WO2011043260A1 - 絶縁チューブ及び熱収縮チューブ - Google Patents

絶縁チューブ及び熱収縮チューブ Download PDF

Info

Publication number
WO2011043260A1
WO2011043260A1 PCT/JP2010/067236 JP2010067236W WO2011043260A1 WO 2011043260 A1 WO2011043260 A1 WO 2011043260A1 JP 2010067236 W JP2010067236 W JP 2010067236W WO 2011043260 A1 WO2011043260 A1 WO 2011043260A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
flame retardant
tube
thermoplastic resin
Prior art date
Application number
PCT/JP2010/067236
Other languages
English (en)
French (fr)
Inventor
清晃 森内
宏 早味
昭平 岡部
Original Assignee
住友電気工業株式会社
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ファインポリマー株式会社 filed Critical 住友電気工業株式会社
Priority to CN201080002851.XA priority Critical patent/CN102171276B/zh
Publication of WO2011043260A1 publication Critical patent/WO2011043260A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/02Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/38Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes condensation products of aldehydes with amines or amides

Definitions

  • the present invention relates to an insulating tube and a heat-shrinkable tube made of a non-halogen flame retardant material and having excellent flame retardancy and mechanical properties.
  • Exceptional mechanical properties are required for insulating tubes and heat-shrinkable tubes used in the field of electronic equipment and automobiles.
  • the initial maximum tensile strength is required to be 10.4 MPa or more for a tube or a heat-shrinkable tube made of a plastic such as polyethylene as an insulator. .
  • insulating tubes and heat-shrinkable tubes have applications that require high flame resistance.
  • flame retardancy such as a horizontal flame retardancy test and an inclined burn test is defined in the automobile field
  • VW-1 test vertical flame test
  • a soft polyvinyl chloride composition or a brominated flame retardant for polyolefin resins such as polyethylene, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer
  • a flame retardant resin composition mixed with a halogen flame retardant such as a chlorine flame retardant has been used.
  • a flame retardant material containing a halogen element generates a combustion gas harmful to the human body such as hydrogen halide gas during incineration, which is not preferable in terms of environment.
  • metal hydroxide flame retardants such as aluminum hydroxide and magnesium hydroxide are blended with polyolefin resins such as polyethylene, ethylene-ethyl acrylate copolymer, and ethylene-vinyl acetate copolymer are practical.
  • polyolefin resins such as polyethylene, ethylene-ethyl acrylate copolymer, and ethylene-vinyl acetate copolymer.
  • Patent Document 1 it is necessary to add a large amount of metal hydroxide flame retardant in order to obtain the flame retardance sufficient to pass the UL vertical combustion test VW-1 with the metal hydroxide flame retardant. It was difficult to achieve both flame retardancy and mechanical properties because the mechanical properties deteriorated.
  • Patent Document 2 describes a shrinkable tube using a resin composition in which a metal hydroxide, red phosphorus, and a molybdenum compound are added to a polyolefin resin.
  • Patent Document 2 the amount of metal hydroxide added can be reduced by using red phosphorus in combination, and both flame retardancy and mechanical properties can be achieved.
  • red phosphorus is undesirable in terms of environment because toxic phosphine is generated during combustion.
  • the tube is colored by red phosphorus.
  • Organic phosphorus flame retardants such as phosphate esters are also known as phosphorus flame retardants, but their flame retardant effect is not sufficient, and satisfactory flame retardancy cannot be obtained unless added in large amounts. Since phosphoric acid esters have low compatibility with polyolefin-based resins, so-called bleed out occurs in which phosphoric acid esters emerge on the surface of the resin composition when added in a large amount.
  • the present inventors have used a resin composition in which polyphenylene ether, a thermoplastic styrene elastomer, and an olefin resin are mixed as a base polymer, and an organic phosphorus flame retardant, a nitrogen flame retardant, and a polyfunctional monomer are added. And a tube using the same and a heat shrinkable tube were developed and filed as Japanese Patent Application No. 2008-100804. This tube has both flame retardancy and mechanical properties, and is excellent in heat resistance and heat distortion resistance by crosslinking the resin.
  • the flame retardant condition becomes severer as the diameter (tube inner diameter) becomes smaller.
  • the tube inner diameter is as large as 5 mm or more, the tube has flame retardancy to pass the vertical combustion test. It turned out to be lower.
  • the present invention provides a non-halogen insulating tube and a heat shrinkable tube that have both mechanical properties, heat resistance and flame retardancy, and have flame retardancy that can pass the vertical combustion test even if the tube inner diameter is reduced. Is an issue.
  • thermoplastic resin is A resin having a carbon-carbon unsaturated bond or a resin having a carbonyl group is contained in an amount of 5% by mass or more based on the whole thermoplastic resin
  • organophosphorus flame retardant includes a phosphinic acid metal salt, a melamine phosphate compound, phosphoric acid It is at least one selected from the group consisting of an ammonium compound and a polyphosphazene compound obtained by ring-opening polymerization of cyclophosphazene, and the content of the phosphorus flame retardant is 5 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the insulating tube is 100 parts by mass, and the content of the polyfunctional monomer is 1 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • organic phosphorus flame retardants in particular, use one or more selected from the group consisting of metal phosphinic acid salts, melamine phosphate compounds, ammonium phosphate compounds, and polyphosphazene compounds obtained by ring-opening polymerization of cyclophosphazene.
  • metal phosphinic acid salts melamine phosphate compounds
  • ammonium phosphate compounds and polyphosphazene compounds obtained by ring-opening polymerization of cyclophosphazene.
  • thermoplastic resin Any resin can be selected as the thermoplastic resin. However, if only a resin having low flame retardancy such as polyethylene or polypropylene is used, the flame retardancy becomes insufficient, and therefore a highly flame retardant carbon-carbon unsaturated bond is formed. It is necessary to contain 5% by mass or more of the resin having a carbonyl group or a resin having a carbonyl group.
  • the thermoplastic resin is polyphenylene ether resin, polyethylene terephthalate, polybutylene terephthalate, thermoplastic polyester elastomer, thermoplastic polyurethane elastomer, styrene thermoplastic elastomer, polystyrene resin, nylon, thermoplastic polyamide elastomer, carbon-carbon unsaturated. It is preferable to contain 5% by mass or more of at least one selected from the group consisting of a polyolefin resin having a bond and a polyolefin resin having a carbonyl group. Since these resins have relatively high flame retardancy, the flame retardance of the insulating tube can be improved.
  • the thermoplastic resin preferably comprises 5 to 80% by mass of a polyphenylene ether resin or polystyrene resin, 20 to 95% by mass of a styrene thermoplastic elastomer, and 0 to 70% by mass of a polyolefin resin (Claim 3).
  • Polyphenylene ether resins and polystyrene resins are particularly excellent in flame retardancy.
  • Styrenic thermoplastic elastomers are excellent in flexibility and extrusion processability, and have good compatibility with polyphenylene ether resins, so that mechanical properties can be improved.
  • Polyolefin resins are excellent in flexibility and can improve mechanical properties and extrusion processability. By mixing these resins in a well-balanced manner, the mechanical properties and flame retardancy of the insulating tube can be improved.
  • the thermoplastic resin contains 50 to 100% by mass of an ethylene- ⁇ olefin copolymer having a carbonyl group, and the ethylene- ⁇ olefin copolymer having a carbonyl group has a comonomer content of 9 to 46% by mass.
  • the melt flow rate is preferably 0.3 to 25 g / 10 min.
  • the ethylene- ⁇ -olefin copolymer having a carbonyl group is excellent in flame retardancy, and even when used alone, the properties can be balanced, and therefore the resin composition can be easily mixed.
  • the melt flow rate (MFR) is a value measured under conditions of 190 ° C. and a load of 2.16 kg in accordance with ASTM D 1238.
  • the flame retardant it is preferable to further contain 3 to 100 parts by mass of a nitrogen-based flame retardant with respect to 100 parts by mass of the thermoplastic resin.
  • the flame retardancy can be further improved by using the above organic phosphorus flame retardant and nitrogen flame retardant together.
  • the nitrogen-based flame retardant melamine cyanurate can be preferably used (Claim 6).
  • a phosphoric acid ester is further contained as the organophosphorus flame retardant (claim 7).
  • an organic phosphorus flame retardant having excellent flame retardancy such as a phosphinic acid metal salt and a phosphate ester further improves the flame retardancy of the insulating tube.
