温度上昇を一定温度以下に抑えることで実現できる。
(3)本発明の樹脂被覆樹脂被覆金属板の製造方法は、前記(1)又は(2)において、前記加熱温度は、前記樹脂の融点+30℃~前記樹脂の融点+60℃であることを特徴とする。
(4)本発明の樹脂被覆金属板の製造方法は、前記(1)~(3)のいずれかにおいて、前記加熱は、高周波加熱により実施することを特徴とする。
(5)本発明の樹脂被覆金属板の製造方法は、前記(1)~(4)のいずれかにおいて、前記加熱の際の前記樹脂の温度について、前記樹脂の結晶化温度領域を5℃/秒以上の割合で前記加熱を行うことを特徴とする。
(6)本発明の樹脂被覆金属板の製造方法は、前記(1)~(5)のいずれかにおいて、前記加熱の後に、前記樹脂の結晶化温度領域を30℃/秒以上の割合で前記樹脂を冷却することを特徴とする。
(7)本発明の樹脂被覆金属板の製造方法は、前記(1)~(6)のいずれかにおいて、前記錫めっき層は、錫めっき量0.5~13g/mであることを特徴とする。
(8)本発明の樹脂被覆金属板の製造方法は、前記(1)~(7)のいずれかにおいて、前記シランカップリング剤は、水溶性のアミノ系シランカップリング剤であり、Si付着量が0.5~30mg/mであることを特徴とする。
本発明の樹脂被覆金属板の製造方法は、錫めっき層上にシランカップリング剤を塗布し、その上に樹脂フィルムを熱接着して積層した後に加熱処理を施すので、従来よりも優れた加工密着性を示す樹脂被覆金属板を提供することができる。
以下、本発明の実施の形態について詳細に説明する。
[金属板]
本発明の樹脂被覆金属板に用いる金属板としては、通常のアルミキルド鋼の熱間圧延板を冷間圧延し、焼鈍した後調質圧延した板厚=0.15~0.3mmの冷延鋼板や、焼鈍後さらに冷間圧延を施して強度を増加させた冷延鋼板等が、用途に応じて用いられる。
これらの冷延鋼板を電解脱脂し酸洗した後、鋼板上に錫めっき層を形成させて錫めっき鋼板とする。
錫めっき鋼板としては、公知のフェロスタン浴やハロゲン浴、硫酸浴を用いて錫めっきを施し、錫の溶融温度以上に加熱した後急冷することにより(リフロー処理)錫めっき層の間にSn-Fe合金層を形成させた錫めっき鋼板や、錫めっき層を加熱溶融処理しない(ノーリフロー処理)錫めっき鋼板等が適用できる。
また、冷延鋼板上にニッケルめっきを施し、その後、その上層に、又はニッケルめっき後加熱してNiを鋼中に拡散させてNi-Fe合金層を形成させた上層に、錫めっきを施し、錫の溶融温度以上に加熱した後急冷する、などの方法を用いて、島状の錫層を形成させた島状錫めっき鋼板なども用いることができる。
錫めっき鋼板における錫めっき量は、耐食性および経済性の観点から、0.5~13g/mの範囲にあることが好ましい。0.5g/m未満では、耐食性が不足するので好ましくない。
特に、リフロー処理を行うと、めっきした錫の全てがFe-Sn合金化し、耐食性だけでなく、加工性も著しく悪くなるので、少なくとも0.5g/m以上の錫めっき量を必要とする。
一方、13g/mを超えると、飲料缶や食缶として要求される耐食性効果が飽和すると共に、リフロー時に錫の溶融ムラやエッジダレなどが発生し、ぶりきの表面状態が悪くなる。
次に、上記のようにして形成した錫めっき層の上にシランカップリング剤を塗布し乾燥させる。
シランカップリング剤としては、ビニル系、アクリル系、エポキシ系、アミノ系、メルカプト系、クロロピル系などの各種のものがあるが、取り扱いや環境面から水溶性のカップリング剤が挙げられる。
また、保存安定性に優れることも重要であり、樹脂被覆金属板は食缶や飲料缶に適用されることから毒性がないことも必要である。
これらを総合的に判断すると、アミノ系シランカップリング剤を適用することが最も好ましい。
アミノ系のシランカップリング剤としては、アミノプロピルトリメトキシシラン、アミノプロピルメチルジエトキシシラン、アミノプロピルトリエトキシシラン、フェニルアミノプロピルトリメトキシシランなどを用いることができ、一例として、信越化学工業社製のKBM-903やKBM603、KBE903などが挙げられ、水溶性、保存安定性に優れ、FDA(米国食品医薬品局。Food and Drug Administraionの略)にも認可済みである
ので好ましい。
シランカップリング剤の5~200g/Lの水溶液を上記の錫めっき鋼板に塗布し、乾燥させる。
塗布、乾燥方法としては公知の方法が適用でき、例えば、浸漬法、ロールコート法、浸漬後に絞りロールを用いて余剰分を絞る方法、スプレー法、電解処理法などの塗布方法が挙げられ、電気オーブンを用いて100℃-5分の乾燥方法が挙げられる。
