WO2011043055A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2011043055A1
WO2011043055A1 PCT/JP2010/005947 JP2010005947W WO2011043055A1 WO 2011043055 A1 WO2011043055 A1 WO 2011043055A1 JP 2010005947 W JP2010005947 W JP 2010005947W WO 2011043055 A1 WO2011043055 A1 WO 2011043055A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
illuminance
predetermined time
solar radiation
cooling
Prior art date
Application number
PCT/JP2010/005947
Other languages
English (en)
French (fr)
Inventor
千章 森本
育雄 赤嶺
靖人 向井
輝夫 藤社
裕介 河野
智 佐藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011535276A priority Critical patent/JP5647988B2/ja
Priority to BR112012007933A priority patent/BR112012007933A2/pt
Priority to CN201080045393.8A priority patent/CN102575864B/zh
Publication of WO2011043055A1 publication Critical patent/WO2011043055A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/30Artificial light

Definitions

  • the present invention relates to an air conditioner that detects the illuminance in the room and adjusts the heating and cooling capacity based on the output result.
  • this type of air conditioner determines the set temperature of the indoor unit installed in the dining room based on the information on the amount of solar radiation from the solar radiation amount measuring means and the information on the outside air temperature from the thermometer. (For example, refer to Patent Document 1).
  • the set temperature determining means of the set temperature determining device installed in the indoor unit inputs the information on the amount of solar radiation from the solar radiation amount measuring means.
  • the amount is larger than the preset value, it is judged that the temperature inside the dining room rises due to the greenhouse effect caused by sunlight, and the set temperature is set lower to reduce energy consumption.
  • the air conditioners of Patent Documents 1 and 2 set the set temperature lower when the amount of solar radiation is greater than the set value, and thus the amount of solar radiation. If the set temperature fluctuates in response to this and the amount of solar radiation does not continue above the set value, the room temperature will not stabilize and the resident may become uncomfortable. Moreover, in the air conditioner of patent document 1 and 2, it is controlled to change preset temperature uniformly, and even if there exists an energy saving effect, it may not necessarily reflect a resident's favorite temperature setting. In addition, there is a problem that lowering the set temperature during cooling does not save energy.
  • the present invention was made in view of such problems of the prior art, and when the illuminance in the room exceeds a reference value for a predetermined time within a predetermined time range, the heating and cooling capacity is adjusted.
  • the purpose is to provide an air conditioner that realizes energy-saving operation without impairing comfort.
  • an air conditioner of the present invention is an air conditioner capable of adjusting the heating / cooling capacity based on illuminance output at predetermined time intervals from an illuminance sensor provided in an indoor unit, and is provided at predetermined time intervals.
  • the air conditioner of the present invention adjusts the cooling and heating capacity when the illuminance in the room exceeds a reference value for a predetermined time within a predetermined time range, and determines that the amount of heat generated by solar radiation is stably supplied.
  • the temperature of the room is adjusted so that the resident does not feel uncomfortable, energy-saving operation can be realized without impairing comfort.
  • FIG. 1 is a perspective view of an air conditioner according to Embodiments 1 to 3 of the present invention.
  • 2 is a block diagram of the air conditioner shown in FIG.
  • FIG. 3 is a control flowchart according to the first embodiment of the present invention.
  • 4 is a graph showing the relationship between the illuminance of various rooms and the sensor output voltage.
  • Fig. 5 is a graph showing changes in the set temperature, thermal sensation, and comfort (in winter) according to the subject experiment
  • FIG. 6 is a control flowchart according to the second embodiment of the present invention.
  • FIG. 7 is a control flowchart according to the third embodiment of the present invention.
  • FIG. 8 is a graph showing changes in the set temperature, thermal sensation, and comfort (summer) according to the subject experiment.
  • 9 is a graph showing the relationship between the illuminance of the camera module and the exposure time.
  • FIG. 10 is a graph showing the relationship between the illuminance and the exposure time when the gain is quadrupled compared to FIG
  • One aspect of the present invention is an air conditioner capable of adjusting the heating and cooling capacity based on the illuminance output at predetermined time intervals from the illuminance sensor provided in the indoor unit, and records the illuminance output at predetermined time intervals.
  • a recording device and a control unit that adjusts the heating / cooling capacity if the illuminance recorded in the recording device is equal to or greater than a predetermined first reference value within a predetermined time range for a predetermined time or more. Since it is determined that the amount of heat generated by solar radiation is stably supplied, the room temperature is adjusted so that the occupant does not feel uncomfortable, thus realizing energy-saving operation without impairing comfort.
  • the air conditioner further includes an operation device capable of setting a room temperature by a resident's operation, and the control unit performs an adjustment process of the cooling / heating capacity when the room temperature is set by the operation device within a predetermined time range. Since the control unit does not change the set temperature uniformly when the temperature setting is changed to the occupant's favorite temperature setting, the occupant's comfort can be maintained.
  • the control unit increases the heating capacity if the illuminance recorded in the recording device is equal to or greater than a predetermined reference value within a predetermined time range. It is characterized by lowering by a predetermined amount. By reducing the set temperature by the amount that it feels warm due to radiant heat from solar radiation, the occupant can realize energy-saving operation without impairing comfort.
  • the control unit when the air conditioner is in a cooling operation, the control unit has a predetermined amount of solar radiation recorded in the recording device within a predetermined time range for a predetermined second time or less. If it becomes, it is characterized by lowering the cooling capacity by a predetermined amount, and if the sunlight is shaded during cooling or if actions such as shielding the sunlight with a curtain are taken, the set temperature should not be set too low Thus, the resident does not get too cold without noticing, and the cooling capacity is lowered, so that energy saving operation can be realized.