  • the invention according to claim 8 is the insulating tube according to any one of the above, wherein the tube inner diameter is 5 mm or less.
  • the above insulating tube is excellent in flame retardancy, and can be applied to products having a tube inner diameter of 5 mm or less.
  • the tube inner diameter is the inner diameter after contraction.
  • the invention according to claim 9 is the insulating tube according to any one of the above, which passes the vertical combustion test (VW-1).
  • the invention according to claim 10 is the insulating tube according to any one of the above, wherein the tensile strength at room temperature is 10 MPa or more.
  • the invention according to claim 11 is formed by irradiating the insulating tube according to any one of the above with ionizing radiation, expanding the diameter under heating, and then fixing by cooling.
  • This heat shrinkable tube is excellent in mechanical properties, heat resistance and flame retardancy.
  • a halogen-free insulating tube and a heat-shrinkable tube that can achieve both mechanical properties, heat resistance and flame retardancy, and can pass the vertical combustion test even if the tube inner diameter is reduced.
  • phosphinic acid metal salts are particularly preferred because of their excellent flame retardancy.
  • the phosphinic acid metal salt is a compound represented by the following formula (I).
  • R1 and R2 are each an alkyl group having 1 to 6 carbon atoms or an aryl group having 12 or less carbon atoms
  • M is calcium, aluminum, or zinc
  • phosphinic acid metal salt aluminum salt of organic phosphinic acid such as EXOLIT OP1230, EXOLIT OP1240, EXOLIT OP930, EXOLIT OP935 etc. manufactured by Clariant Co., Ltd., or a blend of aluminum phosphinic acid such as EXOLIT OP1312 and melamine polyphosphate You can use things.
  • melamine polyphosphate such as MELAPUR200 manufactured by Ciba Specialty Co., Ltd., melamine polyphosphate, melamine phosphate, melamine orthophosphate, melamine pyrophosphate, or the like can be used.
  • ammonium phosphate compound ammonium polyphosphate, polyphosphate amide, ammonium polyphosphate amide, polyphosphate carbamic acid and the like can be used.
  • polyphosphazene compound obtained by ring-opening polymerization of cyclophosphazene SPR-100, SA-100, SR-100, SRS-100, SPB-100L, etc. manufactured by Otsuka Chemical Co., Ltd. can be used.
  • the above organophosphorous flame retardants may be used alone or in combination.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl phenyl phosphate, cresyl 2,6-xylenyl phosphate, 2- Ethylhexyl diphenyl phosphate, 1,3 phenylene bis (diphenyl phosphate), 1,3 phenylene bis (di 2,6 xylenyl phosphate), bisphenol A bis (diphenyl phosphate), resorcinol bis diphenyl phosphate, octyl diphenyl Phosphate, diethylene ethyl ester phosphate, dihydroxypropylene butyl ester phosphate, ethylene disodium ester phosphate,
  • the content of the organic phosphorus flame retardant is 5 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the organophosphorus flame retardant may be used by treating the surface with melamine, melamine cyanurate, fatty acid, or silane coupling agent. Further, instead of pre-treating the surface in advance, an integral blend in which a surface treating agent is added when mixing with the thermoplastic resin may be performed.
  • thermoplastic resin polyphenylene ether resin, polyethylene terephthalate, polybutylene terephthalate, thermoplastic polyester elastomer, thermoplastic polyurethane elastomer, styrene thermoplastic elastomer, polystyrene resin, nylon, thermoplastic polyamide It is necessary to contain 5% by mass or more of an elastomer, a resin having a carbon-carbon unsaturated bond, such as a polyolefin resin having a carbon-carbon unsaturated bond, and a resin having a carbonyl group, based on the whole thermoplastic resin.
  • a resin having a carbon-carbon unsaturated bond such as a polyolefin resin having a carbon-carbon unsaturated bond
  • resin having a carbonyl group based on the whole thermoplastic resin.
  • Polyphenylene ether is an engineering plastic obtained by oxidative polymerization of 2,6-xylenol synthesized from methanol and phenol.
  • various materials are commercially available as modified polyphenylene ether resins in which polyphenylene ether is blended with polystyrene, HIPS, styrene butadiene rubber, or a hydrogenated product thereof.
  • the polyphenylene ether resin used in the present invention any of the above-mentioned polyphenylene ether resin alone and polystyrene, HIPS, styrene butadiene rubber, or polyphenylene ether resin obtained by melt blending these hydrogenated products can be used.
  • transduced carboxylic acid, such as maleic anhydride can also be blended suitably and used.
  • polystyrene-based resin examples include polystyrene obtained by polymerizing styrene and HIPS in which rubber is dispersed, and those obtained by introducing maleic anhydride, an epoxy group, and oxazoline may be appropriately blended and used.
  • Styrenic thermoplastic elastomer is a block copolymer of polystyrene block and rubber component block.
  • the styrenic thermoplastic elastomer referred to in the present invention is styrene / ethylene butylene / styrene copolymer, styrene / ethylene butylene copolymer, styrene / ethylene butylene / olefin copolymer, styrene / isoprene copolymer, styrene / ethylene.
  • styrene / isoprene / styrene copolymers styrene / ethylene / isoprene / styrene copolymers, etc.
  • the styrene butadiene rubber include styrene and butadiene copolymers having a styrene content of 30 to 60% by mass, hydrogenated polymers, partially hydrogenated polymers, and the like.
  • maleic anhydride modified Or can be exemplified an epoxy-modified product, besides using these alone, it may be used in combination.
  • Polyolefin resins include polypropylene (homopolymer, block polymer, random polymer), polypropylene thermoplastic elastomer, reactor-type polypropylene thermoplastic elastomer, dynamically cross-linked polypropylene thermoplastic elastomer, polyethylene (high-density polyethylene, linear) Low density polyethylene, low density polyethylene, ultra low density polyethylene), ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, Ethylene-ethyl methacrylate copolymer, ethylene-propyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-propylene rubber, ethylene acrylic rubber, ethylene-glycidyl methacrylate Ionomer resins, etc., in which intermolecular bonds of sodium, zinc, and other metal ions are used
  • ethylene- ⁇ olefin copolymers having a carbonyl group having a comonomer content of 9 to 46% by mass and a melt flow rate of 0.3 to 25 g / 10 min are particularly flame retardant. It is excellent, and the burning time can be shortened. As the comonomer content increases, the flame retardancy improves. However, since the resin price increases as the comonomer content increases, the comonomer content is preferably 9 to 46% by mass considering the balance of flame retardancy and cost.
  • Thermoplastic polyurethane elastomer is a polymer in which a polyurethane composed of a condensation polymer of diisocyanate such as tolylene diisocyanate and a short chain diol such as polyethylene glycol is used as a hard segment, and a soft segment comprising a bifunctional polyol is block copolymerized. It is.
  • a polyether type using polytetramethylene glycol (PTMG) or the like, an adipate type, a caprolactone type, a polycarbonate type, or the like can be used. Among these, it is preferable to select one having a hardness of 95 or less in JIS A.
  • Thermoplastic polyamide elastomers include amorphous hard composed of crystalline hard segments such as 6-nylon, 6,6-nylon, 11-nylon and 12-nylon and polyoxymethylene glycol such as polytetramethylene ether glycol.
  • a block copolymerized segment can be used.
  • Polyfunctional monomers include monoacrylates, diacrylates, triacrylates, monomethacrylates, dimethacrylates, trimethacrylates, triallyl isocyanurates, triallyl cyanurates, etc.
  • Monomers having a carbon-carbon double bond can be used.
  • the content of the polyfunctional monomer is 1 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin. If it is less than 1 part by mass, the crosslinking effect cannot be obtained, and the heat distortion resistance and heat resistance are lowered. On the other hand, when the amount exceeds 20 parts by mass, the unreacted monomer remains, resulting in poor flame retardancy.
  • a ring agent or the like may be added.
  • Metal hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, or nitrogen-based flame retardants such as melamine and melamine cyanurate may be added.
  • a nitrogen-based flame retardant such as melamine or melamine cyanurate because flame retardancy is further improved.
  • the content of the nitrogen-based flame retardant is 3 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • An organophosphorus flame retardant selected from the group consisting of polyphosphazene compounds obtained by ring-opening polymerization of phosphinic acid metal salts, melamine phosphate compounds, ammonium phosphate compounds, and cyclophosphazenes has a plasticizing effect. Even when a flame retardant is used in combination, flexibility does not decrease.
  • the above components are mixed in predetermined amounts and mixed using a known mixer such as a single screw extruder, open roll mixer, pressure kneader, Banbury mixer, twin screw mixer or the like.