本発明の樹脂被覆金属板は、上記のようにして得られた錫めっき鋼板の片面または両面に、樹脂層となる有機樹脂フィルムをシランカップリング剤塗布層に接するようにして積層することにより得られる。
有機樹脂フィルムとしては、加熱後も加工性に優れる熱可塑性樹脂が好ましく、
ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレンテレフタレート・エチレンイソフタレート共重合体、ブチレンテレフタレート・ブチレンイソフタレート共重合体などのポリエステル樹脂、あるいはこれらのポリエステル樹脂の2種類以上をブレンドした樹脂、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、およびそれらをマレイン酸変性したもの、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体などのポリオレフィン樹脂、6-ナイロン、6,6-ナイロン、6,10-ナイロンなどのポリアミド樹脂、ポリカーボネート、ポリメチルペンテン、さらに上記のポリエステル樹脂とアイオノマーをブレンドしたものからなる
単層の樹脂フィルム、さらにこれらの樹脂の2種類以上からなる複層の樹脂フィルムなどが挙げられる。
樹脂フィルムの厚さとしては、フィルム積層作業のしやすさ、樹脂被覆金属板の成形加工した後の成形体(缶など)における樹脂フィルムの密着強度、耐食性、および経済性の観点から10~100μmであることが好ましい。
これらの樹脂フィルムは、樹脂ペレットを加熱溶融し、それを押出機のTダイから押し出して所望の厚さのフィルムに製膜したものを、錫めっき鋼板の錫めっき層上に塗布されているシランカップリング剤塗布層の上に樹脂層として形成する。
この樹脂層形成方法としては、例えば熱接着法が挙げられ、樹脂フィルムを、所定の温度範囲に加熱した錫めっき鋼板に樹脂フィルムを当接し、1対の加圧ロールで挟み付けて加圧して圧接する。
この方法によれば、製膜した樹脂フィルムを延伸加工を施さないで用いることにより、錫の溶融温度よりかなり低い温度で熱接着することができる。
[被処理材処理]
本発明においては、上記の樹脂層形成後、さらに、錫めっき層とシランカップリング剤塗布層との界面領域、シランカップリング剤塗布層及びシランカップリング剤塗布層と樹脂層との界面領域を、「被覆樹脂の融点-10℃」~「被覆樹脂の融点+100℃」に加熱する。被処理材処理としていわゆる後加熱処理を行う。
より好ましい後加熱温度としては、被覆樹脂フイルムの「融点+30℃」~「融点+60℃」の範囲である。
被覆樹脂フイルムの加熱温度が「被覆樹脂の融点-10℃」未満では、前記界面領域の軟化が不十分で密着性の向上が図れず、また加熱によるシランカップリング剤の密着性効果が充分に発揮されない。
一方、「被覆樹脂の融点+100℃」より加熱温度が高いと、樹脂層におけるバルク層の温度が上がりすぎて、樹脂層に気泡が発生しやすくなるので好ましくない。
上記後加熱においては、樹脂層に気泡が発生しないようにしつつ、前記の界面領域が前記温度範囲になり、上記の界面領域のみにおいて樹脂層や錫めっき層が軟化や融解して密着性が向上するようにする。
具体的な手段としては、図1に示すような装置を用い、樹脂被覆後に通板する樹脂被覆金属板に対して、進行方向に対し直角に高周波コイルを巻回して、図2に示すように、所定の温度まで加熱し、高周波コイルをでた後空冷し、その後常温まで水冷する加熱サイクルで処理することが好ましい。
[シランカップリング剤の塗布]
次に、後加熱処理時においてシランカップリング剤がフィルム密着性に及ぼす効果を、図3及び図4を用いて詳細に説明する。
錫めっき鋼板にシランカップリング剤処理を行った上に樹脂を被覆した状態では、図3に示すように錫めっき鋼板と被覆樹脂フイルム界面のOH基が多く残存し密着力が低い。
シランカップリング剤の塗布膜量は、Si付着量で0.5~30mg/mであることが好ましい。
Si付着量が、0.5mg/m未満である場合は、シランカップリング剤塗布層上に積層する被覆樹脂の加工密着が向上せず本発明の効果が得られない。
一方、Si付着量が30mg/mを超えても、被覆樹脂のさらなる向上がみられず、コスト面からもこれ以上の塗布は不必要である。
その後、樹脂被覆金属板を「被覆樹脂の融点-10℃」以上の温度に加熱すると、図4に示すように、シランカップリング剤の脱水縮合反応が充分進行して、Snとフイルム間の結合力が強固になり密着性が著しく向上する。