  • the control unit when the air conditioner is in a cooling operation, has a cooling capacity if the amount of solar radiation recorded in the recording device is equal to or greater than a predetermined reference value within a predetermined time range and the amount of solar radiation recorded in the recording device is greater than or equal to a predetermined reference value.
  • the room temperature is adjusted so that the occupant does not feel uncomfortable after judging that the amount of heat generated by solar radiation is being supplied stably. Can be obtained.
  • FIG. 1 shows an external view of an indoor unit of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of the indoor unit of the air conditioner shown in FIG.
  • an illuminance sensor 2 is provided in front of the air conditioner 1, and the illuminance sensor 2 detects the illuminance in the room.
  • the air conditioner 1 includes a control unit 8 that controls air conditioning based on the detection result of the illuminance sensor 2 as shown in FIG.
  • the control unit 8 includes, for example, a microcomputer, a nonvolatile memory, and a RAM.
  • action at the time of heating operation are demonstrated below.
  • the air conditioner 1 starts operation in accordance with an instruction from a remote controller (not shown)
  • the air conditioner 1 controls the room temperature as instructed by the remote controller by blowing heated air into the room from the outlet 5. To do.
  • the room temperature is detected by a temperature sensor 3 provided at the suction port 4.
  • FIG. 3 shows a control flow of the control unit 8 shown in FIG.
  • the control by the control unit 8 will be described along the flow of FIG.
  • the illuminance sensor 2 starts detecting the illuminance L1 in the living room (step S1).
  • This detection value is sent to the control unit 8 and recorded in, for example, a RAM.
  • the control unit 8 starts counting the detection time P (step S3).
  • the value of ⁇ can be recognized as an increase in illuminance due to solar radiation, by setting it higher than the illuminance due to general lighting equipment in the room, distinguishing from the illuminance due to illumination.
  • the value of ⁇ is set to about 40% of the maximum output value Lmax of the illuminance sensor 2 when cooling, and similarly about 50% when heating.
  • FIG. 4 is a graph showing a relationship between a value obtained by measuring illuminance at a position where the air conditioner 1 is installed in various rooms and an output value of the illuminance sensor 2.
  • the value of ⁇ set during cooling or heating will be described.
  • the output value of the illuminance sensor 2 due to solar radiation does not fall below 40% of the maximum output value of the illuminance sensor 2 in the summer when the solar altitude is high, regardless of the installation position of the air conditioner 1.
  • the solar altitude is low and solar radiation is easy to enter through the window, it did not fall below 50% of the maximum output value of the illuminance sensor 2.
  • the room was shielded by a thick curtain when there was solar radiation, or the output value of the illuminance sensor 2 by indoor lighting did not exceed the output value by the solar radiation.
  • the control unit 8 performs the solar radiation. It is determined that there is (step S5a). This ⁇ / 2 considered the possibility of temporary cloudy weather. Further, the predetermined time range ⁇ is set to, for example, about 10 minutes when the indoor air conditioning temperature is stabilized.
  • step S6 when the predetermined time range ⁇ where P ⁇ ⁇ / 2 is continuous or when P ⁇ ⁇ / 2 is satisfied at 2 ⁇ in the predetermined time range 3 ⁇ (step S6), it is not temporary solar radiation but continued. It is determined that there is natural solar radiation (hereinafter referred to as solar radiation confirmation) (step S7a), and the heating capacity is adjusted (step S8).
  • solar radiation confirmation there is natural solar radiation
  • the compressor and / or the blower fan provided in the air conditioner are controlled to lower the heating capacity and lower the set temperature by about 1/3 ° C. If the conditions are further satisfied, the set temperature is further lowered by about 1/3 ° C. every 2 ⁇ and is not lowered beyond 1 ° C. If the set temperature is lowered by 1 ° C. during heating operation, the energy saving effect is about 10%.
  • step S1 the control flow once returns to step S1. This is because when the set temperature is changed, the resident wants to set the room to the changed temperature, and thus proceeding the control flow as it is may damage the resident's comfort. If the set temperature is not changed thereafter, it is the comfortable temperature, and the control flow is started from there, and the heating capacity is adjusted to such an extent that the comfortable feeling is not impaired as described above.
  • control flow is not entered when the outside air temperature is less than 0 ° C. This is because when the outside air temperature is low, it is considered that the influence of the cold radiation due to the outside air temperature is larger than the influence due to the solar radiation.
  • the resident can save energy without sacrificing comfort in order to lower the set temperature by the amount felt warm by radiant heat. Driving can be realized. Further, when the resident changes the set temperature, the control is once stopped and the control unit does not change the set temperature uniformly, so that the resident can maintain a comfortable feeling at the desired set temperature.
  • step S4 if the detection time P does not exceed ⁇ / 2, the control unit 8 determines that there is no solar radiation (step S5b), and returns to step S1. If the predetermined time range ⁇ where P ⁇ ⁇ / 2 does not continue in step S6, or if P ⁇ ⁇ / 2 is not satisfied at 2 ⁇ in the predetermined time range 3 ⁇ , the control unit 8 Then, it is determined that the solar radiation is not continuous solar radiation (hereinafter referred to as solar radiation non-confirmed), and the process returns to step S1 without adjusting the heating capacity.
  • the illuminance sensor 2 may be realized using a camera module. This method will be described.
  • the camera module includes an auto exposure adjustment (AEC) function and an auto gain control (AGC) function that change the exposure time of shooting to prevent overexposure of images in bright scenes and blackout in dark scenes. It is often equipped with an automatic image quality adjustment function. By using these functions, the illuminance can be measured using the camera module.
  • AEC auto exposure adjustment
  • AGC auto gain control
  • the AGC function is not used and the gain value is constant.
  • the exposure time is controlled so that the average luminance value of a photographed image becomes a constant value.
  • the relationship between the average luminance value of the photographed image and the exposure time is an inversely proportional relationship. That is, the illuminance and the exposure time have an inversely proportional relationship, and the illuminance can be obtained by obtaining the exposure time during illuminance measurement.
  • FIG. 9 is a schematic diagram showing the relationship between the illuminance and the exposure time of a camera module equipped with an AEC function. From this figure, it can be seen that the illuminance L1 in the living room can be detected as in the case where the illuminance sensor 2 is used.
  • the exposure time is obtained by reading the register value of the camera module.
  • the AGC function and the AEC function may be used simultaneously without making the gain value constant.
  • the gain and the exposure time are inversely proportional, and when the gain is doubled, the exposure time is halved. That is, the illuminance can be measured by acquiring the gain value and the exposure time when measuring the illuminance.
  • FIG. 10 shows the relationship between the illuminance and the exposure time when the gain is quadrupled compared to FIG.
  • the resolution of illuminance measurement is considered.
  • FIG. 9 compares the exposure time in the region where the illuminance is high and the resolution is low, which is not suitable for illuminance measurement. Since the change width of the exposure time is large and the resolution is high, it is suitable for illuminance measurement.
  • optimal illuminance measurement can be realized by decreasing the gain when the illuminance is high and increasing the gain when the illuminance is low. This is consistent with normal AGC operation that prevents overexposure and underexposure, so the illuminance can be measured using the AGC and AEC functions of a typical camera module.
  • the AGC function may be used, and the illuminance may be measured from the gain value without using the AEC function.
  • FIG. 6 shows a control flow of the control unit 8 shown in FIG.
  • the control by the control unit 8 will be described along the flow of FIG.
  • the same flow as that of the first embodiment is denoted by the same reference numerals and description thereof is omitted.
  • step S6 when the predetermined time range ⁇ where P> ⁇ / 2 continues or when P> ⁇ / 2 is established when 2 ⁇ of 3 ⁇ is satisfied, it is determined that the solar radiation is confirmed (step S7a). Adjustment is performed (step S8b).
  • control the compressor and / or blower fan to increase the cooling capacity and lower the set temperature by about 1/3 ° C. If the condition continues further, the set temperature is further lowered by about 1/3 ° C. every 2 ⁇ , and is not lowered beyond 1 ° C.
  • step S1 the control flow once returns to step S1. This is because when the set temperature is changed, the resident wants to set the room to the changed temperature, and thus proceeding the control flow as it is may damage the resident's comfort. If the set temperature is not changed thereafter, it is the comfortable temperature. Therefore, the control flow is started from there and the cooling capacity is adjusted to such an extent that the comfortable feeling is not impaired as described above.
  • control flow does not enter if the outside air temperature is below 30 ° C. This is because the effect of solar radiation is considered to be small when the outside air temperature is low.
  • the resident will not lose comfort by lowering the set temperature for the amount of warmth felt by radiant heat. . Further, when the resident changes the set temperature, the control is once stopped and the control unit does not change the set temperature uniformly, so that the resident can maintain a comfortable feeling.
  • FIG. 7 shows a control flow of the control unit 8 shown in FIG.
  • the control by the control unit 8 will be described along the flow of FIG.
  • the same flow as that of the first embodiment is denoted by the same reference numerals and description thereof is omitted.
  • step S6 when the predetermined time range ⁇ where P> ⁇ / 2 continues, or when 2> ⁇ among 3 ⁇ and P> ⁇ / 2 is established, the section is determined as the solar radiation determination section (step S7c). . Then, when the detected illuminance value L1 is equal to or less than a certain value ⁇ throughout the predetermined time range ⁇ in the solar radiation determination section (step 9), it is determined that there is solar radiation shielding (step 10). As is apparent from FIG. 4, for example, ⁇ may be about ⁇ / 2.
  • This step 10 may be a case where the solar radiation is shaded by cloudy weather or the resident feels the solar radiation hot and takes actions such as closing the curtain. At this time, if the occupant continues to operate with the same cooling capacity as the section affected by solar radiation, the resident feels cold, so the cooling capacity is adjusted (step 11).
  • the cooling capacity is lowered and the set temperature is raised by about 1/3 ° C. If the conditions are further satisfied, the set temperature is further raised by about 1/3 ° C. every 2 ⁇ and is not lowered beyond 4/3 ° C.
  • the set temperature is similarly adjusted without shielding the amount of heat corresponding to solar radiation as a result of freely adjusting the set temperature to the radiated subject by shielding the amount of heat corresponding to solar radiation during the 60-minute experimental period.
  • the set temperature was raised by about 2 ° C. while maintaining the same level of warmth and comfort as compared with the case. This is thought to be due to the effect felt cool by blocking the radiant heat from solar radiation.
  • the set temperature is raised within a range of less than 2 ° C. in determining solar shading.
  • the cooling capacity is adjusted within a range that does not affect comfort.
  • many people notice a change in the set temperature of 1 ° C. in 10 minutes, but few people notice a change in the set temperature of 1 ° C. in one hour.
  • step S1 the control flow once returns to step S1. This is because when the set temperature is changed, the resident wants to set the room to the changed temperature, and thus proceeding the control flow as it is may damage the resident's comfort. If the set temperature is not changed thereafter, it is the comfortable temperature. Therefore, the control flow is started from there, and the cooling capacity is adjusted to such an extent that the comfortable feeling is not impaired as described above.
  • control flow does not enter if the outside air temperature is below 30 ° C. This is because the effect of solar radiation is considered to be small when the outside air temperature is low.
  • the resident will be able to make sure that the solar radiation is shielded when the amount of heat from solar radiation is supplied, and then raise the set temperature to feel cool by blocking the radiant heat. Can realize energy-saving operation without sacrificing comfort. Further, when the resident changes the set temperature, the control is temporarily stopped and the control unit does not change the set temperature uniformly, so that the resident can maintain a comfortable feeling.
  • the air conditioner according to the present invention adjusts the cooling / heating capacity when the illuminance in the room exceeds the reference value for a predetermined time within a predetermined time range, and performs energy-saving operation without impairing comfort. Since it can be realized, it can be applied to the use of an air conditioner such as a living room of a house or a hotel room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 空気調和機1は、室内機に備わる照度センサー2から、所定時間間隔で出力される照度に基づき、冷暖房能力を調節可能であって、前記所定時間間隔で出力される照度を記録する記録装置と、所定時間範囲において所定時間以上、前記記録装置に記録された照度が予め定められた第1の基準値以上であれば、冷暖房能力の調節処理を行う制御部8とを備える。

Description

空気調和機
 本発明は、室内の照度を検出して、出力結果に基づき冷暖房能力の調節をする空気調和機に関するものである。
 従来、この種の空気調和機は、日射量測定手段からの日射量に関する情報と、温度計からの外気温の情報とに基づいて、ダイニングに設置されている室内機の設定温度を決定している(例えば、特許文献1を参照)。
 特許文献1に記載の空気調和機は、冬季における暖房の場合、室内機に設置されている設定温度決定装置の設定温度決定手段は、日射量測定手段からの日射量の情報を入力し、日射量があらかじめ設定している値よりも多いときは太陽光による温室効果によってダイニング内部の温度が上昇するものと判断して、設定温度を低めに設定し、消費エネルギーを少なくしている。
 また、窓面から室内に入る日射量によって室内空間の空気調和制御の設定温度を補正する空調装置も提案されている(例えば、特許文献2を参照)。
 特許文献2に記載の空調装置は、窓の日射量を検知する昼光センサーによって日射があると判断した場合、日射がない設定温度パターンに対して設定温度を下げるものである。これにより組み合わせによっては省エネ効果が得られる。
特開2000-88316号公報 特開2005-37109号公報
 しかしながら、一般に室内の温度は設定値になるまでに一定の時間を要するが、特許文献1および2の空気調和機は日射量が設定値より多いときには設定温度を低く設定する、としているため日射量に応じて設定温度が変動し、日射量が設定値以上を継続しない場合、室内温度が安定せず、居住者はかえって不快になる可能性がある。また、特許文献1および2の空気調和機では、一律に設定温度を変更するよう制御されており、省エネ効果があっても居住者の好みの温度設定を反映できているとは限らない。また、冷房時には設定温度を低くすることは省エネにはならない、という課題を有していた。
 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、室内の照度が所定時間範囲内で所定時間以上基準値を超えた場合、冷暖房能力の調節を行うもので、快適感を損なわず省エネ運転を実現する空気調和機を提供することを目的としている。
 上記目的を達成するため、本発明の空気調和機は、室内機に備わる照度センサーから所定時間間隔で出力される照度に基づき、冷暖房能力を調節可能な空気調和機であって、所定時間間隔で出力される照度を記録する記録装置と、所定時間範囲において所定時間以上、記録装置に記録された照度が予め定められた第1の基準値以上であれば、冷暖房能力の調節処理を行う制御部とを備えることを特徴とする。
 本発明の空気調和機は、室内の照度が所定時間範囲内で所定時間以上基準値を超えた場合、冷暖房能力の調節を行うもので、日射による熱量が安定して供給されていることを判断した上で室内の温度を居住者が不快に感じないように調節されるため、快適感を損なわず省エネ運転を実現することができる。
図1は本発明の実施の形態1~3における空気調和機の斜視図 図2は図1に示す空気調和機のブロック図 図3は本発明の実施の形態1における制御フローチャート 図4は様々な部屋の照度とセンサー出力電圧の関係を示すグラフ 図5は被験者実験による設定温度、温冷感、快適感の変化(冬季)を示すグラフ 図6は本発明の実施の形態2における制御フローチャート 図7は本発明の実施の形態3における制御フローチャート 図8は被験者実験による設定温度、温冷感、快適感の変化(夏季)を示すグラフ 図9はカメラモジュールの照度と露光時間の関係を示すグラフ 図10は図9と比較してゲインを4倍にした場合の照度と露光時間の関係を示すグラフ
 本発明の一形態は、室内機に備わる照度センサーから、所定時間間隔で出力される照度に基づき、冷暖房能力を調節可能な空気調和機であって、所定時間間隔で出力される照度を記録する記録装置と、所定時間範囲において所定時間以上、記録装置に記録された照度が予め定められた第1の基準値以上であれば、冷暖房能力の調節処理を行う制御部とを備えることを特徴とし、日射による熱量が安定して供給されていることを判断した上で室内の温度は居住者が不快に感じないように調節されるため、快適感を損なわず省エネ運転を実現する。
 好ましくは、空気調和機は居住者の操作により室内温度を設定可能な操作器をさらに備え、制御部は、所定時間範囲内で操作器により室内温度が設定されると、冷暖房能力の調節処理を打ち切ることを特徴とするもので、居住者の好みの温度設定に変更された場合は制御部が一律に設定温度を変更することがないため、居住者の快適感を維持することができる。
 また、好ましくは、空気調和機において、制御部は、空気調和機が暖房運転時には、所定時間範囲において所定時間以上、記録装置に記録された照度が所定の基準値以上であれば、暖房能力を所定量下げることを特徴とするもので、日射による放射熱で暖かく感じる分、設定温度を下げることで、居住者は快適感を損なうことなく省エネ運転を実現できる。
 また、好ましくは、空気調和機において、制御部は、空気調和機が冷房運転時には、所定時間範囲内において所定時間以上、記録装置に記録された日射量が予め定められた第2の基準値以下になれば、冷房能力を所定量下げることを特徴とするもので、冷房時に日射が陰った場合やカーテンで日射を遮る等の行動がとられた場合には設定温度を低すぎる設定にしないことで、居住者は気づかないうちに体が冷えすぎてしまうことがなく、さらに冷房能力は下がるため省エネ運転を実現できる。
 また、好ましくは、空気調和機において、制御部は、空気調和機が冷房運転時には、所定時間範囲において所定時間以上、記録装置に記録された日射量が所定の基準値以上であれば、冷房能力を所定量上げることを特徴とするもので、日射による熱量が安定して供給されていることを判断した上で室内の温度を居住者が不快に感じないように調節されるため、より快適感を得ることができる。
 (実施の形態1)
 図1は、本発明の第1の実施の形態における空気調和機の室内機の外観図を示すものである。また、図2は、図1に示す空気調和機の室内機のブロック図である。図1及び図2に示すように、空気調和機1の正面には照度センサー2が設けられており、この照度センサー2は居室内の照度を検出する。また空気調和機1には、図2に示すように、照度センサー2の検出結果に基づき、空調を制御する制御部8が備わる。この制御部8は、例えば、マイコン、不揮発性メモリ及びRAMから構成される。
 以上のように構成された空気調和機1について、以下、暖房運転時の動作や作用を説明する。空気調和機1がリモコン(図示せず)の指示によって運転を開始すると、空気調和機1は、加熱空気を吹出し口5から室内に送風することで、リモコンにより指示された室温になるように制御する。室温は吸い込み口4に設けられた温度センサー3によって検知されている。
 図3は、図2に示す制御部8の制御フローを示す。以下、図3のフローに沿って、制御部8による制御を説明する。空気調和機1の運転開始と同時に、照度センサー2は居室内の照度L1の検出を開始する(ステップS1)。この検出値は、制御部8へ送られ例えばRAMに記録されていく。制御部8は、照度検出値L1が一定値α以上である場合(ステップS2)、検出時間Pのカウントを開始する(ステップS3)。αの値は室内の一般的な照明器具による照度より高く設定することにより、照明による照度とは区別して日射による照度上昇と認識することが可能である。例えば、αの値は冷房時であれば照度センサー2の出力最大値Lmaxの4割程度、暖房時であれば同じく5割程度に設定する。
 ここで、図4は、様々な部屋において空気調和機1が設置される位置で照度を測定した値と照度センサー2の出力値との関係を示すグラフである。以下、図4を参照して、冷房時又は暖房時に設定されるαの値について説明する。図4によれば、日射による照度センサー2の出力値は、空気調和機1の設置位置に関わらず、太陽高度の高い夏季では照度センサー2の出力最大値の4割を下回ることがなく、また太陽高度が低く日射が窓から侵入しやすい冬季には照度センサー2の出力最大値の5割を下回ることがなかった。また、日射がある時に室内を厚地カーテン等で遮蔽した場合や室内の照明による照度センサー2の出力値は前記の日射による出力値を上回ることがなかった。
 再度、図3を参照する。ここで所定時間範囲βの間にL1≧αとなる検出時間Pが、日射が確実に室内熱負荷に影響を及ぼすと考えられるβ/2以上あった場合(ステップS4)、制御部8は日射ありと判定する(ステップS5a)。このβ/2は一時的な曇天などの可能性を考慮した。また所定時間範囲βは例えば室内の空調温度が安定する10分程度に設定する。
 さらに、このP≧β/2である所定時間範囲βが連続した場合、あるいは所定時間範囲3βのうち2βでP≧β/2が成立した場合(ステップS6)に、一時的な日射ではなく継続的な日射があり(以下、日射確定という)と判断して(ステップS7a)、暖房能力の調節を行う(ステップS8)。
 具体的には、日射確定判断後、空気調和機に備わる圧縮機及び/又は送風ファン等を制御して暖房能力を下げて、設定温度を1/3℃程度下げる。そして、さらに条件成立が続けば、さらに2βごとに設定温度を1/3℃程度下げ、1℃を超えて下げることはしない。暖房運転時に1℃設定温度を下げると省エネ効果は約10%である。
 この設定温度の下げ方の有効性については、図5に示す被験者実験結果より説明できる。図5によれば、実験時間60分間に冬季の日射相当の熱量を放射された被験者に自由に設定温度を調節させた結果、放射のない場合と比較して、ほぼ同程度の温冷感、快適感を保ったまま、設定温度を約1.5℃下げた。これは日射による放射熱の影響の分暖かく感じたと考えられる。実際の空調には居住者の生活位置や活動量の変化も考慮して1.5℃より小さい範囲で設定温度を下げる。すなわち居住者が日射の影響を受けにくい窓から離れた位置にいる場合や、活動量が少なく設定温度を高くしておきたいという場合でも快適感に影響が出ない範囲で暖房能力の調節を行う。一般に10分で1℃設定温度を下げれば多くの人が温度の変化に気づくが、1時間で1℃の設定温度の変化に気づく人は少ない。
 次に、居住者が上記制御フローの中で設定温度を変更した場合について説明する。居住者は室内に日射による放射熱の影響を感じた場合、前記制御フローによる暖房能力の変更以前に自らリモコンにて設定温度を下げる可能性がある。この場合は一旦制御フローはステップS1に戻る。設定温度を変更した場合、居住者は室内を変更後の温度に設定したいため、そのまま制御フローを進めることは居住者の快適感を損なう可能性があるためである。その後設定温度を変更することがなければ、それが快適温度ということになるので、そこから制御フローを開始して前記のように快適感を損なわない程度に暖房能力の調節をしていく。
 尚、より一層の快適感の維持のため、外気温が0℃未満になれば上記制御フローに入らない設定にしてもよい。外気温が低い場合は日射による影響よりも外気温による冷放射の影響が大きいと考えられるためである。
 以上のように制御されれば、日射による熱量が安定して供給されていることを判断した上で、放射熱で暖かく感じる分設定温度を下げるために、居住者は快適感を損なうことなく省エネ運転を実現できる。また、居住者が設定温度を変更した場合は一旦制御を打ち切り、制御部が一律に設定温度を変更することがないため、居住者は好みの設定温度で快適感を維持することができる。
 なお、ステップS4で、検出時間Pがβ/2以上なかった場合、制御部8は日射なしと判断して(ステップS5b)、ステップS1に戻る。また、ステップS6で、このP≧β/2である所定時間範囲βが連続しなかった場合、あるいは所定時間範囲3βのうち2βでP≧β/2が成立しなかった場合、制御部8は、継続的な日射ではない状態(以下、日射非確定という)と判断して、暖房能力の調節を行うことなくステップS1に戻る。
 なお、照度センサー2は、カメラモジュールを利用して実現しても構わない。この手法について説明する。
 カメラモジュールには、明るいシーンでの画像の白とびや暗いシーンでの黒つぶれを防止するために、撮影の露光時間を変化させるオート露光調整(AEC)機能やオートゲインコントロール(AGC)機能などの自動画質調整機能が搭載されていることが多い。これらの機能を利用することで、カメラモジュールを利用して、照度を測定することができる。
 ここで、AGC機能を利用せず、ゲインの値は一定とする。AEC機能として、撮影される画像の平均輝度値が一定値になるように、露光時間を制御する。このとき、撮影される画像の平均輝度値と露光時間の関係は、反比例の関係となる。つまり、照度と露光時間は反比例の関係を有し、照度計測時の露光時間を求めることで照度を求めることができる。図9は、AEC機能を搭載したカメラモジュールの照度と露光時間の関係を示した模式図である。この図から、照度センサー2を利用した場合と同様に、居室内の照度L1を検出できることがわかる。露光時間は、カメラモジュールがAEC機能を搭載している場合、カメラモジュールのレジスタ値を読み取ることで取得する。
 また、ゲイン値を一定にせず、AGC機能とAEC機能を同時に利用するようにしてもかまわない。照度が一定の場合、ゲインと露光時間は逆比例の関係となり、ゲインを2倍にした場合、露光時間は1/2になる。つまり、照度計測時のゲイン値と露光時間を取得することで、照度を計測することができる。
 図10は、図9と比較し、ゲインを4倍にした場合の照度と露光時間の関係を示したものである。ここで、照度計測の分解能を考える。露光時間を利用して照度を計測する場合、照度が一定値変化した際に、露光時間の変化が大きいほうが分解能として高く、照度計測に適していると考えられる。ゲインを大きくした図10を図9と比較すると、照度が高い領域では、露光時間の変化幅は小さく、分解能が低くなるため、照度計測には不向きとなるが、逆に、照度が低い領域では、露光時間の変化幅は大きく、分解能が高くなるため、照度計測には適している。つまり、照度が高い場合にはゲインを小さくし、照度が低い場合にはゲインを大きくすることで、最適な照度計測を実現することができる。これは、白とびや黒つぶれを防止する、通常のAGCの動作と一致しているため、一般的なカメラモジュールのAGCやAEC機能を利用することで照度を計測することができる。
 もちろん、AGC機能のみを利用し、AEC機能を利用せず、ゲイン値から照度を計測するようにしてもかまわない。
 (実施の形態2)
 本発明の第2の実施の形態における空気調和機1について、以下、冷房運転時の動作や作用を説明する。空気調和機1がリモコン(図示せず)の指示によって運転を開始すると、空気調和機1は、冷却空気を吹出し口5から室内に送風することで、リモコンにより指示された室温になるように制御する。室温は吸い込み口4に設けられた温度センサー3によって検知されている。
 図6は、図1に示す制御部8の制御フローを示す。以下、図6のフローに沿って、制御部8による制御を説明する。実施の形態1と同じフローに関しては同じ符号を記して説明を省略する。
 ステップS6において、P>β/2である所定時間範囲βが連続した場合、あるいは3βのうち2βでP>β/2が成立した場合に、日射確定と判断して(ステップS7a)冷房能力の調節を行う(ステップS8b)。
 具体的には日射確定判断後、圧縮機及び/又は送風ファン等を制御することで冷房能力を上げて、設定温度を1/3℃程度下げる。そしてさらに条件成立が続けば、さらに2βごとに設定温度を1/3℃程度下げ、1℃を超えて下げることはしない。
 次に、居住者が上記制御フローの中で設定温度を変更した場合について説明する。居住者は室内に日射による放射熱の影響を感じた場合、前記制御フローによる冷房能力の変更以前に自らリモコンにて設定温度を下げる可能性がある。この場合は一旦制御フローはステップS1に戻る。設定温度を変更した場合、居住者は室内を変更後の温度に設定したいため、そのまま制御フローを進めることは居住者の快適感を損なう可能性があるためである。その後設定温度を変更することがなければそれが快適温度ということになるので、そこから制御フローを開始して前記のように快適感を損なわない程度に冷房能力の調節をしていく。
 尚、より一層の快適感の維持のため、外気温が30℃未満になれば制御フローに入らない設定にしてもよい。外気温が低い場合は日射による影響が小さいと考えられるためである。
 以上のように制御されれば、日射による熱量が安定して供給されていることを判断した上で、放射熱で暖かく感じる分設定温度を下げることで、居住者は快適感を損なうことがない。また居住者が設定温度を変更した場合は一旦制御を打ち切り、制御部が一律に設定温度を変更することがないため、居住者は快適感を維持することができる。
 (実施の形態3)
 本発明の第3の実施の形態における空気調和機1について、以下、冷房運転時の動作や作用を説明する。空気調和機1がリモコン(図示せず)の指示によって運転を開始すると、空気調和機1は、冷却空気を吹出し口5から室内に送風することで、リモコンにより指示された室温になるように制御する。室温は吸い込み口4に設けられた温度センサー3によって検知されている。
 図7は、図1に示す制御部8の制御フローを示す。以下、図6のフローに沿って、制御部8による制御を説明する。実施の形態1と同じフローに関しては同じ符号を記して説明を省略する。
 ステップS6の後、P>β/2である所定時間範囲βが連続した場合、あるいは3βのうち2βでP>β/2が成立した場合にその区間を日射確定区間と判断する(ステップS7c)。そして日射確定区間において所定時間範囲βの間全てで照度検出値L1が一定値γ以下となった時(ステップ9)、日射遮蔽ありと判断する(ステップ10)。γは例えば図4から明らかなように、α/2程度の値とすればよい。このステップ10は、日射が曇天により陰ったり、居住者が日射を暑く感じてカーテンを閉めるなどの行動をとった場合が考えられる。この時、日射の影響を受けている区間と同様の冷房能力で運転を続ければ居住者は寒く感じてしまうため、冷房能力の調節を行う(ステップ11)。
 具体的には、日射遮蔽確定し所定時間範囲βが連続した後、冷房能力を下げて、設定温度を1/3℃程度上げる。そして、さらに条件成立が続けば、さらに2βごとに設定温度を1/3℃程度上げ、4/3℃を超えて下げることはしない。
 この設定温度の上げ方の有効性については、図8に示す被験者実験結果より説明できる。図8によれば、実験時間60分間に夏季の日射相当の熱量を遮蔽して放射された被験者に自由に設定温度を調節させた結果、日射相当の熱量を遮蔽せず同様に設定温度を調節した場合と比較して同程度の温熱感、快適感を保ったまま、設定温度を約2℃上げた。これは日射による放射熱を遮ることで涼しく感じた影響によるものと考えられる。実際の空調時には居住者の生活位置や活動量の変化も考慮して日射遮蔽確定では2℃より小さい範囲で設定温度を上げる。すなわち、居住者が日射の影響を受けやすい窓側にいる場合や、活動量が大きく設定温度を低くしておきたいという場合でも、快適感に影響が出ない範囲で冷房能力の調節を行う。一般に10分で1℃設定温度の変化は多くの人が気づくが、1時間で1℃の設定温度の変化に気づく人は少ない。
 次に、居住者が上記制御フローの中で設定温度を変更した場合について説明する。居住者は室内に日射による放射熱の影響を感じ、日射を遮蔽する場合、前記制御フローによる冷房能力の変更以前に自らリモコンにて設定温度を上げる可能性がある。この場合は一旦制御フローはステップS1に戻る。設定温度を変更した場合、居住者は室内を変更後の温度に設定したいため、そのまま制御フローを進めることは居住者の快適感を損なう可能性があるためである。その後設定温度を変更することがなければ、それが快適温度ということになるので、そこから制御フローを開始して前記のように快適感を損なわない程度に冷房能力の調節をしていく。
 尚、より一層の快適感の維持のため、外気温が30℃未満になれば制御フローに入らない設定にしてもよい。外気温が低い場合は日射による影響が小さいと考えられるためである。
 以上のように制御されれば、日射による熱量が供給されている時に日射が遮蔽されたことを確実に判断した上で、放射熱を遮ることで涼しく感じる分設定温度を上げることで、居住者は快適感を損なうことなく省エネ運転を実現できる。また、居住者が設定温度を変更した場合は一旦制御を打ち切り、制御部が一律に設定温度を変更することがないため、居住者は快適感を維持することができる。
 以上のように、本発明に係る空気調和機は、室内の照度が所定時間範囲内で所定時間以上基準値を超えた場合、冷暖房能力の調節を行うもので、快適感を損なわず省エネ運転を実現できるので、住宅のリビング、あるいはホテルの部屋などの空気調和機の用途にも適用できる。
 1 空気調和機
 2 照度センサー
 3 温度センサー
 4 吸い込み口
 5 吹き出し口
 6 水平フラップ
 7 垂直フラップ
 8 制御部

Claims (6)

  1. 室内機に備わる照度センサーから所定時間間隔で出力される照度に基づき、冷暖房能力を調節可能な空気調和機であって、前記所定時間間隔で出力される照度を記録する記録装置と、所定時間範囲において所定時間以上、前記記録装置に記録された照度が予め定められた第1の基準値以上であれば、冷暖房能力の調節処理を行う制御部とを備えることを特徴とする、空気調和機。
  2. 居住者の操作により室内温度を設定可能な操作器をさらに備え、前記制御部は、前記所定時間範囲内で前記操作器により室内温度が設定されると、冷暖房能力の調節処理を打ち切ることを特徴とする、請求項1に記載の空気調和機。
  3. 前記制御部は、前記空気調和機が暖房運転時には、所定時間範囲において所定時間以上、前記記録装置に記録された照度が所定の基準値以上であれば、暖房能力を所定量下げることを特徴とする、請求項1又は2に記載の空気調和機。
  4. 前記制御部は、前記空気調和機が冷房運転時には、前記所定時間範囲内において所定時間以上、前記記録装置に記録された照度が予め定められた第2の基準値以下になれば、冷房能力を所定量下げることを特徴とする、請求項1~3のいずれかに記載の空気調和機。
  5. 前記制御部は、前記空気調和機が冷房運転時には、前記所定時間範囲において所定時間以上、前記記録装置に記録された照度が所定の基準値以上であれば、冷房能力を所定量上げることを特徴とする、請求項1~3のいずれかに記載の空気調和機。
  6. 前記照度センサーはカメラモジュールにより構成されることを特徴とする、請求項1~5のいずれか1項に記載の空気調和機。
PCT/JP2010/005947 2009-10-07 2010-10-05 空気調和機 WO2011043055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011535276A JP5647988B2 (ja) 2009-10-07 2010-10-05 空気調和機
BR112012007933A BR112012007933A2 (pt) 2009-10-07 2010-10-05 condicionador de ar
CN201080045393.8A CN102575864B (zh) 2009-10-07 2010-10-05 空气调节机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-233320 2009-10-07
JP2009233320 2009-10-07

Publications (1)

Publication Number Publication Date
WO2011043055A1 true WO2011043055A1 (ja) 2011-04-14

Family

ID=43856539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005947 WO2011043055A1 (ja) 2009-10-07 2010-10-05 空気調和機

Country Status (5)

Country Link
JP (1) JP5647988B2 (ja)
KR (1) KR20120093172A (ja)
CN (1) CN102575864B (ja)
BR (1) BR112012007933A2 (ja)
WO (1) WO2011043055A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038040A1 (ja) * 2012-09-06 2014-03-13 三菱電機株式会社 空調制御装置、空調制御方法及びプログラム
JP2015001321A (ja) * 2013-06-13 2015-01-05 パナソニック株式会社 空調制御装置、空調設備、プログラム
WO2017008193A1 (zh) * 2015-07-10 2017-01-19 吴鹏 中央空调的调度方法及系统
WO2018190334A1 (ja) * 2017-04-10 2018-10-18 三菱電機株式会社 空調装置、制御装置、空調方法及びプログラム
CN111426024A (zh) * 2020-04-13 2020-07-17 青岛海尔空调电子有限公司 用于空调器的运行模式控制方法及空调器
CN114061039A (zh) * 2020-08-04 2022-02-18 霍尼韦尔国际公司 用于评估酒店内节能和宾客满意度的方法和系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5746950B2 (ja) * 2011-10-05 2015-07-08 日立アプライアンス株式会社 空気調和機
JP2014214965A (ja) * 2013-04-25 2014-11-17 株式会社東芝 空気調和機
JP2021042885A (ja) * 2019-09-09 2021-03-18 シャープ株式会社 サーバ、空調制御システム、制御方法および制御プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104038A (ja) * 1982-12-06 1984-06-15 Hitachi Ltd 空気調和機の制御方式
JPH02178554A (ja) * 1988-12-29 1990-07-11 Matsushita Electric Ind Co Ltd 空気調和機の制御方法
JPH07145983A (ja) * 1993-11-26 1995-06-06 Kenchiku Setsubi Sekkei Kenkyusho:Kk ホテルの客室用ファンコイルユニットの制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022A (en) * 1851-04-08 Sawing-machine
JP4460913B2 (ja) * 2004-02-16 2010-05-12 サンデン株式会社 空調装置
CN2712685Y (zh) * 2004-07-23 2005-07-27 福州西诚电子有限公司 智能型汽车空调控制器
JP4952128B2 (ja) * 2006-08-10 2012-06-13 日本電気株式会社 照度センサ機能を備えたカメラモジュール及びこれを用いた携帯端末

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104038A (ja) * 1982-12-06 1984-06-15 Hitachi Ltd 空気調和機の制御方式
JPH02178554A (ja) * 1988-12-29 1990-07-11 Matsushita Electric Ind Co Ltd 空気調和機の制御方法
JPH07145983A (ja) * 1993-11-26 1995-06-06 Kenchiku Setsubi Sekkei Kenkyusho:Kk ホテルの客室用ファンコイルユニットの制御方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038040A1 (ja) * 2012-09-06 2014-03-13 三菱電機株式会社 空調制御装置、空調制御方法及びプログラム
JP2015001321A (ja) * 2013-06-13 2015-01-05 パナソニック株式会社 空調制御装置、空調設備、プログラム
WO2017008193A1 (zh) * 2015-07-10 2017-01-19 吴鹏 中央空调的调度方法及系统
WO2018190334A1 (ja) * 2017-04-10 2018-10-18 三菱電機株式会社 空調装置、制御装置、空調方法及びプログラム
JPWO2018190334A1 (ja) * 2017-04-10 2019-11-07 三菱電機株式会社 空調装置、制御装置、空調方法及びプログラム
JP7050760B2 (ja) 2017-04-10 2022-04-08 三菱電機株式会社 空調装置、制御装置、空調方法及びプログラム
CN111426024A (zh) * 2020-04-13 2020-07-17 青岛海尔空调电子有限公司 用于空调器的运行模式控制方法及空调器
CN111426024B (zh) * 2020-04-13 2022-12-02 青岛海尔空调电子有限公司 用于空调器的运行模式控制方法及空调器
CN114061039A (zh) * 2020-08-04 2022-02-18 霍尼韦尔国际公司 用于评估酒店内节能和宾客满意度的方法和系统
CN114061039B (zh) * 2020-08-04 2023-10-13 霍尼韦尔国际公司 用于评估酒店内节能和宾客满意度的方法和系统

Also Published As

Publication number Publication date
CN102575864B (zh) 2015-06-24
CN102575864A (zh) 2012-07-11
JP5647988B2 (ja) 2015-01-07
KR20120093172A (ko) 2012-08-22
BR112012007933A2 (pt) 2016-03-22
JPWO2011043055A1 (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5647988B2 (ja) 空気調和機
JP4869763B2 (ja) 建物
JP6353817B2 (ja) 空気調和システムおよび空気調和機
EP4303448A2 (en) Integrated thermal comfort control system with variable mode of operation
JP6408197B2 (ja) 空気調和機
JP2016061446A (ja) 空気調和機
US20210404691A1 (en) Air conditioner system
CN104279711B (zh) 一种空调器及其室温自适应调节控制方法和系统
JP2000257939A (ja) 空気調和装置
CN112567183A (zh) 空调装置、控制装置、空气调节方法以及程序
JP2007120861A (ja) 換気調温制御装置および方法
CN114151912B (zh) 一种空调器控制方法、装置及空调器
JP2003083586A (ja) 空気調和機の制御装置
JP5406653B2 (ja) 日射調節装置
KR100722008B1 (ko) 건축물의 외피 시스템
JP3656472B2 (ja) 人体検知装置
JP3080187B2 (ja) 空気調和装置の制御装置
JPH02223751A (ja) 住宅空調制御装置
JP2019070520A (ja) 空気調和システムおよび空気調和機
JP2017003205A (ja) エアコンの省エネ冷房方法および冷房制御装置
KR20120030183A (ko) 자연채광 연동 차양 제어시스템 및 그 제어방법
JPH06294540A (ja) 空気調和機の制御装置
US20120232700A1 (en) Method for controlling room automation system
JP5419529B2 (ja) 建物の通気システム
CN111854037A (zh) 一种空调器控制方法、装置、空调器及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045393.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535276

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127007394

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3115/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201001602

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821732

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012007933

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012007933

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120405