  • a known mixer such as a single screw extruder, open roll mixer, pressure kneader, Banbury mixer, twin screw mixer or the like.
  • the twin screw mixer is preferable in terms of kneading properties and productivity.
  • the mixed resin composition can be molded into a tube shape using a melt extruder, an injection molding machine or the like to obtain an insulating tube.
  • the insulation tube can be used as it is, but it can be used as it is, but mechanical properties (tensile strength, elongation, etc.), heat resistance, heat distortion resistance can be obtained by irradiating with ionizing radiation to crosslink the resin. Can be improved.
  • ionizing radiation sources include accelerating electron beams, gamma rays, X-rays, ⁇ rays, ultraviolet rays, etc., but accelerated electrons are used from the viewpoint of industrial use, such as ease of use of ion sources, transmission thickness of ionizing radiation, and speed of crosslinking treatment. Lines are most preferably available.
  • the heat-shrinkable tube of the present invention is a tube in which an insulating tube irradiated with ionizing radiation is cooled and fixed after expanding the diameter under heating. Specifically, the tube-shaped molded product irradiated with ionizing radiation is expanded to a predetermined outer diameter by introducing compressed air into the tube while being heated to a temperature above the glass transition point or melting point of the base polymer. Then, the heat shrinkable tube can be obtained by cooling and fixing the shape.
  • the expanded diameter is preferably about 2 to 4 times the original tube inner diameter.
  • the heat-shrinkable tube of the present invention is excellent in heat resistance, it can be shrunk to its original shape without melting when heated to the glass transition point or the melting point again. Therefore, an object to be packaged can be tightly packaged by a heat treatment of 100 to 250 degrees with a non-packaged object such as an electronic component or cable to be protected and packaged inserted in the tube.
  • the tube shrunk by the heat shrink process has the same mechanical properties as the tube before the diameter expansion process.
  • the VW-1 vertical combustion test described in UL standard 224 was performed on five samples. When each sample is ignited 5 times for 15 seconds, the fire extinguishes within 60 seconds, the absorbent cotton laid underneath is not burned by burning fallen objects, and the kraft paper attached to the top of the sample does not burn or burn Things were accepted. If even one of the five samples did not pass, it was rejected. For some samples, the combustion time (time from completion of ignition to extinction) was measured.
  • Heat deformation resistance This was performed according to JIS C3005.
  • a metal rod having the same diameter as the inner diameter of the tube (in the case of a heat-shrinkable tube, the inner diameter before the diameter expansion process) was inserted into the tube, placed in a thermostat set at 140 ° C., and preheated for 1 hour. Thereafter, a jig having a diameter of 9.5 mm was pressed against the tube to place a load of 500 g.
  • the thickness of the tube layer after being left in a constant temperature bath at 140 ° C. for 1 hour in a state where a load was applied was measured, and the remaining ratio relative to the thickness before deformation was calculated. If the remaining rate is 50% or more, it is an acceptable level.
  • a tubular molded product having a thickness of .8 mm and a thickness of 0.25 mm was obtained.
  • This tubular molded product was irradiated with an electron beam having an acceleration voltage of 2 MeV at 250 kGy, and a series of evaluations were performed on the obtained insulating tube.
  • Examples 8 to 16, 27 Using the resin compositions shown in Tables 3 to 7, insulating tubes irradiated with an electron beam were prepared in the same manner as described above. The inner diameter and the wall thickness of the tube were those described in the table. After preheating the insulating tube in a thermostat set at 160 ° C for 3 minutes, compressed air is fed into the tube, the diameter is increased to 2.5 times the inner diameter of the extrusion, and the thermostat immediately A series of evaluations were performed after taking out from the above and producing a heat-shrinkable tube by cooling with water and fixing the shape. The above results are shown in Tables 1-7.
  • Thermoplastic polyurethane elastomer Rezamin PL201 (ether type)
  • Thermoplastic polyamide elastomer Pebax 2533 made by Arkema (melting point 134 ° C.)
  • Example 1 using polyphenylene ether, styrene thermoplastic elastomer, and ethylene- ⁇ olefin copolymer having a carbonyl group (polyolefin resin) as the thermoplastic resin has a short combustion time of 19 seconds and is particularly flame retardant.
  • Examples 1, 17, and 21 to 25 containing 50 parts by mass or more of an ethylene- ⁇ -olefin copolymer having a carbonyl group the burning time was within 30 seconds and the flame retardancy was excellent.
  • Example 24 was able to balance the characteristics with only one type of resin.
  • mixing is easy and the cost is high. Has the advantage of lowering.
  • Comparative Examples 11 and 19 which are heat-shrinkable tubes using the resin compositions blended in Comparative Example 1 and Comparative Example 1, the content of the organic phosphorus flame retardant (phosphinic acid metal salt) is 100 parts by mass of the thermoplastic resin.
  • the result was inferior in heat shock, heat resistance and heat deformability because the amount was as large as 105 parts by mass.
  • Comparative Examples 12, 20, which are heat shrinkable tubes using the resin compositions of Comparative Examples 2, 9, 10 and Comparative Example 2 the content of the organophosphorus flame retardant was low and the flame retardancy was unacceptable. It was.
  • Comparative Examples 3 to 5 and Comparative Examples 13 to 15 and 21 to 25 which are heat-shrinkable tubes using these resin compositions, phosphinic acid metal salts and melamine phosphates, which are highly flame retardant organophosphorus flame retardants It did not contain a polyphosphazene compound obtained by ring-opening polymerization of a compound, an ammonium phosphate compound, and cyclophosphazene, and the flame retardance was unacceptable under the conditions of an inner diameter of 2.5 mm to 0.8 mm. In addition, even if these blends are used, if the inner diameter is large, it may be possible to provide flame retardancy.
  • Comparative Example 6 and Comparative Examples 16 and 24 which are heat shrinkable tubes using this resin composition, the content of the resin having a carbon-carbon unsaturated bond or the resin having a carbonyl group in the thermoplastic resin is 5% by mass. The flame retardance was unacceptable.
  • Comparative Example 7 and Comparative Examples 17 and 25 which are heat-shrinkable tubes using this resin composition
  • the content of the polyfunctional monomer is 22 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and more than 20 parts by mass. Since there are many, elongation was low and the flame retardance was also unacceptable. Since Comparative Example 8 and Comparative Examples 18 and 26, which are heat-shrinkable tubes using this resin composition, did not contain a polyfunctional monomer, the results were inferior in heat resistance, heat shock, and heat deformability.
  • a tubular molded product having a thickness of .8 mm and a thickness of 0.25 mm was obtained.
  • This tubular molded product was irradiated with an electron beam having an acceleration voltage of 2 MeV at 250 kGy, and a series of evaluations were performed on the obtained insulating tube.
  • Example 46 to 49 Using the resin composition having the composition shown in Table 12, an insulating tube irradiated with an electron beam was prepared in the same manner as described above. The inner diameter and the wall thickness of the tube were those described in the table. After preheating the insulating tube in a thermostat set at 160 ° C for 3 minutes, compressed air is fed into the tube, the diameter is increased to 2.5 times the inner diameter of the extrusion, and the thermostat immediately A series of evaluations were performed after taking out from the above and producing a heat-shrinkable tube by cooling with water and fixing the shape.
  • the insulating tubes and heat-shrinkable tubes of Examples 39 to 49 were acceptable levels in all of flame retardancy, mechanical properties, heat shock, heat resistance, and heat deformability.
  • the combustion time was as short as 30 seconds or less, and the flame retardancy was improved.
  • the present invention there is no problem of generation of hydrogen halide gas at the time of combustion, excellent mechanical strength (elongation, tensile strength), heat resistance, and heat deformation resistance, and a smaller inner diameter.
  • an insulating tube and a heat-shrinkable tube that are excellent in flame retardancy can be obtained.
  • the insulating tube and heat shrinkable tube can be used for protecting internal wiring and parts of electronic devices, OA devices, consumer electronic devices such as audio, video, DVD, and Blu-ray, vehicles, and ships.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Abstract