なお、樹脂層は、DSC(示差走査熱量測定)曲線などから、公称の融点より約10℃下の温度から軟化が始まり、樹脂融点より10℃低い温度からでも本処理の効果が認められたので、本発明においては、「被覆樹脂の融点-10℃」以上の加熱温度とした。
また、樹脂被覆樹脂被覆金属板の加熱速度は、
樹脂フイルムの結晶化温度領域(120℃~180℃)を出来るだけ短時間で昇温させることが樹脂フイルムの結晶化防止という観点から好ましく、この点において、高周波波誘導加熱や通電加熱などの加熱速度の速い処理手段を採用することが好ましい。
しかしながら、被覆した後において、樹脂フイルムを結晶化温度領域で保持すると、樹脂フイルムの結晶化が進行し、缶体加工時におけるデラミ発生などの支障を来たすので、樹脂被覆鋼板の加熱速度は、5℃/sec以上とすることが望ましい。
5℃/sec未満の加熱速度では、結晶化温度領域の通過時間が長くなり、樹脂フイルムの結晶化が進行すると考えられるので好ましくない。
このシランカップリング剤の塗布量の決定につき以下に述べる。
次に、上記処理方法によって被覆された樹脂層の密着強度について説明する。
図5は、シランカップリング剤塗布量(横軸)とSピール強度(縦軸)の関係を示すグラフである。
図5に示すように、シランカップリング剤を塗布しても、「後加熱なし」、「オーブン加熱(2℃/秒で260℃まで昇温・・・低速加熱)では、フイルム密着力はあまり向上しない。
一方、「高周波誘導加熱(100℃/秒で260℃まで昇温・・・高速加熱)では、シランカップリング剤の塗布量が増すほどSピール強度は増加し、Si付着量=6mg/mでフィルム密着力(Sピール強度)は最大となり、シランカップリング剤塗布量:Si付着量=30mg/mでも、無しのときに比較すれば密着性向上に効果があるが、Si付着量=30mg/mを超えると、シラン層の凝集破壊が起こるために密着性が低下すると考えられる。
次に、上記処理方法によって被覆された樹脂被覆金属板を浅絞りカップに成形し、その場合のカップデラミ巾の大きさを、シランカップリング剤塗布量との関係で調べた結果を、図6に示す。
シランカップリング剤を塗布しても、「後加熱なし」、「オーブン加熱(2℃/秒で260℃まで昇温・・・低速加熱)では、デラミは殆ど解消されない。
一方、「高周波誘導加熱(100℃/秒で260℃まで昇温・・・高速加熱)では、シランカップリング剤の塗布量が増すほどカップデラミ巾は減少するが、シランカップリング剤塗布量:Si付着量=0.5mg/mを超えると、デラミは殆ど無くなる。
よって、シランカップリング剤の塗布量は、Si付着量=0.5~30mg/mが好ましく、より好ましくは0.5~6mg/mである。 
ここで、カップデラミ巾とは、下記のようにして測定した値をいう。すなわち、カップの先端を実態顕微鏡で拡大撮影し、写真にしたものについて端部を観察して、デラミ巾を測定する。
なお、Si付着量の測定は、蛍光X線法等が適用できる。
[被処理材冷却速度]
また、樹脂被覆金属板の後加熱後の冷却方法においても、前述した樹脂の結晶化温度領域(120℃~180℃)を短時間で通過させることが好ましい。
すなわち、後加熱の後に、樹脂の結晶化温度領域を30℃/秒以上の割合で樹脂を冷却することが望ましい。
冷却速度が30℃/秒であると、結晶化温度領域の通過時間が長くなり、樹脂フイルムの結晶化が進行すると考えられるので好ましくない。
このため、冷却手段としてスプレー、ディップなどの水冷手段を採用することが好ましい。
以下、本発明を、実施例1~12及び比較例1~3を用いて具体的に説明する。
[錫めっき鋼板の作成]
表1の「板厚」の欄に示す低炭素冷延鋼板を用い、アルカリ水溶液中で電解脱脂-水洗、硫酸酸洗-水洗した後、フェロスタン浴を用い、表1に示す条件で錫めっき層を形成しリフロー処理を施した。
次いで、錫めっき層の上にシランカップリング剤の水溶液を塗布乾燥して、表1の実施例、比較例に示すSi付着量のシランカップリング剤塗布層を形成させた。
[樹脂被覆金属板の作成]
実施例1~12及び比較例1~3に示す錫めっき鋼板の片面(缶内面側になる)に、厚さ28μmの透明エチレンテレフタレート・エチレンイソフタレート共重合体(PETI)のクリア無延伸フィルムを、
他の片面(缶外面側になる)に、同一のエチレンテレフタレート・エチレンイソフタレート共重合体にチタン系白色顔料を20質量%含有させた白色のホワイト無延伸フィルムを、表に示す条件で積層した。
