WO2011040500A1 - 造血幹細胞または造血前駆細胞の分化を抑制するペプチド及びその用途 - Google Patents

造血幹細胞または造血前駆細胞の分化を抑制するペプチド及びその用途 Download PDF

Info

Publication number
WO2011040500A1
WO2011040500A1 PCT/JP2010/067011 JP2010067011W WO2011040500A1 WO 2011040500 A1 WO2011040500 A1 WO 2011040500A1 JP 2010067011 W JP2010067011 W JP 2010067011W WO 2011040500 A1 WO2011040500 A1 WO 2011040500A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
stem cells
cell
hematopoietic
peptide
Prior art date
Application number
PCT/JP2010/067011
Other languages
English (en)
French (fr)
Inventor
杉山 大介
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to EP10820615.2A priority Critical patent/EP2484689A4/en
Priority to US13/499,116 priority patent/US8956869B2/en
Priority to JP2011534289A priority patent/JP5791506B2/ja
Publication of WO2011040500A1 publication Critical patent/WO2011040500A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/14Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2306Interleukin-6 (IL-6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/02Coculture with; Conditioned medium produced by embryonic cells

Definitions

  • the present invention relates to a novel peptide that is effectively used for producing or expanding tissue-specific stem cells or tissue-specific progenitor cells in vitro. More specifically, (1) the action of suppressing the differentiation of hematopoietic stem cells or hematopoietic progenitor cells, (2) the action of promoting the amplification of mesenchymal stem cells, or (3) the induction of hematopoietic stem cells from pluripotent stem cells It relates to a peptide having at least one action.
  • the present invention also relates to the use of the peptide, specifically as a reagent (or preparation) used for preparing or expanding tissue-specific stem cells or tissue-specific progenitor cells in vitro, specifically, hematopoiesis.
  • the present invention relates to a use as an agent for suppressing differentiation of stem cells or hematopoietic progenitor cells, a use as an agent for promoting amplification of mesenchymal stem cells, and a use as a hematopoietic stem cell inducer.
  • the present invention relates to a method for proliferating tissue-specific stem cells or tissue-specific progenitor cells in vitro using the peptide, and a method for inducing or producing hematopoietic stem cells in vitro.
  • the present invention relates to an antibody against the peptide.
  • hematopoietic stem cells can be generated from pluripotent stem cells in vitro, and if hematopoietic stem cells can be removed from the body and cultured, and only hematopoietic stem cells can be amplified without becoming tumorous, many transplant-related problems will be solved.
  • new regenerative medicine such as the development of other organ-specific stem cell transplantation therapy can be cultivated. The following problems have been pointed out in the methods for producing and amplifying hematopoietic stem cells that have been developed so far.
  • hematopoietic stem cells can be prepared, but acute leukemia is induced. 2.
  • hematopoietic stem cells are amplified, but acute leukemia is induced. 3.
  • the addition of cytokines induces differentiation of mature blood cells and it is difficult to maintain the undifferentiated nature of hematopoietic stem cells. 4).
  • the amplification efficiency of hematopoietic stem cells is increased by the addition of a demethylating agent, it is necessary to confirm safety because it affects epigenetics.
  • pluripotent stem cells can theoretically differentiate into all cell lineages, the technology to determine the direction of differentiation in vitro is under development, and hematopoietic stem cells that can be applied clinically are produced from pluripotent stem cells. Technology is also developing. Multipotent cells retain the property of losing their ability to differentiate into other lineages when differentiated in a certain direction. If differentiation other than hematopoietic stem cells is suppressed, hematopoietic stem cells can be produced from pluripotent stem cells. Can be expected. Hematopoietic stem cells have seemingly contradictory capabilities of self-renewal and pluripotency, and mature blood cells are produced when differentiated by stimulation with cytokines.
  • Patent Document 1 discloses a hematopoietic stem cell proliferating agent containing a ground placental cell pulverized product as an active ingredient, but such a biological material has problems such as infection and difficulty in preparing the material.
  • Patent Document 2 discloses a factor for promoting the maintenance and amplification of hematopoietic stem cells comprising the membrane protein Thsd1 / Tmtsp, but such a membrane protein is difficult to prepare in an active form.
  • JP 2007-106760 A JP 2007-238473 A WO97 / 31647 WO00 / 11168
  • Hematopoietic stem cell transplantation therapy is widely applied not only to hematopoietic diseases but also to autoimmune diseases, malignant solid tumors, and regenerative medicine.
  • autologous bone marrow, donor bone marrow, and umbilical cord blood are used as sources of hematopoietic stem cells for transplantation.
  • donor bone marrow or umbilical cord blood is used, there are problems such as a lack of the absolute number of transplanted hematopoietic stem cells, a shortage of donors, failure of engraftment due to an immune response, and graft-versus-host disease.
  • hematopoietic stem cells can be produced from pluripotent stem cells in vitro, it can be a new therapeutic tool that does not depend on the source of bone marrow, peripheral blood, umbilical cord blood, and the like.
  • hematopoietic stem cells can be generated, cultured and amplified in vitro, a sufficient amount of stem cells can be supplied at any time by simply collecting a small amount of stem cells from the patient's own bone marrow, etc. It is possible to transplant safely without waiting. In other words, the number of stem cells necessary for transplantation can be secured and autotransplantation without rejection can be performed.
  • transplantation treatment can be performed simply by collecting a small amount of cells from the donor's bone marrow, eliminating the risk of the donor and increasing the number of donors registered in the bone marrow bank. We can expect an increase in chances to find.
  • umbilical cord blood can be amplified in vitro, treatment for adults is possible.
  • stem cells necessary for gene therapy can be easily obtained, and safe gene introduction without using retrovirus becomes possible, and the spread of gene therapy can also be expected.
  • In vitro production of hematopoietic stem cells and development of amplification techniques are important technical issues that should be urgently solved for transplantation treatment, regenerative treatment and gene therapy for patients with refractory blood diseases.
  • the present invention is effective in producing or proliferating tissue-specific stem cells or tissue-specific progenitor cells of vertebrates, particularly mammals in vitro (1) differentiation inhibitor of hematopoietic stem cells or hematopoietic progenitor cells
  • the present invention also aims to provide a novel peptide as (2) a factor for promoting the amplification of mesenchymal stem cells and (3) a factor for inducing and producing hematopoietic stem cells from pluripotent stem cells.
  • the present invention also relates to (i) use of the peptide as an agent for suppressing differentiation of hematopoietic stem cells or hematopoietic progenitor cells, (ii) use as an agent for promoting amplification of mesenchymal stem cells, and (iii) as an agent for inducing hematopoietic stem cells. And a method for inducing or producing hematopoietic stem cells in vitro using the peptide, and a method for proliferating hematopoietic stem cells or hematopoietic progenitor cells.
  • the present inventor suppresses the differentiation and proliferation of hematopoietic stem cells among a plurality of peptides designed based on the extra-membrane domain of various membrane surface proteins expressed in the hepatoblasts of human fetal liver, which is the amplification site of hematopoietic stem cells. It has been found that there is a peptide having the action of Further studies have shown that this peptide can be mixed with hematopoietic progenitors that can be differentiated into multi-lineage blood cells by inhibiting the process of hematopoietic stem cells or hematopoietic progenitor cells from differentiating into myeloid cells in vitro, for example in vitro.
  • the cell and the erythroid progenitor cells other than the myeloid system had an action of autonomously proliferating (amplifying), and the peptide was confirmed to be effective as a “hematopoietic stem cell or hematopoietic progenitor cell differentiation inhibitor”.
  • the inventor of the present invention autonomously proliferates (amplifies) mesenchymal stem cells that have the ability to differentiate into cells belonging to the mesenchymal system such as osteoblasts, adipocytes, muscle cells, and chondrocytes. And the peptide was confirmed to be effective as a “mesenchymal stem cell amplification promoting factor”.
  • this peptide has an action of specifically inducing hematopoietic stem cells from pluripotent stem cells such as ES cells, and that the peptide is effective as a “hematopoietic stem cell inducing factor”. It was confirmed. From these, by culturing tissue-specific stem cells or tissue-specific progenitor cells such as hematopoietic stem cells and mesenchymal stem cells in the presence of the peptide developed by the present inventor, differentiation of these cells can be performed in vitro. It is thought that it can proliferate while being suppressed.
  • hematopoietic stem cells can be specifically induced and produced in vitro by culturing pluripotent stem cells in the presence of the peptide developed by the present inventors. That is, such a peptide is highly expected as a material that can solve the problem of the source of hematopoietic stem cells for transplantation in hematopoietic stem cell transplantation therapy.
  • the present invention has been completed based on these findings and has the following embodiments.
  • (II) Hematopoietic stem cell or hematopoietic progenitor cell differentiation inhibitor, and usage thereof (II-1) At least one peptide described in any one of (I-1) to (I-3), or a pharmaceutically A hematopoietic stem cell or hematopoietic progenitor cell differentiation inhibitor containing an acceptable salt or solvate as an active ingredient.
  • (II-2) Hematopoietic stem cells in a medium containing at least one peptide according to any one of (I-1) to (I-3), or a pharmaceutically acceptable salt or solvate thereof
  • a method for inhibiting differentiation of hematopoietic stem cells or hematopoietic progenitor cells comprising a step of culturing hematopoietic progenitor cells.
  • (III) Amplification promoter for mesenchymal stem cells, and usage thereof At least one peptide described in any one of (I-1) to (I-3), or a pharmaceutically acceptable peptide thereof
  • a mesenchymal stem cell amplification promoter comprising a salt or solvate as an active ingredient At least one peptide described in any one of (I-1) to (I-3), or a pharmaceutically acceptable peptide thereof.
  • (III-2) Mesenchyme in a medium containing at least one peptide according to any one of (I-1) to (I-3), or a pharmaceutically acceptable salt or solvate thereof.
  • a method for amplifying mesenchymal stem cells comprising a step of culturing a stem cell.
  • (IV-4) Hematopoietic stem cell induction according to (IV-2), wherein the pluripotent stem cell is a patient-derived iPS cell that is normalized by gene transfer, and is used for treatment of the patient. Agent.
  • (IV-5) Multipotent in a medium containing at least one peptide according to any one of (I-1) to (I-3), or a pharmaceutically acceptable salt or solvate thereof
  • a method for inducing or producing hematopoietic stem cells comprising a step of culturing sex stem cells or pluripotent stem cell-derived cells.
  • the cell stimulating factor is selected from stem cell stimulating factor, thrombopoietin, interleukin-6, soluble interleukin-6 receptor, granulocyte colony stimulating factor, interleukin-3, interleukin-11, and Flt3 ligand.
  • V In vitro amplification method of tissue-specific stem cells or progenitor cells thereof (V-1) At least one peptide described in any one of (I-1) to (I-3), or a pharmaceutically acceptable peptide thereof A tissue-specific stem cell or tissue-specific precursor in a medium containing the salt or solvate produced, the differentiation inhibitor described in (II-1), or the amplification promoter described in (III-1) A method for proliferating tissue-specific stem cells or tissue-specific progenitor cells, comprising a step of culturing.
  • V-2 The proliferation method according to (V-1), wherein the tissue-specific stem cell or tissue-specific progenitor cell is a hematopoietic stem cell or hematopoietic progenitor cell, and the method includes amplification of the hematopoietic stem cell.
  • V-3 The proliferation method according to (V-1), wherein the tissue-specific stem cell is a mesenchymal stem cell and includes amplification of the mesenchymal stem cell.
  • V-4) V-1) to (V-3), wherein the medium further contains at least one selected from the group consisting of a cell stimulating factor, a demethylating agent, and an extracellular matrix protein.
  • the cell stimulating factor is selected from stem cell stimulating factor, thrombopoietin, interleukin-6, soluble interleukin-6 receptor, granulocyte colony stimulating factor, interleukin-3, interleukin-11, and Flt3 ligand.
  • VI a cell population containing hematopoietic stem cells or hematopoietic progenitor cells, and use thereof (VI-1) (IV-4) to (IV-6), or (V-1) to (V -5) A cell population containing hematopoietic stem cells or hematopoietic progenitor cells obtained by the method described in any one of 5).
  • VII An antibody against at least one peptide described in any of (VII-1) (I-1) to (I-3).
  • VII-2 The antibody described in (VII-1), which is a monoclonal antibody.
  • (VII-3) The antibody according to (VII-1), which is a neutralizing antibody of at least one peptide described in any one of (I-1) to (I-3).
  • the peptide of the present invention can be used for “differentiation proliferation of hematopoietic stem cells or hematopoietic progenitor cells”. It has the effect
  • hematopoietic stem cells for example, autologous hematopoietic stem cells or bladder blood hematopoietic stem cells having a relatively low immune response
  • hematopoietic progenitor cells are preferably cultured together with cell stimulating factors such as cytokines in the presence of the peptide of the present invention.
  • cell stimulating factors such as cytokines
  • these cells can be autonomously proliferated (amplified) while suppressing differentiation into myeloid cells, and the absolute number thereof can be increased.
  • the peptide of the present invention in the presence of the peptide of the present invention, preferably together with a cell stimulating factor such as a cytokine, it has the ability to differentiate into cells belonging to the mesenchymal system such as osteoblasts, adipocytes, muscle cells, and chondrocytes.
  • a cell stimulating factor such as a cytokine
  • hematopoietic stem cells can be obtained in vitro while suppressing differentiation into myeloid cells. It can also be induced and produced.
  • a cell stimulating factor such as cytokines
  • mouth embryo day 12.5 liver tissue using c-kit antibody (R & D), DLK-1 antibody (MBL), and TOTO-3 (Invitrogen) is shown.
  • the site stained green is a hematopoietic stem cell
  • the site stained red is a hepatoblast
  • the site stained blue is a nucleus.
  • Mouse fetal liver hematopoietic stem cells (CD45 (+) c-Kit (+) Sca-1 (+)), cell stimulating factors (50 ng / mL rm SCF, 10 ng / mL rm IL-3, 10 ng / mL rh) Shows the results of hematopoietic colony forming cell assay using semi-solid medium with or without KS-13 (10 ⁇ g / mL, 30 ⁇ g / mL) in the presence of IL-6, 3 U / mL rh EPO) (Experimental example 1).
  • (A) shows the number of colonies formed after 12 days of culture in each experimental system. The vertical axis means the number of colonies.
  • (B) is an image showing the morphology (size) of mixed colonies formed after one month of culture (left side: culture without KS-13, right side: culture with KS-13 (30 ⁇ g / mL) added).
  • Human cord blood CD34-positive hematopoietic stem cell population was prepared by adding a cell stimulating factor (50 ng / mL SCF, 10 ng / mL TPO, 20 ng / mL Flt3L) to a medium (Basal), cell stimulating factor mixture (SCF 50 ng / mL, TPO 10 ng / medium (Full) containing mL, Flt3L 20ng / mL, IL-6 20ng / mL, sIL-6R 20ng / mL), medium containing KS-13 (1 ⁇ g / mL) [KS-13 (1 ⁇ g / mL)], And KS-13 (10 ⁇ g / mL) in culture medium [KS-13 (10 ⁇ g / mL)
  • Human cord blood CD34-positive hematopoietic stem cell population was prepared by adding a cell stimulating factor (50 ng / mL SCF, 10 ng / mL TPO, 20 ng / mL Flt3L) to a medium (Basal), cell stimulating factor mixture (SCF 50 ng / mL, TPO 10 ng / medium (Full) containing mL, Flt3L 20ng / mL, IL-6 20ng / mL, sIL-6R 20ng / mL), medium containing KS-13 (1 ⁇ g / mL) [KS-13 (1 ⁇ g / mL)], And KS-13 (10 ⁇ g / mL) in culture medium [KS-13 (10 ⁇ g / mL)], and the number of CD34 positive cells measured over time is shown (Day 0: start of culture, Day 7: culture) Day 7, Day11: culture day 11) (Experimental Example 2).
  • a cell stimulating factor 50 ng
  • Human cord blood CD34-positive hematopoietic stem cell population was prepared by adding a cell stimulating factor (50 ng / mL SCF, 10 ng / mL TPO, 20 ng / mL Flt3L) to a medium (Basal), cell stimulating factor mixture (SCF 50 ng / mL, TPO 10 ng / medium (Full) containing mL, Flt3L 20ng / mL, IL-6 20ng / mL, sIL-6R 20ng / mL), medium containing KS-13 (1 ⁇ g / mL) [KS-13 (1 ⁇ g / mL)], And KS-13 (10 ⁇ g / mL) in culture medium [KS-13 (10 ⁇ g / mL)], and the number of CD34 negative cells measured over time is shown (Day 0: start of culture, Day 7: culture) Day 7, Day11: culture day 11) (Experimental Example 2).
  • a cell stimulating factor 50 ng
  • Human cord blood CD34-positive hematopoietic stem cell population was prepared by adding a cell stimulating factor (50 ng / mL SCF, 10 ng / mL TPO, 20 ng / mL Flt3L) to a medium (Basal), cell stimulating factor mixture (SCF 50 ng / mL, TPO 10 ng / medium (Full) containing mL, Flt3L 20ng / mL, IL-6 20ng / mL, sIL-6R 20ng / mL), medium containing KS-13 (1 ⁇ g / mL) [KS-13 (1 ⁇ g / mL)], And KS-13 (10 ⁇ g / mL) in a medium [KS-13 (10 ⁇ g / mL)] for 11 days, followed by a colony-forming cell assay to show the number of hematopoietic progenitor cells (Experimental Example 2) ).
  • a cell stimulating factor 50 ng /
  • the left side is CFU-GEMM (colony forming unit-granulocyte / erythrocyte / macrophage / megakaryocyte) count
  • (A) right side is BFU-E (burst forming unit-erythrocyte) count
  • (B) left side is CFU -GM (colony forming unit-granulocyte / macrophage) count
  • (B) center is CFU-M (colony forming unit- macrophage) count
  • (B) right is CFU-G (colony forming unit-granulocyte) Indicates the number of measurements.
  • Mouse bone marrow cells were treated with biotin-labeled KS-13, then labeled with markers for hematopoietic stem cells, CD45 antibody (Biolegend), c-Kit antibody (Biolegend), Sca-1 antibody (Biolegend), and fluorescent dye The results of staining with Streptavidin and analysis using Flow cytometry are shown.
  • the site stained green is c-Kit positive hematopoietic stem cell
  • the site stained red is KS-13-containing cells
  • the site stained blue is the nucleus.
  • KS-13 is taken up into c-Kit positive hematopoietic stem cells by endocytosis and reaches the nucleus. It shows the pattern of proteins expressed on the cell surface in the process of hematopoietic stem cells differentiating into red blood cells and maturing.
  • the result of having examined the change of gene expression in the process in which a mouse hematopoietic stem cell differentiates and matures into erythrocytes using the MudPIT method is shown by a real-time PCR method (Experimental Example 4).
  • Mouse bone marrow cells are liquid-cultured in the presence or absence of KS-13 (50 ⁇ g / mL) and are indicative of the number of mesenchymal stem cells using a colony-forming fibroblast (CFU-F) assay The result of having measured the number of formation of CFU-F is shown (Experimental example 6).
  • Experimental Example 7 shows a scheme for inducing hematopoietic stem cells and hematopoietic progenitor cells similar to hematopoietic stem cells from pluripotent stem cells.
  • CD324 (-) Flk-1 (+) c-Kit (+) cells derived from mouse embryonic stem cells via embryoid body formation, cell stimulating factors (50 ng / mL rm SCF, 10 An image obtained by observing cells cultured for one month in a semi-solid medium containing ng / mL rm IL-3, 10 ng / mL rh IL-6, 3 U / mL rh EPO) is shown (Experimental Example 7).
  • FIG. 3 shows the results of evaluation of bone marrow remodeling ability, which means hematopoietic stem cell activity, using Flow cytometry 3-4 months later after transplanting about 2000 cells into the bone marrow of 2 recipient mice (No.1 and No.2) It is a three-dimensional plot image (Experimental example 7). Tertiary showing the result of transplanting about 20000 cells into the tail vein of two recipient mice (No.1 and No.2) and evaluating the ability to reconstitute bone marrow, which means hematopoietic stem cell activity, using Flow ⁇ ⁇ cytometry two months later It is an original plot image. The results show that about 20,000 cells were transplanted into the tail vein of two recipient mice (No. 1 and No.
  • the “tissue-specific stem cell” means a stem cell having the ability to differentiate into specific cells such as hematopoietic cells, nerve cells, epithelial cells, epidermal cells, retinal cells, adipose tissue cells and mesenchymal cells. .
  • Each of these stem cells has both “self-renewal ability” that is the ability to proliferate while maintaining undifferentiation and “multipotency” that is the ability to differentiate into specific cells.
  • the tissue-specific stem cells preferably include hematopoietic stem cells and mesenchymal stem cells.
  • hematopoietic stem cell means “self-renewal ability” that is the ability to proliferate while maintaining undifferentiation and “multipotency” that is the ability to differentiate into all blood cells and lymphocyte cells.
  • human hematopoietic stem cells express CD34, which is a stem cell marker, it can be characterized as CD34 (+). For this reason, CD34 positive cells can be used as human hematopoietic stem cells.
  • Human hematopoietic stem cells can also be characterized by other hematopoietic stem cell markers in addition to CD34 based on cell surface antigens expressed on hematopoietic stem cells.
  • hematopoietic stem cell markers including CD34 include Lin ( ⁇ ), CD34 (+), CD38 ( ⁇ ), DR ( ⁇ ), CD45 (+), CD90 (+), CD117 (+), CD123 (+) , And CD133 (+). These can be used singly or in combination.
  • Examples of the combination include Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) and CD45 (+) CD34 (+) CD38 ( ⁇ ).
  • mouse hematopoietic stem cells are known to change the expression of cell surface antigens in the embryonic and adult period, and as markers of embryonic hematopoietic stem cells, Lin (-), CD31 (+), CD34 (+), CD41 (+), C-Kit (+), as markers for adult hematopoietic stem cells, Lin (-), CD31 (+), CD34 (-/ +), CD45 (+), c-Kit (+), Sca-1 (+), CD150 (+), EPCR (+).
  • hematopoietic stem cells are contained in a very small amount in bone marrow, peripheral blood, and umbilical cord blood. From these, using conventional methods such as FACS (fluorescence activated cell sorting) using the above stem cell markers as an index Can be collected.
  • FACS fluorescence activated cell sorting
  • Mesenchymal stem cell means a stem cell that has the ability to differentiate into cells belonging to the mesenchymal system such as osteoblasts, adipocytes, muscle cells, and chondrocytes.
  • tissue-specific progenitor cells are cells that are slightly differentiated from the above tissue-specific stem cells, but are not terminally differentiated and have the ability to differentiate into specific cells in the same way as tissue-specific stem cells. A cell that has been prepared.
  • the tissue-specific progenitor cells are preferably hematopoietic progenitor cells and mesenchymal progenitor cells, more preferably hematopoietic progenitor cells.
  • Hematopoietic progenitor cell refers to a cell derived from a hematopoietic stem cell and not terminally differentiated. Hematopoietic progenitor cells can be classified into pluripotent hematopoietic progenitor cells that can differentiate into two to three types of blood cells, and unipotent hematopoietic progenitor cells whose differentiation is limited to one blood cell. Hematopoietic progenitor cells produce two types of progenitor cells, myeloid or lymphoid.
  • progenitor cells that finally differentiate into erythrocytes, granulocytes (neutrophils, eosinophils, basophils), monocytes, and megakaryocytes are generated. Lymphoid progenitor cells produce progenitor cells that terminally differentiate into T cells, B cells and NK cells.
  • hematopoietic progenitor cells are myeloid cells [granulocytes (eosinophils, neutrophils, basophils), monocytes, macrophages, mast cells], erythroid cells [erythrocytes], megakaryocytes [ It can be a progenitor cell of megakaryocyte, platelet] and a progenitor cell of lymphoid cell [T cell, B cell, plasma cell]. These progenitor cells of each lineage can be classified by discriminating cell markers using a method known per se.
  • CD13 is known as a myeloid cell marker
  • CD14 as a monocyte and macrophage marker
  • CD41 as a megakaryocyte marker
  • glycophorin as an erythroid marker
  • CD19 as a B cell marker
  • CD3 as a T cell marker Yes.
  • hematopoietic progenitor cells can be differentiated into multi-lineage blood cells (mixed colony forming unit: CFU-Mix), neutrophils, and granulocyte-macrophage colony forming units (CFU-GM) that form macrophage colonies.
  • CFU-Mix mixed colony forming unit
  • CFU-GM granulocyte-macrophage colony forming units
  • a pluripotent stem cell means a stem cell having pluripotency that can be differentiated into many cells. Such pluripotent stem cells have both “differentiating ability” and “self-replicating ability” which is the ability to proliferate while maintaining undifferentiation.
  • the pluripotent stem cells that are the subject of the present invention include embryonic stem cells (ES cells) and “pluripotency of differentiation” and “self-renewal ability” in the same manner as embryonic stem cells by introducing several types of genes into somatic cells. Artificially induced pluripotent stem cells (iPS cells) are included.
  • the “pluripotent stem cell-derived cell” as used in the present invention is a pluripotent stem cell-derived cell obtained by slightly differentiating a pluripotent stem cell, and has at least a differentiation ability and a self-replication ability capable of differentiating into a hematopoietic cell. Means a cell. Specifically, mesodermal cells can be exemplified.
  • Tissue-specific stem cells eg, hematopoietic stem cells, mesenchymal stem cells
  • tissue-specific progenitor cells eg, hematopoietic progenitor cells
  • pluripotent stem cells targeted by the present invention are derived from vertebrates.
  • derived from birds (chicken, etc.) or mammals human, mouse, rat, rabbit, monkey, chimpanzee, pig, horse, goat, sheep, cow, dog, cat, wallaby, kangaroo, etc.
  • Cells derived from mammals are preferred, and among mammals, rodents (mouse, rat, rabbit, etc.) commonly used as humans or experimental animals are particularly preferred.
  • tissue-specific stem cells refers to increasing the number of undifferentiated cells due to cell division, while “proliferation” refers to increasing the total number of non-terminally differentiated and terminally differentiated cells.
  • amplification of tissue-specific stem cells means that the number of tissue-specific stem cells having self-replicating ability and pluripotency increases by dividing. That is, tissue-specific stem cell amplification means that tissue-specific stem cells proliferate autonomously while maintaining the undifferentiated nature of tissue-specific stem cells.
  • Proliferation of tissue-specific stem cells or tissue-specific progenitor cells in the present invention includes amplification of the tissue-specific stem cells. The proliferation also includes the proliferation of tissue-specific progenitor cells that do not undergo terminal differentiation.
  • the proliferation of hematopoietic stem cells and hematopoietic progenitor cells is evaluated by analyzing the aforementioned hematopoietic stem cell marker (for example, counting of cells corresponding to CD34 (+) by FACS), quantitative analysis based on colony assay, etc. be able to.
  • the mesenchymal stem cells are amplified by analyzing the mesenchymal stem cell markers (for example, CD9, CD13, CD29, CD44, CD55, CD59, CD73, CD105, CD140b, CD166, MHC Class I (+ ), And quantitative analysis based on a colony assay method.
  • Other mesenchymal stem cell markers include VCAM-1, STRO-1, c-Kit, Sca-1, Nucleostemin, CDCP1, BMPR2, BMPR1A, and BPMR1B.
  • Umbilical cord blood refers to blood that can be obtained from the umbilical cord of mammals, preferably humans.
  • “Bone marrow-derived blood” refers to blood contained in spinal fluid present in the bone marrow of mammals, preferably humans.
  • Umbilical cord blood and bone marrow can be obtained from cord blood bank and bone marrow bank, respectively.
  • Novel peptide (the peptide of the present invention)
  • the peptide targeted by the present invention is characterized by having at least one of the following actions: (1) an action of suppressing differentiation of hematopoietic stem cells or hematopoietic progenitor cells, preferably an action of suppressing differentiation of hematopoietic stem cells or hematopoietic progenitor cells into myeloid cells, (2) An effect of promoting amplification of mesenchymal stem cells, or (3) An effect of inducing hematopoietic stem cells from pluripotent stem cells.
  • This peptide consists of a partial sequence of the extracellular domain located at positions 24 to 303 of human Dlk1 (delta-like 1 homolog) protein (SEQ ID NO: 11) consisting of 383 amino acid residues in total length.
  • this peptide is also referred to as “KS-13” for convenience in the present specification.
  • the peptide targeted by the present invention is a peptide obtained by deleting, substituting or adding one or more, preferably about 1 to 6 amino acids in the amino acid sequence of KS-13 (SEQ ID NO: 1).
  • peptides having at least one action of any one of (1) to (3) above are included.
  • preferred peptides are those having the action of (1) suppressing the differentiation of hematopoietic stem cells or hematopoietic progenitor cells into myeloid cells. More preferably, in addition to the action (1), one of the actions (2) and (3), preferably both the actions (2) and (3) are provided.
  • the peptide targeted by the present invention is as described above, but it is 60% or more, preferably 75% or more, more preferably 80% or more, still more preferably 85% to 90% or more in the ratio of SEQ ID NO: 1. It preferably has the same or similar amino acid sequence as shown in.
  • the ratio of “identity” or “similarity” can be calculated from the ratio of identical or similar amino acids overlapping with the total number of amino acid residues of the amino acid sequence shown in SEQ ID NO: 1.
  • similar amino acids mean amino acids that are similar in physicochemical properties.
  • similar amino acids include aromatic amino acid groups (Phe, Trp, Tyr), aliphatic amino acid groups (Ala, Leu, Ile).
  • the position of the substitution, deletion or addition is The peptide obtained as a result only needs to have one of the actions (1) to (3) described above.
  • the peptide obtained by substitution, deletion or addition has (1) the action of suppressing the differentiation of hematopoietic stem cells or hematopoietic progenitor cells into myeloid cells, more preferably the action of (1)
  • it has one of the actions (2) and (3), preferably both the actions (2) and (3).
  • the peptide obtained by substitution, deletion or addition has a differentiation-inhibiting action on hematopoietic stem cells or hematopoietic progenitor cells, as described in Experimental Example 9 described later, colonies of hematopoietic stem cells or hematopoietic progenitor cells This can be confirmed by evaluating the effect on formation.
  • CFU-F Colony forming unit-fibroblast
  • HPP-CFC High Proliferative potential colony forming cells
  • LTC- LTC- It can be confirmed by assessing the presence of IC- (Long-Term-Culture-Initiating-Cell), transplanted into recipient mice, and evaluating the ability of bone marrow to reconstruct in mice and the presence of SCR (SCID-repopulating) cells in humans.
  • IC- Long-Term-Culture-Initiating-Cell
  • a peptide obtained by substitution, deletion or addition for example, a peptide represented by the following amino acid sequence and having the above action can be exemplified.
  • mouse Dlk1 protein corresponding to an ortholog of human Dlk1 protein has an amino acid sequence consisting of a total length of 385 amino acid residues (SEQ ID NO: 12).
  • SEQ ID NO: 12 amino acid sequence consisting of a total length of 385 amino acid residues.
  • the region at positions 24 to 305 is the extracellular domain
  • the partial sequence sequence consisting of 13 amino acid residues at positions 124 to 136: SEQ ID NO: 3
  • rodents such as rats and rats, and mammals such as pigs, horses, goats, cattle, wallabies, and giant kangaroos; vertebrates such as birds such as zebra finch, platypus, turkey, and chicken are human Dlk1 It has Dlk1 protein corresponding to protein homologue or orthologue.
  • the partial sequences corresponding to the above KS-13 located in the extracellular domain of these Dlk1 proteins are shown in Table 1 together with the amino acid sequences of peptides derived from human-derived KS-13 and mouse KS-13. Amino acid residues that are conserved in common with human-derived KS-13 are underlined.
  • the third amino acid from the N-terminus (corresponding to “XXb” in the amino acid sequence of SEQ ID NO: 2) may be either Lys or His. It can be seen that the fifth amino acid (corresponding to “XXd” in the amino acid sequence of SEQ ID NO: 2) may be either Asp or Ala.
  • the 10th amino acid from the N-terminal (corresponding to “XXf” in the amino acid sequence of SEQ ID NO: 2) may be either Ile or Met.
  • the third amino acid from the N-terminal may be deleted, and the fifth amino acid from the N-terminal (“XXd” in the amino acid sequence of SEQ ID NO: 2). Is equivalent to either Asp or Glu.
  • the 5th amino acid from the N-terminus may be deleted, and the 9th amino acid from the N-terminus (in the amino acid sequence of SEQ ID NO: 2, “XXe”). Equivalent) can be either Val or Ile.
  • KS-13 is the most preferred peptide, but as shown in SEQ ID NO: 2, any one of amino acids 1 to 6 (XXa to XXf) in the amino acid sequence is substituted with another amino acid. It may be a peptide consisting of 12 amino acid residues with one less N-terminal or C-terminal amino acid, or a peptide consisting of 11 amino acid residues with one less amino acid. .
  • the N-terminal amino acid may be deleted up to 5 or 4 to 3 amino acids.
  • the peptide formed by adding one or more amino acids has 5 amino acids derived from human Dlk1 protein at the N-terminus and / or C-terminus of the amino acid sequence. For example, four, three, two or one added.
  • a method for substituting, adding, or deleting one or more amino acids in the amino acid sequence of KS-13 has already been used conventionally in the art.
  • DNA encoding the peptide For example, site-specific mutagenesis [Methods in Enzymology, 154, 350, 367-382 (1987); 100, 468 (1983); Nucleic Acids Res., 12, 9441 (1984) ; Sequence Biochemistry Experiment Course 1 "Gene Research Method II", edited by Japanese Biochemical Society, p105 (1986)], chemical synthesis means such as phosphate triester method and phosphate amidite method [J. Am Chem.
  • DNA synthesis can be performed by chemical synthesis by the phosphoramidite method or triester method, and can also be performed on a commercially available automatic oligonucleotide synthesizer.
  • Double-stranded fragments are chemically synthesized single strands produced by synthesizing complementary strands and annealing the strands together under appropriate conditions, or adding complementary strands using DNA polymerase with appropriate primer sequences. It can also be obtained from things.
  • the peptide of the present invention can also be synthesized by a solid phase synthesis method using a peptide synthesizer, and amino acid substitution, addition or deletion can change the type of protected amino acid when using a peptide synthesizer. Can be easily performed.
  • special amino acids such as D-amino acid and sarcosine (N-methylglycine) can be introduced.
  • the peptide of the present invention may be in a free state, in the form of a salt, or in the form of a solvate containing a hydrate.
  • the salt include physiologically acceptable, that is, pharmaceutically acceptable acid addition salts and base salts.
  • acid addition salts include inorganic acid salts such as hydrochloride, hydrobromide, nitrate and sulfate; or sulfonic acid salts such as methanesulfonic acid and toluenesulfonic acid; organic acids such as trifluoroacetic acid and succinic acid.
  • Examples of the base salt include alkali metal salts such as sodium, potassium and lithium; or alkaline earth metal salts such as calcium and magnesium.
  • the peptides of the present invention include peptides whose C-terminus is a carboxyl group (—COOH), carboxylate (—COO ⁇ ), amide (—CONH 2 ), or ester (—COOR).
  • R in the ester for example, an alkyl group having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl and n-butyl; a cycloalkyl group having 3 to 8 carbon atoms such as cyclopentyl and cyclohexyl; phenyl, aryl groups having 6 to 12 carbon atoms such as ⁇ -naphthyl; phenyl-C 1-2 alkyl groups such as benzyl and phenethyl; C 7-14 such as ⁇ -naphthyl-C 1-2 alkyl groups such as ⁇ -naphthylmethyl; Examples thereof include an aralkyl group;
  • the peptide of the present invention includes those in which the carboxyl group is amidated or esterified.
  • the amino group of the amino acid residue at the N-terminal is protected with a protecting group (for example, a C 1-6 acyl group such as C 1-6 alkanoyl such as formyl group or acetyl group).
  • a protecting group for example, a C 1-6 acyl group such as C 1-6 alkanoyl such as formyl group or acetyl group.
  • Those modified with fatty acids saturated fatty acids of C 8-18
  • N-terminal glutamine residues that can be cleaved in vivo, pyroglutamine oxidized, on the side chain of amino acids in the molecule substituent (e.g.
  • a suitable protecting group e.g., formyl groups, C of a C 1-6 alkanoyl group such as acetyl group 1-6
  • a suitable protecting group e.g., formyl groups, C of a C 1-6 alkanoyl group such as acetyl group 1-6
  • complex peptides such as so-called glycopeptides to which sugar chains are bound.
  • the peptides of the present invention include those in which an imidazolyl group or SH group is alkylated (for example, methylated), aralkylated (for example, benzylated), or acylated (for example, acetylated or benzoylated).
  • the fatty acid-modified products include myristoylated peptides in which the amino group of the N-terminal amino acid residue is modified with myristic acid.
  • (III) Agent for suppressing differentiation of hematopoietic stem cells or hematopoietic progenitor cells The peptide of the present invention obtained as described above, or a pharmaceutically acceptable salt or solvate thereof, is allowed as it is or, if necessary, cell physiologically acceptable It can be used as an inhibitor of differentiation of hematopoietic stem cells or hematopoietic progenitor cells after mixing with a possible carrier to make a composition.
  • the peptide of this invention consists of 1 type independent, 2 or more types can also be used in arbitrary combinations.
  • human-derived KS-13 (SEQ ID NO: 1), rodent-derived peptide (SEQ ID NO: 3), pig-derived peptide (SEQ ID NO: 4), chicken-derived peptide (SEQ ID NO: 10), and more Preferred are human-derived KS-13 (SEQ ID NO: 1) and rodent-derived peptides (SEQ ID NO: 3).
  • the differentiation inhibitor includes, for example, the peptide of the present invention or a pharmaceutically acceptable salt or solvate thereof (hereinafter collectively referred to as “the peptide of the present invention”), water or an appropriate buffer (eg, (Phosphate buffer, PBS, Tris-HCl buffer, etc.) can be prepared by dissolving to an appropriate concentration. Moreover, you may mix
  • an appropriate buffer eg, (Phosphate buffer, PBS, Tris-HCl buffer, etc.
  • the differentiation inhibitor of the present invention can be used, for example, to proliferate hematopoietic stem cells or hematopoietic progenitor cells by adding an effective amount of the peptide of the present invention to the medium and culturing hematopoietic stem cells or hematopoietic progenitor cells. . Therefore, the present invention also provides a method for proliferating hematopoietic stem cells or hematopoietic progenitor cells, comprising culturing hematopoietic stem cells or hematopoietic progenitor cells in the presence of the peptide of the present invention or the differentiation inhibitor of the present invention.
  • the proliferation method includes a method of amplifying hematopoietic stem cells.
  • the peptide of the present invention can also be used as a component of a reagent kit for in vitro proliferation of hematopoietic stem cells and hematopoietic progenitor cells.
  • the peptide of the present invention or a pharmaceutically acceptable salt or solvate thereof can be used as it is, or, if necessary, a cell physiologically acceptable carrier. It can be used as an agent for promoting the amplification of mesenchymal stem cells after mixing with the composition.
  • peptide consists of 1 type individually, 2 or more types can also be used in arbitrary combinations.
  • human-derived KS-13 (SEQ ID NO: 1), rodent-derived peptide (SEQ ID NO: 3), pig-derived peptide (SEQ ID NO: 4), chicken-derived peptide (SEQ ID NO: 10), and more Preferred are human-derived KS-13 (SEQ ID NO: 1) and rodent-derived peptides (SEQ ID NO: 3).
  • the amplification promoter is prepared, for example, by dissolving the peptide of the present invention in water or an appropriate buffer (eg, phosphate buffer, PBS, Tris-HCl buffer, etc.) so as to have an appropriate concentration. be able to. Moreover, you may mix
  • an appropriate buffer eg, phosphate buffer, PBS, Tris-HCl buffer, etc.
  • the amplification promoter of the present invention can be used, for example, to amplify mesenchymal stem cells by adding an effective amount of the peptide of the present invention to the medium and culturing the mesenchymal stem cells. Therefore, the present invention also provides a method for amplifying mesenchymal stem cells, comprising culturing mesenchymal stem cells in the presence of the peptide of the present invention or the amplification promoter of the present invention.
  • the peptide of the present invention can also be used as a component of a reagent kit for in vitro amplification of mesenchymal stem cells.
  • (V) Hematopoietic stem cell inducer The peptide of the present invention or a pharmaceutically acceptable salt or solvate thereof (the peptide of the present invention) is mixed as it is or with a cell physiologically acceptable carrier as necessary. After preparing the composition, it can be used as an inducer of hematopoietic stem cells. In addition, even if this invention peptide consists of 1 type individually, 2 or more types can also be used in arbitrary combinations.
  • human-derived KS-13 (SEQ ID NO: 1), rodent-derived peptide (SEQ ID NO: 3), pig-derived peptide (SEQ ID NO: 4), chicken-derived peptide (SEQ ID NO: 10), and more Preferred are human-derived KS-13 (SEQ ID NO: 1) and rodent-derived peptides (SEQ ID NO: 3).
  • the inducer is prepared, for example, by dissolving the peptide of the present invention in water or an appropriate buffer (eg, phosphate buffer, PBS, Tris-HCl buffer, etc.) so as to have an appropriate concentration. Can do. Moreover, you may mix
  • an appropriate buffer eg, phosphate buffer, PBS, Tris-HCl buffer, etc.
  • the inducing agent of the present invention is obtained by, for example, adding an effective amount of the peptide of the present invention to a medium and culturing pluripotent stem cells such as embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells). Can be used to induce and produce hematopoietic stem cells. Therefore, the present invention also provides a method for inducing or producing hematopoietic stem cells, comprising culturing pluripotent stem cells in the presence of the peptide of the present invention or the inducer of the present invention.
  • pluripotent stem cells such as embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells).
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • the peptide of the present invention can also be used as a component of a reagent kit for in vitro preparation of hematopoietic stem cells.
  • the iPS cells targeted by the present invention include not only iPS cells derived from healthy subjects prepared from healthy subjects, but also iPS cells derived from patients prepared from patients with some disease.
  • the patient-derived iPS cells are preferably preliminarily removed from the cause of the disease by a recombination technique such as gene transfer before being subjected to the above culture, and are induced from the iPS cells by the method of the present invention.
  • the prepared hematopoietic stem cells are used by being administered to the patient in order to treat the disease of the patient.
  • tissue specific stem cells or tissue specific progenitor cells tissue specific stem cell in vitro amplification method
  • the method of proliferating tissue-specific stem cells or tissue-specific progenitor cells of the present invention includes (1) an action of suppressing differentiation of hematopoietic stem cells or hematopoietic progenitor cells, and (2) an action of promoting amplification of mesenchymal stem cells, Culturing tissue-specific stem cells or tissue-specific progenitor cells in the presence of the peptide of the present invention having at least one action.
  • hematopoietic stem cells As hemorrhoid tissue-specific stem cells, hematopoietic stem cells and mesenchymal stem cells are preferable, and as hematopoietic progenitor cells, hematopoietic progenitor cells can be mentioned.
  • the amplification method of the present invention includes (1) a method comprising culturing hematopoietic stem cells or hematopoietic progenitor cells in the presence of the peptide of the present invention having an action of inhibiting differentiation of hematopoietic stem cells or hematopoietic progenitor cells; And (2) a method comprising a step of culturing mesenchymal stem cells in the presence of the peptide of the present invention having an action of promoting amplification of mesenchymal stem cells.
  • tissue-specific stem cell or tissue-specific progenitor cell used in the method of the present invention include a group of cells containing at least a tissue-specific stem cell or a tissue-specific progenitor cell. Either of them may be isolated or both of them may be used. Moreover, it contains at least one of tissue-specific stem cells or tissue-specific progenitor cells, and may further contain other cells. Moreover, the fraction containing the tissue specific stem cell or the tissue specific progenitor cell fractionated from the cell group containing the tissue specific stem cell or the tissue specific progenitor cell may be sufficient.
  • tissue-specific stem cell or tissue-specific progenitor cell may be collected from any tissue that contains vertebrates such as birds and mammals, preferably mammalian stem cells such as mice and rats belonging to humans and rodents.
  • tissue-specific stem cells or tissue-specific progenitor cell can be collected from fetal liver, fetal bone marrow, bone marrow, peripheral blood, umbilical cord blood containing hematopoietic stem cells, or peripheral blood mobilized with stem cells by administration of cytokines and / or anticancer agents. .
  • the mesenchymal stem cells can be collected from bone marrow, umbilical cord, placenta, amniotic membrane, allantoic membrane, umbilical cord blood, gingiva, fat, muscle, and other cells derived from mesenchymal stem cells.
  • tissue-specific stem cells or tissue-specific progenitor cells When culturing tissue-specific stem cells or tissue-specific progenitor cells in the presence of the peptide of the present invention, a culture method using a so-called culture plate, petri dish or flask is possible.
  • the culture system can also be improved by a bioreactor that can be controlled in a controlled and dense manner (Schwartz, Proc. Natl. Acad. Sci. USA, 88: 6760, 1991; Koller, MR, Bio / Technology, 11: 358, 1993; Koller, MR, Blood, 82: 378, 1993; Palsson, BO, Bio / Technology, 11: 368,1993).
  • the medium used for the culture is not particularly limited as long as the proliferation and survival of tissue-specific stem cells or tissue-specific progenitor cells are not impaired.
  • the medium used for the culture is not particularly limited as long as the proliferation and survival of tissue-specific stem cells or tissue-specific progenitor cells are not impaired.
  • the pH of the medium is preferably about 6 to 8.
  • the medium contains cell stimulating factors (cytokines), hormones such as hematopoietic hormones such as EPO (erythropoietin) and insulin, Wnt (Thimoth, A. W., Blood, 389: 3624-3635,1997 ) Differentiation and growth regulators such as gene products, transport proteins such as transferrin, demethylating agents such as 5azaD and TSA (Exp. Hematol. 34: 140, ⁇ 2006), extracellular matrix proteins such as Fibronectin and Collagen (Curr Opin) Biotechnol. 2008 October; 19 (5): 534-540 .; Cell 2007 June; 129 (7): 1377-1388.) And the like.
  • cytokines cell stimulating factors
  • hormones such as hematopoietic hormones such as EPO (erythropoietin) and insulin
  • Wnt Thimoth, A. W., Blood, 389: 3624-3635,1997
  • Differentiation and growth regulators such
  • a cell stimulating factor is mixed with the peptide of the present invention in a medium, and hematopoietic stem cells or hematopoietic progenitor cells are cultured in the presence of the peptide of the present invention and the cell stimulating factor, thereby proliferating these cells while suppressing differentiation.
  • hematopoietic stem cells can be amplified more efficiently.
  • a cell stimulating factor is a factor that gives tissue-specific stem cells and progenitor cells stimulation such as proliferation, differentiation, survival, and migration. Such cell stimulating factors are not particularly limited as long as they do not interfere with the proliferation of tissue-specific stem cells or tissue-specific progenitor cells.
  • SCF stem cell factor
  • IL- 3 interleukin-3
  • GM-CSF granulocyte / macrophage colony-stimulating factor
  • IL-6 interleukin-6
  • soluble IL-6 receptor IL-11 (Interleukin-11)
  • Flt-3L Flt-like tyrosine kinase-3 (Flt-3) ligand
  • EPO erythropoietin
  • TPO thrombopoietin
  • G-CSF granulocyte colony stimulating factor
  • TGF- ⁇ Transforming growth factor- ⁇
  • MIP-1 ⁇ George, D., J. Exp. Med. 167: 1939-1944, 1988
  • Flt3 / Flk2-ligand FGF (fibroblast growth factor), etc.
  • These stimulating factors are detailed in Gallard, R.E., The cytokine facts book, AcademicPress, 1994.
  • the cell stimulating factor to be mixed in the medium may be one type or two or more types. Preferred examples include SCF, G-CSF, IL-3, IL-6, sIL-6L, IL-11, Flt-3L, and TPO, but SCF is particularly essential.
  • the concentration of the cell stimulating factor added to the medium is 1 to 500 ng / mL, preferably 5 to 300 ng / mL, more preferably 10 to 100 ng / mL.
  • the peptide of the present invention can be added to the medium so that the final concentration in the medium is 1 to 500 ⁇ g / mL, preferably 5 to 300 ⁇ g / mL, more preferably 10 to 100 ⁇ g / mL.
  • tissue-specific stem cells or tissue-specific progenitor cells can be added to the medium so that the cell density is normally used in the art. Culturing is usually performed under an atmosphere of about 30 to 40 ° C. and about 5 to 10% CO 2 for a time during which desired growth is achieved. You may perform ventilation
  • the method for inducing or producing hematopoietic stem cells of the present invention includes (3) culturing pluripotent stem cells or pluripotent stem cell-derived cells in the presence of the peptide of the present invention having an action of inducing hematopoietic stem cells from pluripotent stem cells. The process of carrying out is included.
  • the pluripotent stem cells used in the method of the present invention include a cell group including embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).
  • the collection source of embryonic stem cells includes the inner cell mass of blastocysts such as birds and mammals, preferably blastocysts of mammals such as mice and rats belonging to humans and rodents.
  • examples of the collection source of the induced pluripotent stem cells include all tissues including the skin and blood of the above vertebrates, preferably mammals.
  • the iPS cells targeted by the present invention include not only iPS cells derived from healthy subjects prepared from healthy subjects, but also iPS cells derived from patients prepared from patients with some disease.
  • the patient-derived iPS cells are preferably preliminarily removed from the cause of the disease by a recombination technique such as gene transfer before being subjected to the above culture, and are induced from the iPS cells by the method of the present invention.
  • the prepared hematopoietic stem cells are used by being administered to the patient in order to treat the disease of the patient.
  • a culture method using a so-called culture plate, petri dish or flask is possible.
  • the culture system can also be improved by a bioreactor that is mechanically controlled and capable of culturing at high density (Schwartz, Proc. Natl. Acad. Sci. USA, 88: 6760, 1991; Koller, MR, Bio / Technology, 11: 358, 1993; Koller, MR, Blood, 82: 378, 1993; Palsson, BO, Bio / Technology, 11: 368,1993).
  • the medium used for the culture is not particularly limited as long as proliferation and survival of pluripotent stem cells, cells derived from pluripotent stem cells, hematopoietic stem cells and hematopoietic progenitor cells are not impaired, but for example, about 5 to about 20% Minimum essential medium (MEM) containing fetal bovine serum, Dulbecco's modified Eagle medium (DMEM), IMDM medium, RPMI-1640 medium, 199 medium, SF-02 medium (Sanko Junyaku), Opti-MEM medium (GIBCO BRL) and hematopoiesis Preferred examples include X-VIVOL10 (Lonza), which is a medium for culturing stem cells and hematopoietic progenitor cells.
  • the pH of the medium is preferably about 6 to 8.
  • the medium contains cell stimulating factors (cytokines), hormones such as hematopoietic hormones such as EPO (erythropoietin) and insulin, Wnt (Thimoth, A. W., Blood, 389: 3624-3635,1997 ) Differentiation and growth regulators such as gene products, transport proteins such as transferrin, demethylating agents such as 5azaD and TSA (Exp. Hematol. 34: 140, ⁇ 2006), extracellular matrix proteins such as Fibronectin and Collagen (Curr Opin) Biotechnol.
  • cytokines cell stimulating factors
  • hormones such as hematopoietic hormones such as EPO (erythropoietin) and insulin
  • Wnt Thimoth, A. W., Blood, 389: 3624-3635,1997
  • Differentiation and growth regulators such as gene products, transport proteins such as transferrin, demethylating agents such as 5azaD and TSA (Exp. Hematol.
  • L-glutamine, Monothioglycerol, L-ascorbic acid, antibiotics, etc. can be further contained .
  • a cell stimulating factor is blended in a medium together with the peptide of the present invention, and pluripotent stem cells or cells derived from pluripotent stem cells are cultured in the presence of the peptide of the present invention and the cell stimulating factor, whereby the myeloid system of these cells Cell differentiation can be suppressed, and as a result, differentiation into hematopoietic stem cells can be induced.
  • a blood cell stimulating factor is a factor that gives hematopoietic cells stimulation such as proliferation, differentiation, survival, and migration.
  • a cell stimulating factor is not particularly limited as long as it does not interfere with the proliferation of hematopoietic stem cells or hematopoietic progenitor cells.
  • SCF, IL-3, GM-CSF, IL-6, soluble IL- 6 receptors, IL-11, Flt-3L, EPO, TPO, G-CSF, TGF- ⁇ , MIP-1 ⁇ (George, D., J. Exp. Med. 167: 1939-1944, 1988), Flt3 / Flk2-ligand etc. are mentioned.
  • the cell stimulating factor to be mixed in the medium may be one type or two or more types. Preferred examples include SCF, G-CSF, IL-3, IL-6, sIL-6L, IL-11, Flt-3L, and TPO, but SCF is particularly essential.
  • the concentration of the cell stimulating factor added to the medium is 1 to 500 ng / mL, preferably 5 to 300 ng / mL, more preferably 10 to 100 ng / mL.
  • the peptide of the present invention can be added to the medium so that the final concentration in the medium is 1 to 500 ⁇ g / mL, preferably 5 to 300 ⁇ g / mL, more preferably 10 to 100 ⁇ g / mL.
  • a pluripotent stem cell or a pluripotent stem cell origin cell can be added to the said culture medium so that it may become the cell density normally used in this field
  • the peptide of the present invention can be added to the medium so that the final concentration in the medium is 1 to 500 ⁇ g / mL, preferably 5 to 300 ⁇ g / mL, more preferably 10 to 100 ⁇ g / mL.
  • a pluripotent stem cell or a pluripotent stem cell origin cell can be added to the said culture medium so that it may become the cell density normally used in this field
  • the “cell population containing hematopoietic stem cells or hematopoietic progenitor cells” can be used as a composition (graft) for blood cell transplantation in place of conventional bone marrow transplantation or umbilical cord blood transplantation.
  • the “cell population containing hematopoietic stem cells or hematopoietic progenitor cells” means the hematopoiesis obtained by the amplification method (V) or the production method (VI) of the present invention described above. It means a cell population containing stem cells, and it is not always necessary to isolate and purify only hematopoietic stem cells. In general, when hematopoietic cells are produced ex vivo from pluripotent stem cells and cells derived from pluripotent stem cells, it is not possible to produce hematopoietic stem cells only purely. Germline cells, ectoderm cells, and endoderm cells are known to be included.
  • hematopoietic stem cells can be purified and collected using a flow cytometry technique, and the prepared hematopoietic stem cells can be purified and transplanted for therapeutic purposes.
  • hematopoietic stem cells when hematopoietic stem cells are generated or expanded ex vivo, it is not possible to purely generate or proliferate hematopoietic stem cells, and the resulting cell population includes cells from all differentiation stages of myeloid and lymphoid cells. It is known to be included. However, these cells are also necessary for the living body, and improvement of the hematopoietic function can be expected by administering the entire expanded cell population to the living body.
  • cell transplantation for the treatment of mammals with impaired hematopoietic function requires a rapid effect on improving hematopoietic function. Therefore, rather than transplanting uniform undifferentiated hematopoietic stem cells, the cells are differentiated to some extent.
  • An excellent therapeutic effect can be expected by transplanting a heterogeneous cell population including a multi-lineage blood cell group.
  • a uniform hematopoietic stem cell population containing only hematopoietic stem cells that have maintained undifferentiation is also included in the cell population.
  • Such a uniform cell population can be obtained from the heterogeneous cell population using a method known per se using FACS or the like.
  • the cell population prepared and amplified by the method of the present invention can be used for various diseases in addition to these treatments when performing systemic X-ray therapy or advanced chemotherapy for leukemia.
  • treatment that causes bone marrow suppression as a side effect such as chemotherapy and radiation therapy for solid cancer patients
  • bone marrow is collected before the operation, and hematopoietic stem cells or hematopoietic progenitor cells are amplified in vitro and the operation is performed.
  • hematopoietic system failure due to side effects can be recovered early, more powerful chemotherapy can be performed, and the therapeutic effect of chemotherapy can be improved.
  • the cell population of the present invention includes diseases associated with impaired hematopoietic function, such as aplastic anemia, congenital immunodeficiency, congenital metabolic disorders, myelodysplastic syndrome, leukemia, malignant lymphoma, multiple myeloma, Myelofibrosis, chronic granulomatosis, double immunodeficiency syndrome, agammaglobulinemia, Wiskott-Aldrich syndrome, immune deficiency syndrome such as acquired immune deficiency syndrome (AIDS), thalassemia, hemolytic anemia due to enzyme deficiency, sickle-like It can be used as a prophylactic and / or therapeutic agent for congenital anemia such as erythrocytosis, lysosomal storage diseases such as Gaucher disease and mucopolysaccharidosis, and adrenoleukodysplasia.
  • diseases associated with impaired hematopoietic function such as aplastic anemia, congenital immunodeficiency
  • Such a cell population is used after being mixed with a hematopoietic stem cell and hematopoietic progenitor cells proliferated or prepared by the method of the present invention, together with a pharmacologically acceptable carrier or buffer as necessary, to obtain a pharmaceutical composition.
  • a pharmacologically acceptable carrier or buffer as necessary
  • the pharmacologically acceptable carrier various organic or inorganic carrier substances commonly used as pharmaceutical materials are used.
  • suspending agents isotonic agents, buffers, and soothing agents in suspensions.
  • formulation additives such as preservatives, antioxidants, thickeners and stabilizers can be used.
  • Transplantation of a cell population or a pharmaceutical composition prepared therefrom may be performed in the same manner as conventional bone marrow transplantation or umbilical cord blood transplantation.
  • parenteral administration eg, intravenous injection, local injection, etc.
  • Suitable formulations of the pharmaceutical composition include aqueous and non-aqueous isotonic sterile injection solutions.
  • the dosage of the cell population of the present invention or the pharmaceutical composition prepared therefrom depends on the activity of the peptide of the present invention, the severity of the disease, the species of animal to be administered, the drug acceptability of the administered subject, sex, weight, age, etc.
  • the amount of hematopoietic stem cells per adult is not less than 1 ⁇ 10 6 cells / kg, preferably 1 ⁇ 10 6 to 1 ⁇ 10 10 cells / kg, more preferably 2 ⁇ 10 6 ⁇ 1 ⁇ 10 9 cells / kg.
  • the antibodies of the present invention include polyclonal antibodies and monoclonal antibodies.
  • a monoclonal antibody is preferable.
  • a preferred antibody includes an antibody (anti-KS-13 antibody) against KS-13 (SEQ ID NO: 2) of the peptides of the present invention.
  • the monoclonal antibody of the present invention is an antibody having immunoglobulin classes and subclasses of vertebrates such as mammals including birds and rodents, preferably mammals such as humans, mice or rats. Antibodies belonging to any immunoglobulin class and subclass may be used, but the preferred class and subclass is immunoglobulin M (IgM), more preferably IgM ( ⁇ chain).
  • Monoclonal antibodies can be prepared according to known methods as described in Molecular Cloning, A Laboratory Manual, Second Spring (Cold Spring Laboratory Press, 1989) and the like. A specific manufacturing method will be described later in Example 2.
  • the monoclonal antibody of the present invention is preferably a humanized antibody from the viewpoint of reducing antigenicity against humans.
  • a humanized antibody is a chimeric antibody in which a portion other than the variable region (or hypervariable region) of a non-human animal antibody is replaced with an amino acid sequence of human immunoglobulin, and has an affinity for the peptide of the present invention, particularly KS-13. It is an antibody with reduced antigenicity against humans while retaining it.
  • Humanized monoclonal antibodies can be prepared according to known techniques.
  • Example 1 Preparation of Peptide As shown in FIG. 1, hematopoietic stem cells (stained in green in the figure) are close to hepatoblasts (stained in red in the figure) in the embryonic liver. Plays an important role in the amplification of hematopoietic stem cells. Therefore, in order to purify and collect these hepatoblasts, an attempt was made to produce antibodies that could be used for F1ow cytometry. Designed 10 types of peptides (hereinafter referred to as peptides AJ) that correspond to the extracellular domain from multiple proteins expressed in the cell membrane of hepatoblasts and that have high homology in both mice and humans. Tried.
  • peptides AJ Designed 10 types of peptides
  • rats were immunized with each of these peptides, lymph node cells were collected, and after cell fusion, ELISA was performed. As a result, about 70% of the prepared antibodies were positive for peptide A, but only 10% or less of the prepared antibodies were recognized for peptides other than peptide A.
  • peptide A (SEQ ID NO: 2) has some physiological activity. This was named KS-13 (consisting of 13 amino acids) and used for the following experiments.
  • Example 2 Production of anti-KS-13 antibody (1) Measurement of rat immunity and antibody titer To produce KS-13 antibody (anti-KS-13 antibody), the N-terminal Cys of KS-13 was deleted as a peptide easily recognized as an antigen. Using a peptide consisting of amino acid residues and KLH (Keyhole Limpet Hemocyanin) as a carrier protein, rats were immunized 4 times at intervals of 2 weeks according to a conventional method, and then antibody titer was determined by ELISA using HRP-labeled anti-rat IgG. Was measured. As a result, a sufficient increase in antibody titer was observed.
  • KLH Keyhole Limpet Hemocyanin
  • Sca-1 (+) c-Kit (+) CD45 (+) cells which are hematopoietic stem cell populations, were collected from the livers of 12.5 day old mouse fetuses (1000 ⁇ cells / well).
  • Cell stimulating factors SCF, ⁇ IL-3, IL-6, G-CSF, GM-CSF
  • serum 1.5-10% to the attached medium (X-VIV010) and cultured for 8 days. After culturing, the total cell count was measured, and the serum of the rat (No. 2) whose total cell count was significantly increased compared to the control was considered to neutralize the differentiation-inhibiting effect of KS-13. .
  • FIG. 2 (A) The results of measuring the number of colonies formed after culturing for 12 days are shown in FIG. 2 (A).
  • FIG. 2 (A) the formation of hematopoietic colonies is inhibited in a dose-dependent manner at 10 ⁇ g / mL and 30 ⁇ g / mL in the presence of KS-13, despite the presence of a cell stimulating factor.
  • KS-13 suppresses the differentiation or autonomous proliferation of hematopoietic stem cells (CD45 positive c-Kit positive Sca-1 positive) in the presence of a cell stimulating factor.
  • KS-13 may suppress differentiation and proliferation rather than suppress autonomous proliferation of hematopoietic stem cells (CD45 positive c-Kit positive Sca-1 positive) in the presence of cell stimulating factors. .
  • Experimental Example 2 Amplification of human cord blood CD34 positive hematopoietic stem cells by adding KS-13
  • Experimental method (1-1) Human umbilical cord blood CD34 positive hematopoietic stem cell population (cell population in which hematopoietic stem cells and hematopoietic progenitor cells with slightly advanced differentiation are mixed) is used as KS-13 (1 ⁇ g / mL, 10 ⁇ g / mL)
  • SCF 50ng / mL, TPO 10ng / mL, Flt3L 20ng / mL serum-free synthetic medium for lymphocytes (X-VIVO 10: Takara) serum-free synthetic medium for lymphocytes
  • liquid medium without KS-13 SCF 50ng / mL, TPO 10ng / mL, Flt3L 20ng / mL supplemented serum-free synthetic medium for lymphocytes (X-VIVO 10: Takara)
  • a mixture of various cell stimulating factors Full: SCF 50ng / ml, TPO 10ng / mL, FIt3L 20ng / mL, IL-6 20ng / mL, sIL-6R 20ng / mL
  • a mixture of various cell stimulating factors Full: SCF 50ng / ml, TPO 10ng / mL, FIt3L 20ng / mL, IL-6 20ng / mL, sIL-6R 20ng / mL
  • a mixture of various cell stimulating factors Full: SCF 50ng / ml, TPO 10ng / mL, FIt3L 20ng / mL, IL-6 20ng /
  • the cell stimulating factors used in the positive control are those used in the existing human CD34 positive cell amplification method, and these have been reported to act on the proliferation of human hematopoietic stem cells (Sui X , et al., Proc Natl Acad Sci USA, 1995, 92, 2859-2863; Ebihara Y, et al., Blood 1997, 90, 4363-4368).
  • colony-forming cell assay was further performed according to a conventional method, and various hematopoietic progenitor cells [CFU-GEMM (colony forming unit-granulocyte / erythrocyte / macrophage / megakaryocyte), BFU-E ( The number of burst (forming unit-erythrocyte), CFU-GM (colony forming unit-granulocyte / macrophage), CFU-M (colony forming unit-macrophage), CFU-G (colony forming unit-granulocyte)) was counted.
  • CFU-GEMM colony forming unit-granulocyte / erythrocyte / macrophage
  • BFU-E The number of burst (forming unit-erythrocyte), CFU-GM (colony forming unit-granulocyte / macrophage), CFU-M (colony forming unit-macrophage), CFU-G (colony forming unit-granulocyte)) was
  • FIG. 3, FIG. 4, and FIG. 5 show the changes over time in the total number of cells, the number of CD34 positive cells, and the number of CD34 negative cells, respectively.
  • the rate of increase in the total number of cells obtained by culturing for 11 days in each culture system is the rate of increase in the control If 1 is 1, it becomes as follows.
  • KS-13 does not have a cell differentiation and proliferation activity like a cell stimulating factor.
  • Basal human CD34-positive cells are cultured under control (Basal) conditions, it is assumed that both differentiated proliferation and autonomous proliferation are observed. From the above results, KS-13 is capable of these differentiated proliferation and autonomous proliferation (amplification). It is considered that both are suppressed (differentiation inhibitory action, amplification inhibitory action) or one of them.
  • the rate of increase in the number of CD34 positive cells in each experimental system (control, positive control, KS-13 [1 ⁇ g / mL], KS-13 [10 ⁇ g / mL]) is as follows when the rate of increase in the case of control is 1. become.
  • CD34-negative cells differentiated and mature blood cells
  • KS-13 [10 ⁇ g / mL] was not present at the time of cell seeding, but when human umbilical cord blood CD34-positive hematopoietic stem cell populations were cultured for 11 days, generation of CD34-negative cells and an increase in the number of cells in all experimental systems was recognized.
  • the rate of increase in the number of CD34 negative cells in each experimental system (control, positive control, KS-13 [1 ⁇ g / mL], KS-13 [10 ⁇ g / mL]) is as follows when the rate of increase in the case of control is 1. become.
  • KS-13 has either or both of an amplification inhibitory action and a differentiation inhibitory action on hematopoietic stem cells and hematopoietic progenitor cells. This indicates that the differentiation inhibiting action is more dominant.
  • CD34 positive cells that is, hematopoietic stem cells and hematopoietic progenitor cells proliferate, but at the same time, CD34 negative cells It was confirmed that the number of hematopoietic cells was significantly increased, and also promoted the differentiation and proliferation of hematopoietic stem cells and hematopoietic progenitor cells.
  • Colony forming cell assay (counting the number of hematopoietic progenitor cells) For each experimental system (control, positive control, KS-13 [1 ⁇ g / mL], KS-13 [10 ⁇ g / mL]) for 11 days in liquid culture, various hematopoietic progenitor colonies [CFU-GEMM ( colony forming unit-granulocyte / erythrocyte / macrophage / megakaryocyte), BFU-E (burst forming unit-erythrocyte), CFU-GM (colony forming unit-granulocyte / macrophage), CFU-M (colony forming unit- macrophage), CFU- The results of counting the number of G (colony forming unit-granulocyte)] are shown in FIG.
  • CFU-GEMM As shown in FIG. 6, in the presence of a cell stimulating factor (positive control, indicated as “Full” in the figure), all progenitor cells (CFU-GEMM, BFU-E, CFU-GM, CFU-M, and CFU-G) were observed, indicating that human umbilical cord blood CD34-positive cells were differentiated and proliferated.
  • KS-13 at a concentration of 10 ⁇ g / mL compared to the control (indicated as “Basal” in the figure), CFU-GEMM, which is considered to be the closest to hematopoietic stem cells, is about twice as much depending on the amount of addition.
  • BFU-E an erythroid progenitor cell that has been amplified and relatively differentiated and matured, has been amplified about 2.5 times (Fig. 6 (A)), but it is a myeloid progenitor cell that has been relatively differentiated and matured.
  • Certain CFU-GM, CFU-G, and CFU-M were not amplified (FIG. 6B).
  • CFU-GEMM mixed hematopoietic progenitor cell
  • BFU-E erythroid progenitor cells
  • KS-13 is taken into a part of CD45 (+) c-Kit (+) Sca-1 (+) cells reflecting hematopoietic stem cells.
  • FIG. 8 shows that among the hematopoietic stem cells, there were cells that took up KS-13 and cells that did not take up, which coincided with the results of the flow cytometry in (1) above (FIG. 7). It was also suggested that KS-13 is taken up by hematopoietic stem cells and progenitor cells by endocytosis and reaches the membrane surface and the nucleus.
  • the cell membrane was disrupted by flowing 1% Triton (Wako chemical) through the column, and then a series of proteins that bound to KS-13 was extracted by flowing 6-8 M Urea solution or 2.5 M Glycin solution through the column. The extracted solution was analyzed for protein binding to KS-13 using MudPIT (Multidimensional Protein Identification Technology).
  • proteins expressed on the cell surface change (“Sca-1 (+) c-kit (+)” ⁇ “Sca-1 ( -) c-kit (+) CD71 (-) '' ⁇ ⁇ Sca-1 (-) / c-kit (+) / CD71 (+) '' ⁇ ⁇ Sca-1 (-) / c-kit (-) / CD71 (+) / Ter119 (+) " ⁇ ” Sca-1 (-) / c-kit (-) / CD71 (-) / Ter119 (+) ").
  • This gene expression pattern is a pattern A in which gene expression decreases as hematopoietic stem cells differentiate into erythrocytes (suggested to be important for the maintenance of hematopoietic stem cells), and gene expression occurs at an intermediate stage where hematopoietic stem cells differentiate into erythrocytes.
  • Increased pattern B transient expression increases transiently because hematopoietic stem cells differentiate
  • pattern C increases (hematopoietic stem cells differentiate into erythrocytes as hematopoietic stem cells differentiate into erythrocytes)
  • Examples of genes that apply to pattern A include RasGrp1 and HMGN2
  • genes that apply to pattern B include HDGF
  • genes that apply to pattern C include Prox2 and Dppa3.
  • KS-13 proteins that bind to KS-13 are involved in differentiation. This also revealed that KS-13 can be used not only to amplify or generate tissue-specific stem cells or their progenitor cells, but also to identify new differentiation-related factors. KS-13 antibodies can also be used to identify differentiation-related factors.
  • CFU-F Colony-forming fibroblast assay Liquid medium (Mesencult: Stem Cell Technologies) or KS-13 with mouse bone marrow cells (2x10 7 cells) added at a rate of 50 ⁇ g / mL The cells were cultured in the same liquid medium without addition of, and colony-forming fibroblast (CFU-F) assay was performed to measure the number of CFU-F formation, which is an index of the number of mesenchymal stem cells.
  • KS-13 is not only a hematopoietic stem cell and a hematopoietic progenitor cell, but also other tissue-specific stem cells such as mesenchymal stem cells (for example, mesenchymal stem cells via the transmission pathway of Akt and p53, as identified by MudPIT) It was suggested that it may be effective for the amplification of tissue-specific stem cells such as shin stem cells and skin stem cells.
  • Experimental Example 7 Induction of hematopoietic stem cells and similar cells from pluripotent stem cells
  • embryoid body induced post-embryoid body mesoderm system Cells were collected by flow cytometry, cultured in the presence of SCF and KS-13, and then analyzed for gene expression and hematopoietic ability (FIG. 13).
  • CCE Mouse embryonic stem cells
  • Culture solution composition 15% FBS (Fetal Bovine Serum), 2 mM L-glutamine (SIGMA-ALDRICH) 0.0026% (vol / vol) monothioglycerol (MTG, Wako Pure Chemical Industries, Osaka, Japan), 50 mg / ml L-ascorbic acid (Wako Pure Chemical Industries), 10 U / ml penicillin, 10 mg / ml streptomycin (SIGMA-ALDRICH).
  • CD324 (-) Flk-1 (+) c-Kit (+) cells are cultured for several days in the presence and absence of 50 ⁇ ng / mL rm SCF (Peprotech) and 100 ⁇ g / mL KS-13.
  • CD45, Runx-1, and HoxB4 genes were examined by real-time PCR.
  • TaqMan probe (Life Technologies) was used, and analysis was performed with StepOnePlus (Life Technologies).
  • CD45 gene a marker for hematopoietic cells
  • SCF single culture SCF and KS-13 co-culture on the fourth day after culture
  • SCF single culture SCF single culture on the fifth day after culture. It was.
  • CD45 gene expression was not observed in the co-culture of SCF and KS-13.
  • the expression of Runx-1 and HoxB4 genes was examined over time, the expression of Runx-1 reached its peak on the third day after culture, and the expression of HoxB4 gene was The peak was reached on the fourth day.
  • the CD45 gene is an early marker in hematopoietic cell development, and this gene-positive fraction may have generated hematopoietic stem cells.
  • the expression of Runx-1 gene increases immediately before the development of hematopoietic stem cells.
  • HoxB4 gene is introduced into ES cells, hematopoietic stem cells are induced, but if overexpression continues, leukemia develops.
  • SCF and KS-13 were added to mesodermal cells derived from mouse embryonic stem cells via embryoid body formation, CD324 (-) Flk-1 (+) c-Kit (+) cells. It was estimated that hematopoietic stem cells and cells similar to hematopoietic stem cells were induced after 4 days of culture.
  • semi-solid medium (Methocult M3434; StemCell Technologies) containing cell stimulating factors (50 ng / mL rm SCF, 10 ng / mL rm IL-3, 10 ng / mL rh IL-6, 3 U / mL rh EPO)
  • cell stimulating factors 50 ng / mL rm SCF, 10 ng / mL rm IL-3, 10 ng / mL rh IL-6, 3 U / mL rh EPO
  • HPP-CFC High-proliferative-potential-colony-forming-cells
  • KS-13 has an effect of inducing cells similar to hematopoietic stem cells from mouse pluripotent stem cells.
  • the ES cells used were changed from the CCE strain to the BRC5 strain derived from C57BL6 suitable for transplantation experiments, and hematopoietic stem cell activity was examined. .
  • the cells for transplantation were prepared using the same method as for the CCE strain. Ly-5.1 mice that did not reject transplantation of C57BL6-derived cells were used as recipients. The recipient mice were irradiated with 7.5 gray radiation, mixed with BRC strain-derived cells and 1 ⁇ 10 5 Ly-5.1 mouse bone marrow cells for rescue, and cells were transplanted from the bone marrow and tail vein.
  • KS-13 is effective in inducing hematopoietic stem cells and similar cells from pluripotent stem cells.
  • mice hematopoietic stem cells were purified using flow cytometry. ⁇ Collect and culture in liquid medium supplemented with KS-13 (30 ⁇ g / mL) (serum-free synthetic medium for lymphocytes (X-VIVO 10: Takara) supplemented with 50 ng / mL SCF, 50 ng / mL)) In vitro amplification was attempted.
  • KS-13 serum-free synthetic medium for lymphocytes (X-VIVO 10: Takara) supplemented with SCF 50 ng / mL, TPO 50 ng / mL) was used.
  • in vitro irradiated cells approximately 10000 cells
  • 1x10 5 Ly-5.1 mouse bone marrow cells for rescue were mixed into recipient Ly-5.1 mice, and cells were transplanted from bone marrow and tail vein (In vitro amplification group: 3 animals, control: 2 animals).
  • flow cytometry was used to evaluate the ability to reconstruct bone marrow, which means hematopoietic stem cell activity.
  • bone marrow reconstruction showed higher chimerism than control in all blood cell lines (control group CD45.2 (+) Gr-1 (+): 0.534%, CD45.2 (+) Mac-1 (+): 1.1725%, CD45.2 (+) Thy1.2 (+): 0.0155%, CD45.2 (+) B220 (+): 0.1045% / in vitro amplification group; ⁇ ⁇ CD45.2 (+) Gr-1 (+): 0.546%, CD45.2 (+) Mac-1 (+): 1.69%, CD45.2 (+) Thy1.2 (+): 0.045%, CD45.2 (+) B220 ( +): 0.181%).
  • KS-13 is effective for in vitro amplification of hematopoietic stem cells.
  • KS-13 Cell stimulating factor 50 ng / mL rm SCF, 10 ng / mL rm IL-3, 10 ng / mL rh IL-6, 3 U / mL rh EPO
  • rm pair Myristoylated KS-13 (30 ⁇ g / ml), which is a myristoylated N-terminus of KS-13 (SEQ ID NO: 1) in a semi-solid medium (Methocult M3434; manufactured by StemCell Technologies) containing a modified type, rh: meaning recombinant human type mL) and control peptide (NQVSIGCPCDGKK: SEQ ID NO: 22) (30 ⁇ g / mL) were added, and mouse fetal liver hematopoietic stem cells (CD45 (+) c-Kit (+) Sca-1 (+)) (1000 cells / dish ) And a hematopoietic colony forming cell
  • FIG. 20 shows the results of measuring the number of colonies formed after culturing for 12 days.
  • control peptide the number of colonies: 111.1
  • Myristoylated KS-13 the number of colonies: 93.9
  • Myristoylated KS-13 may suppress the differentiation and proliferation of hematopoietic stem cells (CD45 positive c-Kit positive Sca-1 positive) in the presence of a cell stimulating factor.
  • Urea extraction 0.58: Uncharacterized protein C20orf54. 0.47: Ig lambda chain VI region HA. 0.47: Protein CGI-301. 0.47: Protein transport protein Sec61 subunit beta. 0.27: DNA-binding protein A.
  • Glycin extraction 0.58: Small nuclear ribonucleoprotein G-like protein.
  • 0.39 Host cell factor C1 regulator 1.
  • 0.39 Keratin, type I cytoskeletal 16.
  • 0.28 Keratin, type I cytoskeletal 14.
  • 0.28 Tropomyosin beta chain.
  • KS-13 can be used to identify new differentiation-related factors in humans.
  • SEQ ID NOs: 13 to 21 show the amino acid sequences of peptides designed from the amino acid sequence of the extracellular domain of the cell membrane of hepatoblasts.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 本発明は、組織特異的幹細胞または組織特異的前駆細胞を生体外で作製または増殖させるために有効に利用される新規ペプチドを提供する。本発明のペプチドは配列番号1に記載するアミノ酸残基からなるアミノ酸配列を有するペプチドまたはそのアナログであって、(1)造血幹細胞または造血前駆細胞の骨髄球系細胞への分化を抑制する作用、(2)間葉系幹細胞を増幅促進する作用、または(3)多能性幹細胞から造血幹細胞を誘導する作用のいずれか少なくとも1つの作用を有することを特徴とする。

Description

造血幹細胞または造血前駆細胞の分化を抑制するペプチド及びその用途
 本発明は、組織特異的幹細胞または組織特異的前駆細胞を生体外で作製または増殖させるために有効に利用される新規ペプチドに関する。より具体的には、(1)造血幹細胞または造血前駆細胞の分化を抑制する作用、(2)間葉系幹細胞を増幅促進する作用、または(3)多能性幹細胞から造血幹細胞を誘導し作製する作用、のいずれか少なくとも1つの作用を有するペプチドに関する。
 また本発明は、当該ペプチドの用途、詳細には組織特異的幹細胞または組織特異的前駆細胞を生体外で調製または増殖させるために用いられる試薬(または製剤)としての用途、具体的には、造血幹細胞または造血前駆細胞の分化抑制剤としての用途、間葉系幹細胞の増幅促進剤としての用途、及び造血幹細胞誘導剤としての用途に関する。さらに本発明は、当該ペプチドの用途として、当該ペプチドを用いた組織特異的幹細胞または組織特異的前駆細胞の生体外での増殖方法、及び造血幹細胞の生体外での誘導または作製方法に関する。
 さらにまた本発明は、当該ペプチドに対する抗体に関する。
 造血幹細胞を多能性幹細胞から生体外で作製し、また、造血幹細胞を生体外に取り出して培養し、腫瘍化させることなく造血幹細胞だけを増幅することができれば、移植関連問題の多くは解決し、造血幹細胞移植療法の適応が広がるだけではなく、他の臓器特異的幹細胞移植療法の開発など、新しい再生医療を開拓することができる。現在まで開発されてきた造血幹細胞の作製法及び増幅法では、以下の問題点が指摘されている。
 1. HoxB4遺伝子を多能性幹細胞へ導入すると、造血幹細胞を作製できるものの、急性白血病が誘導される。
2.HoxB4遺伝子を造血幹細胞に導入すると、造血幹細胞は増幅するものの、急性白血病が誘導される。
3.サイトカイン添加により成熟血球の分化が誘導され、造血幹細胞の未分化性を維持することが難しい。
4.脱メチル化剤の添加で造血幹細胞の増幅効率は上がるが、エピジェネティクスに影響を与えるため安全性の確認が必要である。
 多能幹細胞はすべての細胞系譜へ理論上分化が可能であるが、生体外においてその分化の方向性を決定する技術は発展途上であり、臨床応用可能な造血幹細胞を多能性幹細胞から作製する技術も発展途上である。多分化能を有する細胞は、ある一定の方向へ分化すると他の系統へ分化する能力を失う性質を保持しており、造血幹細胞以外の分化を抑制すれば、多能性幹細胞からの造血幹細胞作製が期待できる。造血幹細胞は自己複製能と多分化能という一見相反する能力を併せ持ち、サイトカインなどの刺激を受けて分化すると成熟血球が産生される。つまり造血幹細胞を増幅するためには、自己複製にアクセルをかけながら、様々な細胞系譜への分化にブレーキをかける必要がある。上記問題点を回避しながら新しい造血幹細胞作製法及び増幅法を開発するためには、造血幹細胞以外の細胞分化を抑制する因子、造血幹細胞の自己複製のみを促す因子、あるいは造血幹細胞の分化にブレーキをかける因子の探索及び開発が重要になる。造血幹細胞の生体内での増幅場所は主として胎生期肝臓であり、新規因子の探索及び開発にはこの肝臓における造血幹細胞増幅メカニズムを明らかにし、その成果を試験管内で再現する正攻法をとることが近道である。   
 特許文献1は、胎盤構成細胞粉砕物を有効成分として含有する造血幹細胞増殖剤を開示しているが、このような生物由来の材料は感染や、材料の調製が難しいなどの問題を有する。
 特許文献2は、膜タンパク質Thsd1/Tmtspからなる造血幹細胞の維持増幅促進因子を開示しているが、このような膜タンパク質は、活性な形態で調製するのが困難である。
特開2007-106760号公報 特開2007-238473号公報 WO97/31647 WO00/11168
 造血幹細胞移植療法は造血器疾患のみならず、自己免疫疾患、悪性固形腫瘍、及び再生医療などに幅広く応用されている。現在、移植用造血幹細胞の供給源としては、自家骨髄、ドナー骨髄、及び臍帯血が使用されている。ドナー骨髄や臍帯血を使用する場合、移植造血幹細胞絶対数の不足、ドナー不足、更に免疫応答による生着不全、及び移植片対宿主病が問題になっている。
 造血幹細胞を多能性幹細胞から生体外で作製できれば、骨髄、末梢血、臍帯血などの供給源に依存しない新たな治療用ツールとなり得る。また、造血幹細胞を生体外で作製培養し増幅することができれば、患者自身の骨髄などから少量の幹細胞を採取するだけで移植治療に充分な量の幹細胞がいつでも供給可能となり、HLA適合のドナーを待つことなく安全に移植が可能となる。つまり、移植に必要な幹細胞数も確保できる上に拒絶反応のない自家移植ができるようになる。自家移植が不可能な場合も、増幅技術が確立できれば、ドナーの骨髄から少量の細胞を採取するだけで移植治療が可能となり、ドナーのリスクもなくなり骨髄バンクへのドナー登録者数も増え、ドナーが見つかるチャンスの増大が期待できる。臍帯血も生体外で増幅できれば、成人への治療が可能となる。このように造血幹細胞の生体外での作製および増幅技術の確立は、多くの難治性血液疾患患者の生命を救うことを可能にする。また、遺伝子治療に必要な幹細胞を簡単に入手ができるようになり、レトロウイルスを用いない安全な遺伝子導入が可能となり、遺伝子治療の普及も期待できる。造血幹細胞の体外での作製及び増幅技術の開発は、難治性血液疾患患者の移植治療、再生治療及び遺伝子治療にとっても緊急に解決すべき重要な技術課題となっている。
 かかる観点から、本発明は、脊椎動物、特に哺乳動物の組織特異的幹細胞または組織特異的前駆細胞を生体外で作製または増殖させるうえで有効な(1)造血幹細胞または造血前駆細胞の分化抑制因子として、また(2)間葉系幹細胞の増幅促進因子として、さらに(3)多能性幹細胞から造血幹細胞を誘導し作製する因子として、新規なペプチドを提供することを目的とする。また、本発明は、当該ペプチドの(i)造血幹細胞または造血前駆細胞の分化抑制剤としての用途、(ii)間葉系幹細胞の増幅促進剤としての用途、及び(iii)造血幹細胞誘導剤としての用途、並びに当該ペプチドを用いた生体外での造血幹細胞の誘導または作製方法、及び造血幹細胞または造血前駆細胞の増殖方法を提供することを目的とする。
 本発明者は、造血幹細胞の増幅場所であるヒト胎仔肝臓の肝芽細胞に発現する各種の膜表面タンパクの膜外ドメインをベースにデザインした複数のペプチドの中に、造血幹細胞の分化増殖を抑制する作用を有するペプチドが存在することを見出した。そして、更なる研究により、このペプチドには、生体外である例えば試験管内で、造血幹細胞または造血前駆細胞が骨髄球系細胞に分化する過程を抑制し、多系列の血球に分化できる混合造血前駆細胞と骨髄球系以外の赤血球系前駆細胞を自律増殖(増幅)する作用があることを確認し、当該ペプチドが「造血幹細胞または造血前駆細胞の分化抑制因子」として有効であることを確認した。また本発明者は、このペプチドに、骨芽細胞、脂肪細胞、筋細胞、及び軟骨細胞などの間葉系に属する細胞に分化する能力をもつとされる間葉系幹細胞の自律増殖(増幅)を促進する作用があることを見出し、当該ペプチドが「間葉系幹細胞の増幅促進因子」として有効であることを確認した。更に、本発明者は、このペプチドには、ES細胞などの多能性幹細胞から造血幹細胞を特異的に誘導する作用を有することを見出し、当該ペプチドが「造血幹細胞誘導因子」として有効であることを確認した。これらのことから、本発明者が開発したペプチドの存在下で造血幹細胞や間葉系幹細胞などの組織特異的幹細胞または組織特異的前駆細胞を培養することで、生体外でこれらの細胞の分化を抑制しながら増殖することができると考えられる。また、本発明者が開発したペプチドの存在下で多能性幹細胞を培養することで、生体外で造血幹細胞を特異的に誘導し作製することができると考えられる。つまり、かかるペプチドは、造血幹細胞移植療法における移植用造血幹細胞の供給源の問題を解消しえる材料として大いに期待される。
 本発明はこれらの知見に基づいて完成したものであり、下記の実施形態を有するものである。
 (I)新規ペプチド
(I-1)下記(A)または(B)に記載するペプチド:
(A)配列番号1に記載する13のアミノ酸残基からなるアミノ酸配列を有するペプチド、
(B)配列番号1に記載するアミノ酸配列において、1又は複数のアミノ酸が欠失、置換または付加してなるペプチドであって、
(1)造血幹細胞または造血前駆細胞の骨髄球系細胞への分化を抑制する作用、
(2)間葉系幹細胞を増幅促進する作用、または
(3)多能性幹細胞から造血幹細胞を誘導する作用
のいずれか少なくとも1つの作用を有するペプチド。
 (I-2)上記(B)に示されるペプチドが下記に示されるアミノ酸残基からなるアミノ酸配列を有するものである、(I-1)に記載するペプチド:
Figure JPOXMLDOC01-appb-C000002
 (I-3)上記(B)に示されるペプチドが、下記に示されるアミノ酸残基からなるアミノ酸配列を有するペプチドである、(I-1)または(I-2)に記載するペプチド:
 Cys Gln His Lys Ala Gly Pro Cys Val Ile Asn Gly Ser (配列番号3)
 Cys Gln Lys Lys Asp Gly Pro Cys Val Met Asn Gly Ser (配列番号4)
 Cys Gln His Lys Ala Gly Pro Cys Val Ile Asn Gly Ser (配列番号5)
 Cys Gln Glu Met Asp Gly Pro Cys Val Val Asn Gly Ser (配列番号6)
 Cys His Leu Lys Glu Gly Pro Cys Val Ile Asn Gly Ser (配列番号7)
       Lys Glu Gly Pro Cys Val Ile Asn Gly Ser (配列番号8)
 Cys His Leu Lys Gln Gly Pro Cys Ile Ile Asn Gly Ser (配列番号9)
           Gly Pro Cys Ile Ile Asn Gly Ser (配列番号10)。
 (II)造血幹細胞または造血前駆細胞の分化抑制剤、及びその用法
(II-1)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を有効成分とする造血幹細胞または造血前駆細胞の分化抑制剤。
 (II-2)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を含有する培地中で、造血幹細胞または造血前駆細胞を培養する工程を有する、造血幹細胞または造血前駆細胞の分化抑制方法。
 (III)間葉系幹細胞の増幅促進剤、及びその用法
 (III-1)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を有効成分とする間葉系幹細胞の増幅促進剤。
 (III-2)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を含有する培地中で、間葉系幹細胞を培養する工程を有する、間葉系幹細胞の増幅方法。
 (IV)造血幹細胞誘導剤、及びその用法
(IV-1)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を有効成分とする造血幹細胞誘導剤。
 (IV-2)多能性幹細胞から造血幹細胞を誘導するものである(IV-1)に記載する造血幹細胞誘導剤。
 (IV-3)多能性幹細胞がES細胞またはiPS細胞である(IV-2)に記載する造血幹細胞誘導剤。
 (IV-4)多能性幹細胞が、遺伝子導入により正常化されてなる、患者由来のiPS細胞であり、当該患者の治療のために使用される、(IV-2)に記載する造血幹細胞誘導剤。
 (IV-5)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を含有する培地中で、多能性幹細胞または多能性幹細胞由来細胞を培養する工程を有する、造血幹細胞の誘導または作製方法。
 (IV-6)多能性幹細胞が、患者由来のiPS細胞であり、遺伝子導入により正常化されてなるものである、(IV-5)に記載する方法。
 (IV-7)上記培地が、さらに細胞刺激因子、脱メチル剤、及び細胞外マトリックスタンパク質からなる群から選択される少なくとも1種を含有するものである、(IV-5)または(IV-6)に記載する方法。
 (IV-8)上記細胞刺激因子が、幹細胞刺激因子、トロンボポエチン、インターロイキン-6、可溶性インターロイキン-6受容体、顆粒球コロニー刺激因子、インターロイキン-3、インターロイキン-11、及びFlt3リガンドからなる群から選択される少なくとも1種である、(IV-7)に記載する方法。
 (V)組織特異的幹細胞またはその前駆細胞の生体外増幅法
(V-1)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物、(II-1)に記載する分化抑制剤、または(III-1)に記載する増幅促進剤を含有する培地中で、組織特異的幹細胞または組織特異的前駆体を培養する工程を有する、組織特異的幹細胞または組織特異的前駆細胞の増殖方法。
 (V-2)上記組織特異的幹細胞または組織特異的前駆細胞が、造血幹細胞または造血前駆細胞であり、造血幹細胞の増幅を含む方法である、(V-1)に記載する増殖方法。
 (V-3)上記組織特異的幹細胞が、間葉系幹細胞であり、間葉系幹細胞の増幅を含む方法である、(V-1)に記載する増殖方法。
 (V-4)上記培地が、さらに細胞刺激因子、脱メチル剤、及び細胞外マトリックスタンパク質からなる群から選択される少なくとも1種を含有するものである、(V-1)乃至(V-3)のいずれかに記載する増殖方法。
 (V-5)上記細胞刺激因子が、幹細胞刺激因子、トロンボポエチン、インターロイキン-6、可溶性インターロイキン-6受容体、顆粒球コロニー刺激因子、インターロイキン-3、インターロイキン-11、及びFlt3リガンドからなる群から選択される少なくとも1種である、(V-4)に記載する増殖方法。
 (VI)造血幹細胞または造血前駆細胞を含む細胞集団、及びその用途
(VI-1)(IV-4)乃至(IV-6)のいずれかに記載する方法、または(V-1)乃至(V-5)のいずれかに記載する方法によって得られる、造血幹細胞または造血前駆細胞を含む細胞集団。
 (VI-2)(VI-1)に記載する細胞集団を有する医薬組成物。
 (VI-3)造血機能改善剤である、(VI-2)に記載する医薬組成物。
 (VII)抗体
(VII-1)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチドに対する抗体。
 (VII-2)モノクローナル抗体である(VII-1)に記載する抗体。
 (VII-3)(I-1)乃至(I-3)のいずれかに記載する少なくとも1種のペプチドの中和抗体である(VII-1)に記載する抗体。
 造血幹細胞または造血前駆細胞の増殖を、分化及び成熟を伴う「分化増殖」と、分化及び成熟を伴わない「自律増殖」に分けると、本発明のペプチドは造血幹細胞または造血前駆細胞の「分化増殖」を優位に抑制する作用を有している。このため、本発明のペプチドの存在下で、好ましくはサイトカインなどの細胞刺激因子とともに、造血幹細胞(例えば自己造血幹細胞又は免疫反応が比較的少ない膀帯血造血幹細胞等)または造血前駆細胞を培養することで、生体外の例えば試験管内で、これらの細胞を、特に骨髄球系細胞への分化を抑制しながら自律増殖(増幅)させてその絶対数を増やすことが可能になる。また、本発明のペプチドの存在下で、好ましくはサイトカインなどの細胞刺激因子とともに、骨芽細胞、脂肪細胞、筋細胞、及び軟骨細胞などの間葉系に属する細胞に分化する能力をもつとされる間葉系幹細胞を培養することで、生体外で、間葉系幹細胞の上記細胞への分化を抑制しながら自律増殖(増幅)させてその絶対数を増やすことが可能になる。また、本発明のペプチドの存在下で、好ましくはサイトカインなどの細胞刺激因子とともに、多能性幹細胞を培養することで、生体外で、骨髄球系細胞への分化を抑制しながら、造血幹細胞を誘導し作製することも可能である。これにより、本発明の課題を解決し、従来の造血幹細胞移植療法における移植用造血幹細胞の供給源の問題を解消することが可能になる。
 さらに本発明のペプチド及びその抗体を用いることにより、造血幹細胞の分化増殖及び自律増殖のメカニズムを解析することが可能になる。
マウス胎齢12.5日目の肝臓組織を、c-kit抗体(R&D)、DLK-1抗体(MBL)及びTOTO-3(Invitrogen)を用いて免疫染色した画像を示す。画像中、緑に染色している部位は造血幹細胞、赤に染色している部位は肝芽細胞、青に染色している部位は核である。 マウス胎仔肝臓造血幹細胞(CD45(+)c-Kit(+)Sca-1(+))を、細胞刺激因子(50 ng/mL rm SCF, 10 ng/mL rm IL-3, 10 ng/mL rh IL-6, 3 U/mL rh EPO)存在下、KS-13(10μg/mL、30μg/mL)を添加した半固形培地または添加しない培地を用いて、造血コロニー形成細胞アッセイをした結果を示す(実験例1)。(A)は各実験系における12日間培養後のコロニー形成数を示す。縦軸はコロニー数を意味する。また(B)は1ヶ月間培養後に形成された混合コロニーの形態(大きさ)を示す画像である(左側:KS-13非添加培養、右側:KS-13(30μg/mL)添加培養)。 ヒト臍帯血CD34陽性造血幹細胞集団を、細胞刺激因子(50ng/mL SCF, 10ng/mL TPO, 20ng/mL Flt3L)を添加した培地(Basal)、細胞刺激因子混合物(SCF 50ng/mL, TPO 10ng/mL, Flt3L 20ng/mL,IL-6 20ng/mL,sIL-6R 20ng/mL)を含む培地(Full)、KS-13(1μg/mL)を含む培地〔KS-13(1μg/mL)〕、及びKS-13(10μg/mL)を含む培地〔KS-13(10μg/mL)〕で培養して、経時的に総細胞数を測定した結果を示す(Day0:培養開始時、Day7:培養7日目、Day11:培養11日目)(実験例2)。 ヒト臍帯血CD34陽性造血幹細胞集団を、細胞刺激因子(50ng/mL SCF, 10ng/mL TPO, 20ng/mL Flt3L)を添加した培地(Basal)、細胞刺激因子混合物(SCF 50ng/mL, TPO 10ng/mL, Flt3L 20ng/mL,IL-6 20ng/mL,sIL-6R 20ng/mL)を含む培地(Full)、KS-13(1μg/mL)を含む培地〔KS-13(1μg/mL)〕、及びKS-13(10μg/mL)を含む培地〔KS-13(10μg/mL)〕で培養して、経時的にCD34陽性細胞数を測定した結果を示す(Day0:培養開始時、Day7:培養7日目、Day11:培養11日目)(実験例2)。 ヒト臍帯血CD34陽性造血幹細胞集団を、細胞刺激因子(50ng/mL SCF, 10ng/mL TPO, 20ng/mL Flt3L)を添加した培地(Basal)、細胞刺激因子混合物(SCF 50ng/mL, TPO 10ng/mL, Flt3L 20ng/mL,IL-6 20ng/mL,sIL-6R 20ng/mL)を含む培地(Full)、KS-13(1μg/mL)を含む培地〔KS-13(1μg/mL)〕、及びKS-13(10μg/mL)を含む培地〔KS-13(10μg/mL)〕で培養して、経時的にCD34陰性細胞数を測定した結果を示す(Day0:培養開始時、Day7:培養7日目、Day11:培養11日目)(実験例2)。 ヒト臍帯血CD34陽性造血幹細胞集団を、細胞刺激因子(50ng/mL SCF, 10ng/mL TPO, 20ng/mL Flt3L)を添加した培地(Basal)、細胞刺激因子混合物(SCF 50ng/mL, TPO 10ng/mL, Flt3L 20ng/mL,IL-6 20ng/mL,sIL-6R 20ng/mL)を含む培地(Full)、KS-13(1μg/mL)を含む培地〔KS-13(1μg/mL)〕、及びKS-13(10μg/mL)を含む培地〔KS-13(10μg/mL)〕で11日間培養した後、コロニー形成細胞アッセイを行い、造血前駆細胞数を計測した結果を示す(実験例2)。(A)左側はCFU-GEMM(colony forming unit-granulocyte/erythrocyte/macrophage/ megakaryocyte)の計測数、(A)右側はBFU-E(burst forming unit-erythrocyte)の計測数、(B)左側はCFU-GM(colony forming unit-granulocyte/macrophage)の計測数、(B)中央はCFU-M(colony forming unit- macrophage)の計測数、及び(B)右側はCFU-G(colony forming unit-granulocyte)の計測数を示す。 マウス骨髄細胞をビオチン標識したKS-13で処理し、次いで造血幹細胞のマーカーであるCD45抗体(Biolegend)、c-Kit抗体(Biolegend)、及びSca-1抗体(Biolegend)、並びに蛍光色素で標識したStreptavidinを用いて染色し、Flow cytometryを用いて解析した結果を示す。 造血幹細胞増幅器官である胎齢12.5日目マウス胎仔肝臓の凍結切片を作製し、ビオチン標識したKS-13を用いて染色を行い、共焦点レーザー顕微鏡で観察した結果を示す(実験例3)。画像中、緑に染色している部位はc-Kit陽性造血幹細胞、赤に染色している部位はKS-13を有する細胞、青に染色している部位は核である。KS-13がc-Kit陽性造血幹細胞内にエンドサイトーシスにより取り込まれ、核内に到達することがわかる。 造血幹細胞が赤血球に分化し成熟する過程で、細胞表面に発現するタンパク質のパターンを示す。 MudPIT法を用いて、マウス造血幹細胞が赤血球に分化・成熟する過程における遺伝子発現の変化を、real-time PCR法で検討した結果を示す(実験例4)。マウス造血幹細胞が赤血球に分化・成熟する過程における遺伝子発現のパターンは、A、B及びCに示す3パターンがあることがわかる。 ヒト臍帯血CD34陽性細胞をKS-13添加または非添加の培地で2日間培養し、次いでタンパクを抽出し、Phospho-Kinase Array Kit, Human, Proteome Profiler (R&D CatNo.ARY003)を用いてリン酸化の有無を測定した結果を示す(実験例5)。 マウス骨髄細胞を、KS-13(50μg/mL)存在下または非存在下で、液体培養し、コロニー形成線維芽細胞(CFU-F)アッセイ法を用いて、間葉系幹細胞数の指標であるCFU-Fの形成数を測定した結果を示す(実験例6)。 実験例7において、多能性幹細胞より造血幹細胞及び造血幹細胞に類似する造血前駆細胞を誘導するためのスキームを示す。 マウス胚性幹細胞から胚様体形成を経て誘導した中胚葉系細胞、CD324(-)Flk-1(+)c-Kit(+)細胞を、50 ng/mL SCFと100μg/mL KS-13の存在下または非存在下で数日間培養し、CD45遺伝子、Runx-1遺伝子、及びHoxB4遺伝子の発現をreal-time PCRで検討した結果を示す(実験例7)。 マウス胚性幹細胞から胚様体形成を経て誘導された中胚葉系細胞、CD324(-)Flk-1(+)c-Kit(+)細胞を、細胞刺激因子(50 ng/mL rm SCF, 10 ng/mL rm IL-3, 10 ng/mL rh IL-6, 3 U/mL rh EPO)を含む半固形培地で1ヶ月間培養した細胞を観察した画像を示す(実験例7)。 レシピエントマウス2匹(No.1とNo.2)の骨髄へ約2000細胞を移植し、3-4ヶ月後にFlow cytometryを用いて造血幹細胞活性を意味する骨髄再構築能を評価した結果を示す三次元プロット画像である(実験例7)。 レシピエントマウス2匹(No.1とNo.2)の尾静脈へ約20000細胞を移植し、2ヶ月後にFlow cytometryを用いて造血幹細胞活性を意味する骨髄再構築能を評価した結果を示す三次元プロット画像である。 レシピエントマウス2匹(No.1とNo.2)の尾静脈へ約20000細胞を移植し、2ヶ月後にFlow cytometryを用いて造血幹細胞活性を意味する骨髄再構築能を評価した結果を示す。2匹とも骨髄再構築を示す細胞(CD45.2(+)Gr-1(+):CD45.2(+)Mac-1(+):CD45.2(+)Thy1.2(+):CD45.2(+)B220(+))の存在が認められた 造血幹細胞(CD45(+)c-Kit(+) Sca-1(+))を、KS-13(30μg/mL)の存在下で培養して生体外増幅し、得られた細胞集合物について骨髄再構築能を評価した結果を示す(実験例8)。 コントロールペプチドまたはKS-13(配列番号1)のN末端をミリストイル化したMyristoylated KS-13の存在下で、マウス胎仔肝臓造血幹細胞(CD45(+)c-Kit(+) Sca-1(+))を培養し、造血コロニー形成細胞アッセイを行い、細胞の造血能力を調べた結果を示す(実験例9)。縦軸はコロニー数を示す。
(I)本発明で用いる用語の定義
 本明細書におけるアミノ酸配列などの略号による表示は、IUPAC-IUBの規定〔IUPAc-IUB communication on Biological Nomenclature, Eur. J. Biochem., 138; 9 (1984)〕、「塩基配列又はアミノ酸配列を含む明細書等の作製のためのガイドライン」(特許庁編)及び当該分野における慣用記号に従うものとする。
 本発明において「組織特異的幹細胞」とは、造血細胞、神経細胞、上皮細胞、表皮細胞、網膜細胞、脂肪組織細胞および間葉細胞等の特定細胞への分化能を備えている幹細胞を意味する。これらの幹細胞はいずれも未分化性を維持したまま増殖する能力である「自己複製能」と特定細胞に分化する能力である「多分化能」を併せ持つ。本発明において、組織特異的幹細胞として好ましくは造血幹細胞および間葉系幹細胞を挙げることができる。
 本発明において「造血幹細胞」とは、未分化性を維持したまま増殖する能力である「自己複製能」と、あらゆる血球系細胞及びリンパ球系細胞に分化する能力である「多分化能」を併せ持ち、数ヶ月以上の長期間にわたり造血を再構築する能力をもった細胞をいう。
 ヒト造血幹細胞は、幹細胞マーカーであるCD34を発現していることから、CD34 (+)として特徴づけることができる。このため、ヒト造血幹細胞としてCD34陽性細胞を用いることができる。また、ヒト造血幹細胞は、造血幹細胞に発現する細胞表面の抗原に基づいて、CD34に加えて、他の造血幹細胞マーカーで特徴付けることもできる。例えば、CD34を含む造血幹細胞マーカーとしては、Lin(-)、CD34 (+)、CD38(-)、DR(-)、CD45(+)、CD90(+)、CD117(+)、CD123(+)、及びCD133(+)を挙げることができる。これらは、1種単独で、または複数組み合わせて用いることができ、組み合わせの態様としては、Lin(-)CD34(+)CD38(-)、及びCD45(+)CD34(+)CD38(-)などを挙げることができる。一方マウス造血幹細胞は、胎生期と成体で細胞表面抗原の発現が変化することが知られており、胎生期造血幹細胞のマーカーとして、Lin(-)、CD31(+)、CD34(+)、CD41(+)、c-Kit(+)、成体造血幹細胞のマーカーとして、Lin(-)、CD31(+)、CD34(-/+)、CD45(+)、c-Kit(+)、Sca-1(+)、CD150(+)、EPCR(+)を挙げることができる。これらは、1種単独で、または複数組み合わせて用いることができ、組み合わせの態様としては、Lin(-)c-Kit(+)Sca-1(+)、及びCD45(+)c-Kit(+)Sca-1(+)などを挙げることができる。
 造血幹細胞は、骨髄、末梢血、および臍帯血にごく微量含まれていることが明らかとなっており、これらから上記の幹細胞マーカーを指標としてFACS(fluorescence activated cell sorting)等の慣用方法を用いて採取することができる。
 「間葉系幹細胞」は、骨芽細胞、脂肪細胞、筋細胞、及び軟骨細胞などの間葉系に属する細胞への分化能をもつとされる幹細胞を意味する。
 「組織特異的前駆細胞」は、上記組織特異的幹細胞がやや分化してなるものの、終末分化しておらず、組織特異的幹細胞と同様に特定細胞に分化する能力である「多分化能」を備えた細胞をいう。本発明において、組織特異的前駆細胞として好ましくは造血前駆細胞および間葉系前駆細胞を、より好ましくは造血前駆細胞を挙げることができる。
 「造血前駆細胞」は、造血幹細胞に由来する細胞であって、終末分化していない細胞をいう。造血前駆細胞は、2~3系統の血球に分化できる多能性造血前駆細胞、1つの血球に分化が限定された単能性造血前駆細胞に分類することができる。造血前駆細胞からは骨髄球系あるいはリンパ球系の2種類の前駆細胞が生じる。骨髄球系前駆細胞からは、赤血球、顆粒球 (好中球、好酸球、好塩基球)、単球、巨核球に最終分化する前駆細胞が生じる。またリンパ球系前駆細胞からは、T細胞、B 細胞やNK細胞に最終分化する前駆細胞が生じる。このため、造血前駆細胞は、骨髄球系細胞〔顆粒球(好酸球、好中球、好塩基球)、単球、マクロファージ、肥満細胞〕、赤血球系細胞〔赤血球〕、巨核球系細胞〔巨核球、血小板〕の前駆細胞、並びにリンパ球系細胞〔T細胞、B細胞、形質細胞〕の前駆細胞であり得る。これら各系列の前駆細胞は、自体公知の方法を用いて細胞マーカーを判別することにより分類することができる。例えば、骨髄系細胞のマーカーとしてCD13、単球及びマクロファージ系のマーカーとしてCD14、巨核球系マーカーとしてCD41、赤血球系マーカーとしてグリコホリン、B細胞系マーカーとしてCD19、T細胞系マーカーとしてCD3が知られている。さらに、造血前駆細胞は、多系列の血球に分化できる混合コロニー単位(mixed colony forming unit:CFU-Mix)、好中球、マクロファージ系のコロニーを形成する顆粒球-マクロファージコロニー形成単位(CFU-GM)、好中球コロニー形成単位(DFU-G)、マクロファージコロニー形成単位(CFU-M)、赤芽球系コロニー、バーストを形成する赤芽球コロニー形成単位(CFU-E)、赤芽球バースト形成単位(BFU-E)、巨核球コロニー、バーストを形成する巨核球コロニー形成単位(CFU-Meg)、巨核球バースト形成単位(BFU-Meg)、好酸球、好塩基球、マスト細胞のコロニーをそれぞれ形成する好酸球コロニー形成単位(CFU-EO)、好塩基球コロニー形成単位(CFU-Baso)、マスト細胞コロニー形成単位(CFU-Mast)などに対応する細胞に分類することができる。造血前駆細胞がいずれのコロニー形成単位に該当するかは、自体公知のコロニーアッセイ法(in vitro コロニー法)により定量的に測定することができる。
 「多能性幹細胞」は、多くの細胞に分化できる分化万能性を備えている幹細胞を意味する。かかる多能性幹細胞は「分化万能性」と、未分化性を維持したまま増殖する能力である「自己複製能」を併せ持つ。本発明において対象とする多能性幹細胞には、胚性幹細胞(ES細胞)と、体細胞に数種類の遺伝子を導入することで胚性幹細胞と同様に「分化万能性」と「自己複製能」を人工的に持たせた人工多能性幹細胞(iPS細胞)が含まれる。
 本発明でいう「多能性幹細胞由来細胞」とは、多能性幹細胞を多少分化させた多能性幹細胞由来細胞であって、少なくとも造血細胞に分化しえる分化能と自己複製能を備えた細胞を意味する。具体的には、中胚葉系細胞を例示することができる。
 本発明が対象とする組織特異的幹細胞(例えば、造血幹細胞、間葉系幹細胞)、組織特異的前駆細胞(例えば、造血前駆細胞)、及び多能性幹細胞は、脊椎動物に由来するものであることが好ましく、より好ましくは鳥類(ニワトリ等)または哺乳類(ヒト、マウス、ラット、ウサギ、サル、チンパンジー、ブタ、ウマ、ヤギ、ヒツジ、ウシ、イヌ、ネコ、ワラビー、カンガルー等)に由来するものである。好ましくは哺乳類に由来する細胞であ、哺乳類の中でも特に好ましくは、ヒトまたは実験動物として汎用されるげっ歯動物(マウス、ラット、ウサギ等)である。
 「増幅」とは、細胞分裂により終末分化していない細胞の数を増加させることをいい、一方、「増殖」とは、終末分化していない細胞と終末分化した細胞の総数を増加させることをいう。従って「組織特異的幹細胞の増幅」とは、自己複製能と多分化能を有する組織特異的幹細胞が分裂することによりその数を増加することをいう。つまり組織特異的幹細胞の増幅とは、組織特異的幹細胞の未分化性を維持しながら、組織特異的幹細胞が自律増殖することを意味する。本発明でいう「組織特異的幹細胞または組織特異的前駆細胞の増殖」には、上記組織特異的幹細胞の増幅が含まれる。また当該増殖には、組織特異的前駆細胞が終末分化しない状態で増殖することも含まれる。造血幹細胞及び造血前駆細胞の増殖は、前述する造血幹細胞マーカーを解析することにより(例えば、FACSによるCD34(+)に対応する細胞の計数)、コロニーアッセイ法に基づく定量的な解析等により評価することができる。また、間葉系幹細胞の増幅は、間葉系幹細胞マーカーを解析することにより(例えば、FACSによるCD9, CD13, CD29, CD44, CD55, CD59, CD73, CD105, CD140b, CD166, MHC Class I (+)に対応する細胞の計数)、コロニーアッセイ法に基づく定量的な解析等により評価することができる。なお、間葉系幹細胞マーカーとしては、他にVCAM-1, STRO-1, c-Kit, Sca-1, Nucleostemin, CDCP1, BMPR2, BMPR1A,及びBPMR1Bが挙げられる。
 「臍帯血」とは、哺乳類、好ましくはヒトの臍帯から取得できる血液のことをいう。「骨髄由来血液」とは、哺乳類、好ましくはヒトの骨髄中に存在する髄液に含まれる血液をいう。臍帯血及び骨髄は、それぞれ臍帯血バンク及び骨髄バンクから取得することができる。
 (II)新規ペプチド(本発明ペプチド)
 本発明が対象とするペプチドは、下記に記載する作用のうち、少なくとも1つの作用を有することを特徴とする:
(1)造血幹細胞または造血前駆細胞の分化を抑制する作用、好ましくは、造血幹細胞または造血前駆細胞の骨髄球系細胞への分化を抑制する作用、
(2)間葉系幹細胞を増幅促進する作用、または
(3)多能性幹細胞から造血幹細胞を誘導する作用。
 かかるペプチドの一態様として、下記に示すアミノ酸残基からなるアミノ酸配列を有するペプチドを挙げることができる:
 Cys Gln Lys Lys Asp Gly Pro Cys Val Ile Asn Gly Ser (配列番号1)。
 このペプチドは、全長383アミノ酸残基からなるヒトDlk1(delta-like 1 homolog)タンパク質(配列番号11)の24位~303位に位置する細胞外ドメインの部分配列からなる。当該ペプチドを、以下、本明細書では便宜上「KS-13」とも称する。
 本発明が対象とするペプチドには、上記KS-13のアミノ酸配列(配列番号1)において、1又は複数、好ましくは1~6つ程度のアミノ酸が欠失、置換または付加してなるペプチドであって、上記(1)~(3)のいずれか少なくとも1つの作用を有するペプチドが含まれる。好ましいペプチドは、(1)~(3)の作用のうち、(1)造血幹細胞または造血前駆細胞の骨髄球系細胞への分化を抑制する作用を有するものである。より好ましくは(1)の作用に加えて、(2)及び(3)のいずれか1方の作用、好ましくは(2)と(3)の両方の作用を有するものである。
 本発明が対象とするペプチドは、上記の通りであるが、60%以上、好ましくは75%以上、より好ましくは80%以上、さらに好ましくは85%乃至は90%以上の割合で、配列番号1に示されるアミノ酸配列と同一または類似のアミノ酸を有していることが好ましい。ここで「同一性」または「類似性」の割合は、配列番号1に示されるアミノ酸配列の全アミノ酸残基数に対して、それとオーバーラップする同一または類似するアミノ酸の割合から算出することができる。ここで「類似のアミノ酸」とは、物理化学的性質において類似したアミノ酸を意味し、例えば類似したアミノ酸は、芳香族アミノ酸群(Phe、Trp、Tyr)、脂肪族アミノ酸群(Ala、Leu、Ile、Val)、極性アミノ酸群(Gln、Asn)、塩基性アミノ酸群(Lys、Arg、His)、酸性アミノ酸群(Glu、Asp)、水酸基を有するアミノ酸群(Ser、Thr)、及び側鎖の小さいアミノ酸群(Gly、Ala、Ser、Thr、Met)に分類することができる。このような類似アミノ酸間での置換は、ペプチドの性質に影響を与えない可能性が高く、この意味で保守的なアミノ酸置換ということができる(例えば、Bowieら、Science, 247: 1306-1310 (1990)等参照)。
 このように配列番号1に示されるアミノ酸配列においてアミノ酸が他のアミノ酸で置換されている場合、または一部のアミノ酸が欠失若しくは付加されている場合、その置換、欠失または付加される位置は、その結果得られるペプチドが、上記の(1)~(3)の作用のいずれかの作用を有していればよい。好ましくは、置換、欠失または付加によって得られるペプチドが、(1)造血幹細胞または造血前駆細胞の骨髄球系細胞への分化を抑制する作用を有するものであり、より好ましくは(1)の作用に加えて、(2)及び(3)のいずれか1方の作用、好ましくは(2)と(3)の両方の作用を有するものである。
 なお、置換、欠失または付加によって得られるペプチドが、造血幹細胞または造血前駆細胞に対して分化抑制作用を有することは、後述する実験例9に記載するように、造血幹細胞または造血前駆細胞のコロニー形成に対する作用を評価することで確認することができる。
 また置換、欠失または付加によって得られるペプチドが、間葉系幹細胞を増幅促進する作用を有することは、繊維芽細胞コロニー形成単位(CFU-F: Colony forming unit-fibroblast)を評価することで確認することができる。さらに置換、欠失または付加によって得られるペプチドが、多能性幹細胞から造血幹細胞を誘導し作製する作用を有することは、誘導した細胞のHPP-CFC(High Proliferative potential colony forming cells)形成、LTC-IC (Long-Term Culture-Initiating Cell)の存在、レシピエントマウスに移植し、マウスでは骨髄再構築能、ヒトではSCR(SCID-repopulating) cellsの存在を評価することで確認することができる。 
 置換、欠失または付加によって得られるペプチドとしては、例えば、下記アミノ酸配列で示され、且つ上記作用を有するペプチドを例示することができる。
Figure JPOXMLDOC01-appb-C000003
 かかるペプチドとして、具体的には、ヒトDlk1タンパク質のオルソログに相当するタンパク質の細胞外ドメイン領域の部分配列からなる、上記KS-13に相当するペプチドを挙げることができる。例えば、ヒトDlk1タンパク質のオルソログに相当するマウスDlk1タンパク質は、全長385アミノ酸残基からなるアミノ酸配列を有する(配列番号12)。当該マウスDlk1タンパク質のアミノ酸配列において24~305位の領域が細胞外ドメインであり、その部分配列(124~136位の13アミノ酸残基からなる配列:配列番号3)が上記KS-13に相当するペプチドである。
 マウスの他、ラットやドブネズミ等のげっ歯類、並びにブタ、ウマ、ヤギ、ウシ、ワラビー、及びオオカンガルー等の哺乳類;キンカチョウ、カモノハシ、シチメンチョウ、ニワトリ等の鳥類などの脊椎動物は、上記ヒトDlk1タンパク質のホモログまたはオルソログに相当するDlk1タンパク質を有している。これらのDlk1タンパク質の細胞外ドメイン内に位置する上記KS-13に相当する部分配列を、ヒト由来のKS-13、及びマウスのKS-13に相当するペプチドのアミノ酸配列と共に表1に示す。ヒト由来のKS-13と共通して保存されているアミノ酸残基には下線を付して表示する。
Figure JPOXMLDOC01-appb-T000004
 例えば、ヒトとマウスやラット等のげっ歯類のペプチドの配列を比較すると、N末端から3番目のアミノ酸(配列番号2のアミノ酸配列中「XXb」に相当)は、LysとHisのいずれでもよく、5番目のアミノ酸(配列番号2のアミノ酸配列中「XXd」に相当)は、AspとAlaのいずれでもよいことがわかる。またヒトとブタのペプチドの配列を比較すると、N末端から10番目のアミノ酸(配列番号2のアミノ酸配列中「XXf」に相当)は、IleとMetのいずれでもよいことがわかる。またヒトとオオカンガルーのペプチドの配列を比較すると、N末端から3番目の3つアミノ酸は欠失していてもよく、またN末端から5番目のアミノ酸(配列番号2のアミノ酸配列中「XXd」に相当)はAspとGluのいずれでもよいことがわかる。さらにヒトとニワトリのペプチドの配列を比較すると、N末端から5番目の5つアミノ酸は欠失していてもよく、またN末端から9番目のアミノ酸(配列番号2のアミノ酸配列中「XXe」に相当)はValとIleのいずれでもよいことがわかる。
 本発明のペプチドにおいて、KS-13は最も好ましいペプチドであるが、上記配列番号2で示すように、当該アミノ酸配列において1~6のアミノ酸(XXa~XXf)のいずれかが、他のアミノ酸で置換されていてもよいし、またN末端またはC末端のアミノ酸が1つ少ない12個のアミノ酸残基からなるペプチド、あるいはさらにアミノ酸が1つ少ない11個のアミノ酸残基からなるペプチドであってもよい。N末端のアミノ酸は、最大で5個、または4~3個まで欠失していてもよい。
 配列番号1に記載するアミノ酸配列において、1乃至複数個のアミノ酸が付加してなるペプチドとしては、上記アミノ酸配列のN末端および/またはC末端にもとのヒトDlk1タンパク質由来のアミノ酸が、5個、4個、3個、2個もしくは1個付加したのもが挙げられる。
 なお、KS-13のアミノ酸配列(配列番号1)において、1乃至複数のアミノ酸を置換、付加または欠失するための方法は、既に当業界では慣用化されており、例えば該ペプチドをコードするDNAを経由して行う場合には、例えばサイトスペシフィック・ミュータゲネシス〔Methods in Enzymology,154, 350, 367-382 (1987);同 100, 468 (1983);Nucleic Acids Res., 12, 9441 (1984);続生化学実験講座1「遺伝子研究法II」、日本生化学会編, p105 (1986)〕などの遺伝子工学的手法、リン酸トリエステル法やリン酸アミダイト法などの化学合成手段〔J. Am. Chem. Soc., 89, 4801(1967);同 91, 3350 (1969);Science, 150, 178 (1968);Tetrahedron Lett.,22, 1859 (1981);同 24, 245 (1983)〕及びそれらの組合せ方法などが例示できる。より具体的には、DNAの合成は、ホスホルアミダイト法またはトリエステル法による化学合成によることもでき、市販されている自動オリゴヌクレオチド合成装置上で行うこともできる。二本鎖断片は、相補鎖を合成し、適当な条件下で該鎖を共にアニーリングさせるか、または適当なプライマー配列と共にDNAポリメラーゼを用い相補鎖を付加するかによって、化学合成した一本鎖生成物から得ることもできる。さらに、本発明のペプチドは、ペプチド合成機を用いて固相合成法により合成することもでき、アミノ酸の置換、付加または欠失は、ペプチド合成機を用いる場合には保護アミノ酸の種類を変えることにより容易に行うことができる。又、D-アミノ酸やサルコシン(N-メチルグリシン)等の特殊なアミノ酸を導入することもできる。
 本発明のペプチドは、フリーの状態であってもよいし、また塩の形態であってもよいし、また水和物を含む溶媒和物の形態を有していてもよい。塩としては、生理学的に許容される、つまり薬学的に許容される酸付加塩や塩基塩を挙げることができる。かかる酸付加塩としては、塩酸塩、臭化水素酸塩、硝酸塩、硫酸塩などの無機酸塩;またはメタンスルホン酸、トルエンスルホン酸などのスルホン酸塩、トリフルオロ酢酸、コハク酸などの有機酸塩などが挙げられる。塩基塩としては、ナトリウム、カリウム、リチウムなどのアルカリ金属塩;またはカルシウム、マグネシウムなどのアルカリ土類金属塩などが挙げられる。
 本発明のペプチドには、C末端がカルボキシル基(-COOH)、カルボキシレート(-COO-)、アミド(-CONH2)、またはエステル(-COOR)であるペプチドが含まれる。ここでエステルにおけるRとしては、例えばメチル、エチル、n-プロピル、イソプロピル、n-ブチル等の炭素数1~6のアルキル基;シクロペンチル、シクロヘキシルなどの炭素数3~8のシクロアルキル基;フェニル、α-ナフチルなどの炭素数6~12のアリール基;ベンジルやフェネチルなどのフェニル-C1-2アルキル基;α-ナフチルメチルなどのα-ナフチル-C1-2アルキル基などのC7-14アラルキル基;ピバロイルオキシメチル基などを例示することができる。本発明のペプチドがC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、そのカルボキシル基がアミド化またはエステル化されているものも本発明のペプチドに含まれる。また本発明のペプチドには、N末端のアミノ酸残基のアミノ基が保護基(例えば、ホルミル基、アセチル基などのC1-6アルカノイルなどのC1-6アシル基など)で保護されているものや脂肪酸(C8-18の飽和脂肪酸)で修飾されているもの、生体内で切断されて生成し得るN末端のグルタミン残基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば-OH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチル基などのC1-6アルカノイル基などのC1-6アシル基など)で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。さらに本発明のペプチドには、イミダゾリル基またはSH基がアルキル化(例えばメチル化)、アラルキル化(例えばベンジル化)、アシル化(例えばアセチル化、ベンゾイル化)されたものも含まれる。なお、上記脂肪酸修飾物としては、N末端のアミノ酸残基のアミノ基がミリスチン酸で修飾されたミリストイル化ペプチドが含まれる。
 (III)造血幹細胞または造血前駆細胞の分化抑制進剤
 上記のようにして得られる本発明のペプチドまたはその薬学的に許容される塩若しくは溶媒和はそのまま、あるいは必要に応じて細胞生理学的に許容し得る担体とともに混合して組成物とした後に、造血幹細胞または造血前駆細胞の分化抑制剤として用いることができる。なお、本発明のペプチドは1種単独からなるものであっても、2種以上のものを任意に組み合わせて用いることもできる。好ましくは、ヒト由来のKS-13(配列番号1)、げっ歯類由来のペプチド(配列番号3)、ブタ由来のペプチド(配列番号4)、ニワトリ由来のペプチド(配列番号10)であり、より好ましくはヒト由来のKS-13(配列番号1)、及びげっ歯類由来のペプチド(配列番号3)である。
 当該分化抑制剤は、例えば、本発明のペプチドまたはその薬学的に許容される塩若しくは溶媒和(以下、これらを総称して「本発明ペプチド」という)を、水もしくは適当な緩衝液(例、リン酸緩衝液、PBS、トリス塩酸緩衝液など)中に適当な濃度となるように溶解することにより調製することができる。また、必要に応じて、通常使用される保存剤、安定剤、還元剤、等張化剤等を配合させてもよい。
 本発明の分化抑制剤は、例えば、本発明ペプチドの有効量を培地に添加して、造血幹細胞または造血前駆細胞を培養することにより、造血幹細胞または造血前駆細胞を増殖するために用いることができる。したがって、本発明はまた、本発明ペプチドまたは本発明の分化抑制剤の存在下で造血幹細胞または造血前駆細胞を培養することを含む、造血幹細胞または造血前駆細胞の増殖方法を提供する。なお、当該増殖方法には、造血幹細胞を増幅する方法も含まれる。
 なお、本発明ポリペプチドの存在下で造血幹細胞または造血前駆細胞を培養することによって、これらの細胞を、分化を抑制しつつ増殖させることができる。このため、本発明ペプチドは、造血幹細胞および造血前駆細胞の生体外増殖用試薬キットの一成分としても利用することができる。
 (IV)間葉系幹細胞の増幅促進剤
 上記本発明のペプチドまたはその薬学的に許容される塩若しくは溶媒和(本発明ペプチド)は、そのまま、あるいは必要に応じて細胞生理学的に許容し得る担体とともに混合して組成物とした後に、間葉系幹細胞の増幅促進剤として用いることができる。なお、本発明ペプチドは1種単独からなるものであっても、2種以上のものを任意に組み合わせて用いることもできる。好ましくは、ヒト由来のKS-13(配列番号1)、げっ歯類由来のペプチド(配列番号3)、ブタ由来のペプチド(配列番号4)、ニワトリ由来のペプチド(配列番号10)であり、より好ましくはヒト由来のKS-13(配列番号1)、及びげっ歯類由来のペプチド(配列番号3)である。
 当該増幅促進剤は、例えば、本発明ペプチドを、水もしくは適当な緩衝液(例、リン酸緩衝液、PBS、トリス塩酸緩衝液など)中に適当な濃度となるように溶解することにより調製することができる。また、必要に応じて、通常使用される保存剤、安定剤、還元剤、等張化剤等を配合させてもよい。
 本発明の増幅促進剤は、例えば、本発明ペプチドの有効量を培地に添加して、間葉系幹細胞を培養することにより、間葉系幹細胞を増幅するために用いることができる。したがって、本発明はまた、本発明ペプチドまたは本発明の増幅促進剤の存在下で間葉系幹細胞を培養することを含む、間葉系幹細胞の増幅方法を提供する。
 なお、本発明ポリペプチドの存在下で間葉系幹細胞を培養することによって、かかる細胞の増幅を促進することができる。このため、本発明のペプチドは、間葉系幹細胞の生体外増幅用試薬キットの一成分としても利用することができる。
 (V)造血幹細胞の誘導剤
 本発明のペプチドまたはその薬学的に許容される塩若しくは溶媒和(本発明ペプチド)は、そのまま、あるいは必要に応じて細胞生理学的に許容し得る担体とともに混合して組成物とした後に、造血幹細胞の誘導剤として用いることができる。なお、本発明ペプチドは1種単独からなるものであっても、2種以上のものを任意に組み合わせて用いることもできる。好ましくは、ヒト由来のKS-13(配列番号1)、げっ歯類由来のペプチド(配列番号3)、ブタ由来のペプチド(配列番号4)、ニワトリ由来のペプチド(配列番号10)であり、より好ましくはヒト由来のKS-13(配列番号1)、及びげっ歯類由来のペプチド(配列番号3)である。
 当該誘導剤は、例えば、本発明ペプチドを、水もしくは適当な緩衝液(例、リン酸緩衝液、PBS、トリス塩酸緩衝液など)中に適当な濃度となるように溶解することにより調製することができる。また、必要に応じて、通常使用される保存剤、安定剤、還元剤、等張化剤等を配合させてもよい。
 本発明誘導剤は、例えば、本発明ペプチドの有効量を培地に添加して、例えば胚性幹細胞(ES細胞)または人工多能性幹細胞(iPS細胞)などの多能性幹細胞を培養することにより、造血幹細胞を誘導し、作製するために用いることができる。したがって、本発明はまた、本発明ペプチドまたは本発明の誘導剤の存在下で多能性幹細胞を培養することを含む、造血幹細胞の誘導または作製方法を提供する。
 なお、本発明ポリペプチドの存在下で多能性幹細胞を培養することによって、かかる細胞の増幅を促進することができる。このため、本発明ペプチドは、造血幹細胞の生体外調製用試薬キットの一成分としても利用することができる。
 本発明が対象とするiPS細胞は、健常者から調製された健常者由来のiPS細胞だけでなく、何らかの疾患を有する患者から調製された患者由来のiPS細胞も含まれる。患者由来のiPS細胞は、上記培養に供するまえに、遺伝子導入等の組換え技術により予め当該疾患の原因が除去され正常化されておくことが好ましく、かかるiPS細胞から本発明の方法で誘導され作製された造血幹細胞は、当該患者の疾患を治療するために当該患者に投与して用いられる。
 (VI)組織特異的幹細胞または組織特異的前駆細胞の生体外増殖方法(組織特異的幹細胞試験管内増幅法)
 本発明の組織特異的幹細胞または組織特異的前駆細胞の増殖方法には、(1)造血幹細胞または造血前駆細胞を分化抑制する作用、及び(2)間葉系幹細胞を増幅促進する作用のうち、少なくとも1つの作用を有する本発明ペプチドの存在下で、組織特異的幹細胞または組織特異的前駆細胞を培養する工程を含む。
  組織特異的幹細胞として、好ましくは造血幹細胞及び間葉系幹細胞を、また造血前駆細胞として、造血前駆細胞を挙げることができる。このため、当該本発明の増幅方法には、(1)造血幹細胞または造血前駆細胞を分化抑制する作用を有する本発明ペプチドの存在下で、造血幹細胞または造血前駆細胞を培養する工程を含む方法;及び(2)間葉系幹細胞を増幅促進する作用を有する本発明ペプチドの存在下で、間葉系幹細胞を培養する工程を含む方法が含まれる。
 本発明の方法に用いる組織特異的幹細胞または組織特異的前駆細胞としては、少なくとも組織特異的幹細胞または組織特異的前駆細胞を含む細胞群が挙げられ、組織特異的幹細胞または組織特異的前駆細胞のいずれか一方が単離されたものであってもよく、これらの両方であってもよい。また、組織特異的幹細胞または組織特異的前駆細胞の少なくとも一方を含み、さらに他の細胞を含んでいてもよい。また、組織特異的幹細胞または組織特異的前駆細胞を含む細胞群から分画された組織特異的幹細胞または組織特異的前駆細胞を含む分画であってもよい。
 組織特異的幹細胞または組織特異的前駆細胞の採取源としては、鳥類や哺乳類などの脊椎動物、好ましくはヒトやげっ歯類に属するマウス及びラット等の哺乳類の幹細胞を含む組織であればいずれでもよい。例えば、造血幹細胞及び造血前駆細胞は、造血幹細胞を含む胎児肝臓、胎児骨髄、骨髄、末梢血、臍帯血、またはサイトカインおよび/または抗癌剤の投与によって幹細胞を動員した末梢血等から採取することができる。また間葉系幹細胞は、間葉系幹細胞を含む骨髄、臍帯、胎盤、羊膜、尿膜、臍帯血、歯肉、脂肪、筋肉、その他間葉に由来する細胞から採取することができる。
 本発明ペプチドの存在下で組織特異的幹細胞または組織特異的前駆細胞を培養するにあたっては、いわゆる培養用のプレート、シャーレまたはフラスコを用いた培養法が可能であるが、培地組成、pHなどを機械的に制御し、高密度での培養が可能なバイオリアクターによって、その培養系を改善することもできる(Schwartz, Proc.Natl.Acad.Sci.U.S.A., 88:6760, 1991; Koller, M.R., Bio/Technology, 11:358, 1993; Koller, M.R.,Blood, 82: 378, 1993; Palsson, B.O., Bio/Technology, 11:368,1993)。
 培養に用いる培地としては、組織特異的幹細胞または組織特異的前駆細胞の増殖、生存が害されない限り特に制限されないが、例えば、造血幹細胞または造血前駆細胞の場合、約5~約20%の胎児ウシ血清を含む最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、IMDM培地、RPMI 1640培地、199培地、SF-02培地(三光純薬)、Opti-MEM培地(GIBCO BRL)及び造血幹細胞・前駆細胞培養用培地であるX-VIVO 10(Lonza)などが好ましいものとして挙げられる。また間葉系幹細胞の場合、約5~約20%の胎児ウシ血清を含む最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、IMDM培地、RPMI 1640培地、Opti-MEM培地(GIBCO BRL)及び間葉系幹細胞培養用培地であるMSCBM-CD(Lonza)、MesenCult(StemCellTechnologies)、MF培地(TMセルリサーチ)などが好ましいものとして挙げられる。培地のpHとしては、好ましくは6~8程度を挙げることができる。
 培地には、必要に応じて細胞刺激因子(サイトカイン類)、EPO(エリスロポエチン)のような造血ホルモンやインスリンなどのホルモン類、Wnt(Thimoth, A. W., Blood, 89:3624-3635,1997)遺伝子産物のような分化増殖調節因子、トランスフェリンなどの輸送タンパク質、5azaDやTSA等の脱メチル化剤(Exp. Hematol. 34:140, 2006)、Fibronectin、Collagenなどの細胞外マトリックスタンパク質(Curr Opin Biotechnol. 2008 October ; 19(5): 534-540.; Cell 2007 June; 129(7): 1377-1388.)等をさらに含有させることができる。特に、本発明ペプチドとともに培地に細胞刺激因子を配合し、本発明のペプチドと細胞刺激因子の存在下で造血幹細胞または造血前駆細胞を培養することによって、これらの細胞を、分化を抑制しながら増殖させることができ、その結果、造血幹細胞をより効率的に増幅させることができる。細胞刺激因子とは組織特異的幹細胞や前駆細胞に増殖、分化、生存、遊走などの刺激を与える因子である。このような細胞刺激因子は、組織特異的幹細胞または組織特異的前駆細胞の増殖を妨げないものであれば特に制限されないが、具体的には、SCF(幹細胞成長因子(stem cellfactor))、IL-3(インターロイキン-3)、GM-CSF(顆粒球マクロファージ・コロニー刺激因子(granulocyte/macrophage colony-stimulating factor))、IL-6(インターロイキン-6)、可溶性IL-6受容体、IL-11(インターロイキン-11)、Flt-3L(fms様チロシンキナーゼ-3(Flt-3)リガンド)、EPO(エリスロポエチン)、TPO(トロンボポエチン)、G-CSF(顆粒球コロニー刺激因子)、TGF-β(トランスフォーミング成長因子-β)、MIP-1α(George, D., J. Exp. Med. 167:1939-1944, 1988)、Flt3/Flk2-ligand、FGF(繊維芽細胞増殖因子)等が挙げられる。これらの刺激因子などはGallard, R.E., The cytokine facts book, AcademicPress, 1994などに詳しい。
 培地に配合する細胞刺激因子は、1種類であっても、2種類以上であってもよい。好ましくは、SCF、G-CSF、IL-3、IL-6、sIL-6L、IL-11、Flt-3L及びTPOを挙げることができるが、とりわけSCFは必須である。培地に添加される細胞刺激因子の濃度としては、1~500ng/mL、好ましくは5~300ng/mL、さらに好ましくは10~100ng/mLである。
 培養に際して、本発明ペプチドは、培地中の最終濃度が1~500μg/mL、好ましくは5~300μg/mL、さらに好ましくは10~100μg/mLとなるように、上記培地に添加することができる。また、組織特異的幹細胞または組織特異的前駆細胞は、当分野で通常用いられる細胞密度となるように、上記培地に添加することができる。培養は、通常約30~40℃、約5~10%COの雰囲気下で、所望の増殖が達成される時間行なわれる。必要に応じて通気や撹拌を行ってもよい。
 (VII)造血幹細胞の生体外作製方法(造血幹細胞試験管内作製法)
 本発明の造血幹細胞の誘導または作製方法には、(3)多能性幹細胞から造血幹細胞を誘導する作用を有する本発明ペプチドの存在下で、多能性幹細胞または多能性幹細胞由来細胞を培養する工程を含む。
 本発明の方法に用いる多能性幹細胞とは、胚性幹細胞(ES細胞)及び人工多能性幹細胞(iPS細胞)を含む細胞群が挙げられる。胚性幹細胞の採取源としては、鳥類や哺乳類などの脊椎動物、好ましくはヒトやげっ歯類に属するマウス及びラット等の哺乳類の胚盤胞の内部細胞塊を挙げることができる。また人工多能性幹細胞の採取源としては、上記脊椎動物、好ましくは哺乳動物の皮膚や血液を始めとするすべての組織を挙げることができる。
 本発明が対象とするiPS細胞は、健常者から調製された健常者由来のiPS細胞だけでなく、何らかの疾患を有する患者から調製された患者由来のiPS細胞も含まれる。患者由来のiPS細胞は、上記培養に供するまえに、遺伝子導入等の組換え技術により予め当該疾患の原因が除去され正常化されておくことが好ましく、かかるiPS細胞から本発明の方法で誘導され作製された造血幹細胞は、当該患者の疾患を治療するために当該患者に投与して用いられる。
 本発明ペプチドの存在下で多能性幹細胞または多能性幹細胞由来細胞を培養するにあたっては、いわゆる培養用のプレート、シャーレまたはフラスコを用いた培養法が可能であるが、培地組成、pHなどを機械的に制御し、高密度での培養が可能なバイオリアクターによって、その培養系を改善することもできる(Schwartz, Proc.Natl.Acad.Sci.U.S.A.,88:6760,1991; Koller, M.R., Bio/Technology, 11:358, 1993; Koller, M.R.,Blood, 82: 378, 1993; Palsson, B.O., Bio/Technology, 11:368,1993)。
 培養に用いる培地としては、多能性幹細胞、多能性幹細胞に由来する細胞、造血幹細胞及び造血前駆細胞の増殖及び生存が害されない限り、特に制限されないが、例えば、約5~約20%の胎児ウシ血清を含む最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、IMDM培地、RPMI 1640培地、199培地、SF-02培地(三光純薬)、Opti-MEM培地(GIBCO BRL)及び造血幹細胞及び造血前駆細胞培養用培地であるX-VIVO 10(Lonza)などが好ましいものとして挙げられる。培地のpHとしては、好ましくは6~8程度を挙げることができる。
 培地には、必要に応じて細胞刺激因子(サイトカイン類)、EPO(エリスロポエチン)のような造血ホルモンやインスリンなどのホルモン類、Wnt(Thimoth, A. W., Blood, 89:3624-3635,1997)遺伝子産物のような分化増殖調節因子、トランスフェリンなどの輸送タンパク質、5azaDやTSA等の脱メチル化剤(Exp. Hematol. 34:140, 2006)、Fibronectin、Collagenなどの細胞外マトリックスタンパク質(Curr Opin Biotechnol. 2008 October ; 19(5): 534-540.; Cell 2007 June; 129(7): 1377-1388.)L-glutamine、Monothioglycerol、L-ascorbic acid 、抗生物質等をさらに含有させることができる。特に、本発明ペプチドとともに培地に細胞刺激因子を配合し、本発明ペプチドと細胞刺激因子の存在下で多能性幹細胞または多能性幹細胞由来細胞を培養することによって、これらの細胞の骨髄球系細胞への分化を抑制し、その結果、造血幹細胞への分化を誘導させることができる。血液細胞刺激因子とは造血細胞に増殖、分化、生存、遊走などの刺激を与える因子である。このような細胞刺激因子は、造血幹細胞または造血前駆細胞の増殖を妨げないものであれば特に制限されないが、具体的には、SCF、IL-3、GM-CSF、IL-6、可溶性IL-6受容体、IL-11、Flt-3L、EPO、TPO、G-CSF、TGF-β、MIP-1α(George, D., J. Exp. Med. 167:1939-1944, 1988)、Flt3/Flk2-ligand等等が挙げられる。これらの刺激因子などはGallard, R.E., The cytokine facts book, AcademicPress, 1994などに詳しい。
 培地に配合する細胞刺激因子は、1種類であっても、2種類以上であってもよい。好ましくは、SCF、G-CSF、IL-3、IL-6、sIL-6L、IL-11、Flt-3L及びTPOを挙げることができるが、とりわけSCFは必須である。培地に添加される細胞刺激因子の濃度としては、1~500ng/mL、好ましくは5~300ng/mL、さらに好ましくは10~100ng/mLである。
 培養に際して、本発明ペプチドは、培地中の最終濃度が1~500μg/mL、好ましくは5~300μg/mL、さらに好ましくは10~100μg/mLとなるように、上記培地に添加することができる。また、多能性幹細胞または多能性幹細胞由来細胞は、当分野で通常用いられる細胞密度となるように、上記培地に添加することができる。培養は、通常約30~40℃、約5~10%COの雰囲気下で、所望の増幅が達成される時間行なわれる。必要に応じて通気や撹拌を行ってもよい。
 培養に際して、本発明ペプチドは、培地中の最終濃度が1~500μg/mL、好ましくは5~300μg/mL、さらに好ましくは10~100μg/mLとなるように、上記培地に添加することができる。また、多能性幹細胞または多能性幹細胞由来細胞は、当分野で通常用いられる細胞密度となるように、上記培地に添加することができる。培養は、通常約30~40℃、約5~10%COの雰囲気下で、所望の増幅が達成される時間行なわれる。必要に応じて通気や撹拌を行ってもよい。
 (VIII)本発明の増幅及び作製方法により得られた造血幹細胞または造血前駆細胞を含有する細胞集団、及びその用途
 前述する本発明の増幅方法(V)または作製方法(VI)により得られた「造血幹細胞または造血前駆細胞を含有する細胞集団」は、従来の骨髄移植や臍帯血移植に代わる血液細胞移植用の組成物(移植片)として用いることができる。
 ここで「造血幹細胞または造血前駆細胞を含有する細胞集団」(以下、単に「細胞集団」ともいう)とは、前述する本発明の増幅方法(V)または作製方法(VI)及びによって得られる造血幹細胞を含む細胞集団を意味し、造血幹細胞のみを単離・精製することを必ずしも要しない。一般に、多能性幹細胞及び多能性幹細胞に由来する細胞から造血細胞をエクスビボで作製すると、造血幹細胞のみを純粋に作製することはできず、得られる細胞集団には、様々な分化段階の中胚葉系細胞、外胚葉系細胞、内胚葉系細胞が含まれることが知られている。これらの細胞集団はFlow cytometryの技術を用いて各細胞集団を純化及び採取することが可能であり、作製した造血幹細胞を純化及び採取した後に治療目的でこれらを移植することが可能である。また、造血幹細胞をエクスビボで作製または増殖させると、造血幹細胞のみを純粋に作製または増殖することはできず、得られる細胞集団には骨髄球系およびリンパ球系細胞のすべての分化段階の細胞が含まれることが知られている。しかしながら、それらの細胞も生体にとって必要な細胞であり、増殖した細胞集団全体を生体に投与することで造血機能の改善が期待できる。特に、造血機能が障害された哺乳動物の治療を目的とする細胞移植においては、迅速な造血機能改善効果が要求されることから、均一な未分化の造血幹細胞を移植するよりむしろ、ある程度分化した多系統の血球系細胞群を含む不均一な細胞集団を移植する方が、優れた治療効果を期待できる。もちろん、未分化性を維持した造血幹細胞のみを含む均一な造血幹細胞集団もまた、上記細胞集団に包含される。このような均一な細胞集団は、上記不均一な細胞集団から、FACSなどを用いた自体公知の手法を用いて取得することができる。
 本発明の方法により作製及び増幅させた細胞集団は、白血病に対する全身X線療法や高度化学療法を行う際に、これらの治療と組み合わせる他、種々の疾患に用いることができる。例えば、固形癌患者の化学療法、放射線療法等の骨髄抑制が副作用として生じる治療を実施する際に、施術前に骨髄を採取しておき、造血幹細胞または造血前駆細胞を試験管内で増幅し、施術後に患者に戻すことで、副作用による造血系の障害から早期に回復させることができ、より強力な化学療法を行えるようになり、化学療法の治療効果を改善することができる。また本発明の細胞集団は、造血機能の障害を伴う疾患、例えば、再生不良性貧血、先天性免疫不全症、先天性代謝異常症、骨髄異形成症候群、白血病、悪性リンパ腫、多発性骨髄腫、骨髄線維症、慢性肉芽腫症、重複免疫不全症候群、無ガンマグロブリン血症、Wiskott-Aldrich症候群、後天性免疫不全症候群(AIDS)等の免疫不全症候群、サラセミア、酵素欠損による溶血性貧血、鎌状赤血球症等の先天性貧血、Gaucher病、ムコ多糖症等のリソゾーム蓄積症、副腎白質変性症等の予防および/または治療剤として使用され得る。
 かかる細胞集団は、本発明の方法によって増殖または作製した造血幹細胞及び造血前駆細胞の他に、必要に応じて薬理学的に許容し得る担体や緩衝液とともに混合して医薬組成物とした後に用いることもできる。
 ここで、薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が用いられ、例えば、懸濁液剤における懸濁化剤、等張化剤、緩衝剤、無痛化剤などとして配合される。また必要に応じて、防腐剤、抗酸化剤、増粘剤、安定化剤などの製剤添加物を用いることもできる。
 細胞集団またはそれから調製した医薬組成物の移植(投与)は、従来行われている骨髄移植や臍帯血移植と同様に行えばよく、例えば、非経口的な投与(例、静脈注射、局所注入等)を挙げることができる。医薬組成物の好適な製剤としては、水性及び非水性の等張な無菌の注射液剤が挙げられる。
 本発明の細胞集団またはそれから調製した医薬組成物の投与量は、本発明ペプチドの活性、病気の重篤度、投与対象となる動物種、投与対象の薬物受容性、性別、体重、年齢等によって異なり一概にいえないが、通常、成人1回あたり造血幹細胞の量として1×10細胞/kg以上、好ましくは1×10~1×1010細胞/kg、さらに好ましくは、2×10~1×10細胞/kgである。
 (IX)本発明ペプチドの抗体
 本発明はまた、前述する本発明のペプチドに対する抗体を提供する。
 本発明の抗体には、ポリクローナル抗体及びモノクローナル抗体が含まれる。好ましくはモノクローナル抗体である。
 好ましい抗体として、本発明のペプチドのうちKS-13(配列番号2)に対する抗体(抗KS-13抗体)を挙げることができる。本発明のモノクローナル抗体は、鳥類やげっ歯類を含む哺乳類などの脊椎動物、好ましくはヒト、マウスまたはラット等の哺乳類のイムノグロブリンクラス及びサブクラスを有する抗体である。いずれのイムノグロブリンクラス及びサブクラスに属する抗体であってもよいが、好ましいクラス及びサブクラスはイムノグロブリンM(IgM)であり、より好ましくはIgM(κ鎖)である。
 モノクローナル抗体は、Molecular Cloning, A Laboratory Manual, Second Edition(Cold Spring Harbor Laboratory Press, 1989)等に記載されるような公知の方法に従って作製することができる。具体的な製造方法については実施例2で後述する。本発明のモノクローナル抗体は、ヒトに対する抗原性を軽減するという観点から、ヒト化抗体であることが好ましい。ヒト化抗体とは、ヒト以外の動物抗体の可変領域(又は超過変領域)以外の部分をヒト免疫グロブリンのアミノ酸配列に置き換えたキメラ抗体であり、本発明ペプチド、特にKS-13に対する親和性を保持しつつ、ヒトに対する抗原性が軽減された抗体である。ヒト化モノクローナル抗体は、公知の手法に従って作製することができる。
 以下、本発明を、実施例及び実験例を用いてより詳細に説明する。但し、本発明はこれらの実験例によって何ら制限を受けるものではない。
 ところで、細胞が分裂して細胞数が増加する現象には、分化及び成熟を伴う「分化増殖」と、分化及び成熟を伴わない「自律増殖」の2つがある。そこで、下記の実験例において、前者の現象を「分化増殖」、後者の現象を「自律増殖」(本発明でいう「増幅」に相当する)と称する。
 実施例1 ペプチドの作製
 図1に示すように、胎生期肝臓において造血幹細胞(図中、緑に染色)は肝芽細胞(図中、赤に染色)に近接していることから、肝芽細胞は造血幹細胞の増幅に重要な役割を担っていると考えられる。そこでこの肝芽細胞を純化し採取するため、F1ow cytometryに使用可能な抗体の作製を試みた。肝芽細胞の細胞膜に発現する複数のタンパク質から細胞外ドメインに相当し、かつマウスとヒトの両方にホモロジーの高いペプチドを10種類デザイン(以下、ペプチドA-J)し、抗ペプチド抗体の作製を試みた。
 A: cqkkdgpcvings
 Cys Gln Lys Lys Asp Gly Pro Cys Val Ile Asn Gly Ser(配列番号1)
 B: yecscapgysgkd
 Tyr Glu Cys Ser Cys Ala Pro Gly Tyr Ser Gly Lys Asp(配列番号13)
 C: pcqhggtcvddeg
 Pro Cys Gly His Gly Gly Thr Cys Val Asp Asp Glu Gly(配列番号14)
 D: canngtcvsldgl
 Cys Ala Asn Asn Gly Thr Cys Val Ser Leu Asp Gly Leu(配列番号15)
 E: rashasclcppgf
 Arg Ala Ser His Ala Ser Cys Leu Cys Pro Pro Gly Phe(配列番号16)
 F: lcdrdvracssap
 Leu Cys Asp Arg Asp Val Arg Ala Cys Ser Ser Ala Pro(配列番号17)
 G: sgnfceivansct
 Ser Gly Asn Phe Cys Glu Ile Val Ala Asn Ser Cys Thr(配列番号18)
 H: pgqcictdgwdge
 Pro Gly Gly Cys Ile Cys Thr Asp Gly Trp Asp Gly Glu(配列番号19)
 I: pnpcendgvctdi
 Pro Asn Pro Cys Glu Asn Asp Gly Val Cys Thr Asp Ile(配列番号20)
 J: vtspgclhglcge
 Val Thr Ser Pro Gly Cys Leu His Gly Leu Cys Gly Glu(配列番号21)。
 抗体作製の定法に従って、これらの各ペプチドをラットに免疫し、リンパ節細胞を採取し、細胞融合した後、ELISAを行った。その結果、ペプチドAについては作製した抗体の約70%に陽性反応が認められたが、ペプチドA以外のペプチドについては作製した抗体の10%以下しか陽性反応は認められなかった。
 このことから、ペプチドA(配列番号2)には何某かの生理活性を有するものであることが示唆された。これを、KS-13(13アミノ酸より構成)と名付け、以下の実験に使用した。
 実施例2 抗KS-13抗体の作製
(1)ラットの免疫及び抗体価の測定
 KS-13の抗体(抗KS-13抗体)を作製するために、抗原として認識されやすいペプチドとしてKS-13のN末端のCysを欠失させた12アミノ酸残基からなるペプチド、及びキャリアタンパク質としてKLH(Keyhole Limpet Hemocyanin)を用いて、定法に従って、ラットを2週間間隔で4回免疫を行い、その後、HRP標識抗ラットIgGを用いてELISAにより抗体価を測定した。その結果、十分な抗体価の上昇が認められた。
 (2)個体スクリーニング
 3匹(No1, No.2, No.3)のラットを用いて、免疫前と、上記ペプチドとキャリアタンパク質を用いて免疫した後に、それぞれ血清を採取した。以下、免疫前の血清を用いた実験をコントロールという。
 胎齢12.5日目のマウス胎仔の肝臓から、造血幹細胞集団であるSca-1(+)c-Kit(+)CD45(+)細胞を採取し(1000 cells/well)、これをKS-13と上記血清(1.5~10%)とともに、細胞刺激因子(SCF, IL-3, IL-6, G-CSF, GM-CSF)を添付した培地(X-VIV010)に添加し8日間培養した。培養後、総細胞数を測定し、コントロールよりも総細胞数が有意に増加していたラット(No.2)の血清は、KS-13の分化抑制効果を中和していると考えられた。
 (3)融合
 Kohler GとMilstein C.の報告(Nature 1975;256:p495-p497) に従ってポリエチレングリコール法を用いて、抗体価上昇が認められ、且つKS-13中和活性が認められたNo.2の免疫ラットの脾臓細胞をミエローマ細胞(p3U1)と融合した。定法に従い、Maleimide Activate Plate(PIERCE)にKS-13を結合させた抗原塗布プレートを用いて培養上清を、その抗体価を指標にスクリーニングし、抗体価陽性株を5つ選抜した。これらの抗体価陽性株をさらに、上記個体スクリーニングと同様の方法でスクリーニングして、KS-13中和活性が確認された3株(51-2、5-2、5-3)を選抜した。
 (4)最終スクリーニングとサブクラスの確認
 上記で得られた3株を、限界希釈法によりクローニングし、ELISAにより抗体産生を確認した後、最終的に6株(51-2-1、51-2-2、5-2-1、5-2-2、5-3-1、5-3-2)を取得した。RAT MONOCLONAL ISOTYPING KIT(Serotec)を使用して樹立した細胞株のサブクラスを確認したところ、サブクラスは全てIgM(κ鎖)であることが判明した。
 実験例1 造血コロニー形成細胞アッセイ
 細胞刺激因子(50 ng/mL rm SCF, 10 ng/mL rm IL-3, 10 ng/mL rh IL-6, 3 U/mL rh EPO)(rm:組換え型、rh:組換えヒト型を意味する)を含む半固形培地(Methocult M3434;StemCellTechnologies社製)に、KS-13(10μg/mLまたは30μg/mL)を添加して、マウス胎仔肝臓造血幹細胞(CD45(+)c-Kit(+) Sca-1(+))(1000 cells/dish)を培養し、造血コロニー形成細胞アッセイを行い、細胞の造血能力を評価した。また比較のため、KS-13を添加しない液体培地を用いて(None)、同様に造血コロニー形成細胞アッセイを行い、細胞の造血能力を評価した。
 12日間培養した後にコロニー形成数を測定した結果を図2(A)に、1ヶ月間長期培養した後に形成された混合コロニー(mixed colony)の形態〔KS-13非存在下及びKS-13(30μg/mL)存在下〕を観察した結果を図2(B)に示す。図2(A)から分かるように、細胞刺激因子の存在にも関わらず、KS-13の存在下では、10μg/mL及び30μg/mLと用量依存的に、造血コロニーの形成が阻害されることが確認された。この事から、KS-13は、細胞刺激因子の存在下で造血幹細胞(CD45陽性c-Kit陽性Sca-1陽性)の分化増殖あるいは自律増殖を抑制することが示唆された。
 また図2(B)から分かるように、KS-13存在下で1ヶ月長期培養すると、KS-13非存在下に比べて、混合コロニーのサイズが大きくなる傾向が認められた。このことから、KS-13は、細胞刺激因子の存在下で造血幹細胞(CD45陽性c-Kit陽性Sca-1陽性)の自律増殖を抑制するよりも、分化増殖を抑制する可能性が示唆された。
 実験例2 KS-13添加によるヒト臍帯血CD34陽性造血幹細胞の増幅
(1)実験方法
(1-1)ヒト臍帯血CD34陽性造血幹細胞集団(造血幹細胞及び分化がやや進んだ造血前駆細胞が混在した細胞集団)を、KS-13(1μg/mL、10μg/mL)を添加した液体培地(SCF 50ng/mL, TPO 10ng/mL, Flt3L 20ng/mLを別添したリンパ球用無血清合成培地(X-VIVO 10:Takara))で培養して生体外増幅を試みた。対照試験(コントロール)として、KS-13を添加しない液体培地(SCF 50ng/mL, TPO 10ng/mL, Flt3L 20ng/mLを別添したリンパ球用無血清合成培地(X-VIVO 10:Takara))を用いて、また比較試験(陽性コントロール)として、各種細胞刺激因子の混合物(Full:SCF 50ng/ml、TPO 10ng/mL、FIt3L 20ng/mL、IL-6 20ng/mL、sIL-6R 20ng/mL)を添加した液体培地(X-VIVO 10:Takara)を用いて、それぞれヒト臍帯血CD34陽性造血幹細胞集団を培養し、培養開始時(培養0日目)、並びに培養開始から7日目及び11日目に、総細胞数、CD34陽性細胞数(造血幹細胞及び分化がやや進んだ造血前駆細胞の数)、及びCD34陰性細胞数(分化成熟した血球細胞の数)を測定した。なお、ここで陽性コントロールにおいて使用した細胞刺激因子は、既存のヒトCD34陽性細胞増幅法で使用されている因子であり、これらはヒト造血幹細胞の増殖に作用することが報告されている(Sui X, et al., Proc Natl Acad Sci USA,1995,92,2859-2863; Ebihara Y, et al., Blood 1997, 90, 4363-4368)。
 (1-2)細胞死の誘導を確認するため、各実験系について11日間液体培養した細胞を対象としてPI染色を行い、計測した死細胞数から、生細胞の割合を算出した。
 (1-3)培養開始から11日目に、さらに定法に従ってコロニー形成細胞アッセイを行い、各種の造血前駆細胞〔CFU-GEMM(colony forming unit-granulocyte/erythrocyte/macrophage/megakaryocyte)、BFU-E(burst forming unit-erythrocyte)、CFU-GM(colony forming unit-granulocyte/macrophage)、CFU-M(colony forming unit- macrophage)、CFU-G(colony forming unit-granulocyte)〕の数を計測した。
 (2)実験結果
 総細胞数、CD34陽性細胞数、及びCD34陰性細胞数の経時的変化を、それぞれ図3、図4、及び図5に示す。
 (2-1)総細胞数の経時的変化
 図3に示すように、KS-13(1μg/mL、10μg/mL)の存在下でヒト臍帯血CD34陽性造血幹細胞集団を11日間培養した場合に得られる総細胞数は、培養開始時(0日目)よりも増加しているものの(KS-13  1μg/mL:27.50倍の増加、KS-13 10μg/mL:29.38倍の増加)、その増加率は、陽性コントロール(Full:細胞刺激因子存在下での培養)よりも、またコントロール(Basal)よりも低かった。各培養系(コントロール、陽性コントロール、KS-13[1μg/mL]添加、KS-13[10μg/mL]添加)で11日間培養して得られる総細胞数の増加率は、コントロールでの増加率を1とすると以下のようになる。
 [数1] 
 総細胞数の増加率
 コントロール:陽性コントロール:KS-13[1μg/mL]:KS-13[10μg/mL]
 =1:2.2:0.72:0.77 。
 このことから、KS-13には、細胞刺激因子のような細胞分化増殖活性はないことがわかる。コントロール(Basal)の条件でヒトCD34陽性細胞を培養すると、分化増殖と自律増殖の両方が認められると想定されるが、上記の結果から、KS-13はこれら分化増殖と自律増殖(増幅)の両方を抑制しているか(分化抑制作用、増幅抑制作用)、またはそのどちらかを抑制していると考えられる。
 (2-2)CD34陽性細胞数の経時的変化
 図4に示すように、KS-13(1μg/mL、10μg/mL)の存在下でヒト臍帯血CD34陽性造血幹細胞集団を11日間培養することで、陽性コントール(図中「Full」と示す)条件下と比べるとかなり劣るものの、CD34陽性細胞(造血幹細胞及び分化がやや進んだ造血前駆細胞)の数は、培養開始時(0日目)よりも約8倍増加していた(KS-13 1μg/ml:7.96倍、KS-13 10μg/ml:8.38倍)。
 各実験系(コントロール、陽性コントロール、KS-13[1μg/mL]、KS-13[10μg/mL])におけるCD34陽性細胞数の増加率は、コントロールの場合の増加率を1とすると以下のようになる。
 [数2] 
 CD34陽性細胞数の増加率
 コントロール:陽性コントロール:KS-13[1μg/mL]:KS-13[10μg/m]
 =1:2.69:0.84:0.89 。
 (2-3)CD34陰性細胞数の経時的変化
 図5に示すように、CD34陰性細胞(分化成熟した血球細胞)は、いずれの実験系(コントロール、陽性コントロール、KS-13[1μg/mL]、KS-13[10μg/mL])でも細胞播種時には存在しなかったが、ヒト臍帯血CD34陽性造血幹細胞集団を11日間培養すると、すべての実験系でCD34陰性細胞の生成とその細胞数の増加が認められた。
 各実験系(コントロール、陽性コントロール、KS-13[1μg/mL]、KS-13[10μg/mL])におけるCD34陰性細胞数の増加率は、コントロールの場合の増加率を1とすると以下のようになる。
 [数3] 
 CD34陰性細胞数の増加率
 コントロール:陽性コントロール:KS-13[1μg/mL]:KS-13[10μg/m]
 =1:2.04:0.68:0.73 。
  上記[数2]と[数3]に示すように、KS-13(1μg/mL、10μg/mL)の存在下でヒト臍帯血CD34陽性造血幹細胞集団を11日間培養した場合、コントロールと比較してCD34陽性細胞数もCD34陰性細胞数もいずれもその増加率は低下するが、CD34陽性細胞数の増加率よりもCD34陰性細胞数の増加率のほうが低かった。これは、KS-13の添加により、CD34陽性細胞(造血幹細胞や造血前駆細胞)の増加よりもCD34陰性細胞(分化成熟した血球細胞)の増加が強く抑えられていることを意味する。上記(2-1)において、KS-13には、造血幹細胞や造血前駆細胞に対して増幅抑制作用と分化抑制作用の両方または一方があることを示したが、上記の結果は、増幅抑制作用よりも分化抑制作用のほうが優性であることを示している。
 なお、上記するように、既存のヒトCD34陽性細胞増幅法で使用されている細胞刺激因子を用いた陽性コントロールでは、CD34陽性細胞、つまり造血幹細胞や造血前駆細胞も増殖するものの、同時にCD34陰性細胞である血球細胞も顕著に増加することが認められ、造血幹細胞や造血前駆細胞の分化増殖をも促進していることが確認された。
 (2-4)細胞死誘導の確認
 各実験系(コントロール、陽性コントロール、KS-13[1μg/mL]、KS-13[10μg/mL])について11日間液体培養した細胞を対象として生細胞率{(生細胞数/(生細胞数+死細胞数)}を算出した結果を下記に示す。
 コントロール(細胞刺激因子非存在):96.7%
 陽性コントロール(細胞刺激因子存在):98.1%
 KS-13[1μg/mL]:97.5%
 KS-13[10μg/mL]:97.6%
 これから、KS-13は細胞死を誘導しないことが判明した。
 (2-5)コロニー形成細胞アッセイ(造血前駆細胞数の計測)
 各実験系(コントロール、陽性コントロール、KS-13[1μg/mL]、KS-13[10μg/mL])について11日間液体培養した細胞を対象として、各種の造血前駆細胞のコロニー〔CFU-GEMM(colony forming unit-granulocyte/erythrocyte/macrophage/ megakaryocyte)、BFU-E(burst forming unit-erythrocyte)、CFU-GM(colony forming unit-granulocyte/macrophage)、CFU-M(colony forming unit- macrophage)、CFU-G(colony forming unit-granulocyte)〕の数を計測した結果を図6に示す。
 図6に示すように、細胞刺激因子存在下(陽性コントロール、図中「Full」と表示)では、コントロール(図中「Basal」と表示)と比較して、すべての前駆細胞(CFU-GEMM、BFU-E、CFU-GM、CFU-M、CFU-G)の増幅が認められ、ヒト臍帯血CD34陽性細胞が分化増殖したことが伺えた。これに対して、10μg/mL濃度のKS-13は、コントロール(図中「Basal」と表示)と比較し、造血幹細胞に最も近いと考えられるCFU-GEMMは添加量依存的に2倍程度まで増幅し、また比較的分化・成熟が進んだ赤血球系前駆細胞であるBFU-Eは2.5倍程度増幅したものの(図6(A))、比較的分化・成熟が進んだ骨髄球系前駆細胞であるCFU-GM、CFU-G、及びCFU-Mは増幅しなかった(図6(B))。これらのことから、KS-13は、ヒト臍帯血CD34陽性細胞が骨髄球系細胞に成熟・分化する過程を抑制することで、多系列の血球に分化できる混合造血前駆細胞(CFU-GEMM)と骨髄球系以外の赤血球系前駆細胞(BFU-E)を増幅することが明らかになった。
 実験例3 骨髄造血細胞におけるKS-13の取り込み
(1)Flow cytometry解析
 マウス骨髄細胞をビオチン標識したKS-13で処理し、次いで造血幹細胞のマーカーであるCD45抗体(CD45 conjugated with PE-Cy7:Biolegend)、c-Kit抗体(c-Kit conjugated with APC:Biolegend)、及びSca-1抗体(Sca-1 conjugated with PE:Biolegend)、並びに蛍光色素で標識したStreptavidin(Streptavidin conjugated with FITC:Biolegend)を用いて染色し、Flow cytometryを用いて解析した。
 結果を図7(A)及び(B)に示す。
 図7に示すように、KS-13は、造血幹細胞を反映するCD45(+)c-Kit(+)Sca-1(+)細胞の一部へ取り込まれる事が明らかになった。
 (2)免疫染色法
 造血幹細胞増幅器官である胎齢12.5日目マウス胎仔肝臓の凍結切片を作製し、ビオチン標識したKS-13を用いて染色を行った。具体的には、凍結切片をPBS(-)で洗浄後、1%BSA PBS(-)溶液で30分間ブロッキング(非特異的反応を抑える操作)を行い、抗マウスc-Kit抗体(R&D systems, AF1356 )とビオチン標識したKS-13で4℃、一晩反応した。反応後PBS(-)で洗浄し、Anti-goat IgG conjugated with Alexa 488 (Invitrogen)及びStreptavidin conjugated with Alexa 546 (Invitrogen)、TOTO-3 (Invitrogen)で室温30分反応し、PBS(-)で洗浄後、マウンティングメディウム(DAKO)でマウントし、共焦点レーザー顕微鏡(オリンパスFV-1000)で観察した。
 結果を図8に示す。図8に示すように、造血幹細胞の中には、KS-13を取り込む細胞と取り込まない細胞が存在し、上記(1)のFlow cytometryの結果(図7)に一致した。また、KS-13はendocytosisにより造血幹細胞及び前駆細胞に取り込まれ、膜表面及び核内に到達することが示唆された。
 実験例4 マウスにおけるKS-13結合タンパク質の解析
 ビオチン標識したKS-13を胎齢12.5日目マウス胎仔肝臓細胞と氷上で1時間反応し、PBS(-)洗浄後Streptavidin-Microbeads (Milteny 130-048-102)と反応した。この操作で、KS-13を取り込む細胞には、Microbeadsが結合したと考えられた。次に、このサンプルをMACSカラム(Milteny LS column)に通し、KS-13を取り込んだ細胞をカラムにトラップした。1% Triton(Wako chemical)をカラムに流して細胞膜を破砕し、続けて6-8M Urea溶液あるいは2.5M Glycin溶液をカラムに流してKS-13に結合する一連のタンパク群を抽出した。この抽出溶液をMudPIT(Multidimensional Protein Identification Technology)法を用いてKS-13に結合するタンパク質を解析した。
 図9に示すように、マウス造血幹細胞が赤血球に分化・成熟する過程で、細胞表面に発現するタンパク質が変化する(「Sca-1(+)c-kit(+)」→「Sca-1(-)c-kit(+)CD71(-)」→「Sca-1(-)/c-kit(+)/CD71(+)」→「Sca-1(-)/c-kit(-)/CD71(+)/Ter119(+)」→「Sca-1(-)/c-kit(-)/CD71(-)/Ter119(+)」)。この組み合せを用いて、Flow cytometryでこれら細胞集団を純化・採取し、mRNA抽出、cDNA合成を行った。次に、MudPITのデータより得られた遺伝子のprimerをデザインし、マウス造血幹細胞が赤血球に分化・成熟する過程における遺伝子発現の変化を、real-time PCR法で検討した。
 結果を図10に示す。
 図10に示すように、造血幹細胞が赤血球へ分化する過程において、ある一定の遺伝子発現パターンが確認された。この遺伝子発現パターンは、造血幹細胞が赤血球へ分化するにつれて遺伝子発現が低下するパターンA(造血幹細胞の維持に重要であることが示唆される)、造血幹細胞が赤血球に分化する中間段階で遺伝子発現が亢進するパターンB(造血幹細胞が分化するために一過性に発現が亢進する)、造血幹細胞が赤血球へ分化するにつれて遺伝子発現が亢進するパターンC(造血幹細胞が赤血球へ分化するために重要であることが示唆される)に分類することができた。なお、パターンAに当てはまる遺伝子としてはRasGrp1及びHMGN2、パターンBに当てはまる遺伝子としてはHDGF、またパターンCに当てはまる遺伝子としてはProx2及びDppa3を挙げることができる。
 この結果から、KS-13へ結合するタンパク群が、分化に関与することが明らかになった。またこれから、KS-13は、組織特異的幹細胞またはその前駆細胞を増幅または作製するために使用できるだけではなく、新しい分化関連因子の同定に利用可能であることが明らかになった。またKS-13の抗体も同様に分化関連因子の同定に利用することができる。
 実験例5 Akt及びp53のリン酸化
 KS-13がどのようなシグナル伝達経路を活性化するか検討するため、まず、ヒト臍帯血CD34陽性細胞をKS-13添加培地(X-VIVO 10)で2日間培養した。次にQproteome Mammalian Protein Prep Kit (QIAGEN, Cat No.37901)を用いてタンパクを抽出し、Phospho-Kinase Array Kit, Human, Proteome Profiler (R&D CatNo.ARY003)を用いて、様々なシグナル伝達経路のリン酸化を検討した。図11の結果より、Aktのリン酸化サイトT308、p53のリン酸化サイトS15のリン酸化が認められた。このことから、KS-13はAktとp53のシグナル伝達経路を制御することが明らかになった。
 実験例6 コロニー形成線維芽細胞(CFU-F)アッセイ
 マウス骨髄細胞(2x10cells)を、KS-13を50μg/mLの割合で添加した液体培地(Mesencult:Stem Cell Technologies社)またはKS-13を添加しない同液体培地で培養して、コロニー形成線維芽細胞(CFU-F)アッセイを行い、間葉系幹細胞数の指標であるCFU-Fの形成数を測定した。
 結果を図12に示す。図12に示すように、KS-13を添加しない培養系(コントロール)では35.5のCFU-F、KS-13(50μg/mL)を添加した培養系では48.0のCFU-Fが形成された。KS-13を添加した群では、個々のCFU-Fの大きさは小さい傾向が認められた。このことから、KS-13は間葉系幹細胞を1.4倍増幅することが明らかになった。以上より、KS-13は造血幹細胞及び造血前駆細胞だけではなく、MudPITで同定された因子及びAkt、 p53の伝達経路を介して、間葉系幹細胞を始めとする他の組織特異的幹細胞(例えば神幹細胞や皮膚幹細胞などの組織特異的幹細胞)の増幅にも有効である可能性が示唆された。
 実験例7 多能性幹細胞からの造血幹細胞及び類似細胞の誘導
 多能性幹細胞より造血幹細胞及び造血幹細胞に類似する造血前駆細胞を誘導するため、マウス胚性幹細胞より胚様体誘導後中胚葉系細胞をFlow cytometryで採取し、SCFとKS-13存在下で培養後、遺伝子発現解析及び造血能力の解析を行った(図13)。
 マウス胚性幹細胞(CCE)6×10cellsを以下の培養液で5日間培養し、胚様体を形成した。
 培養液組成:
15% FBS (Fetal Bovine Serum), 2mM L-glutamine(SIGMA-ALDRICH)0.0026% (vol/vol) monothioglycerol(MTG, Wako Pure Chemical Industries, Osaka, Japan), 50 mg/ml L-ascorbic acid (Wako Pure Chemical Industries), 10 U/ml penicillin, 10 mg/ml streptomycin (SIGMA-ALDRICH)。
 この胚様体をピペッティング後にCell Dissociation buffer (Life Technologies, Carlsbad, CA) で 37 ℃、30分間インキュベーションし、細胞塊をsingle cellにほぐした後、Alexa Fluor(登録商標)647-conjugated anti-CD324 (E-cadherin) Ab (eBioscience, San Diego, CA), Pacific Blue(商標)anti-mouse Flk-1 (VEGFR2) Ab (BioLegend, San Diego, CA), PE-Cy7-conjugated anti-mouse c-Kit (CD117) Ab (eBioscience)で氷上30分間反応し、PBS(-)で洗浄後、CD324(-)Flk-1(+)c-Kit(+)細胞をFlow cytometryで採取した。
 次に採取したCD324(-)Flk-1(+)c-Kit(+)細胞を、50 ng/mL rm SCF(Peprotech)と100μg/mLKS-13の存在下及び非存在下で数日間培養し、CD45、Runx-1、HoxB4遺伝子の発現をreal-time PCRで検討した。各々の遺伝子に関してはTaqMan probe(Life Technologies)を用い、解析はStepOnePlus(Life Technologies)で行った。
 結果を図14に示す。
 図14に示すように、培養後4日目ではSCF単独培養、SCFとKS-13の共培養、また培養後5日目ではSCF単独培養において、造血細胞のマーカーであるCD45遺伝子発現が確認された。しかしながら、培養後5日目では、SCFとKS-13の共培養において、CD45遺伝子発現は認められなかった。SCFとKS-13の共培養群において、Runx-1、HoxB4遺伝子の発現を経時的に検討したところ、Runx-1の発現は培養後3日目でピークに達し、HoxB4遺伝子の発現は培養後4日目でピークに達した。CD45遺伝子は造血細胞発生における初期マーカーであり、本遺伝子陽性の画分は造血幹細胞を発生した可能性がある。Runx-1遺伝子は造血幹細胞の発生直前に発現が亢進する。またHoxB4遺伝子はES細胞へ導入すると造血幹細胞が誘導されるものの、過剰発現が持続すると白血病を発症する。
 以上の結果より、マウス胚性幹細胞から胚様体形成を経て誘導された中胚葉系細胞、CD324(-)Flk-1(+)c-Kit(+)細胞は、SCFとKS-13の添加培養4日後に造血幹細胞及び造血幹細胞に類似した細胞が誘導されたことが推定された。
 そこで、細胞刺激因子(50 ng/mL rm SCF, 10 ng/mL rm IL-3, 10 ng/mL rh IL-6, 3 U/mL rh EPO)を含む半固形培地(Methocult M3434;StemCellTechnologies社製)でこの細胞を培養したところ、1ヶ月後に直径10mmを越える大きさの、造血幹細胞に類似する細胞である、HPP-CFC(High Proliferative potential colony forming cells)が確認された(図15)。
 以上の結果より、KS-13は、マウス多能性幹細胞より造血幹細胞に類似する細胞を誘導する効果がある事が明らかになった。
 本培養条件においてHPP-CFCが誘導されたことより、使用するES細胞をCCE株から移植実験に適切な近交系マウス・C57BL6由来であるBRC5株へ変更し、造血幹細胞活性の検討を行った。
 CCE株と同じ手法を用いて移植用細胞を調整した。C57BL6由来細胞の移植を拒絶しないLy-5.1マウスをレシピエントに用いた。このレシピエントマウスに7.5グレイ放射線照射し、BRC株由来細胞とレスキュー用1×105個のLy-5.1マウス骨髄細胞を混在し、骨髄及び尾静脈より細胞を移植した。
 結果を図16、17、18に示す。
 図16に示すように、レシピエントマウス2匹の骨髄へ約2000細胞を移植し、3?4ヶ月後にFlow cytometryを用いて造血幹細胞活性を意味する骨髄再構築能を評価した。低いキメリズムにも関わらず、移植を受けた2匹において、骨髄の再構築が認められた(Control; CD45.2(+)Gr-1(+): 0.041%, CD45.2(+)Mac-1(+): 0.082%, CD45.2(+)Thy1.2(+): 0.085%, CD45.2(+)B220(+): 0.092% /No.1; CD45.2(+)Gr-1(+): 0.361%, CD45.2(+)Mac-1(+): 0.421%, CD45.2(+)Thy1.2(+): 0.090%, CD45.2(+)B220(+): 0.130% /No.2; CD45.2(+)Gr-1(+): 0.248%, CD45.2(+)Mac-1(+): 0.347%, CD45.2(+)Thy1.2(+): 0.109%, CD45.2(+)B220(+): 0.183%)。
 図17及び18に示すように、レシピエントマウス2匹の尾静脈へ約20000細胞を移植し、2ヶ月後にFlow cytometryを用いて造血幹細胞活性を意味する骨髄再構築能を評価した。移植を受けた2匹において、骨髄の再構築が認められた(Control; CD45.2(+)Gr-1(+): 0%, CD45.2(+)Mac-1(+): 0.018%, CD45.2(+)Thy1.2(+): 0%, CD45.2(+)B220(+): 0.005% /No.1; CD45.2(+)Gr-1(+): 0.356%, CD45.2(+)Mac-1(+): 0.925%, CD45.2(+)Thy1.2(+): 0.006%, CD45.2(+)B220(+): 0.077% /No.2; CD45.2(+)Gr-1(+): 0.548%, CD45.2(+)Mac-1(+): 1.90%, CD45.2(+)Thy1.2(+): 0.020%, CD45.2(+)B220(+): 0.132%)。
 このことから、KS-13は多能性幹細胞から造血幹細胞及び類似細胞の誘導に有効なことが明らかになった。
 実験例8 KS-13添加によるマウス造血幹細胞の増幅
 胎齢12.5日目マウス胎仔肝臓より、Flow cytometry法を用いて造血幹細胞(CD45(+)c-Kit(+) Sca-1(+))を純化・採取し、KS-13(30μg/mL)を添加した液体培地(SCF 50ng/mL, TPO 50ng/mLを別添したリンパ球用無血清合成培地(X-VIVO 10:Takara))で培養して生体外増幅を試みた。対照試験(コントロール)として、KS-13を添加しない液体培地(SCF 50ng/mL, TPO 50ng/mLを別添したリンパ球用無血清合成培地(X-VIVO 10:Takara))を用いた。4日間培養後、放射線照射したレシピエントLy-5.1マウスへ、体外増幅した細胞(約10000細胞)とレスキュー用1x105個のLy-5.1マウス骨髄細胞を混在し、骨髄及び尾静脈より細胞を移植した(体外増幅群:3匹、コントロール:2匹)。移植5ヶ月後にFlow cytometryを用いて造血幹細胞活性を意味する骨髄再構築能を評価した。
 図19に示すように、骨髄の再構築はすべての血球系列においてコントロールよりも高いキメリズムを認めた(コントロール群 CD45.2(+)Gr-1(+): 0.534%, CD45.2(+)Mac-1(+): 1.1725%, CD45.2(+)Thy1.2(+): 0.0155%, CD45.2(+)B220(+): 0.1045% /体外増幅群; CD45.2(+)Gr-1(+): 0.546%, CD45.2(+)Mac-1(+): 1.69%, CD45.2(+)Thy1.2(+): 0.045%, CD45.2(+)B220(+): 0.181%)。
 このことから、KS-13は造血幹細胞の体外増幅に有効なことが示唆された。
 実験例9 KS-13修飾物の効果
 細胞刺激因子(50 ng/mL rm SCF, 10 ng/mL rm IL-3, 10 ng/mL rh IL-6, 3 U/mL rh EPO)(rm:組換え型、rh:組換えヒト型を意味する)を含む半固形培地(Methocult M3434;StemCellTechnologies社製)に、KS-13(配列番号1)のN末端をミリストイル化したMyristoylated KS-13(30μg/mL)、コントロールペプチド(NQVSIGCPCDGKK:配列番号22)(30μg/mL)を添加して、マウス胎仔肝臓造血幹細胞(CD45(+)c-Kit(+) Sca-1(+))(1000 cells/dish)を培養し、造血コロニー形成細胞アッセイを行い、細胞の造血能力を評価した。
 12日間培養した後にコロニー形成数を測定した結果を図20に示す。コントロールペプチド(コロニー数:111.1)とMyristoylated KS-13(コロニー数:93.9)を比較した場合、Myristoylated KS-13はコントロールよりもコロニー形成を阻害した。
 このことから、Myristoylated KS-13は細胞刺激因子の存在下で造血幹細胞(CD45陽性c-Kit陽性Sca-1陽性)の分化増殖を抑制する可能性が示唆された。
 実験例10 ヒトにおけるKS-13結合タンパク質の解析
 ビオチン標識したKS-13をヒト臍帯血CD34陽性細胞と氷上で1時間反応し、PBS(-)洗浄後Streptavidin-Microbeads (Milteny 130-048-102)と反応した。この操作で、KS-13を取り込む細胞には、Microbeadsが結合したと考えられた。次に、このサンプルをMACSカラム(Milteny LS column)に通し、KS-13を取り込んだ細胞をカラムにトラップした。1% Triton(Wako chemical)をカラムに流して細胞膜を破砕し、続けて6-8M Urea溶液あるいは2.5M Glycin溶液をカラムに流してKS-13に結合する一連のタンパク群を抽出した。この抽出溶液をMudPIT(Multidimensional Protein Identification Technology)法を用いてKS-13に結合するタンパク質を解析した。
 以下、タンパク量を意味するemPAIの価が高い上位5つのタンパク質を、抽出法別に列挙する。
 Urea抽出
0.58:Uncharacterized protein C20orf54。0.47:Ig lambda chain V-I region HA。0.47:Protein CGI-301。0.47:Protein transport protein Sec61 subunit beta。0.27:DNA-binding protein A。
 Glycin抽出
0.58:Small nuclear ribonucleoprotein G-like protein。0.39:Host cell factor C1 regulator 1。0.39:Keratin, type I cytoskeletal 16。0.28:Keratin, type I cytoskeletal 14。0.28:Tropomyosin beta chain。
 また上位ではないものの、マウスにおける解析と同様に、HDGF、ユビキチン関連因子などの分化・増殖を制御する因子も同定された。
 このことから、KS-13は、ヒトにおいても新しい分化関連因子の同定に利用可能であることが明らかになった。
 配列番号13~21は、肝芽細胞の細胞膜の細胞外ドメインのアミノ酸配列からデザインしたペプチドのアミノ酸配列を示す。

Claims (15)

  1.  下記(A)または(B)に記載するペプチド:
    (A)配列番号1に記載する13のアミノ酸残基からなるアミノ酸配列を有するペプチド、
    (B)配列番号1に記載するアミノ酸配列において、1又は複数のアミノ酸が欠失、置換または付加してなるペプチドであって、
    (1)造血幹細胞または造血前駆細胞の骨髄球系細胞への分化を抑制する作用、
    (2)間葉系幹細胞を増幅促進する作用、または
    (3)多能性幹細胞から造血幹細胞を誘導する作用
    のいずれか少なくとも1つの作用を有するペプチド。
  2.  上記(B)に示されるペプチドが下記に示されるアミノ酸残基からなるアミノ酸配列を有するものである、請求項1に記載するペプチド:
    Figure JPOXMLDOC01-appb-C000001
  3.  上記(B)に示されるペプチドが、下記に示されるアミノ酸残基からなるアミノ酸配列を有するいずれかのペプチドである、請求項1または2に記載するペプチド:
     Cys Gln His Lys Ala Gly Pro Cys Val Ile Asn Gly Ser (配列番号3)
     Cys Gln Lys Lys Asp Gly Pro Cys Val Met Asn Gly Ser (配列番号4)
     Cys Gln His Lys Ala Gly Pro Cys Val Ile Asn Gly Ser (配列番号5)
     Cys Gln Glu Met Asp Gly Pro Cys Val Val Asn Gly Ser (配列番号6)
     Cys His Leu Lys Glu Gly Pro Cys Val Ile Asn Gly Ser (配列番号7)
           Lys Glu Gly Pro Cys Val Ile Asn Gly Ser (配列番号8)
     Cys His Leu Lys Gln Gly Pro Cys Ile Ile Asn Gly Ser (配列番号9)
               Gly Pro Cys Ile Ile Asn Gly Ser (配列番号10)。
  4.  請求項1乃至3のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を有効成分とする造血幹細胞または造血前駆細胞の分化抑制剤。
  5.  請求項1乃至3のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を有効成分とする間葉系幹細胞の増幅促進剤。
  6.  請求項1乃至3のいずれかに記載する少なくとも1種のペプチド、またはその薬学的に許容される塩若しくは溶媒和物を有効成分とする造血幹細胞誘導剤。
  7.  請求項1乃至3のいずれかに記載する少なくとも1種のペプチドまたはその薬学的に許容される塩若しくは溶媒和物、請求項4に記載する分化抑制剤、または請求項5に記載する増幅促進剤を含有する培地中で、組織特異的幹細胞または組織特異的前駆細胞を培養する工程を有する、組織特異的幹細胞または組織特異的前駆細胞の増殖方法。
  8.  組織特異的幹細胞または組織特異的前駆細胞が造血幹細胞または造血前駆細胞であり、造血幹細胞を増幅することを含む、請求項7に記載する増殖方法。
  9.  組織特異的幹細胞が間葉系幹細胞であり、間葉系幹細胞を増幅することを含む、請求項7に記載する増殖方法。
  10.  請求項1乃至3のいずれかに記載する少なくとも1種のペプチドまたはその薬学的に許容される塩若しくは溶媒和物、または請求項6に記載する造血幹細胞誘導剤を含有する培地中で、多能性幹細胞または多能性幹細胞由来細胞を培養する工程を有する、造血幹細胞の誘導または作製方法。
  11.  上記多能性幹細胞が、患者由来の人工多能性幹細胞であり、遺伝子導入により正常化されてなるものである、請求項10に記載する方法。
  12.  上記培地がさらに、細胞刺激因子、脱メチル化剤、及び細胞外マトリックスタンパク質からなる群から選択される少なくとも1種を含有するものである、請求項7または10に記載する方法。
  13.  請求項8に記載する方法、または請求項10若しくは11に記載する方法によって得られる造血幹細胞または造血前駆細胞を含む細胞集団。
  14.  請求項13に記載する細胞集団を含有する医薬組成物。
  15.  請求項1乃至3のいずれかに記載する少なくとも1種のペプチドに対する抗体。
PCT/JP2010/067011 2009-09-29 2010-09-29 造血幹細胞または造血前駆細胞の分化を抑制するペプチド及びその用途 WO2011040500A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10820615.2A EP2484689A4 (en) 2009-09-29 2010-09-29 PEPTIDE-INHIBITING DIFFERENTIATION OF HEMATOPOETIC STEM CELLS OR HEMATOPOETIC PRE-CURING CELLS AND THEIR USE
US13/499,116 US8956869B2 (en) 2009-09-29 2010-09-29 Peptide inhibiting differentiation of hematopoietic stem cells or hematopoietic precursor cells and use of same
JP2011534289A JP5791506B2 (ja) 2009-09-29 2010-09-29 造血幹細胞または造血前駆細胞の分化を抑制するペプチド及びその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-224088 2009-09-29
JP2009224088 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040500A1 true WO2011040500A1 (ja) 2011-04-07

Family

ID=43826312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067011 WO2011040500A1 (ja) 2009-09-29 2010-09-29 造血幹細胞または造血前駆細胞の分化を抑制するペプチド及びその用途

Country Status (4)

Country Link
US (1) US8956869B2 (ja)
EP (1) EP2484689A4 (ja)
JP (1) JP5791506B2 (ja)
WO (1) WO2011040500A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034407A1 (ja) * 2012-08-31 2014-03-06 Abe Hiroyuki 間葉系幹細胞を未分化増殖させる方法、および間葉系幹細胞を濃縮する方法
WO2014129590A1 (ja) * 2013-02-21 2014-08-28 国立大学法人九州大学 Cyclin D1遺伝子発現抑制剤および抗腫瘍剤
WO2015111734A1 (ja) 2014-01-23 2015-07-30 日産化学工業株式会社 未分化性維持培養材料
WO2015152305A1 (ja) * 2014-03-31 2015-10-08 株式会社サイエンス・ラスター 造血細胞の増殖ペプチドおよびその用途
WO2016167276A1 (ja) * 2015-04-13 2016-10-20 国立大学法人 京都大学 造血幹細胞増幅誘導剤

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509358A (ja) * 1992-12-11 1996-10-08 アメリカ合衆国 神経内分泌腫瘍で発現されるδ様遺伝子
WO1997031647A1 (en) 1996-03-01 1997-09-04 Imclone Systems Incorporated Use of delta-like protein to inhibit the differentiation of stem cells
JP2007106760A (ja) 2005-09-16 2007-04-26 Kenji Yoshida 造血幹細胞増殖剤
JP2007238473A (ja) 2006-03-07 2007-09-20 Kazuo Todokoro 造血幹細胞の維持増幅を促進する因子及び造血幹細胞の増幅方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2340465A1 (en) 1998-08-21 2000-03-02 Princeton University Genes that regulate hematopoietic blood forming stem cells and uses thereof
US20040142325A1 (en) * 2001-09-14 2004-07-22 Liat Mintz Methods and systems for annotating biomolecular sequences
ES2527521T3 (es) * 2008-03-17 2015-01-26 Livtech Inc. Anticuerpos antihumanos frente a Dlk-1 que tienen actividad antitumoral

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509358A (ja) * 1992-12-11 1996-10-08 アメリカ合衆国 神経内分泌腫瘍で発現されるδ様遺伝子
WO1997031647A1 (en) 1996-03-01 1997-09-04 Imclone Systems Incorporated Use of delta-like protein to inhibit the differentiation of stem cells
JP2000513329A (ja) * 1996-03-01 2000-10-10 イムクローン システムズ インコーポレイテッド 幹細胞の分化を阻害させるためのデルタ様蛋白質の使用
JP2007106760A (ja) 2005-09-16 2007-04-26 Kenji Yoshida 造血幹細胞増殖剤
JP2007238473A (ja) 2006-03-07 2007-09-20 Kazuo Todokoro 造血幹細胞の維持増幅を促進する因子及び造血幹細胞の増幅方法

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
"Idenshi Kenkyuho II", 1986, article "Zoku Seikagaku Jikken Kouza 1", pages: 105
"IUPAC-IUB Communication on Biological Nomenclature", EUR. J. BIOCHEM., vol. 138, 1984, pages 9
"Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
BOWIE ET AL., SCIENCE, vol. 247, 1990, pages 1306 - 1310
CELL, vol. 129, no. 7, June 2007 (2007-06-01), pages 1377 - 1388
CURR OPIN BIOTECHNOL., vol. 19, no. 5, October 2008 (2008-10-01), pages 534 - 540
EBIHARA Y ET AL., BLOOD, vol. 90, 1997, pages 4363 - 4368
EXP. HEMATOL., vol. 34, 2006, pages 140
GALLARD, R.E.: "The cytokine facts book", 1994, ACADEMIC PRESS
GEORGE, D., J. EXP. MED., vol. 167, 1988, pages 1939 - 1944
J. AM. CHEM SOC., vol. 91, 1969, pages 3350
J. AM. CHEM. SOC., vol. 89, 1967, pages 4801
KOHLER G.; MILSTEIN C., NATURE, vol. 256, 1975, pages 495 - 497
KOLLER, M. R., BIO/TECHNOLOGY, vol. 11, 1993, pages 358
KOLLER, M. R., BLOOD, vol. 82, 1993, pages 378
METHODS IN ENZYMOLOGY, vol. 100, 1983, pages 468
METHODS IN ENZYMOLOGY, vol. 154, no. 350, 1987, pages 367 - 382
NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441
PALSSON, B. 0., BIO/TECHNOLOGY, vol. 11, 1993, pages 368
PALSSON, B. O., BIO/TECHNOLOGY, vol. 11, 1993, pages 368
SCHWARTZ, PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 6760
SCHWARTZ, PROC. NATL. ACAD. SCI. USA., vol. 88, 1991, pages 6760
SCIENCE, vol. 150, 1968, pages 178
See also references of EP2484689A4 *
SMAS C.M. ET AL.: "Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation.", CELL, vol. 73, no. 4, 1993, pages 725 - 734, XP024245647 *
SUI X ET AL., PROC NATL ACAD SCI USA, vol. 92, 1995, pages 2859 - 2863
TETRAHEDRON LETT., vol. 22, 1981, pages 1859
TETRAHEDRON LETT., vol. 24, 1983, pages 245
THIMOTH, A.W., BLOOD, vol. 89, 1997, pages 3624 - 3635

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034407A1 (ja) * 2012-08-31 2014-03-06 Abe Hiroyuki 間葉系幹細胞を未分化増殖させる方法、および間葉系幹細胞を濃縮する方法
JP2014045733A (ja) * 2012-08-31 2014-03-17 Hiroyuki Abe 間葉系幹細胞を未分化増殖させる方法、および間葉系幹細胞を濃縮する方法
US9670461B2 (en) 2012-08-31 2017-06-06 Hiroyuki Abe Method for undifferentiated growth of mesenchymal stem cell and method for concentration of mesenchymal stem cell
WO2014129590A1 (ja) * 2013-02-21 2014-08-28 国立大学法人九州大学 Cyclin D1遺伝子発現抑制剤および抗腫瘍剤
WO2015111734A1 (ja) 2014-01-23 2015-07-30 日産化学工業株式会社 未分化性維持培養材料
KR20160110426A (ko) 2014-01-23 2016-09-21 닛산 가가쿠 고교 가부시키 가이샤 미분화성 유지 배양재료
US10316292B2 (en) 2014-01-23 2019-06-11 Nissan Chemical Industries, Ltd. Material for undifferentiated state-maintaining culture
WO2015152305A1 (ja) * 2014-03-31 2015-10-08 株式会社サイエンス・ラスター 造血細胞の増殖ペプチドおよびその用途
JPWO2015152305A1 (ja) * 2014-03-31 2017-04-13 株式会社サイエンス・ラスター 造血細胞の増殖ペプチドおよびその用途
WO2016167276A1 (ja) * 2015-04-13 2016-10-20 国立大学法人 京都大学 造血幹細胞増幅誘導剤

Also Published As

Publication number Publication date
JPWO2011040500A1 (ja) 2013-02-28
JP5791506B2 (ja) 2015-10-07
US20120315701A1 (en) 2012-12-13
EP2484689A4 (en) 2013-05-15
US8956869B2 (en) 2015-02-17
EP2484689A1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
Golub et al. Embryonic hematopoiesis
KR102151210B1 (ko) 규정된 조건하에서 인간 만능성 줄기 세포의 조혈내피세포 분화를 위한 방법 및 재료
US8846393B2 (en) Methods of improving stem cell homing and engraftment
KR20040023724A (ko) 조혈 간세포의 제조법
WO2005097979A2 (en) Methods and compositions for obtaining hematopoietic stem cells derived from embryonic stem cells and uses thereof
WO2012133948A1 (ja) 生体組織から単離できるssea-3陽性の多能性幹細胞を含む他家移植用細胞治療用組成物
JP5791506B2 (ja) 造血幹細胞または造血前駆細胞の分化を抑制するペプチド及びその用途
EP2390312A1 (en) Methods of improving stem cell homing and engraftment
AU2015271689B2 (en) Expansion and engraftment of stem cells using Notch 1 and/or Notch 2 agonists
NZ511685A (en) Human brain endothelial cells and growth medium and method for expansion of primitive CD34+CD38- bone marrow stem cells
JP4224624B2 (ja) 造血幹細胞または造血前駆細胞の増殖または生存を支持し得るポリペプチドおよびそれをコードするdna
Bilko et al. Characterization of the interactions between stromal and haematopoietic progenitor cells in expansion cell culture models
Dell'Agnola et al. In vitro and in vivo hematopoietic potential of human stem cells residing in muscle tissue
JP6695795B2 (ja) 造血細胞の増殖ペプチドおよびその用途
Xie et al. Marrow mesenchymal stem cells transduced with TPO/FL genes as support for ex vivo expansion of hematopoietic stem/progenitor cells
Mahmud et al. Primate skeletal muscle contains cells capable of sustaining in vitro hematopoiesis
EP1707625A1 (en) Process for producing hematopoietic stem cells or vascular endothelial precursor cells
WO2022241558A1 (en) A method for producing blood progenitor and progenitor t cells, resulting cells and methods and uses thereof
Kaur-Bollinger et al. Role of secreted factors in the regulation of hematopoietic stem cells by the bone marrow microenvironment
JPWO2005056778A1 (ja) 造血幹細胞の分化抑制又は増殖方法
Haddad et al. Biology of Hematopoietic Stem Cells in the Adult
JP6817633B2 (ja) 造血幹細胞増幅誘導剤
Kelley et al. Collection and Expansion of Stem Cells
Parameswaran et al. Targeting the bone marrow with activin A-overexpressing embryonic multipotent stromal cells specifically modifies B lymphopoiesis
JP2014183784A (ja) ヒト造血幹細胞を増幅させるための組成物及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534289

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010820615

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499116

Country of ref document: US

Ref document number: 2010820615

Country of ref document: EP