機械的特性、耐熱性と難燃性を両立でき、チューブ内径を小さくしても垂直燃焼試験に合格できる難燃性を有するノンハロゲン系の絶縁チューブ及び熱収縮チューブを提供する。 熱可塑性樹脂、多官能性モノマー、有機リン系難燃剤を含有する難燃性樹脂組成物をチューブ状に成形した絶縁チューブであって、前記熱可塑性樹脂は、炭素-炭素不飽和結合を有する樹脂又はカルボニル基を有する樹脂を熱可塑性樹脂全体に対して5質量%以上含有し、前記有機リン系難燃剤は、ホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、及びシクロホスファゼンを開環重合して得られるポリホスファゼン化合物からなる群から選ばれる1種以上であり、前記有機リン系難燃剤の含有量が前記熱可塑性樹脂100質量部に対して5~100質量部であり、前記多官能性モノマーの含有量が前記熱可塑性樹脂100質量部に対して1~20質量部である、絶縁チューブ。

Description

絶縁チューブ及び熱収縮チューブ
 本発明は、ノンハロゲン系の難燃性材料で構成され、優れた難燃性及び機械的特性を有する絶縁チューブ及び熱収縮チューブに関する。
 電子機器や自動車の分野において使用される絶縁チューブや熱収縮チューブには優れた機械的特性が要求される。例えば電子機器分野で幅広く用いられている米国UL規格では、ポリエチレンなどのプラスチックを絶縁体とするチューブや熱収縮チューブについて、初期の最大引張強さを10.4MPa以上とすることが要求されている。
 一方、絶縁チューブ、熱収縮チューブには高度な難燃性が要求される用途がある。一般に自動車分野では水平難燃性試験及び傾斜燃焼試験、電子機器分野では米国UL規格の垂直燃焼試験(VW-1試験)のような難燃性が規定されている。従来、難燃性及び機械的特性を満たす材料として、軟質ポリ塩化ビニル組成物、又は、ポリエチレン、エチレン-エチルアクリレート共重合体、エチレン-酢酸ビニル共重合体等のポリオレフィン樹脂に臭素系難燃剤、塩素系難燃剤等のハロゲン系難燃剤を混合した難燃性樹脂組成物が使用されていた。しかしこのようなハロゲン元素を含む難燃性材料は焼却時にハロゲン化水素ガスなどの人体に有害な燃焼ガスを発生するため、環境面で好ましくない。
 このような事情から、ポリエチレン、エチレン-エチルアクリレート共重合体、エチレン-酢酸ビニル共重合体等のポリオレフィン樹脂に水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物系難燃剤を配合した材料が実用化されている(例えば特許文献1)。しかし、金属水酸化物系難燃剤ではUL規格の垂直燃焼試験VW-1に合格させるだけの難燃性を得るためには大量の金属水酸化物系難燃剤を添加する必要があり、その結果機械的特性が低下するため難燃性と機械的特性の両立を図ることが困難であった。
 難燃性を向上するため、金属水酸化物と赤リンを併用した材料も知られている。例えば特許文献2には、ポリオレフィン系樹脂に金属水酸化物、赤リン、およびモリブデン化合物を添加した樹脂組成物を用いた収縮チューブが記載されている。
特開平7-145288号公報 特開2001-72776号公報
 特許文献2では、赤リンを併用することで金属水酸化物の添加量を低減することができ、難燃性と機械的特性の両立が可能となる。しかし赤リンは燃焼時に有毒なホスフィンが発生するため環境面で好ましくない。また赤リンによってチューブが着色するという問題もある。
 リン系難燃剤としてリン酸エステル等の有機リン系難燃剤も知られているが、その難燃効果は十分ではなく、大量に添加しなければ満足できる難燃性が得られない。リン酸エステルはポリオレフィン系樹脂との相溶性が低いため、大量に添加すると樹脂組成物の表面にリン酸エステルが浮き出てくる、いわゆるブリードアウトが起こってしまう。
 SABICイノベーティブプラスチックジャパン合同会社(旧日本GEプラスチックス)より販売されている柔軟ノリルは、ベースポリマーとしてポリフェニレンエーテルとスチレン系樹脂あるいは熱可塑性スチレン系エラストマーの混和物を用い、有機リン系難燃剤(リン酸エステル)を混合している。ポリフェニレンエーテルはポリオレフィン系樹脂よりも難燃性が高いため有機リン系難燃剤の添加量を減らすことができ、一部のグレードでは電線被覆材料として用いられているが、この組成物は照射架橋ができないために耐熱性が十分でなく、熱収縮チューブとして用いる場合には拡径処理時に形状を保持できなかったり、熱収縮特性が不十分である。
 本発明者らは、ベースポリマーとしてポリフェニレンエーテル、熱可塑性スチレン系エラストマー、オレフィン系樹脂を混合したものを用い、有機リン系難燃剤、窒素系難燃剤、及び多官能性モノマーを添加した樹脂組成物、及びこれを用いたチューブ及び熱収縮チューブを開発し、特願2008-100984として出願した。このチューブは難燃性及び機械的特性を両立でき、さらに樹脂を架橋することで耐熱性、耐熱変形性に優れるものである。
 一般に、絶縁チューブ、熱収縮チューブでは径(チューブ内径)が小さくなるほど難燃性の条件が厳しくなる。上記の樹脂組成物を用いたチューブにおいても、チューブ内径が
5mm以上と大きい場合には垂直燃焼試験に合格する難燃性を有しているが、チューブ内径が小さくなると垂直燃焼試験の合格率が低くなることがわかった。
 そこで本発明は、機械的特性、耐熱性と難燃性を両立でき、チューブ内径を小さくしても垂直燃焼試験に合格できる難燃性を有するノンハロゲン系の絶縁チューブ及び熱収縮チューブを提供することを課題とする。
 請求項1に記載の発明は、熱可塑性樹脂、多官能性モノマー、有機リン系難燃剤を含有する難燃性樹脂組成物をチューブ状に成形した絶縁チューブであって、前記熱可塑性樹脂は、炭素-炭素不飽和結合を有する樹脂又はカルボニル基を有する樹脂を熱可塑性樹脂全体に対して5質量%以上含有し、前記有機リン系難燃剤は、ホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、及びシクロホスファゼンを開環重合して得られるポリホスファゼン化合物からなる群から選ばれる1種以上であり、前記リン系難燃剤の含有量が前記熱可塑性樹脂100質量部に対して5~100質量部であり、前記多官能性モノマーの含有量が前記熱可塑性樹脂100質量部に対して1~20質量部である絶縁チューブである。
 有機リン系難燃剤の中でも特に、ホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、及びシクロホスファゼンを開環重合して得られるポリホスファゼン化合物からなる群から選ばれる1種以上を用いることで難燃性を向上することができ、窒素系難燃剤を併用しなくても垂直燃焼試験に合格する難燃性を得ることができる。
 熱可塑性樹脂としては任意のものを選択できるが、ポリエチレン、ポリプロピレン等の難燃性が低い樹脂のみであると難燃性が不十分となるため、難燃性の高い炭素―炭素不飽和結合を有する樹脂又はカルボニル基を有する樹脂を、熱可塑性樹脂全体の5質量%以上含有する必要がある。
 前記熱可塑性樹脂は、ポリフェニレンエーテル系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、熱可塑性ポリエステルエラストマー、熱可塑性ポリウレタンエラストマー、スチレン系熱可塑性エラストマー、ポリスチレン系樹脂、ナイロン、熱可塑性ポリアミドエラストマー、炭素-炭素不飽和結合を持つポリオレフィン系樹脂、カルボニル基を有するポリオレフィン系樹脂からなる群から選ばれる1種以上を5質量%以上含有すると好ましい(請求項2)。これらの樹脂は比較的難燃性が高いため、絶縁チューブの難燃性を向上できる。
 前記熱可塑性樹脂は、ポリフェニレンエーテル系樹脂又はポリスチレン系樹脂5~80質量%、スチレン系熱可塑性エラストマー20~95質量%、ポリオレフィン系樹脂0~70質量%からなると好ましい(請求項3)。ポリフェニレンエーテル系樹脂、ポリスチレン系樹脂は特に難燃性に優れている。スチレン系熱可塑性エラストマーは柔軟性、押出加工性に優れていると共にポリフェニレンエーテル系樹脂との相溶性が良いので、機械的特性を向上できる。ポリオレフィン系樹脂は柔軟性に優れており、機械的特性及び押出加工性を向上することができる。これらの樹脂をバランス良く混合することで、絶縁チューブの機械的特性と難燃性とを向上することができる。
 前記熱可塑性樹脂はカルボニル基を有するエチレン-αオレフィン共重合体を50~100質量%含有し、該カルボニル基を有するエチレン-αオレフィン共重合体は、コモノマー含有量が9~46質量%であると共にメルトフローレートが0.3~25g/10分であると好ましい(請求項4)。カルボニル基を有するエチレン-αオレフィン共重合体は難燃性に優れており、単独で使用した場合でも特性のバランスを取ることができるため、樹脂組成物の混合が容易となる。なおメルトフローレート(MFR)はASTM D 1238に準拠して、190℃及び荷重2.16kgの条件で測定した値である。
 難燃剤として、さらに窒素系難燃剤を前記熱可塑性樹脂100質量部に対して3~100質量部含有すると好ましい(請求項5)。上記の有機リン系難燃剤と窒素系難燃剤とを併用することでさらに難燃特性を向上することができる。窒素系難燃剤としてはメラミンシアヌレートが好ましく使用できる(請求項6)。
 前記有機リン系難燃剤として、さらにリン酸エステルを含有すると好ましい(請求項7)。ホスフィン酸金属塩等の難燃性に優れた有機リン系難燃剤とリン酸エステルとを併用することで、さらに絶縁チューブの難燃性が向上する。
 請求項8に記載の発明は、チューブ内径が5mm以下である、上記いずれかに記載の絶縁チューブである。上記の絶縁チューブは難燃性に優れており、チューブ内径を5mm以下とした製品への適用が可能である。なお熱収縮チューブの場合、チューブ内径は収縮後の内径とする。
 請求項9に記載の発明は、垂直燃焼試験(VW-1)に合格する上記のいずれかに記載の絶縁チューブである。また請求項10に記載の発明は、室温での引張強度が10MPa以上である上記のいずれかに記載の絶縁チューブである。
 請求項11に記載の発明は、上記のいずれかに記載の絶縁チューブに電離放射線を照射し、加熱下で拡径した後冷却固定してなるものである。この熱収縮チューブは機械的特性、耐熱性及び難燃性に優れている。
 本発明によれば、機械的特性、耐熱性と難燃性を両立でき、チューブ内径を小さくしても垂直燃焼試験に合格できるノンハロゲン系の絶縁チューブ及び熱収縮チューブを得ることができる。
 (リン系難燃剤)
 本発明の絶縁チューブを構成する各種材料について説明する。有機リン系難燃剤としては、ホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、及びシクロホスファゼンを開環重合して得られるポリホスファゼン化合物からなる群から選ばれる1種以上を必須成分とする。このなかでも特にホスフィン酸金属塩が難燃性に優れており好ましい。
 ホスフィン酸金属塩は、下記式(I)で表される化合物である。なお、上記式中R1、R2は、それぞれ、炭素数1~6のアルキル基または炭素数12以下のアリール基であり、Mは、カルシウム、アルミニウム又は亜鉛であり、M=アルミニウムの場合はm=3、それ以外の場合はm=2である。
Figure JPOXMLDOC01-appb-C000001