樹脂フィルムの積層終了後は直ちに冷却した。
さらに、この樹脂フィルムの積層終了後、表1に示す被処理材処理条件で後加熱処理して、樹脂被覆金属板を作成した。
ここで、表1の高周波誘導加熱設定条件中のIhfは出力トランス前の高周波電流を、IdcLは整流器によって交流電流を直流電流にした直流電流を、Vdcは電源電圧を直流にしたところの直流電圧をそれぞれ示し、Ihf=38.5〔A〕、IdcL=10.7〔A〕、Vdc=280〔V〕である。
これらのうち、Ihf、IdcLを増やすことで加熱温度を上昇させることができる。
また、表1の被処理材処理条件中の「MAX板温度」は加熱中の板温度の最大値を示し、常温~MAX板温になるまでの加熱速度で、上昇温度をかかった時間で割ることで求められる。
表1の「板温加熱速度」は一秒あたりにどれくらい温度を上げるかの値をいい、MAX板温~常温になるまでの冷却速度で、下降温度をかかった時間で割ることで求められる。
表1の「冷却温度」は一秒あたりにどれくらい温度を下げるかの値をいう。
[評価]
錫めっき鋼板に対する被覆樹脂の加工密着性の評価は、剥離強度としてのSピール強度を採用して評価する。
従来は加工前の平板の状態でTピール強度を測定して評価していたが、加工密着性を必ずしも正確に反映していないと考えられるので、
本発明においては、絞り加工後さらにストレッチ加工としごき加工を併用して加工して缶体に成形するような厳しい成形加工を施した場合の、加工中および加工後の密着性(加工密着性)を正確に反映する評価法としてSピール強度を採用する。
Sピール強度とは、樹脂被覆金属板を絞り加工を施してカップに成形加工し、カップ側壁から試片を切り出し、その試片の樹脂膜の剥離強度で加工密着強度を評価するものである。
Sピール強度の具体的な測定方法を以下に示す。
樹脂被覆金属板から、直径154mmのブランクを打ち抜き、絞り比:1.64で第一段の絞り加工を施して、径:96mm、高さ:42mmの絞りカップを成形する。
このカップから、カップ高さ方向:30mm、カップ周方向:120mmの大きさで絞りカップの側壁部を切り出して平板状に曲げ戻した後、図7の平面図に示すようなサイズのT字形状の試片71をプレス金型を用いて打ち抜く。
次いで、図8に示すように、カッターナイフを用いて試片71の一方(右)の端部71aの密着強度測定面(図示では手前の面)と反対の側の被覆樹脂(図示では裏側の面)に、錫めっき鋼板面に達するように切れ目72を入れる。
さらに、図9および図10に示すように、スコア加工用ダイセットを用いて、密着強度測定面と反対の側(切れ目72を入れた面)にスコア73を入れた後、スコア部を折り曲げて錫めっき鋼板のみを切断する。
この時、密着強度測定面においては、被覆樹脂は切断されることなく、切断分離された錫めっき鋼板の両側に繋がったまま残っている。
次いで、図11に示すように、試片ホルダー74の試片挿入部74aに片端部71aを挿入して、試片71を試片ホルダー74に固定した後、試片ホルダー74の上部74bと試片71の他方の端部71bとを、引張試験機の両チャック部で挟んで引張り、被覆樹脂を錫めっき鋼板から強制剥離して引張強度を測定しSピール強度とし、加工密着強度を評価する。
上記のようにして測定されるSピール強度は、試片の巾15mmにおいて、0.6Kg/15mm以上であることが好ましい。Sピール強度が0.6Kg/15mm未満であると、絞り加工後さらにストレッチ加工としごき加工を併用した製缶加工などの厳しい成形加工において安定した良好な加工密着性が得られない。
本実施例では、表1に示す実施例1~12及び比較例1~3の樹脂被覆金属板を、直径:151mmのブランクに打ち抜いた後、透明樹脂フィルム被覆面がカップ内面側となるようにして(白色顔料を含有する樹脂フイルムを被覆した面が缶の外面となる)、絞り比:1.64の1段絞り加工を施して絞り1stカップ、B/M缶、Fi缶を作成し、透明樹脂フィルム被覆面が測定面となるようにして、Sピール強度測定用の試片を作成した。
次いで引張試験機を用いてSピール強度を測定した。
また、1stカップ、B/M缶のカップ先端デラミ(フイルム剥離)の有無を観察した。さらに、Fi缶について、レトルト傷デラミ評価を、外面ホワイト側及び内面クリア側で目視で確認した。
なお、ここで、1stカップは板を絞り加工して製造したものをいい、B/M缶は1stカップをさらに絞り、しごき加工して缶径が小さく側壁高さの高い缶に成形したものをいい、Fi缶はB/M缶をさらにトリム、フランジ、ネック加工して製造したものをいう。
その結果を表2に示す。
実施例1~12のカップは、1stカップ、B/M缶、Fi缶のいずれにおいても、内面Sピール強度は、0.7Kg/15mm以上の値を示し、厳しい缶成形加工時の際の樹脂フィルムの加工密着性に優れていた。
さらに、1stカップ及びB/M缶のカップ先端デラミは観察されず、Fi缶のレトルト傷デラミも観察されなかった。
これに対し、比較例1~3は、1stカップに成形加工を行った際に、カップ先端部の樹脂フイルムと錫めっき鋼板とが密着性不良となり、カップ先端部にデラミが発生した。
なお、比較例1、2は、B/M缶加工時に破胴が発生し、缶体加工用の素材として不適なものであった。
なお、表中の上矢印は、その上欄に記載の値と同じであることを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

以上説明したように、絞り加工、絞り加工後のさらなるストレッチ加工、絞り加工後のさらなるしごき加工、のいずれの加工を施しても、成形加工時において樹脂フィルムが剥離することなく、安定した、また、より過酷な絞り加工後にさらにストレッチ加工としごき加工を併用する加工を施す缶体成形加工時においても、樹脂フィルムが剥離することがなく、安定して優れた加工密着性を示す樹脂被覆金属板を提供することができる。
樹脂フィルムをシランカップリング塗布層を設けた錫めっき鋼板に積層して、その後後加熱処理を施してなる本発明の樹脂被覆金属板は、後加熱処理を施さない樹脂フィルムを、シランカップリング塗布層を設けた錫めっき鋼板に積層してなる樹脂被覆金属板に比べて、樹脂フィルムの錫めっき鋼板に対する加工密着性に優れ、産業上の利用可能性が極めて高い。
樹脂被覆後に通板する樹脂被覆金属板に対して、進行方向に対し直角に高周波コイルを巻回して後加熱する手段を示す概略斜視図である。 後加熱の加熱サイクルを示すグラフである。 錫めっき鋼板にシランカップリング剤処理を行った上に樹脂を被覆した状態を示す説明図である。 図3の状態の後、樹脂被覆金属板を「被覆樹脂の融点-10℃」以上の加熱処理を行い、シランカップリング剤の脱水縮合反応が充分進行して、ぶりきとフイルム間の結合力が強固になり密着性が著しく向上した状態を示す説明図である。 シランカップリング剤塗布量(横軸)とSピール強度(縦軸)の関係を示すグラフである。 後加熱後の樹脂被覆金属板を浅絞りカップに成形し、その場合のカップデラミ巾の大きさを、シランカップリング剤塗布量との関係で調べた結果を示すグラフである。 Sピール強度測定用の試片の形状を示す平面図である。 Sピール強度測定用の試片の被覆樹脂面に切れ目を入れた状態を示す平面図である。 Sピール強度測定用の試片にスコアを入れた状態を示す平面図である。 スコアを入れた部分の形状を示すSピール強度測定用の試片の部分断面図である。 Sピール強度測定用の試片を試片ホルダーに入れて強度測定をする状態を示す概略斜視図である。
71 : 試片
71a: 試片の一方の端部
71b: 試片の他方の端部
72: 切れ目
73: スコア
74: 試片ホルダー
74a: 試片挿入部
74b: 試片ホルダー上部
 

Claims (8)

  1. 金属板の少なくとも片面に錫めっき層を形成させる工程と、
    前記錫めっき層上にシランカップリング剤を塗布する工程と、
    前記シランカップリング剤塗布層上に樹脂層を形成する工程と、
    前記金属板を加熱して、前記樹脂層の前記シランカップリング剤と接している側の樹脂表面を溶解させる工程と、を有することを特徴とする樹脂被覆金属板の製造方法。
  2. 金属板の少なくとも片面に錫めっき層を形成させる工程と、
    前記錫めっき層上にシランカップリング剤を塗布する工程と、
    前記シランカップリング剤塗布層上に樹脂層を形成する工程と、
    少なくとも、前記錫めっき層と前記シランカップリング剤塗布層との界面領域、
    シランカップリング剤塗布層及び前記シランカップリング剤塗布層と前記樹脂層との界面領域を、
    前記樹脂の融点-10℃~前記樹脂の融点+100℃に加熱する工程と、
    を有することを特徴とする樹脂被覆金属板の製造方法。
  3. 前記金属板の加熱温度は、前記樹脂の融点+30℃~前記樹脂の融点+60℃であることを特徴とする請求項1又は2に記載の樹脂被覆金属板の製造方法。
  4. 前記金属板の加熱は、高周波加熱により実施することを特徴とする請求項1~3いずれかに記載の樹脂被覆金属板の製造方法。