 ホスフィン酸金属塩としては、クラリアント(株)製のEXOLIT OP1230、EXOLIT OP1240、EXOLIT OP930、EXOLIT OP935等の有機ホスフィン酸のアルミニウム塩、またはEXOLIT OP1312等の有機ホスフィン酸のアルミニウム塩とポリリン酸メラミンのブレンド物を使用できる。
 リン酸メラミン化合物としては、チバスペシャルティ(株)製のMELAPUR200等のポリリン酸メラミン、またはポリリン酸メラミン、リン酸メラミン、オルソリン酸メラミン、ピロリン酸メラミン等を使用できる。
 リン酸アンモニウム化合物としては、ポリリン酸アンモニウム、ポリリン酸アミド、ポリリン酸アミドアンモニウム、ポリリン酸カルバミン酸等を使用できる。
 シクロホスファゼンを開環重合して得られるポリホスファゼン化合物としては、大塚化学(株)製のSPR-100、SA-100、SR-100、SRS-100、SPB-100L等を使用できる。
 上記の有機リン系難燃剤は単独で用いても良いし、複数を組み合わせて用いても良い。
 さらに、上記の有機リン系難燃剤と併用してリン酸エステルを使用すると、難燃性をさらに向上できる。リン酸エステルとしては、トリメチルフォスフェート、トリエチルフォスフェート、トリフェニルフォスフェート、トリクレジルフォスフェート、トリキシレニルフォスフェート、クレジルフェニルフォスフェート、クレジル2,6-キシレニルフォスフェート、2-エチルヘキシルジフェニルフォスフェート、1,3フェニレンビス(ジフェニルフォスフェート)、1,3フェニレンビス(ジ2,6キシレニルフォスフェート)、ビスフェノールAビス(ジフェニルフォスフェート)、レゾルシノールビスジフェニルフォスフェート、オクチルジフェニルフォスフェート、ジエチレンエチルエステルフォスフェート、ジヒドロキシプロピレンブチルエステルフォスフェート、エチレンジナトリウムエステルフォスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、トリスイソブチルホスフェート、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチル-プロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチルブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジエチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、アルキルリン酸エステル等を使用することができる。
 有機リン系難燃剤の含有量は、熱可塑性樹脂100質量部に対して5~100質量部とする。5質量部よりも少ない場合は難燃性が不十分であり、100質量部を越えると機械的特性が低下する。有機リン系難燃剤は、表面をメラミン、メラミンシアヌレート、脂肪酸、シランカップリング剤で処理して使用しても良い。また予め表面処理するのではなく、熱可塑性樹脂と混合する際に表面処理剤を添加するインテグラルブレンドを行っても良い。
 熱可塑性樹脂としては任意の樹脂を使用できるが、ポリフェニレンエーテル系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、熱可塑性ポリエステルエラストマー、熱可塑性ポリウレタンエラストマー、スチレン系熱可塑性エラストマー、ポリスチレン系樹脂、ナイロン、熱可塑性ポリアミドエラストマー、炭素-炭素不飽和結合を持つポリオレフィン系樹脂等の炭素-炭素不飽和結合を有する樹脂、カルボニル基を有する樹脂を熱可塑性樹脂全体に対して5質量%以上含有する必要がある。
 ポリフェニレンエーテルは、メタノールとフェノールを原料として合成される2,6-キシレノールを酸化重合させて得られるエンジニアリングプラスチックである。またポリフェニレンエーテルの成形加工性を向上させるため、ポリフェニレンエーテルにポリスチレン、HIPS、スチレンブタジエンゴム、又はこれらの水素添加物を溶融ブレンドした材料が変性ポリフェニレンエーテル樹脂として各種市販されている。本発明に用いるポリフェニレンエーテル系樹脂としては、上記のポリフェニレンエーテル樹脂単体、及びポリスチレン、HIPS、スチレンブタジエンゴム、又はこれらの水素添加物を溶融ブレンドしたポリフェニレンエーテル樹脂のいずれも使用することができる。また無水マレイン酸等のカルボン酸を導入したものを適宜ブレンドして使用することもできる。
 ポリスチレン系樹脂はスチレンを重合したポリスチレンやゴムを分散させたHIPSなどを挙げることができ、無水マレイン酸やエポキシ基、オキサゾリンを導入したものを適宜ブレンドして使用することもできる。
 スチレン系熱可塑性エラストマーは、ポリスチレンブロックとゴム成分ブロックのブロック共重合体である。本発明に言うスチレン系熱可塑性エラストマーとは、スチレン・エチレンブチレン・スチレン共重合体、スチレン・エチレンブチレン共重合体、スチレン・エチレンブチレン・オレフィン共重合体、スチレン・イソプレン共重合体、スチレン・エチレン・イソプレン共重合体、スチレン・イソプレン・スチレン共重合体、スチレン・エチレン・イソプレン・スチレン共重合体等が挙げられ、これらの水素添加ポリマーや、部分水素添加ポリマー、さらには、これらを無水マレイン変性品あるいはエポキシ変性品等の化学変性ポリマーを例示でき、スチレンブタジエンゴムとしては、スチレン含量が30~60質量%のスチレンとブタジエンの共重合体やこの水素添加ポリマー、部分水素添加ポリマー等が例示でき、これらの無水マレイン変性品あるいはエポキシ変性品を例示でき、これらを単独で用いるほかに、複数種を組み合わせて用いることもできる。
 ポリオレフィン系樹脂としては、ポリプロピレン(ホモポリマー、ブロックポリマー、ランダムポリマー)、ポリプロピレン系熱可塑性エラストマー、リアクター型ポリプロピレン系熱可塑性エラストマー、動的架橋型ポリプロピレン系熱可塑性エラストマー、ポリエチレン(高密度ポリエチレ、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン)、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸プロピル共重合体、エチレン-アクリル酸ブチル共重合体、エチレン-プロピレンゴム、エチレンアクリルゴム、エチレン-グリシジルメタクリレート共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸共重合体やエチレン-アクリル酸共重合体の分子間をナトリウムや亜鉛などの金属イオンで分子間結合したアイオノマー樹脂等を使用できる。またこれらの樹脂を無水マレイン酸等で変性したものや、エポキシ基、アミノ基、イミド基を有するものも使用できる。
 オレフィン系樹脂の中でも、コモノマー含有量が9~46質量%であると共にメルトフローレートが0.3~25g/10分である、カルボニル基を有するエチレン-αオレフィン共重合体は特に難燃性に優れており、燃焼時間を短縮することができる。コモノマー含有量が多くなるほど難燃性が向上するが、コモノマー含有量が多くなると樹脂の価格が高くなるため難燃性、コストのバランスを考慮するとコモノマー含有量は9~46質量%が好ましい。
 熱可塑性ポリウレタンエラストマーは、トリレンジイソシアネート等のジイソシアネートとポリエチレングリコール等の短鎖ジオールの縮合重合体により構成されるポリウレタンをハードセグメントとし、2官能性ポリオール等からなるソフトセグメントがブロック共重合されたポリマーである。ソフトセグメントの2官能性ポリオールの種類により、ポリテトラメチレングリコール(PTMG)などを用いたポリエーテル系やアジペートタイプ、カプロラクトンタイプ、ポリカーボネートタイプ等を使用できる。これらのうち、硬度がJIS Aで95以下であるものを選択することが好ましい。
熱可塑性ポリアミドエラストマーとしては、6-ナイロン、6,6-ナイロン、11-ナイロン、12-ナイロン等の結晶性ハードセグメントとポリテトラメチレンエーテルグリコール等のポリオキシメチレングリコールから構成される非晶性ソフトセグメントをブロック共重合したものが使用できる。
 多官能性モノマーとしては、モノアクリレート系、ジアクリレート系、トリアクリレート系、モノメタクリレート系、ジメタクリレート系、トリメタクリレート系、トリアリルイソシアヌレート系、トリアリルシアヌレート系などの、分子内に複数の炭素-炭素二重結合を持つモノマーが使用できる。多官能性モノマーの含有量は熱可塑性樹脂100質量部に対して1~20質量部とする。1質量部未満では架橋効果が得られず、耐熱変形性や耐熱性が低下する。一方20質量部を越えると未反応のモノマーが残存することから難燃性が悪くなる。
 難燃性、耐熱変形性、機械的特性を損なわない範囲で、酸化防止剤、滑剤、加工安定助剤、着色剤、発泡剤、補強剤、充填剤、顆粒剤、金属不活性剤、シランカップリング剤等を添加してもよい。水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの金属水酸化物、又はメラミン、メラミンシアヌレートなどの窒素系難燃剤等を添加しても良い。
 特にメラミン、メラミンシアヌレート等の窒素系難燃剤を併用すると難燃性が更に向上し、好ましい。窒素系難燃剤の含有量は熱可塑性樹脂100質量部に対して3~100質量部とする。3質量部より少ないと難燃性向上効果が少ない。また100質量部を超えると機械的特性が低下する。ホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、及びシクロホスファゼンを開環重合して得られるポリホスファゼン化合物からなる群から選ばれる有機リン系難燃剤は可塑化効果があるため、窒素系難燃剤を併用した場合でも柔軟性が低下しない。
 以上の成分を所定量ずつ混合し、単軸押出型混合機、オープンロールミキサー、加圧型ニーダー、バンバリーミキサー、二軸混合機等、既知の混合機を用いて混合する。このなかでも二軸混合機は混練性、生産性の点で好ましい。混合した樹脂組成物を溶融押出機や射出成形機などを用いてチューブ状に成形し、絶縁チューブを得ることができる。
 絶縁チューブは、上記のように押出成形したものをそのまま使用することもできるが、電離放射線を照射して樹脂を架橋することで機械的特性(引張強度、伸び等)、耐熱性、耐熱変形性を向上することができる。電離放射線源としては、加速電子線やガンマ線、X線、α線、紫外線等が例示できるが、線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度等工業的利用の観点から加速電子線が最も好ましく利用できる。
 本発明の熱収縮チューブは、電離放射線を照射した絶縁チューブを、加熱下で拡径後、冷却固定したものである。具体的には、電離放射線を照射したチューブ状の成形品をベースポリマーのガラス転移点や融点以上の温度に加熱した状態でチューブ内に圧縮空気を導入する等の方法により所定の外径に膨張した後、冷却して形状を固定することで熱収縮チューブを得ることができる。拡径は元のチューブ内径の2~4倍程度とすることが好ましい。
 本発明の熱収縮チューブは耐熱性に優れるので、再度ガラス転移点や融点程度に加熱すると、溶融することなく元の形状に収縮可能である。したがって、保護、包装しようとする電子部品、ケーブル等の非包装物をチューブに挿入した状態で、100~250度の加熱処理により、被包装物を密着包装することができる。熱収縮処理により収縮したチューブは、拡径処理する前のチューブと同程度の機械的特性を有している。
 次に、本発明を実施例に基づいてさらに詳細に説明する。実施例は本発明の範囲を限定するものではない。なお表中「部」とあるのは断りのない限り「質量部」を意味する。
 はじめに以下の実施例で行った測定評価の方法について説明する。
 (機械的特性)
 チューブについて、引張試験(引張速度=500mm/分、標線間距離=20mm)を行い、引張強度(MPa)と引張破断伸び(%)を各3点の試料で測定し、それらの平均値を求めた。引張強さが10.4MPa以上かつ引張破断伸び150%を合格レベルとした。
 (ヒートショック試験)
 250℃に設定したギアオーブン内でチューブを4時間加熱した後取り出し、チューブ外径と同径の金属棒に巻き付けてチューブの外観を観察した。外観上特に変化がなければ合格レベルでありOKとした。
 (耐熱性)
 チューブを158℃に設定したギアオーブン内で168時間(7日間)放置した後、機械的特性評価と同様に引っ張り試験を行う。加熱処理後の引張強度が7.3MPa以上かつ引張破断伸び100%以上を合格レベルとした。
 (難燃性)
 UL規格224に記載のVW-1垂直燃焼試験を5点の試料で行った。各試料に15秒着火を5回繰り返した場合に、60秒以内に消火し、下部に敷いた脱脂綿が燃焼落下物によって類焼せず、かつ試料の上部に取り付けたクラフト紙が燃えたり焦げたりしないものを合格とした。5点の試料中1点でも合格レベルにならなかった場合には不合格とした。また一部の試料については燃焼時間(着火終了から消火までの時間)を測定した。
 (耐加熱変形性)
 JIS C3005に準じて行った。チューブ内に、チューブ内径(熱収縮チューブの場合は拡径処理を行う前の内径)と同じ直径の金属棒を挿入し、140℃に設定した恒温槽に入れて1時間予熱した。その後、チューブに直径9.5mmの治具を押し当てて500gの荷重を載せた。荷重をかけた状態で140℃の恒温槽内で1時間放置した後のチューブ層の厚みを測定し、変形前の厚みに対する残率を算出した。残率50%以上であれば合格レベルである。なお、拡径-熱収縮処理を行った熱収縮チューブを評価する場合には、拡径した熱収縮チューブ内に金属棒を挿入した後、チューブを熱収縮させて金属とチューブとを一体化したものを用いて評価した。
 (実施例1~7、17~26)
 表1、表2に示す割合で各材料を配合し、さらにベースポリマー100部に対してオレイン酸アミド0.5部、ペンタエリスリトール-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]3質量部を加えてダイス温度280℃に設定した二軸混合機で混練した。得られた混練物のストランドをペレタイザーでペレット状にした後、溶融押出機(45mmΦ、L/D比=24、圧縮比2.5、フルフライトタイプ)を使用して押出温度230℃で内径0.8mm、肉厚0.25mmのチューブ状成形品を得た。このチューブ状成形品に加速電圧2MeVの電子線を250kGy照射し、得られた絶縁チューブについて一連の評価を行った。
 (実施例8~16、27)
 表3~7に示す配合の樹脂組成物を用い、上記と同様に電子線照射した絶縁チューブを作製した。なおチューブの内径及び肉厚は表中に記載のものとした。絶縁チューブを160℃に設定した恒温槽内に3分間放置して予熱した後、チューブ内に圧縮空気を送り込んで、押出内径の2.5倍の内径となるまで拡径し、すぐに恒温槽から取り出して水冷して形状固定して熱収縮チューブを作製した後一連の評価を行った。以上の結果を表1~7に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(*1)旭化成ケミカルズ(株)製ザイロンWH100
(*2)旭化成ケミカルズ(株)製ザイロンX9102
(*3)PSジャパン(株)製HH102
(*4)スチレン-エチレンブチレン-スチレン共重合体:旭化成ケミカルズ(株)製タフテックH1041(スチレン量30wt%)
(*5)スチレン・エチレン・ブチレン・オレフィン結晶ブロックポリマー:JSR(株)製ダイナロン4600P(スチレン量20wt%)
(*6)エチレン-エチルアクリレート:日本ポリエチレン(株)製レクスパールA1150(15%EA)
(*7)超低密度ポリエチレン:ダウケミカル日本(株)製エンゲージ8150(MFR=0.5@190℃×2.16kg、密度0.868g・cm
(*8)ホスフィン酸金属塩:クラリアント(株)製Exolit OP930
(*9)ポリリン酸メラミン:チバスペシャルティ(株)製Melapur200
(*10)ポリホスファゼン:大塚化学(株)製SPS-100
(*11)縮合リン酸エステル:大八化学工業(株)製PX-200(リン9.0%)
(*12)トリメチロールプロパントリメタクリレート:新中村化学工業(株)製NKエステルTMPT
(*13)スチレン-エチレンブチレン-スチレン共重合体:旭化成ケミカルズ(株)製タフテックH1041(スチレン量30wt%)
(*14)ランダム共重合熱可塑性ポリエステルエラストマー:EMSケミー(株)製 GriltexD 1652E GF(融点85℃)
(*15)熱可塑性ポリウレタンエラストマー:レザミンPL201(エーテル系)
(*16)熱可塑性ポリアミドエラストマー:アルケマ製Pebax2533(融点134℃)
(*17)エチレン-メチルアクリレート:Dupont製エルバロイAC1125(25%MA、MFR=0.5@190℃*2.16kg コモノマー含有量25質量%)
(*18)超低密度ポリエチレン:ダウケミカル日本製エンゲージ8150(MFR=0.5@190℃*2.16kg、密度=0.868g/cm
(*19)ホスフィン酸金属塩:クラリアント(株)社製Exolit OP935(OP930の微粒タイプ)
(*20)ポリホスファゼン:大塚化学製SPB-100L
(*21)超低密度ポリエチレン:ダウケミカル日本(株)製エンゲージ8411(MFR=18@190℃×2.16kg、密度0.880g・cm
(*22)三光(株)製環状有機リン系難燃剤HCA-HQ-HS
(*23)チバスペシャルティ(株)製Melapur MC15
(*24)縮合リン酸エステル:大八化学工業(株)製PX-110(リン7.8%)
(*25)メラミンシアヌレート:日産化学(株)製MC6000
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例1~38の絶縁チューブ及び熱収縮チューブは全て難燃性をクリアしており、機械的特性、ヒートショック、耐熱性、加熱変形性も合格レベルであった。
特に、熱可塑性樹脂としてポリフェニレンエーテル、スチレン系熱可塑性エラストマー、カルボニル基を有するエチレン-αオレフィン共重合体(ポリオレフィン系樹脂)を使用した実施例1は燃焼時間が19秒と短く、特に難燃性が優れていた。またカルボニル基を有するエチレン-αオレフィン共重合体を50質量部以上含有する実施例1、17、21~25はいずれも燃焼時間が30秒以内であり難燃性に優れていた。特に実施例24の配合は1種類の樹脂のみで特性のバランスを取ることが可能であった。混合する樹脂の種類が多い場合は樹脂同士の相溶性を高めるために混合時に剪断応力をかける必要があり混合のコストが上がるが、1種類の樹脂を使用する場合には混合が容易でありコストが下がるという利点がある。
 (比較例1~26)
 実施例1~26と同様にして、表8に示す樹脂組成物を用いて絶縁チューブ及び熱収縮チューブを作製し、一連の評価を行った。結果を表8~10に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 比較例1及び比較例1の配合の樹脂組成物を用いた熱収縮チューブである比較例11、19は、有機リン系難燃剤(ホスフィン酸金属塩)の含有量が、熱可塑性樹脂100質量部に対して105質量部と多かったため、ヒートショック、耐熱性及び加熱変形性に劣る結果となった。比較例2、9、10及び比較例2の樹脂組成物を用いた熱収縮チューブである比較例12、20では逆に有機リン系難燃剤の含有量が少なく、難燃性が不合格であった。
 比較例3~5及びこれらの樹脂組成物を用いた熱収縮チューブである比較例13~15、21~25では、難燃性の高い有機リン系難燃剤であるホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、及びシクロホスファゼンを開環重合して得られるポリホスファゼン化合物を含んでおらず、内径が2.5mm~0.8mmという条件では難燃性が不合格であった。なお、これらの配合でも内径が大きい場合には難燃性を出すことが可能と思われる。
 比較例6及びこの樹脂組成物を用いた熱収縮チューブである比較例16、24は、熱可塑性樹脂中の炭素-炭素不飽和結合を有する樹脂又はカルボニル基を有する樹脂の含有量が5質量%未満と少なく、難燃性が不合格であった。
 比較例7及びこの樹脂組成物を用いた熱収縮チューブである比較例17、25は、多官能性モノマーの含有量が熱可塑性樹脂100質量部に対して22質量部と、20質量部よりも多いため伸びが低く、また難燃性も不合格であった。比較例8及びこの樹脂組成物を用いた熱収縮チューブである比較例18、26は、多官能性モノマーを含有していないため、耐熱性、ヒートショック、加熱変形性に劣る結果となった。
 (実施例39~45)
 表11に示す割合で各材料を配合し、さらにベースポリマー100部に対してオレイン酸アミド0.5部、ペンタエリスリトール-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]3質量部を加えてダイス温度280℃に設定した二軸混合機で混練した。得られた混練物のストランドをペレタイザーでペレット状にした後、溶融押出機(45mmΦ、L/D比=24、圧縮比2.5、フルフライトタイプ)を使用して押出温度230℃で内径0.8mm、肉厚0.25mmのチューブ状成形品を得た。このチューブ状成形品に加速電圧2MeVの電子線を250kGy照射し、得られた絶縁チューブについて一連の評価を行った。
 (実施例46~49)
 表12に示す配合の樹脂組成物を用い、上記と同様に電子線照射した絶縁チューブを作製した。なおチューブの内径及び肉厚は表中に記載のものとした。絶縁チューブを160℃に設定した恒温槽内に3分間放置して予熱した後、チューブ内に圧縮空気を送り込んで、押出内径の2.5倍の内径となるまで拡径し、すぐに恒温槽から取り出して水冷して形状固定して熱収縮チューブを作製した後一連の評価を行った。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 実施例39~49の絶縁チューブ及び熱収縮チューブは難燃性、機械特性、ヒートショック、耐熱性、加熱変形性の全てにおいて合格レベルであった。また窒素系難燃剤を使用した実施例39、実施例40、実施例43~45は燃焼時間が30秒以下と短く、難燃性が向上していた。
 以上説明したように、本発明によれば、燃焼時のハロゲン化水素ガスの発生の問題がなく、機械的強度(伸び、引張強度)及び耐熱性、耐加熱変形性に優れ、内径が小さくなっても難燃性に優れる絶縁チューブ、熱収縮チューブを得ることができる。この絶縁チューブ、熱収縮チューブは電子機器、OA機器、オーディオ、ビデオ、DVD、ブルーレイ等の民生用電子機器類、車両、船舶等の内部配線や部品の保護に使用することが可能である。

Claims (11)

  1.  熱可塑性樹脂、多官能性モノマー、有機リン系難燃剤を含有する難燃性樹脂組成物をチューブ状に成形した絶縁チューブであって、
    前記熱可塑性樹脂は、炭素-炭素不飽和結合を有する樹脂又はカルボニル基を有する樹脂を熱可塑性樹脂全体に対して5質量%以上含有し、
    前記有機リン系難燃剤は、ホスフィン酸金属塩、リン酸メラミン化合物、リン酸アンモニウム化合物、及びシクロホスファゼンを開環重合して得られるポリホスファゼン化合物からなる群から選ばれる1種以上であり、
    前記有機リン系難燃剤の含有量が前記熱可塑性樹脂100質量部に対して5~100質量部であり、前記多官能性モノマーの含有量が前記熱可塑性樹脂100質量部に対して1~20質量部である、絶縁チューブ。
  2.  前記熱可塑性樹脂は、ポリフェニレンエーテル系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、熱可塑性ポリエステルエラストマー、熱可塑性ポリウレタンエラストマー、スチレン系熱可塑性エラストマー、ポリスチレン系樹脂、ナイロン、熱可塑性ポリアミドエラストマー、炭素-炭素不飽和結合を持つポリオレフィン系樹脂、カルボニル基を有するポリオレフィン系樹脂からなる群から選ばれる1種以上を5質量%以上含有する、請求項1に記載の絶縁チューブ。
  3.  前記熱可塑性樹脂は、ポリフェニレンエーテル系樹脂又はポリスチレン系樹脂5~80質量%、スチレン系熱可塑性エラストマー20~95質量%、ポリオレフィン系樹脂0~70質量%からなる、請求項1又は2に記載の絶縁チューブ。
  4.  前記熱可塑性樹脂はカルボニル基を有するエチレン-αオレフィン共重合体を50~100質量%含有し、該カルボニル基を有するエチレン-αオレフィン共重合体は、コモノマー含有量が9~46質量%であると共にメルトフローレートが0.3~25g/10分である、請求項1又は2に記載の難燃性樹脂組成物。
  5.  さらに、前記熱可塑性樹脂100質量部に対して、窒素系難燃剤を3~100質量部含有する、請求項1~4のいずれか一項に記載の難燃性樹脂組成物。
  6.  前記窒素系難燃剤がメラミンシアヌレートである、請求項5に記載の難燃性樹脂組成物。
  7.  前記有機リン系難燃剤として、さらにリン酸エステルを含有する請求項1~6のいずれか1項に記載の絶縁チューブ。
  8.  チューブ内径が5mm以下である、請求項1~7のいずれか1項に記載の絶縁チューブ。
  9.  UL規格で規定される垂直燃焼試験(VW-1)に合格する、請求項1~8のいずれか1項に記載の絶縁チューブ。
  10.  室温での引張強度が10MPa以上である、請求項1~9のいずれか1項に記載の絶縁チューブ。
  11.  請求項1~10のいずれか項に記載の絶縁チューブに電離放射線を照射し、加熱下で拡径した後冷却固定してなる熱収縮チューブ。
PCT/JP2010/067236 2009-10-06 2010-10-01 絶縁チューブ及び熱収縮チューブ WO2011043260A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080002851.XA CN102171276B (zh) 2009-10-06 2010-10-01 绝缘管和热收缩管

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-232289 2009-10-06
JP2009232289 2009-10-06
JP2010003480A JP5529551B2 (ja) 2009-10-06 2010-01-11 絶縁チューブ及び熱収縮チューブ
JP2010-003480 2010-01-11

Publications (1)

Publication Number Publication Date
WO2011043260A1 true WO2011043260A1 (ja) 2011-04-14

Family

ID=43856718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067236 WO2011043260A1 (ja) 2009-10-06 2010-10-01 絶縁チューブ及び熱収縮チューブ

Country Status (5)

Country Link
JP (1) JP5529551B2 (ja)
KR (1) KR20120090005A (ja)
CN (1) CN102171276B (ja)
TW (1) TW201120199A (ja)
WO (1) WO2011043260A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211367B1 (ko) 2012-07-09 2012-12-13 이중태 절연전선용 압착튜브 제조시스템 및 이를 이용한 절연전선용 압착튜브 제조방법
US10035910B2 (en) 2014-05-28 2018-07-31 Tyco Electronics Uk Ltd Polymer composition and heat-shrinkable article

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429655A (zh) * 2011-03-17 2013-12-04 住友电气工业株式会社 无卤阻燃树脂组合物、以及使用该组合物的绝缘电线和管
WO2012173190A1 (ja) * 2011-06-14 2012-12-20 三菱レイヨン株式会社 光ファイバ被覆用組成物及び光ファイバケーブル
JP5891844B2 (ja) * 2012-02-24 2016-03-23 住友電気工業株式会社 絶縁フィルム及びそれを用いたフラットケーブル
CN102643462A (zh) * 2012-03-31 2012-08-22 东莞三联热缩材料有限公司 一种无卤无红磷的热缩套管
JP5651161B2 (ja) * 2012-12-20 2015-01-07 住友電気工業株式会社 多層熱回復物品、ワイヤスプライス及びワイヤハーネス
JP6002027B2 (ja) 2012-12-20 2016-10-05 住友電気工業株式会社 多層熱回復物品、ワイヤスプライス及びワイヤハーネス
CN103131114B (zh) * 2013-03-25 2015-12-09 上海交通大学 一种复配膨胀型阻燃热塑性弹性体组合物及其制备方法
JP6180153B2 (ja) * 2013-03-29 2017-08-16 旭化成株式会社 ポリフェニレンエーテル組成物
JP6180154B2 (ja) * 2013-03-29 2017-08-16 旭化成株式会社 ポリフェニレンエーテル樹脂組成物
KR102281563B1 (ko) * 2014-02-26 2021-07-26 바스프 에스이 난연성 열가소성 폴리우레탄
CN107199664A (zh) * 2017-05-27 2017-09-26 胥海均 一种用于加工特种塑胶料的模具注塑成型方法
CN110305463A (zh) * 2019-06-28 2019-10-08 大连联合高分子材料有限公司 一种耐高温电磁屏蔽热缩套管
KR102209766B1 (ko) * 2020-05-14 2021-02-01 대한민국 철사슬갑옷 복원용 고리 제조방법 및 이에 의해 제조되는 철사슬갑옷 복원용 고리
CN112759895A (zh) * 2021-01-20 2021-05-07 昶力管业(常州)有限公司 一种聚酰胺弹性体改性的热缩护套管及其制备方法
CN114350230B (zh) * 2022-02-07 2022-10-14 深圳市朗迈新材料科技有限公司 一种阻燃高硬度环氧树脂地坪漆的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581930A (ja) * 1991-04-26 1993-04-02 Sumitomo Electric Ind Ltd 耐熱性直流用高圧リード線
JPH06145483A (ja) * 1992-11-04 1994-05-24 Sumitomo Electric Ind Ltd 樹脂組成物とそれからのチューブ
JP2000095846A (ja) * 1998-09-24 2000-04-04 Sumitomo Electric Ind Ltd 熱可塑性ポリエステル樹脂、それからの絶縁電線、電気絶縁ケーブル及び熱収縮チューブ
JP2000336261A (ja) * 1999-03-24 2000-12-05 Asahi Chem Ind Co Ltd 硬化性樹脂組成物
JP2002302601A (ja) * 2001-04-03 2002-10-18 Sumitomo Electric Ind Ltd 熱可塑性ポリウレタンを含有する樹脂組成物および、それを用いた熱収縮チューブ
JP2003327726A (ja) * 2002-05-13 2003-11-19 Sumitomo Electric Fine Polymer Inc 架橋ポリアミド樹脂成形品とその製造方法
JP2004352889A (ja) * 2003-05-29 2004-12-16 Sumitomo Electric Ind Ltd 熱可塑性ポリエステル樹脂及び樹脂組成物並びにこれを用いた絶縁電線、ケーブル及びチューブ並びに絶縁電線及びケーブルの製造方法
JP2008527152A (ja) * 2005-03-28 2008-07-24 ゼネラル・エレクトリック・カンパニイ 難燃性熱可塑性樹脂組成物及びそれを含んでなる物品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423080B2 (en) * 2006-03-03 2008-09-09 Sabic Innovative Plastics Ip B.V. Radiation crosslinking of halogen-free flame retardant polymer
KR20120005051A (ko) * 2006-08-03 2012-01-13 아사히 가세이 케미칼즈 가부시키가이샤 난연성 수지로 이루어진 전선

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581930A (ja) * 1991-04-26 1993-04-02 Sumitomo Electric Ind Ltd 耐熱性直流用高圧リード線
JPH06145483A (ja) * 1992-11-04 1994-05-24 Sumitomo Electric Ind Ltd 樹脂組成物とそれからのチューブ
JP2000095846A (ja) * 1998-09-24 2000-04-04 Sumitomo Electric Ind Ltd 熱可塑性ポリエステル樹脂、それからの絶縁電線、電気絶縁ケーブル及び熱収縮チューブ
JP2000336261A (ja) * 1999-03-24 2000-12-05 Asahi Chem Ind Co Ltd 硬化性樹脂組成物
JP2002302601A (ja) * 2001-04-03 2002-10-18 Sumitomo Electric Ind Ltd 熱可塑性ポリウレタンを含有する樹脂組成物および、それを用いた熱収縮チューブ
JP2003327726A (ja) * 2002-05-13 2003-11-19 Sumitomo Electric Fine Polymer Inc 架橋ポリアミド樹脂成形品とその製造方法
JP2004352889A (ja) * 2003-05-29 2004-12-16 Sumitomo Electric Ind Ltd 熱可塑性ポリエステル樹脂及び樹脂組成物並びにこれを用いた絶縁電線、ケーブル及びチューブ並びに絶縁電線及びケーブルの製造方法
JP2008527152A (ja) * 2005-03-28 2008-07-24 ゼネラル・エレクトリック・カンパニイ 難燃性熱可塑性樹脂組成物及びそれを含んでなる物品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101211367B1 (ko) 2012-07-09 2012-12-13 이중태 절연전선용 압착튜브 제조시스템 및 이를 이용한 절연전선용 압착튜브 제조방법
US10035910B2 (en) 2014-05-28 2018-07-31 Tyco Electronics Uk Ltd Polymer composition and heat-shrinkable article

Also Published As

Publication number Publication date
CN102171276B (zh) 2015-01-07
TW201120199A (en) 2011-06-16
JP2011100708A (ja) 2011-05-19
JP5529551B2 (ja) 2014-06-25
CN102171276A (zh) 2011-08-31
KR20120090005A (ko) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5529551B2 (ja) 絶縁チューブ及び熱収縮チューブ
JP5556183B2 (ja) 難燃性樹脂組成物及びそれを用いた絶縁電線、フラットケーブル、成形品
JP5172839B2 (ja) 難燃性チューブ及びこれを用いた熱収縮チューブ
JP5825536B2 (ja) ノンハロゲン難燃性樹脂組成物並びにこれを用いた絶縁電線及びチューブ
JP5549675B2 (ja) ノンハロゲン難燃性樹脂組成物およびそれを用いた電線・ケーブル
JP5569363B2 (ja) 絶縁電線およびその製造方法
JP2013545858A (ja) ワイヤおよびケーブル用途向けハロゲンフリー難燃剤組成物
KR101466277B1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
JP5105242B2 (ja) 難燃性樹脂組成物並びにこれを用いた絶縁電線及びフラットケーブル
TW201402797A (zh) 具有非常高限制氧氣指數的無鹵素阻燃性熱塑性聚胺基甲酸酯
KR101760538B1 (ko) 스크래치-백화에 대해 내성을 갖는 난연성 열가소성 엘라스토머 조성물
KR101778803B1 (ko) 고내열성 전선용 절연 조성물
JP4038071B2 (ja) ノンハロゲン難燃性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002851.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117005961

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821931

Country of ref document: EP

Kind code of ref document: A1