  5. 前記金属板の加熱の際の前記樹脂の温度について、
    前記樹脂の結晶化温度領域を5℃/秒以上の割合で前記加熱を行うことを特徴とする請求項1~4いずれかに記載の樹脂被覆金属板の製造方法。
  6. 前記金属板の加熱の後に、前記樹脂の結晶化温度領域を30℃/秒以上の割合で前記樹脂を冷却することを特徴とする請求項1~5いずれかに記載の樹脂被覆金属板の製造方法。
  7. 前記錫めっき層は、錫めっき量0.5~13g/mであることを特徴とする請求項1~6いずれかに記載の樹脂被覆金属板の製造方法。
  8. 前記シランカップリング剤は、水溶性のアミノ系シランカップリング剤であり、
    Si付着量が0.5~30mg/mであることを特徴とする請求項1~7のいずれかに記載の樹脂被覆金属板の製造方法。
     
PCT/JP2009/005347 2009-10-14 2009-10-14 樹脂被覆金属板の製造方法 WO2011045833A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980161925.1A CN102686778B (zh) 2009-10-14 2009-10-14 树脂被覆金属板的制造方法
PCT/JP2009/005347 WO2011045833A1 (ja) 2009-10-14 2009-10-14 樹脂被覆金属板の製造方法
EP09850377.4A EP2489760B1 (en) 2009-10-14 2009-10-14 Method for producing resin-coated metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/005347 WO2011045833A1 (ja) 2009-10-14 2009-10-14 樹脂被覆金属板の製造方法

Publications (1)

Publication Number Publication Date
WO2011045833A1 true WO2011045833A1 (ja) 2011-04-21

Family

ID=43875894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005347 WO2011045833A1 (ja) 2009-10-14 2009-10-14 樹脂被覆金属板の製造方法

Country Status (3)

Country Link
EP (1) EP2489760B1 (ja)
CN (1) CN102686778B (ja)
WO (1) WO2011045833A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019891A1 (de) * 2012-07-31 2014-02-06 Henkel Ag & Co. Kgaa Verfahren zum verkleben mit dünnen klebstoffschichten
WO2015113798A1 (de) 2014-01-31 2015-08-06 Henkel Ag & Co. Kgaa Verfahren zum verkleben mit klebstoffschichten unter zuhilfenahme eines lasers
CN110944826A (zh) * 2017-06-19 2020-03-31 德国航空航天中心 用于检查接合表面的方法和设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304706A (zh) * 2020-03-13 2020-06-19 葛家玉 一种无铬镀锡板及其表面处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892520A (ja) * 1981-11-30 1983-06-01 Toyo Kohan Co Ltd 樹脂フイルム被覆金属板の製造法
JP2002285354A (ja) 2001-03-23 2002-10-03 Toyo Kohan Co Ltd Snめっき鋼板、Snめっき鋼板に樹脂皮膜を被覆してなる樹脂被覆Snめっき鋼板、それを用いた缶、およびSnめっき鋼板と樹脂被覆Snめっき鋼板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003127273A (ja) * 2001-10-19 2003-05-08 Kobe Steel Ltd ラミネート金属板及びその製造方法並びにこれを用いた成形品
JP3655592B2 (ja) * 2002-02-07 2005-06-02 東洋鋼鈑株式会社 Snめっき鋼板の製造方法、Snめっき鋼板、Snめっき鋼板に樹脂皮膜を被覆してなる樹脂被覆Snめっき鋼板、およびそれを用いた缶
JP4019751B2 (ja) * 2002-03-08 2007-12-12 東洋製罐株式会社 プレコート鋼板から成るプレス成形缶
EP1518944B1 (en) * 2002-06-05 2014-05-14 JFE Steel Corporation Tin-plated steel plate and method for production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892520A (ja) * 1981-11-30 1983-06-01 Toyo Kohan Co Ltd 樹脂フイルム被覆金属板の製造法
JP2002285354A (ja) 2001-03-23 2002-10-03 Toyo Kohan Co Ltd Snめっき鋼板、Snめっき鋼板に樹脂皮膜を被覆してなる樹脂被覆Snめっき鋼板、それを用いた缶、およびSnめっき鋼板と樹脂被覆Snめっき鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2489760A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216494B1 (ko) * 2012-07-31 2021-02-16 헨켈 아게 운트 코. 카게아아 박형 접착제 층을 사용한 접착 방법
KR20150040988A (ko) * 2012-07-31 2015-04-15 헨켈 아게 운트 코. 카게아아 박형 접착제 층을 사용한 접착 방법
US10934458B2 (en) 2012-07-31 2021-03-02 Henkel Ag & Co. Kgaa Adhesion method using thin adhesive layers
WO2014019891A1 (de) * 2012-07-31 2014-02-06 Henkel Ag & Co. Kgaa Verfahren zum verkleben mit dünnen klebstoffschichten
JP2015530425A (ja) * 2012-07-31 2015-10-15 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA 薄い接着層を用いる接着方法
AU2013298716B2 (en) * 2012-07-31 2016-09-29 Henkel Ag & Co. Kgaa Adhesion method using thin adhesive layers
RU2641734C2 (ru) * 2012-07-31 2018-01-22 Хенкель Аг Унд Ко. Кгаа Способ склеивания тонкими слоями клея
EP3323846A1 (de) * 2012-07-31 2018-05-23 Henkel AG & Co. KGaA Verfahren zum verkleben mit dünnen klebstoffschichten
CN104508019B (zh) * 2012-07-31 2018-12-21 汉高股份有限及两合公司 使用薄的粘合剂层的粘合方法
DE102014201778A1 (de) 2014-01-31 2015-08-06 Henkel Ag & Co. Kgaa Verfahren zum Verkleben mit Klebstoffschichten unter Zuhilfenahme eines Lasers
US10533077B2 (en) 2014-01-31 2020-01-14 Henkel Ag & Co. Kgaa Method for bonding using adhesive layers with the aid of a laser
WO2015113798A1 (de) 2014-01-31 2015-08-06 Henkel Ag & Co. Kgaa Verfahren zum verkleben mit klebstoffschichten unter zuhilfenahme eines lasers
CN110944826A (zh) * 2017-06-19 2020-03-31 德国航空航天中心 用于检查接合表面的方法和设备
CN110944826B (zh) * 2017-06-19 2022-05-24 德国航空航天中心 用于检查接合表面的方法和设备

Also Published As

Publication number Publication date
EP2489760A1 (en) 2012-08-22
CN102686778B (zh) 2015-07-01
EP2489760A4 (en) 2013-07-24
CN102686778A (zh) 2012-09-19
EP2489760B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
CA2901209A1 (en) Laminated metal sheet for two-piece can and two-piece laminated can body
JP5885345B2 (ja) 樹脂との加工密着性に優れる容器用表面処理鋼板、その製造方法および缶
WO2011045833A1 (ja) 樹脂被覆金属板の製造方法
JP2004148324A (ja) 樹脂被覆金属絞りしごき缶の製造方法
JP4278271B2 (ja) ラミネートシームレス缶
JP4285924B2 (ja) Snめっき鋼板に樹脂皮膜を被覆してなる樹脂被覆Snめっき鋼板から成る缶体及びその製造方法
JP6380688B2 (ja) レトルト密着性に優れるフィルムラミネート金属板およびその製造方法
JP3655592B2 (ja) Snめっき鋼板の製造方法、Snめっき鋼板、Snめっき鋼板に樹脂皮膜を被覆してなる樹脂被覆Snめっき鋼板、およびそれを用いた缶
JP5078155B2 (ja) 樹脂被覆金属板の製造方法
US20200346831A1 (en) Heat sealed lid and can
JP5419638B2 (ja) 表面処理鋼板の製造方法
JP5398024B2 (ja) 樹脂被覆鋼板
JP4103974B2 (ja) ポリエステル樹脂被覆アルミニウムシームレス缶およびその製造方法
JP3986170B2 (ja) ポリエステル樹脂被覆アルミニウムシームレス缶およびその製造方法
US11760064B2 (en) Laminated steel having extremely low interface bubble rate and method for manufacturing same
TW201630725A (zh) 食品容器用薄膜積層金屬板、以及使用其之旋轉蓋及罐蓋
JPH0631362A (ja) 密着性の優れたラミネート鋼板製多段絞り缶の製造方法
JP3949283B2 (ja) シームレス缶用ポリエステル樹脂被覆アルミニウム板およびシームレス缶の製造方法
JP4226103B2 (ja) 樹脂被覆アルミニウムシームレス缶の製造方法
JP2803837B2 (ja) ポリエステル樹脂フィルム積層鋼板の製造方法
JP2001088241A (ja) 容器用フィルムラミネート金属板
JP4278272B2 (ja) フィルム被覆ツーピース缶
JP2003277886A (ja) 絞りしごき缶用樹脂被覆鋼板、絞りしごき缶用樹脂被覆鋼板の製造方法およびそれを用いて作製した絞りしごき缶
JP2004345214A (ja) 樹脂被覆Snめっき鋼板、それを用いた缶、および樹脂被覆Snめっき鋼板の製造方法
JP4226104B2 (ja) 樹脂被覆アルミニウムシームレス缶の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161925.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1021/MUMNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009850377

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009850377

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP