WO2011040136A1 - レンズの組立方法、レンズの組立体、及びレンズ組立体を備えた撮像装置 - Google Patents
レンズの組立方法、レンズの組立体、及びレンズ組立体を備えた撮像装置 Download PDFInfo
- Publication number
- WO2011040136A1 WO2011040136A1 PCT/JP2010/063861 JP2010063861W WO2011040136A1 WO 2011040136 A1 WO2011040136 A1 WO 2011040136A1 JP 2010063861 W JP2010063861 W JP 2010063861W WO 2011040136 A1 WO2011040136 A1 WO 2011040136A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- mark
- marks
- outer peripheral
- optical axis
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/022—Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/32—Fiducial marks and measuring scales within the optical system
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/023—Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49764—Method of mechanical manufacture with testing or indicating
- Y10T29/49778—Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
- Y10T29/4978—Assisting assembly or disassembly
Definitions
- the present invention relates to an assembling method for assembling a plurality of lenses installed in an optical device, an assembly in which a plurality of lenses are assembled, and an imaging apparatus including the lens assembly.
- the optical system of an optical device such as a digital camera or a mobile phone with a camera is configured by combining a plurality of lenses.
- the optical axes of a plurality of lenses are precisely aligned, and a lens assembly is configured by fixing the lenses together, and then an image sensor is attached to the lens assembly for imaging.
- an image sensor is attached to the lens assembly for imaging.
- problems such as an image being distorted or blurred occur, so that good imaging performance cannot be obtained.
- a camera lens unit including a plurality of lenses as the number of pixels of an image sensor increases, it is required to assemble a plurality of lenses with high accuracy, but the difficulty of the assembly is high.
- the assembling work of a plurality of lenses includes the aligning work of aligning the optical axes of the respective lenses, and it is very difficult to align the optical axes of the respective lenses with high precision by the aligning work.
- As a method for assembling a plurality of lenses there are mainly four types of assembling methods described below. Four types of assembling methods will be described with reference to FIG. FIG. 14 is a cross-sectional view of a lens showing a lens assembling method according to the prior art.
- the lens frame fitting assembly method As the first method, as shown in FIG. 14A, the side surfaces of the first lens 500 and the second lens 510 are sandwiched between the lens frames 520, and the two lenses are physically positioned at the reference position of the lens frame 520. It is a method of assembling. Since positioning is performed by the lens frame 520, the two lenses can be easily assembled without performing alignment work for aligning the optical axes of the first lens 500 and the second lens 510. However, since the two lenses are positioned by another component such as the lens frame 520, there is a problem that the positioning accuracy is inferior.
- the second method is a reference position fitting assembly method.
- a flange 531 is provided in an outer peripheral region outside the lens effective optical surface.
- a flange 541 is provided in an outer peripheral region outside the lens effective optical surface.
- the flange functions as a reference position, it is necessary to form their installation positions on each lens with high accuracy, but it is very difficult to form the flange with high accuracy. That is, it is very difficult to manufacture a lens having a highly accurate reference position. It is also very difficult to perform an assembling operation by measuring a reference position (flange position) provided on the lens.
- the first lens 550 is installed on the second lens 560 to form a lens assembly, and the first lens 550 is mounted while measuring the optical performance of the lens assembly. Move in parallel (arrow direction) to align. Then, the position where the optical performance of the lens assembly is good is determined, and the first lens 550 and the second lens 560 are fixed.
- this assembling method it is possible to assemble with high accuracy, but there is a problem that alignment work including measurement of optical performance takes time.
- this assembling method can be applied only when assembling a combination of lenses capable of measuring optical performance, there is a problem of lack of applicability. For example, in the case of assembling a lens unit having a plurality of lenses, this assembling method can be applied only to the final lens assembly, so that the applicability is lacking.
- a mark 571 is provided on a surface of the first lens 570 facing the second lens 580, and a mark 581 is formed on the surface of the second lens 580 facing the first lens 570. Is provided. Then, the position of the mark of each lens is read, the first lens 570 is moved in the parallel direction (in the direction of the arrow), and the position of the mark 571 and the position of the mark 581 are matched to each other. The second lens 580 is aligned. As described above, the alignment can be easily performed by using the mark, but since the adjustment is performed only in the parallel direction, it is difficult to accurately align the optical axis.
- FIG. 15 is a cross-sectional view of a lens assembly according to the prior art.
- an optical axis inclination having an inclination of an angle ⁇ occurs between the first lens 570 and the second lens 580, and this angle The inclination of ⁇ cannot be adjusted.
- an optical axis tilt of 5 minutes (5 ′) to 10 minutes (10 ′) occurs, and a tilt angle required for a high pixel optical system of, for example, 12 million pixel class. Can't meet.
- a method is known in which a mark is formed in an outer peripheral region around the effective optical surface of the lens, and the lens is assembled using the mark (for example, Patent Document 1). Also, a method for assembling a lens using a defect at a predetermined position in the effective optical surface of the lens as a positioning mark is known (for example, Patent Document 2). In addition, a method of centering the lens by forming a mark on the lens is known (for example, Patent Document 3).
- the present invention solves the above-described problems, and an object of the present invention is to provide a lens assembling method that can be assembled by adjusting the inclination between a plurality of lenses when assembling a plurality of lenses. It is another object of the present invention to provide a lens assembly assembled by adjusting the inclination between a plurality of lenses. It is another object of the present invention to provide an imaging device including the lens assembly.
- a first aspect of the present invention is a lens assembly method for assembling a first lens and a second lens, wherein the first lens has a first mark on one surface, and the one lens A second mark on a surface opposite to the surface, the second lens has a third mark on one surface, and the first mark and the first mark of the first lens.
- the first step of aligning the position of one of the two marks and the position of the third mark of the second lens, and maintaining the alignment in the first step The position of the other one of the first mark and the second mark of the first lens and the position of the third mark provided on the second lens are aligned.
- a second step of assembling the lens is aligned.
- the second aspect is a lens assembling method according to the first aspect, wherein the second mark of the first lens and the third mark of the second lens face each other. In the first step, the position of the second mark and the position of the third mark are aligned.
- a third aspect is a lens assembly method for assembling a first lens and a second lens, the first lens having a first mark on one surface, and the one surface.
- the second lens has a third mark on one surface, the first mark and the second mark of the first lens.
- at least one of the first step and the second step includes the first macro Or estimating the virtual first mark or the second mark based on the second mark and aligning the position of the virtual mark with the position of the third mark.
- a fourth aspect is a lens assembling method according to the third aspect, wherein at least one of the first mark and the second mark is an effective optical surface of the first lens.
- a plurality of marks are provided in the outer peripheral region, and in the first step or the second step, a plurality of marks provided in the outer peripheral region are a plurality of marks provided in the outer peripheral region.
- the position of the virtual mark is estimated based on the above, and the position of the virtual mark and the position of the third mark are aligned.
- a fifth aspect is a lens assembling method according to the fourth aspect, wherein a plurality of marks provided in the outer peripheral area among the first mark and the second mark are the first mark and the second mark.
- the marks provided in the outer peripheral region are provided in the outer peripheral region in the first step or the second step.
- the center of gravity of an area surrounded by a plurality of marks is estimated as the virtual mark, and the position of the virtual mark and the position of the third mark are aligned.
- a sixth aspect is a lens assembling method according to any of the fourth and fifth aspects, wherein the positions of the plurality of first marks provided in the outer peripheral area, and the outer peripheral area The positions of the plurality of second marks provided on the screen are shifted from each other.
- a seventh aspect is a lens assembling method according to the third aspect, wherein at least one of the first mark and the second mark has an optical axis of the first lens.
- a circular mark at the center is provided in the outer peripheral region around the effective optical surface of the first lens, and is provided in the outer peripheral region in the first step or the second step. For the mark, the center of gravity position of the region surrounded by the circular mark is estimated, and the estimated center of gravity position and the position of the third mark are combined.
- an eighth aspect is a lens assembling method according to the seventh aspect, wherein the circular first mark provided in the outer peripheral area and the circular shape provided in the outer peripheral area.
- the second mark is characterized in that the diameter is different.
- a lens assembling method according to any one of the first to fifth aspects or the seventh aspect, wherein the first mark and the second mark include the first mark and the second mark.
- the mark provided in the effective optical surface of the first lens is provided on the optical axis of the first lens.
- a tenth aspect is a lens assembly method according to any one of the first to ninth aspects, wherein the third mark is provided on the optical axis of the second lens. It is characterized by.
- An eleventh aspect is a lens assembling method according to any one of the first to ninth aspects, wherein the third mark is an outer peripheral region around the effective optical surface of the second lens.
- the position of the virtual mark with respect to the third mark is based on the plurality of third marks provided in the outer peripheral region. And the alignment is performed.
- a twelfth aspect is a lens assembling method according to the eleventh aspect, wherein the plurality of third marks are provided at positions at equal distances from the optical axis of the second lens.
- the position of the center of gravity of the region surrounded by the plurality of third marks provided in the outer peripheral region is determined as a virtual mark for the third mark. The position is estimated and estimated.
- a thirteenth aspect is a lens assembling method according to any one of the first to ninth aspects, wherein the third mark has a circular shape centered on the optical axis of the second lens.
- the mark is provided in an outer peripheral region around the effective optical surface of the second lens, and the third step provided in the outer peripheral region in the first step and the second step.
- the position of the center of gravity of the region surrounded by the mark is estimated as the position of the virtual mark for the third mark, and the alignment is performed.
- a fourteenth aspect is a method for assembling a lens according to either the first or second aspect, wherein the first mark and the second mark are on the optical axis of the first lens.
- the third mark is provided on the optical axis of the second lens.
- a fifteenth aspect is a method for assembling a lens according to any one of the first to fourteenth aspects, wherein the sizes of the first mark, the second mark, and the third mark are the same. , Different from each other.
- a first lens having a first mark provided on one surface and a second mark provided on a surface opposite to the one surface, and a third mark are provided.
- a second lens provided, the position of the second mark and the position of the third mark are matched, and the position of the first mark and the position of the third mark are matched. It is the assembly of the lens characterized by having assembled in the state.
- a seventeenth aspect is an assembly of lenses according to the sixteenth aspect, wherein the second lens has a fourth mark on a surface opposite to the surface on which the third mark is formed. Is formed.
- the surface opposite to the surface on which the first lens is disposed in the lens assembly according to the sixteenth or seventeenth aspect and the second lens of the lens assembly, the surface opposite to the surface on which the first lens is disposed. And an imaging sensor that receives incident light transmitted through the first and second lenses.
- the first lens and the second lens can be aligned in the parallel direction by the first step, and further, the first lens and the second lens can be aligned by the second step. It is possible to adjust the inclination between them. Thus, it becomes possible to suppress the inclination between lenses by a 2nd process, As a result, it becomes possible to produce a highly accurate lens unit.
- FIG. 10 is a top view and a cross-sectional view of a lens according to Modification 3.
- FIG. 10 is a top view and a cross-sectional view of a lens according to Modification 3.
- 10 is a top view and a cross-sectional view of a lens according to Modification 4. It is the upper side figure and sectional drawing of the lens which show another example of a mark. It is sectional drawing of the lens which concerns on 3rd Embodiment of this invention. 10 is a sectional view of a lens according to Modification Example 5. FIG. 10 is a sectional view of a lens according to Modification Example 6. FIG. It is sectional drawing of the lens which shows the assembly method of the lens which concerns on a prior art. It is sectional drawing of the lens assembly which concerns on a prior art.
- a plurality of lenses provided with marks are subjected to alignment based on the marks to assemble a plurality of lenses. For example, when two lenses are assembled, a mark is formed on both surfaces of at least one lens, and a mark is formed on one surface of the other lens. Then, using these marks, the two lenses are aligned to assemble the lens. By assembling using these marks, the lenses are aligned in the parallel direction, and the tilt between the lenses is adjusted. Specific embodiments will be described below. [First Embodiment] A lens and a method for assembling the lens according to the first embodiment of the present invention will be described with reference to FIGS. FIG.
- FIG. 1 is a top view and a cross-sectional view of a lens according to a first embodiment of the present invention.
- FIG. 2 is a sectional view of the lens showing the lens assembling method according to the first embodiment of the present invention.
- FIG. 1A is a top view of the first lens 10 as viewed from one surface (first surface 11) and a cross-sectional view passing through the center of the first lens 10.
- FIG. 1B is a top view of the second lens 20 as viewed from one surface (first surface 21), and a cross-sectional view passing through the center of the second lens 20.
- FIG. 1C is a cross-sectional view of the lens assembly showing a state in which the first lens 10 and the second lens 20 are assembled.
- the lens assembly according to the first embodiment includes a first lens 10 and a second lens 20.
- the first lens 10 has marks on both sides.
- a convex first mark 12 is provided on one surface (first surface 11) on the optical axis of the lens.
- a convex second mark 14 is provided on the opposite surface (second surface 13).
- a convex third mark 22 is provided on the optical axis of one surface (first surface 21).
- the third mark 22 is provided on the optical axis of the surface (first surface 21) facing the first lens 10.
- the first mark 12, the second mark 14, and the third mark 22 have a circular shape as an example when viewed from above. And as shown in FIG.1 (c), the 2nd surface 13 in the 1st lens 10 and the 1st surface 21 in the 2nd lens 20 face each other, and the 1st lens 10 and the 2nd A lens assembly is manufactured by combining with the lens 20.
- the diameter of the first lens 10 and the second lens 20 is 3 mm, and the diameter of the first mark 12 and the like is 50 ⁇ m or less.
- the diameter of the first mark 12 or the like is 20 ⁇ m.
- the size of the lens and the mark is an example, and the lens and the mark according to the present invention are not limited to this size.
- the first lens 10 and the second lens 20 are placed at a desired distance on the surface opposite to the first surface 21 of the second lens 20.
- An imaging sensor that receives the transmitted incident light is arranged.
- the shapes of the first mark 12, the second mark 14, and the third mark 22 may be rounded or rectangular when viewed in a cross section as shown in FIG.
- the shape may be a shape.
- the shape of the 1st mark 12, the 2nd mark 14, and the 3rd mark 22 may be a concave shape like a groove-shaped mark other than a convex shape.
- the first mark 12, the second mark 14, and the third mark 22 may have the same size or different sizes.
- the first lens 10 and the second lens 20 may be made of resin or glass.
- First step (shift alignment) First, as shown in FIG. 2A, the second surface 13 of the first lens 10 and the first surface 21 of the second lens 20 face each other, and the second surface 20 is placed on the second lens 20. 1 lens 10 is installed. Then, the position of the third mark 22 provided on the second lens 20 and the position of the second mark 14 provided on the first lens 10 are matched. For example, the position of the second mark 14 and the position of the third mark 22 are matched by moving the first lens 10 in the parallel direction (X direction) on the second lens 20.
- the third mark 22 on the second lens 20 is observed with a microscope, and an optical three-dimensional coordinate measuring device (for example, Hereinafter, the position of the third mark 22 provided on the second lens 20 is measured using a “coordinate measuring device”.
- a known coordinate measuring device may be used as the three-dimensional coordinate measuring device.
- the coordinate measuring device measures the coordinates of the third mark 22 with a predetermined position set in advance as the origin, and holds the coordinate information.
- the first lens 10 is placed on the second lens 20 with the second surface 13 facing the first surface 21 of the second lens 20.
- the position of the 2nd mark 14 provided in the 1st lens 10 is measured with a coordinate measuring apparatus, and the coordinate information of the 2nd mark 14 is hold
- the first lens 10 is moved in the parallel direction (X direction) so that the position of the third mark 22 and the position of the second mark 14 coincide (shift). Alignment).
- the position of the 2nd mark 14 provided in the 1st lens 10 and the position of the 3rd mark 22 provided in the 2nd lens 20 are made to correspond, and it is in the state where it matched.
- the positions of the first lens 10 and the second lens 20 are maintained.
- the position of the first mark 12 provided on the first surface 11 of the first lens 10 is measured by a coordinate measuring device, and the coordinate information of the first mark 12 is held. Then, while maintaining the state where the position of the second mark 14 and the position of the third mark 22 are matched, the position of the first mark 12 and the position of the third mark 22 are matched.
- the inclination of the first lens 10 is changed. For example, as shown in FIG. 2B, the inclination of the first lens 10 is changed in the ⁇ direction while maintaining the state where the position of the second mark 14 and the position of the third mark 22 are matched.
- the position of the first mark 12 is aligned with the position of the third mark 22 (tilt alignment).
- the first lens 10 is aligned with the position of the first mark 12 in the state where the position of the second mark 14 is aligned with the position of the third mark 22.
- the tilt between the second lens 20 and the second lens 20 can be adjusted. That is, according to the second step (tilt alignment), the inclination between the optical axis of the first lens 10 and the optical axis of the second lens 20 can be adjusted, and the inclination can be suppressed. It becomes. (Fixing of the first lens 10 and the second lens 20)
- the adhesive 100 is applied to the peripheral portions of the first lens 10 and the second lens 20.
- the position of the first lens 10 and the position of the second lens 20 in the parallel direction can be matched by the first step (shift alignment). Furthermore, the tilt of the optical axis can be suppressed by adjusting the tilt (tilt) between the first lens 10 and the second lens 20 by the second step (tilt alignment).
- the first mark 12, the second mark 14, and the third mark 22 are measured and aligned, so that the conventional alignment method is performed. Then, it is possible to perform alignment by measuring the relative tilt (relative tilt amount) between the lenses that could not be detected. This makes it possible to easily manufacture a highly accurate lens unit while suppressing the relative inclination between the lenses.
- an inclination of 5 minutes (') to 10 minutes (') occurs between the lenses.
- the inclination between the first lens 10 and the second lens 20 can be suppressed to 2 minutes (') or less.
- the inclination between lenses is required to be 3 minutes (') or less.
- the tilt between the lenses can be suppressed to 2 minutes (') or less, it is possible to satisfy the tilt required for the optical system having a high pixel.
- the third mark 22 provided on the second lens 20 is described so as to face the second mark 14 provided on the second surface 13 of the first lens 10.
- the alignment is performed by visually recognizing the mark through the first lens 10, and therefore it is preferable for the visibility of the mark to be as close to the viewing side as possible, and the present invention is not necessarily limited to this. That is, the third mark 22 provided on the second lens 20 may be provided on a surface opposite to the surface facing the mark provided on the first lens 10, and the shift alignment is also performed in this manner. Such marks that do not face each other may be used.
- the first mark 12A has an X shape when viewed from above. That is, the first mark 12A has a shape in which two straight lines intersect.
- the shape of the mark provided on the first lens 10 and the second lens 20 may be an X shape.
- the mark having an X shape may be a convex mark or a groove-shaped mark.
- the marks provided on the first lens 10 and the second lens 20 may have the same shape, or may have different shapes. Further, each mark may have the same size, or may have a different size.
- each mark can be easily identified and detected, so that the lens can be assembled more easily.
- each mark is preferably a rounded shape.
- FIG. 4A and 4B are cross-sectional views of a lens according to the first modification.
- marks are provided on both surfaces of the first lens 10 and marks are provided on one surface of the second lens 20, but marks may be provided on both surfaces of each lens.
- a third mark 22 is provided on one surface (first surface 21) on the optical axis of the lens, and the light of the lens
- a fourth mark 24 is provided on the opposite surface (second surface 23) on the axis.
- the lens according to Modification 1 can also be assembled by the same assembling method as in the first embodiment described above. That is, the first lens 10 and the second lens 20 are aligned in the first direction (shift alignment), and the first lens is aligned in the second step (tilt alignment). The tilt (tilt) between the lens 10 and the second lens 20 is adjusted. With this assembly method, it is possible to easily manufacture a highly accurate lens unit while suppressing the relative inclination between the lenses.
- the optical axis of the second lens 20 can be accurately measured. It becomes possible to align the optical axes of the first lens 10 and the second lens 20 in parallel. Accordingly, it is possible to manufacture a lens unit with higher accuracy than providing a mark on one surface of the second lens 20.
- the fourth mark 24 is provided on the optical axis of the second surface 23, and the mark is not provided on the first surface 21. Also good. Also in this case, it can be assembled by the same assembling method as in the first embodiment. That is, the position of the fourth mark 24 provided on the second lens 20 and the position of the second mark 14 provided on the first lens 10 by the first step (shift alignment) Adjust. As a result, the parallel position between the first lens 10 and the second lens 20 is matched. Further, the position of the first mark 12 and the fourth mark are maintained while maintaining the position of the second mark 14 and the position of the fourth mark 24 by the second step (tilt alignment). Align with 24 position. As a result, the tilt between the first lens 10 and the second lens 20 is adjusted. By this assembling method, it is possible to easily create a highly accurate lens unit while suppressing the relative inclination between the lenses.
- FIGS. 5A and 5B are cross-sectional views of lenses according to the second modification.
- they may be assembled using a lens frame.
- the first lens 10 and the second lens 30 are positioned and assembled by sandwiching the side surfaces of the first lens 10 and the second lens 30 with a lens frame 520. May be.
- marks are provided on both surfaces of the second lens 30.
- the first mark 31 is provided on the surface of the second lens 30 that faces the first lens 10 on the optical axis of the lens.
- the second mark 32 is provided on the second lens 30 on the surface opposite to the first surface on the optical axis of the lens. Even when the lens is assembled using the lens frame 520 as described above, the tilt between the first lens 10 and the second lens 30 is adjusted as in the first embodiment described above. As a result, the relative inclination between the lenses can be suppressed.
- the lens frame 520 may be used when assembling the first lens 10 provided with the mark on both sides and the second lens 20 provided with the mark on one side.
- the two marks (the first mark 12 and the second mark 14) provided on the first lens 10 are used.
- shift alignment and tilt alignment can be performed. That is, shift alignment and tilt alignment are performed by aligning the position of the first mark 12 and the position of the second mark 14 with respect to the center of the opening 610 (the diameter D) of the aperture 600.
- a highly accurate lens unit can be easily manufactured.
- the position measurement between the aperture 600 and the optical axis of the lens unit can be easily performed.
- FIG. 6 is a top view and a cross-sectional view of a lens according to the second embodiment of the present invention.
- FIG. 6A is a top view of the first lens 40 viewed from one surface (a surface including the effective optical surface 41a) and a cross-sectional view passing through the center of the first lens 40.
- FIG. 6B is a top view of the second lens 20 as viewed from one surface (first surface 21), and a cross-sectional view passing through the center of the second lens 20.
- FIG. 6C is a cross-sectional view of the lens assembly showing a state in which the first lens 40 and the second lens 20 are assembled.
- a mark is provided on the optical axis of the lens.
- a mark is provided at a position other than the optical axis of the lens.
- a mark is provided in an outer peripheral region around the effective optical surface of the lens.
- the first lens 40 has marks on both sides.
- the first surface of the first lens 40 includes an effective optical surface 41a including the optical axis, and an outer peripheral region 41b around the effective optical surface 41a.
- the second surface opposite to the first surface is constituted by an effective optical surface 44a including the optical axis and an outer peripheral region 44b around the effective optical surface 44a.
- Three marks are provided in the outer peripheral area 41 b on the first surface at an equally spaced angle around the optical axis.
- the first marks 42a, 42b, and 42c are provided in the outer peripheral region 41b at intervals of 120 degrees with the optical axis as the center.
- the first marks 42a, 42b and 42c are provided at positions where the distances from the optical axis are equal. That is, the first marks 42a, 42b, and 42c (hereinafter sometimes referred to as the first mark 42a and the like) are provided on the same circle centered on the optical axis. Further, on the second surface, a second mark 45 is provided on the optical axis in the effective optical surface 44a. Further, as shown in FIG. 6B, in the second lens 20, a third mark 22 is provided on the optical axis of one surface (first surface 21).
- the first mark 42 and the like, the second mark 45, and the third mark 22 may have a circular shape or a rectangular shape as in the first embodiment. You may do it. These marks may have a convex shape or a groove shape. These marks may be the same size or different sizes.
- the second surface (the surface including the effective optical surface 44a) of the first lens 40 and the first surface 21 of the second lens 20 face each other.
- the lens assembly is manufactured by combining the first lens 40 and the second lens 20.
- the second surface (the surface including the effective optical surface 44a) of the first lens 40 and the first surface 21 of the second lens 20 face each other to form the second lens.
- the first lens 40 is installed on the lens 20.
- the position of the third mark 22 provided on the second lens 20 and the position of the second mark 45 provided on the first lens 40 are matched.
- the position of the second mark 45 and the position of the third mark 22 are measured by the coordinate measuring device, and the third mark 22 is based on the coordinate information of each mark.
- the first lens 40 is moved in the parallel direction so that the position of the second mark 45 coincides with the position of the second mark 45 (shift alignment).
- the position of the 1st lens 40 and the 2nd lens 20 is maintained in the state in which the position of the 2nd mark 45 and the position of the 3rd mark 22 correspond.
- the position of the first marks 42a, 42b, 42c provided in the outer peripheral area 41b of the first lens 40 is measured by a coordinate measuring device, and the coordinate information of the first marks 42a, 42b, 42c is retained. To do.
- the center-of-gravity position of the region surrounded by the first marks 42a, 42b, and 42c is estimated. For example, the center of gravity position of a triangle formed by the first marks 42a, 42b, and 42c is estimated. Since the first marks 42a and the like are provided at positions where the distances from the optical axis are the same, the estimated barycentric position is located on the optical axis of the first lens 40.
- the position of the center of gravity estimated by the first mark 42 a and the like is located on the optical axis of the first lens 40.
- the first mark 42 a and the like are provided in the outer peripheral region 41 b of the first lens 40.
- the position of the center of gravity is specified by the first mark 42 a and the like, and the position of the center of gravity is defined as the position of the virtual mark 43.
- the virtual mark 43 is also located on the optical axis of the first lens 40.
- three marks are provided in the outer peripheral area 41b. However, four or more marks may be provided in the outer peripheral area 41b to estimate the position of the virtual mark.
- the position of the virtual mark 43 in the first lens 40 and the position of the third mark 22 are matched while maintaining the position of the second mark 45 and the position of the third mark 22.
- the tilt of the first lens 40 is changed (tilt alignment).
- the position of the virtual mark 43 and the position of the third mark 22 are matched, so that the first lens 40 and the first mark 40 are aligned.
- the tilt between the two lenses 20 can be adjusted.
- the inclination between the optical axis of the first lens 40 and the optical axis of the second lens 20 can be adjusted to suppress the inclination.
- a second mark 45 is provided on one surface (a surface including the effective optical surface 44a) on the optical axis, and an opposite surface (a surface including the effective optical surface 41a) is provided on the other surface.
- a first mark 42a and the like are provided in the outer peripheral area 41b other than the optical axis. In this way, by providing marks at positions shifted on the respective surfaces, the positions of the marks do not overlap on both sides at the time of alignment, so that the position of each mark can be measured with high accuracy. (Another example of mark) Another example of the marks provided on the first lens 40 is shown in FIG.
- FIG. 7 is a top view of a lens showing another example of the mark.
- the first marks 46a, 46b, and 46c have an X shape when viewed from above. That is, the first mark 46a and the like have a shape in which two straight lines intersect. In this way, the shape of the mark provided in the outer peripheral region 41b in the first lens 40 may be an X shape. Further, the second mark 45 provided on the first lens 40 may have an X shape, and the third mark 22 provided on the second lens 20 may have an X shape. (Modification 3)
- Modification 3 Next, a lens according to Modification 3 will be described with reference to FIG.
- FIG. 8 is a top view and a cross-sectional view of a lens according to Modification 3.
- the second mark 45 is provided on the second surface that faces the second lens 20 on the optical axis of the lens, and the second surface.
- the first mark 42a and the like are provided in the outer peripheral area 41b of the first surface (the surface including the effective optical surface 41a) on the opposite side.
- the first mark may be provided on the first surface on the optical axis of the lens, and a plurality of second marks may be provided in the outer peripheral region of the second surface.
- the first surface of the first lens 60 is constituted by an effective optical surface 61a including the optical axis, and an outer peripheral region 61b around the effective optical surface 61a.
- the second surface opposite to the first surface is composed of an effective optical surface 63a including the optical axis, and an outer peripheral region 63b around the effective optical surface 63a.
- a first mark 62 is provided at the center in the effective optical surface 61a.
- Three marks (second marks 64a, 64b, and 64c) are provided in the outer peripheral area 63b on the second surface at an equally spaced angle around the optical axis.
- the second marks 64a, 64b, and 64c are provided in the outer peripheral region 63b at intervals of 120 degrees around the optical axis.
- the second marks 64a, 64b, and 64c are provided at positions where the distances from the optical axis are equal. That is, second marks 64a, 64b, and 64c (hereinafter sometimes referred to as second marks 64a and the like) are provided on a circle centered on the optical axis.
- a third mark 22 is provided on the optical axis of one surface (first surface 21).
- the lens assembly is manufactured by combining the first lens 60 and the second lens 20.
- the lens according to Modification 3 can also be assembled by the same method as the lens according to the second embodiment. First, the position of the third mark 22 provided on the second lens 20 is measured by the coordinate measuring device, and the coordinate information of the third mark is held. Then, the first lens 60 is installed on the second lens 20, and the positions of the second marks 64a, 64b, 64c provided in the outer peripheral region 63b of the first lens 60 are measured by the coordinate measuring device.
- the coordinate information of the second marks 64a, 64b, and 64c is held.
- the center-of-gravity position of the region surrounded by the second marks 64a, 64b, and 64c is estimated.
- the center of gravity position of a triangle formed by the second marks 64a, 64b, and 64c is estimated. Since the second marks 64 a, 64 b, and 64 c are provided at positions where the distances from the optical axis are equal, the estimated gravity center position is located on the optical axis of the first lens 60.
- the center of gravity position is defined as the position of the virtual mark.
- the position of the third mark 22 provided on the second lens 20 is matched with the position of the virtual mark estimated in the first lens 60.
- the first lens 60 is moved in the parallel direction so that the position of the third mark 22 matches the position of the virtual mark (shift alignment).
- the position of the 1st lens 60 and the 2nd lens 20 is maintained in the state in which the position of the 3rd mark 22 and the position of a virtual mark correspond.
- the position of the first mark 62 provided on the first surface (the surface including the effective optical surface 61a) of the first lens 60 is measured by a coordinate measuring device, and coordinate information of the first mark 62 is obtained. Hold. Then, while maintaining the state where the position of the virtual mark and the position of the third mark 22 are matched, the position of the first mark 62 and the position of the third mark 22 are matched. Change the tilt of 60 (tilt alignment). As described above, the first mark 60 and the second mark 22 are aligned with the position of the first mark 62 and the position of the third mark 22 in a state where the position of the virtual mark matches the position of the third mark 22. The tilt between the lens 20 and the lens 20 can be adjusted.
- FIG. 9 is a top view and a cross-sectional view of a lens according to Modification 4.
- a mark is provided in the outer peripheral area of one lens.
- a mark may be provided in the outer peripheral area of the two lenses.
- the first surface of the first lens 70 is constituted by an effective optical surface 71a including the optical axis, and an outer peripheral region 71b around the effective optical surface 71a.
- the second surface opposite to the first surface is constituted by an effective optical surface 74a including the optical axis and an outer peripheral region 74b around the effective optical surface 74a.
- Three marks are provided in the outer peripheral area 71 b on the first surface at an equally spaced angle around the optical axis.
- the first marks 72a, 72b, and 72c are provided in the outer peripheral area 71b at intervals of 120 degrees around the optical axis.
- the first marks 72a, 72b, and 72c are provided at positions where the distances from the optical axis are equal. That is, first marks 72a, 72b, and 72c (hereinafter sometimes referred to as the first mark 72a and the like) are provided on a circle centered on the optical axis.
- second marks 75a, 75b, and 75c are also provided in the outer peripheral region 74b on the second surface at equal intervals around the optical axis.
- the second marks 75a, 75b, and 75c are provided in the outer peripheral region 74b at intervals of 120 degrees around the optical axis.
- the second marks 75a, 75b, and 75c are provided at positions that are equal in distance from the optical axis. That is, second marks 75a, 75b, and 75c (hereinafter sometimes referred to as second marks 75a and the like) are provided on a circle centered on the optical axis.
- the first mark 72a and the second mark 75a and the like are provided on the first lens 70 with their angles relatively shifted. That is, the first mark 72a and the second mark 75a are provided on the first lens 70 with an interval of 120 degrees, respectively, but the first mark 72a and the second mark 75a and the like are provided. Are preferably provided on the first lens 70 with a phase shift. Thus, by providing the first mark 72a and the like and the second mark 75a and the like on the first lens 70 with the phases shifted, the positions of the marks do not overlap on both surfaces. It becomes possible to measure with high accuracy.
- each mark may be provided on the first lens 70 by changing the diameter of a circle passing through the first mark 72a and the like and the diameter of a circle passing through the second mark 75a and the like. For example, by providing the second mark 75a etc. outside or inside the first mark 72a etc., the position of the first mark 72a etc. and the position of the second mark 75a etc. are shifted. Can be measured with high accuracy.
- the first surface of the second lens 80 (the surface facing the first lens 70) includes an effective optical surface 81a including the optical axis, and an effective optical surface 81a. It is comprised by the outer periphery area
- three marks (third marks 82a, 82b, 82c) are provided at equal intervals around the optical axis.
- third marks 82a, 82b, and 82c are provided in the outer peripheral region 81b at intervals of 120 degrees with the optical axis as the center.
- the third marks 82a, 82b, and 82c are provided at the same distance from the optical axis. That is, third marks 82a, 82b, and 82c (hereinafter may be referred to as third marks 82a and the like) are provided on a circle centered on the optical axis.
- the 2nd surface (surface containing the effective optical surface 74a) in the 1st lens 70, and the 1st surface (surface containing the effective optical surface 81a) in the 2nd lens 80 are shown.
- the lens according to Modification 4 can also be assembled by the same method as the lens according to the second embodiment. First, the position of the third marks 82a, 82b, and 82c provided in the outer peripheral area 81b of the second lens 80 is measured by the coordinate measuring device, and the coordinate information of the third marks 82a, 82b, and 82c is held. To do.
- the center-of-gravity position of the area surrounded by the third marks 82a, 82b, and 82c is estimated. For example, the center of gravity of a triangle formed by the third marks 82a, 82b, and 82c is estimated. Since the third marks 82 a, 82 b, and 82 c are provided at positions that are equal in distance from the optical axis, the estimated gravity center position is located on the optical axis of the second lens 80. For example, as shown in FIG. 9B, the position of the center of gravity is specified by the third mark 82 a and the like, and the position of the center of gravity is defined as the position of the third virtual mark 83.
- the first lens 70 is installed on the second lens 80, and the positions of the second marks 75a, 75b, and 75c provided in the outer peripheral region 74b of the first lens 70 are measured by the coordinate measuring device. Then, the coordinate information of the second marks 75a, 75b, and 75c is held. Next, based on the coordinate information of each of the second marks 75a, 75b, and 75c, the center-of-gravity position of the area surrounded by the second marks 75a, 75b, and 75c is estimated. For example, the center of gravity position of a triangle formed by the second marks 75a, 75b, and 75c is estimated.
- the estimated center of gravity position is located on the optical axis of the first lens 70.
- the position of the center of gravity is defined as the position of the second virtual mark.
- the position of the third virtual mark 83 estimated in the second lens 80 and the position of the second virtual mark estimated in the first lens 70 are matched. Specifically, the first lens 70 is moved in the parallel direction so that the position of the second virtual mark and the position of the third virtual mark 83 coincide (shift alignment). Then, the positions of the first lens 70 and the second lens 80 are maintained in a state where the position of the second virtual mark and the position of the third virtual mark 83 coincide with each other.
- the position of the first marks 72a, 72b, 72c provided on the first surface (the surface including the effective optical surface 71a) of the first lens 70 is measured by a coordinate measuring device, and the first mark 72a, 72b, 72c coordinate information is held.
- the barycentric position of the area surrounded by the first marks 72a, 72b, 72c is estimated.
- the center of gravity position of a triangle formed by the first marks 72a, 72b, 72c is estimated. Since the first marks 72 a, 72 b, and 72 c are provided at positions that are equal in distance from the optical axis, the estimated gravity center position is located on the optical axis of the first lens 70.
- the position of the center of gravity is specified by the first mark 72a or the like, and the position of the center of gravity is defined as the position of the first virtual mark 73.
- the position of the first virtual mark 73 on the first lens 70 and the third virtual mark 83 are maintained while maintaining the position of the second virtual mark and the position of the third virtual mark 83.
- the tilt of the first lens 70 is changed (tilt alignment) so as to match the position of.
- the first virtual mark 73 and the third virtual mark 83 are aligned with each other in the state where the position of the second virtual mark matches the position of the third virtual mark 83.
- the tilt between the lens 70 and the second lens 80 can be adjusted.
- the inclination between the optical axis of the first lens 70 and the optical axis of the second lens 80 can be adjusted to suppress the inclination. (Another example of mark)
- FIG. 10 shows another example of the marks provided in the outer peripheral area of the lens.
- FIG. 10 is a top view and a cross-sectional view of a lens showing another example of the mark.
- the first surface of the first lens 90 includes an effective optical surface 91a including the optical axis and an outer peripheral region 91b around the effective optical surface 91a.
- a concentric convex first mark 92 centering on the optical axis is provided in the outer peripheral area 91b of the first surface.
- a second mark 94 is provided on the optical axis on the second surface 93 opposite to the first surface. Even when the concentric first mark 92 is provided in the outer peripheral area 91b, the position of the first mark 92 is measured as in the second embodiment described above.
- the center of gravity position in the region surrounded by the first mark 92 is estimated, and the estimated center of gravity position is defined as the position of the virtual mark.
- the first mark 92 is a circular mark centered on the optical axis
- the position of the center of gravity coincides with the position of the optical axis.
- the marks are aligned based on the estimated center of gravity position.
- the cross-sectional shape of the first mark 92 is rectangular, but the side surface may be curved.
- the cross section of the first mark 92 may have a shape that gradually decreases toward the tip.
- the 1st mark 92 is a convex mark, you may provide the concentric groove-shaped mark in the outer peripheral area
- concentric marks may be provided on the outer peripheral areas of both surfaces of the first lens 90.
- the positions of the marks do not overlap on both surfaces, so that the positions of the respective marks can be measured with high accuracy.
- concentric marks may be provided in the outer peripheral region of the effective optical surface.
- the shape of the mark provided in the outer peripheral region of the lens is concentric. That is, it is easier to form a mark having a concentric shape from the viewpoint of mold processing than to form a plurality of marks on the same circle in the outer peripheral region of the mold.
- FIG. 11 is a sectional view of a lens according to the third embodiment of the present invention.
- two lenses are combined, but three or more lenses may be combined.
- the lens is obtained by repeating the assembly method according to the above-described embodiment. It is possible to manufacture a highly accurate lens unit while suppressing the tilt between them.
- the first lens 10 and the second lens 20 have marks on both sides.
- a convex fifth mark 112 is provided on the optical axis of the first surface 111 facing the second lens 20.
- (Lens assembly method) A method for assembling the three lenses will be described. First, the position of the fifth mark 112 provided on the third lens 110 is measured by the coordinate measuring device, and the coordinate information of the fifth mark 112 is held. Next, the second lens 20 is placed on the third lens 110 with the second surface 23 facing the first surface 111 of the third lens 110. And the position of the 4th mark 24 provided in the 2nd surface 23 of the 2nd lens 20 is measured with a coordinate measuring apparatus, and the coordinate information of the 4th mark 24 is hold
- the second lens 20 is moved in the parallel direction so that the position of the fifth mark 112 and the position of the fourth mark 24 coincide (shift alignment). And the position of the 4th mark 24 provided in the 2nd lens 20 and the position of the 5th mark 112 provided in the 3rd lens 110 are made to correspond, and it is in the state where it matched. The positions of the second lens 20 and the third lens 110 are maintained.
- the position of the third mark 22 provided on the first surface 21 of the second lens 20 is measured by a coordinate measuring device, and the coordinate information of the third mark 22 is held. Then, while maintaining the state where the position of the fourth mark 24 and the position of the fifth mark 112 are matched, the position of the third mark 22 and the position of the fifth mark 112 are matched.
- the tilt of the second lens 20 is changed (tilt alignment). Thereby, it is possible to adjust the inclination (tilt) between the second lens 20 and the third lens 110 and suppress the inclination.
- the first lens 10 is placed on the second lens 20 with the second surface 13 facing the first surface 21 of the second lens 20.
- the position of the 2nd mark 14 provided in the 2nd surface 13 of the 1st lens 10 is measured with a coordinate measuring apparatus, and the coordinate information of the 2nd mark 14 is hold
- the first lens 10 is moved in the parallel direction so that the position of the third mark 22 coincides with the position of the second mark 14 (shift alignment).
- the position of the 2nd mark 14 provided in the 1st lens 10 and the position of the 3rd mark 22 provided in the 2nd lens 20 are made to correspond, In the state which was made to correspond.
- the positions of the first lens 10 and the second lens 20 are maintained.
- the position of the first mark 12 provided on the first surface 11 of the first lens 10 is measured by a coordinate measuring device, and the coordinate information of the first mark 12 is held. Then, while maintaining the state where the position of the second mark 14 and the position of the third mark 22 are matched, the position of the first mark 12 and the position of the third mark 22 are matched.
- the tilt of the first lens 10 is changed (tilt alignment). As a result, it is possible to align the tilt between the first lens 10 and the second lens 20 and suppress the tilt.
- FIG. 12 is a sectional view of a lens according to Modification 5.
- marks are provided on both surfaces of the second lens 20 installed between the first lens 10 and the third lens 110. As a modification, it is not necessary to provide a mark on the second lens 20.
- the first lens 10 has a mark on both sides, and the third lens 110 has a mark on one side.
- the second lens 20 does not have a mark.
- the first lens 10 and the third lens 110 are connected. Shift alignment and tilt alignment are performed on the object. That is, the position of the fifth mark 112 provided on the third lens 110 matches the position of the second mark 14 provided on the second surface 13 of the first lens 10.
- the first lens 10 is moved in the parallel direction (shift alignment). Next, the first mark 12 provided on the first surface 11 of the first lens 10 is maintained while maintaining the position of the second mark 14 and the position of the fifth mark 112.
- the tilt of the first lens 10 is adjusted so that the position matches the position of the fifth mark 112 (tilt alignment). In this way, by performing shift alignment and tilt alignment for the first lens 10 and the third lens 110, the tilt between the first lens 10 and the third lens 110 ( Tilt) can be suppressed.
- Modification 6 Next, a lens according to Modification 6 will be described with reference to FIG. FIG. 13 is a sectional view of a lens according to Modification 6.
- the third mark 22 may be provided only on the first surface 21 of the second lens 20.
- the first lens 10 has marks on both sides
- the second lens 20 has marks on the first surface 21
- the third lens 110 has on the first surface 111.
- a fifth mark 112 is provided.
- the second lens 20 is installed on the third lens 110, the position of the fifth mark 112 provided on the third lens 110, and the second lens 20 provided on the second lens 20.
- the second lens 20 is moved in the parallel direction so that the position of the third mark 22 coincides (shift alignment).
- the position of the fifth mark 112 provided on the third lens 110 coincides with the position of the second mark 14 provided on the second surface 13 of the first lens 10.
- the first lens is moved in the parallel direction (shift alignment).
- the first mark 12 provided on the first surface 11 of the first lens 10 is maintained while maintaining the position of the second mark 14 and the position of the fifth mark 112.
- the tilt of the first lens 10 is adjusted so that the position matches the position of the fifth mark 112 (tilt alignment). Thereby, it is possible to suppress a tilt between the first lens 10 and the third lens 110.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lens Barrels (AREA)
Abstract
Description
[第1実施形態]
この発明の第1実施形態に係るレンズ、及びレンズの組立方法について図1及び図2を参照して説明する。図1は、この発明の第1実施形態に係るレンズの上面図と断面図である。図2は、この発明の第1実施形態に係るレンズの組立方法を示すレンズの断面図である。図1(a)は、第1のレンズ10を一方の面(第1の面11)から見た上面図と、第1のレンズ10の中央を通る断面図である。図1(b)は、第2のレンズ20を一方の面(第1の面21)から見た上面図と、第2のレンズ20の中央を通る断面図である。図1(c)は、第1のレンズ10と第2のレンズ20とが組み立てられた状態を示すレンズ組立体の断面図である。
(レンズの組立方法)
次に、第1のレンズ10と第2のレンズ20とを組み合わせる方法について図2を参照して説明する。
(第1の工程(シフト調心))
まず図2(a)に示すように、第1のレンズ10における第2の面13と、第2のレンズ20における第1の面21とを向かい合わせて、第2のレンズ20の上に第1のレンズ10を設置する。そして、第2のレンズ20に設けられている第3のマーク22の位置と、第1のレンズ10に設けられている第2のマーク14の位置とを合わせる。例えば、第2のレンズ20上において第1のレンズ10を平行方向(X方向)に動かすことで、第2のマーク14の位置と第3のマーク22の位置とを合わせる。
(第2の工程(チルト調心))
次に、第1のレンズ10の第1の面11に設けられている第1のマーク12の位置を座標測定装置によって測定し、第1のマーク12の座標情報を保持する。そして、第2のマーク14の位置と第3のマーク22の位置とが合った状態を維持しつつ、第1のマーク12の位置と第3のマーク22の位置とが一致するように、第1のレンズ10の傾きを変える。例えば図2(b)に示すように、第2のマーク14の位置と第3のマーク22の位置とを合わせた状態を維持しつつ、第1のレンズ10の傾きをθ方向に変えることで、第1のマーク12の位置を第3のマーク22の位置に合わせる(チルト調心)。
(第1のレンズ10と第2のレンズ20との固定)
第1のマーク12の位置と第3のマーク22の位置とが合った状態で、図2(c)に示すように、接着剤100を第1のレンズ10及び第2のレンズ20の周辺部に設けることで、第1のレンズ10と第2のレンズ20とを接着して固定する。
(マークの別の例)
第1のレンズ10及び第2のレンズ20に設けられたマークの別の例を図3に示す。図3は、マークの別の例を示すレンズの上面図である。例えば第1のマーク12Aは、上方から見た場合に、X状の形状を有している。すなわち、第1のマーク12Aは、2つの直線が交差した形状を有している。このように、第1のレンズ10及び第2のレンズ20に設けられるマークの形状を、X状の形状にしても良い。なお、X状の形状を有するマークは、凸状のマークであっても良いし、溝状の凹んだ形状を有するマークであっても良い。
(変形例1)
次に、変形例1に係るレンズについて図4を参照して説明する。図4(a)、(b)は、変形例1に係るレンズの断面図である。上述した第1実施形態では、第1のレンズ10の両面にマークを設け、第2のレンズ20の一方の面にマークを設けているが、各レンズの両面にマークを設けても良い。例えば図4(a)に示すように、第2のレンズ20において、当該レンズの光軸上であって一方の面(第1の面21)に第3のマーク22を設け、当該レンズの光軸上であって反対側の面(第2の面23)に第4のマーク24を設ける。このように、第1のレンズ10の両面にマーク(第1のマーク12、第2のマーク14)を設け、第2のレンズ20の両面にマーク(第3のマーク22、第4のマーク24)を設ける。そのことにより、より高精度に調心することが可能となる。変形例1に係るレンズについても、上述した第1実施形態と同じ組立方法によって組み立てることができる。すなわち、第1の工程(シフト調心)によって、第1のレンズ10と第2のレンズ20との間の平行方向の位置を合わせ、第2の工程(チルト調心)によって、第1のレンズ10と第2のレンズ20との間の傾き(チルト)を調整する。この組立方法によって、レンズ間の相対的な傾きを抑制して、高精度なレンズユニットを容易に作製することが可能となる。
(変形例2)
次に、変形例2に係るレンズについて図5を参照して説明する。図5(a)、(b)は、変形例2に係るレンズの断面図である。複数のレンズを組み立てる場合に、鏡枠を用いて組み立てても良い。例えば図5(a)に示すように、第1のレンズ10及び第2のレンズ30の側面を鏡枠520によって挟み込むことで、第1のレンズ10及び第2のレンズ30の位置決めをして組み立てても良い。変形例2においては、第2のレンズ30の両面にマークが設けられている。第1のマーク31は、第2のレンズ30において、当該レンズの光軸上であって第1のレンズ10と対向する面に設けられている。第2のマーク32は、第2のレンズ30において、当該レンズの光軸上であって第1の面とは反対側の面に設けられている。このように鏡枠520を用いてレンズを組み立てる場合であっても、上述した第1実施形態と同様に、第1のレンズ10と第2のレンズ30との間の傾き(チルト)を調整して組み立てることが可能となり、その結果、レンズ間の相対的な傾きを抑制することが可能となる。なお、両面にマークが設けられている第1のレンズ10と、片面にマークが設けられている第2のレンズ20とを組み立てる場合にも、鏡枠520を用いて組み立てても良い。
[第2実施形態]
次に、この発明の第2実施形態に係るレンズ、及びレンズの組立方法について図6を参照して説明する。図6は、この発明の第2実施形態に係るレンズの上面図と断面図である。図6(a)は、第1のレンズ40を一方の面(有効光学面41aを含む面)から見た上面図と、第1のレンズ40の中央を通る断面図である。図6(b)は、第2のレンズ20を一方の面(第1の面21)から見た上面図と、第2のレンズ20の中央を通る断面図である。図6(c)は、第1のレンズ40と第2のレンズ20とが組み立てられた状態を示すレンズ組立体の断面図である。
(レンズの組立方法)
次に、第1のレンズ40と第2のレンズ20とを組み合わせる方法について説明する。まず、第1実施形態と同様に、第1のレンズ40における第2の面(有効光学面44aを含む面)と、第2のレンズ20における第1の面21とを向かい合わせて、第2のレンズ20の上に第1のレンズ40を設置する。そして、第2のレンズ20に設けられている第3のマーク22の位置と、第1のレンズ40に設けられている第2のマーク45の位置とを合わせる。具体的には第1実施形態と同様に、座標測定装置によって第2のマーク45の位置と第3のマーク22の位置とを測定し、各マークの座標情報に基づいて、第3のマーク22の位置と第2のマーク45の位置とが一致するように、第1のレンズ40を平行方向に動かす(シフト調心)。そして、第2のマーク45の位置と第3のマーク22の位置とが一致している状態で、第1のレンズ40及び第2のレンズ20の位置を維持する。
(マークの別の例)
第1のレンズ40に設けられたマークの別の例を図7に示す。図7は、マークの別の例を示すレンズの上面図である。例えば第1のマーク46a、46b、46cは、上方から見た場合に、X状の形状を有している。すなわち、第1のマーク46a等は、2つの直線が交差した形状を有している。このように、第1のレンズ40において外周領域41bに設けられているマークの形状を、X状の形状としても良い。また、第1のレンズ40に設けられている第2のマーク45をX状の形状としても良く、第2のレンズ20に設けられている第3のマーク22をX状の形状としても良い。
(変形例3)
次に、変形例3に係るレンズについて図8を参照して説明する。図8は、変形例3に係るレンズの上面図と断面図である。上述した第2実施形態に係る第1のレンズ40においては、当該レンズの光軸上であって第2のレンズ20と対向する第2の面に第2のマーク45を設け、第2の面の反対側の第1の面(有効光学面41aを含む面)の外周領域41bに第1のマーク42a等を設けている。この変形例として、当該レンズの光軸上であって第1の面に第1のマークを設け、第2の面の外周領域に複数の第2のマークを設けても良い。
(レンズの組立方法)
変形例3に係るレンズについても、第2実施形態に係るレンズと同じ方法によって組み立てることができる。まず、座標測定装置によって第2のレンズ20に設けられた第3のマーク22の位置を測定し、第3のマークの座標情報を保持する。そして、第2のレンズ20の上に第1のレンズ60を設置し、第1のレンズ60の外周領域63bに設けられている第2のマーク64a、64b、64cの位置を座標測定装置によって測定し、第2のマーク64a、64b、64cの座標情報を保持する。次に、第2のマーク64a、64b、64cのそれぞれの座標情報に基づいて、第2のマーク64a、64b、64cによって囲まれる領域の重心位置を推定する。例えば、第2のマーク64a、64b、64cによって形成される三角形の重心位置を推定する。第2のマーク64a、64b、64cは、光軸からの距離がそれぞれ等しい位置に設けられているため、推定される重心位置は、第1のレンズ60の光軸上に位置することになる。その重心位置を仮想マークの位置と定義する。
(変形例4)
次に、変形例4に係るレンズについて図9を参照して説明する。図9は、変形例4に係るレンズの上面図と断面図である。上述した第2実施形態及び変形例3においては、一方のレンズの外周領域にマークを設けている。これらの変形例として、2つのレンズの外周領域にマークを設けても良い。
(レンズの組立方法)
変形例4に係るレンズについても、第2実施形態に係るレンズと同じ方法によって組み立てることができる。まず、座標測定装置によって、第2のレンズ80の外周領域81bに設けられている第3のマーク82a、82b、82cの位置を測定し、第3のマーク82a、82b、82cの座標情報を保持する。次に、第3のマーク82a、82b、82cのそれぞれの座標情報に基づいて、第3のマーク82a、82b、82cによって囲まれる領域の重心位置を推定する。例えば、第3のマーク82a、82b、82cによって形成される三角形の重心位置を推定する。第3のマーク82a、82b、82cは、光軸からの距離がそれぞれ等しい位置に設けられているため、推定される重心位置は、第2のレンズ80の光軸上に位置することになる。例えば図9(b)に示すように、第3のマーク82a等によって重心位置を特定し、その重心位置を第3の仮想マーク83の位置と定義する。
(マークの別の例)
レンズの外周領域に設けられたマークの別の例を図10に示す。図10は、マークの別の例を示すレンズの上面図と断面図である。例えば、第1のレンズ90の第1の面は、光軸を含む有効光学面91aと、有効光学面91aの周囲にある外周領域91bとによって構成されている。この第1の面の外周領域91bには、光軸を中心とした同心円状の凸状の第1のマーク92が設けられている。また、第1の面とは反対側の第2の面93には、光軸上に第2のマーク94が設けられている。外周領域91bに同心円状の第1のマーク92を設けた場合においても、上述した第2実施形態と同様に、第1のマーク92の位置を測定する。そして、第1のマーク92の位置に基づいて、第1のマーク92によって囲まれている領域内の重心位置を推定し、推定された重心位置を仮想マークの位置と定義する。図10に示す例においては、第1のマーク92は光軸を中心とした円状のマークであるため、重心位置は光軸の位置と一致する。そして、第1のレンズ90と、図示しない第2のレンズとを組み立てるときに、推定された重心位置を基準にしてマークの位置合わせをする。このように、外周領域に設けるマークの形状を同心円状にした場合であっても、上述した第2実施形態と同様に、レンズ間の相対的な傾きを抑制して、高精度なレンズユニットを容易に作製することが可能となる。
[第3実施形態]
次に、この発明の第3実施形態に係るレンズについて図11を参照して説明する。図11は、この発明の第3実施形態に係るレンズの断面図である。上述した実施形態では、2つのレンズを組み合わせているが、3つ以上のレンズを組み合わせても良い。例えば図11に示すように、第1のレンズ10と、第2のレンズ20と、第3のレンズ110とを組み合わせる場合であっても、上述した実施形態に係る組立方法を繰り返すことで、レンズ間の傾き(チルト)を抑制して、高精度なレンズユニットを作製することができる。
(レンズの組立方法)
3つのレンズの組立方法について説明する。まず、座標測定装置によって、第3のレンズ110に設けられている第5のマーク112の位置を測定し、第5のマーク112の座標情報を保持する。次に、第2の面23を第3のレンズ110の第1の面111に向かい合わせて、第2のレンズ20を第3のレンズ110の上に設置する。そして、第2のレンズ20の第2の面23に設けられている第4のマーク24の位置を座標測定装置によって測定し、第4のマーク24の座標情報を保持する。そして、保持されている座標情報に基づいて、第5のマーク112の位置と第4のマーク24の位置とが一致するように、第2のレンズ20を平行方向に動かす(シフト調心)。そして、第2のレンズ20に設けられている第4のマーク24の位置と、第3のレンズ110に設けられている第5のマーク112の位置とを一致させ、その一致させた状態で第2のレンズ20及び第3のレンズ110の位置を維持する。
(変形例5)
次に、変形例5に係るレンズについて図12を参照して説明する。図12は、変形例5に係るレンズの断面図である。上述した第3実施形態に係るレンズ組立体においては、第1のレンズ10と第3のレンズ110との間に設置される第2のレンズ20の両面に、マークが設けられている。この変形例として、第2のレンズ20にマークを設けなくても良い。
(変形例6)
次に、変形例6に係るレンズについて図13を参照して説明する。図13は、変形例6に係るレンズの断面図である。第3実施形態に係るレンズ組立体の変形例として、第2のレンズ20の第1の面21のみに第3のマーク22を設けても良い。
12、42a、42b、42c、62、72a、72b、72c 第1のマーク
14、45、64a、64b、64c、75a、75b、75c 第2のマーク
20、30、80 第2のレンズ
22、82a、82b、82c 第3のマーク
24 第4のマーク
41a、44a、61a、63a、71a、74a、81a 有効光学面
41b、44b、61b、63b、71b、74b、81b 外周領域
43 仮想マーク
110 第3のレンズ
112 第5のマーク
Claims (18)
- 第1のレンズと第2のレンズとを組み立てるレンズの組立方法であって、
前記第1のレンズは一方の面に第1のマークを有し、前記一方の面とは反対側の面に第2のマークを有し、
前記第2のレンズは一方の面に第3のマークを有しており、
前記第1のレンズの前記第1のマーク及び前記第2のマークのうち一方のマークの位置と、前記第2のレンズの前記第3のマークの位置とを、位置合わせする第1の工程と、
前記第1の工程での位置合わせを維持した状態で、前記第1のレンズの前記第1のマーク及び前記第2のマークのうち他方のマークの位置と、前記第2のレンズに設けられている前記第3のマークの位置とを、位置合わせする第2の工程と、
を含むことを特徴とするレンズの組立方法。 - 前記第1のレンズの第2のマークと、前記第2のレンズの第3のマークとは互いに向かい合う面に設けられ、前記第1の工程では、前記第2のマークの位置と前記第3のマークの位置とを位置合わせすることを特徴とする請求項1に記載のレンズの組立方法。
- 第1のレンズと第2のレンズとを組み立てるレンズの組立方法であって、
前記第1のレンズは一方の面に第1のマークを有し、前記一方の面とは反対側の面に第2のマークを有し、
前記第2のレンズは一方の面に第3のマークを有しており、
前記第1のレンズの前記第1のマーク及び前記第2のマークのうち一方のマークと、前記第2のレンズの前記第3のマークとを用いて位置合わせする第1の工程と、
前記第1の工程での位置合わせを維持した状態で、前記第1のレンズの前記第1のマーク及び前記第2のマークのうち他方のマークと、前記第2のレンズに設けられている前記第3のマークとを用いて位置合わせする第2の工程と、を含み、
前記第1の工程及び前記第2の工程の少なくとも一方は、前記第1のマーク又は前記第2のマークに基づいて仮想の第1のマーク又は第2のマークを推定し、当該仮想マークの位置と前記第3のマークの位置とを位置合わせする工程であることを特徴とするレンズの組立方法。 - 前記第1のマーク及び前記第2のマークのうち少なくとも一方のマークは、前記第1のレンズの有効光学面の周囲にある外周領域に複数設けられており、
前記第1の工程又は前記第2の工程では、前記外周領域に複数設けられているマークについては、前記外周領域に設けられている複数のマークに基づいて仮想マークの位置を推定して、当該仮想マークの位置と前記第3のマークの位置とを位置合わせすることを特徴とする請求項3に記載のレンズの組立方法。 - 前記第1のマーク及び前記第2のマークのうち前記外周領域に複数設けられているマークは、前記第1のレンズの光軸からの距離がそれぞれ等しい位置に設けられており、
前記第1の工程又は前記第2の工程では、前記外周領域に設けられているマークについては、前記外周領域に設けられている複数のマークによって囲まれている領域の重心位置を前記仮想マークとして推定して、当該仮想マークの位置と前記第3のマークの位置とを位置合わせすることを特徴とする請求項4に記載のレンズの組立方法。 - 前記外周領域に設けられている前記複数の第1のマークの位置と、前記外周領域に設けられている前記複数の第2のマークの位置とは、位置をずらして設けられていることを特徴とする請求項4又は請求項5のいずれかに記載のレンズの組立方法。
- 前記第1のマーク及び前記第2のマークのうち少なくとも一方のマークは、前記第1のレンズの光軸を中心とした円形状のマークであり、前記第1のレンズの有効光学面の周囲にある外周領域に設けられており、
前記第1の工程又は前記第2の工程では、前記外周領域に設けられているマークについては、前記円形状のマークによって囲まれている領域の重心位置を推定し、前記推定された重心位置と、前記第3のマークの位置とを合わせることを特徴とする請求項3に記載のレンズの組立方法。 - 前記外周領域に設けられている円形状の前記第1のマークと、前記外周領域に設けられている円形状の前記第2のマークとは、径の大きさが異なることを特徴とする請求項7に記載のレンズの組立方法。
- 前記第1のマーク及び前記第2のマークのうち、前記第1のレンズの有効光学面内に設けられているマークは、前記第1のレンズの光軸上に設けられていることを特徴とする請求項1から請求項5、又は請求項7のいずれかに記載のレンズの組立方法。
- 前記第3のマークは、前記第2のレンズの光軸上に設けられていることを特徴とする請求項1から請求項9のいずれかに記載のレンズの組立方法。
- 前記第3のマークは、前記第2のレンズの有効光学面の周囲にある外周領域に複数設けられており、
前記第1の工程及び前記第2の工程では、前記外周領域に設けられている前記複数の第3のマークに基づいて、前記第3のマークについての仮想マークの位置を推定して、前記位置合わせすることを特徴とする請求項1から請求項9のいずれかに記載のレンズの組立方法。 - 前記複数の第3のマークは、前記第2のレンズの光軸からの距離がそれぞれ等しい位置に設けられており、
前記第1の工程及び前記第2の工程では、前記外周領域に設けられている前記複数の第3のマークによって囲まれている領域の重心位置を、前記第3のマークについての仮想マークの位置として推定して、前記位置合わせすることを特徴とする請求項11に記載のレンズの組立方法。 - 前記第3のマークは、前記第2のレンズの光軸を中心とした円形状のマークであり、前記第2のレンズの有効光学面の周囲にある外周領域に設けられており、
前記第1の工程及び前記第2の工程では、前記外周領域に設けられている前記第3のマークによって囲まれている領域の重心位置を、前記第3のマークについての仮想マークの位置として推定して、前記位置合わせすることを特徴とする請求項1から請求項9のいずれかに記載のレンズの組立方法。 - 前記第1のマーク及び前記第2のマークは、前記第1のレンズの光軸上に夫々設けられ、前記第3のマークは、前記第2のレンズの光軸上に設けられていることを特徴とする請求項1又は請求項2のいずれかに記載のレンズの組立方法。
- 前記第1のマーク、前記第2のマーク、及び前記第3のマークの大きさが、それぞれ異なることを特徴とする請求項1から請求項14のいずれかに記載のレンズの組立方法。
- 一方の面に第1のマークが設けられ、前記一方の面とは反対側の面に第2のマークが設けられた第1のレンズと、
第3のマークが設けられた第2のレンズと、を有し、
前記第2のマークの位置と前記第3のマークの位置とが合わされ、前記第1のマークの位置と前記第3のマークの位置とが合わされた状態で組み立てられていることを特徴とするレンズの組立体。 - 前記第2のレンズは、前記第3のマークが形成された面とは反対側の面に第4のマークが形成されていることを特徴とする請求項16に記載のレンズの組立体。
- 請求項16又は請求項17のいずれかに記載のレンズ組立体と、
当該レンズ組立体の前記第2のレンズの前記第1のレンズが配置された面とは反対の面側に、前記第1及び前記第2のレンズを透過した入射光を受光する撮像センサと、
を有することを特徴とする撮像装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/498,520 US8789285B2 (en) | 2009-09-30 | 2010-08-17 | Lens assembling method, lens assembly, and image capturing device with the lens assembly |
JP2011534133A JPWO2011040136A1 (ja) | 2009-09-30 | 2010-08-17 | レンズの組立方法、レンズの組立体、及びレンズ組立体を備えた撮像装置 |
EP10820256.5A EP2485078A4 (en) | 2009-09-30 | 2010-08-17 | LENS CONSTRUCTION PROCESS, LENS STRUCTURE AND IMAGE ASSEMBLY WITH LENS STRUCTURE |
CN2010800428654A CN102576140A (zh) | 2009-09-30 | 2010-08-17 | 透镜组装方法、透镜组装体以及具备透镜组装体的摄像装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009226168 | 2009-09-30 | ||
JP2009-226168 | 2009-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011040136A1 true WO2011040136A1 (ja) | 2011-04-07 |
Family
ID=43825970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/063861 WO2011040136A1 (ja) | 2009-09-30 | 2010-08-17 | レンズの組立方法、レンズの組立体、及びレンズ組立体を備えた撮像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8789285B2 (ja) |
EP (1) | EP2485078A4 (ja) |
JP (1) | JPWO2011040136A1 (ja) |
CN (1) | CN102576140A (ja) |
WO (1) | WO2011040136A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528460A (ja) * | 2015-08-06 | 2018-09-27 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | サブミクロンウェーハ位置合わせ |
CN108695426A (zh) * | 2017-03-31 | 2018-10-23 | 豪雅冠得股份有限公司 | 发光装置、光照射模块、以及光照射装置 |
JP2019505852A (ja) * | 2016-02-22 | 2019-02-28 | アドレンズ リミテッドAdlens Limited | 選択的に調整可能な光学屈折力レンズを備えた眼鏡の改善 |
US10684429B2 (en) | 2017-10-27 | 2020-06-16 | Sumitomo Electric Industries, Ltd. | Optical component, method for manufacturing optical component, and optical connector cable |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8789285B2 (en) * | 2009-09-30 | 2014-07-29 | Konica Minolta Opto, Inc. | Lens assembling method, lens assembly, and image capturing device with the lens assembly |
CN103293626A (zh) * | 2012-02-27 | 2013-09-11 | 鸿富锦精密工业(深圳)有限公司 | 镜头模组及其组装方法 |
CN103424836A (zh) * | 2012-05-17 | 2013-12-04 | 鸿富锦精密工业(深圳)有限公司 | 镜头模块及其组装方法 |
US10732376B2 (en) | 2015-12-02 | 2020-08-04 | Ningbo Sunny Opotech Co., Ltd. | Camera lens module and manufacturing method thereof |
CN109541774B (zh) * | 2015-12-02 | 2021-01-29 | 宁波舜宇光电信息有限公司 | 采用分体式镜头的摄像模组及其组装方法 |
WO2019233213A1 (zh) * | 2018-06-08 | 2019-12-12 | 宁波舜宇光电信息有限公司 | 光学镜头、摄像模组及其组装方法 |
CN110632727B (zh) * | 2018-06-08 | 2023-07-28 | 宁波舜宇光电信息有限公司 | 光学镜头、摄像模组及其组装方法 |
CN110376699B (zh) * | 2019-07-26 | 2021-12-03 | 业成科技(成都)有限公司 | 镜片对位方法、镜头模组及成像装置 |
EP4043939A4 (en) * | 2019-10-29 | 2022-12-07 | Ningbo Sunny Opotech Co., Ltd. | CAMERA MODULE AND ASSOCIATED OPTICAL LENS, OPTICAL LENS SHEET, ASSOCIATED METHOD OF MANUFACTURING AND METHOD OF ASSEMBLING WIDE ANGLE CAMERA MODULE |
CN115016089B (zh) * | 2022-08-09 | 2022-11-04 | 中国空气动力研究与发展中心高速空气动力研究所 | 一种用于分体积木反射式风洞纹影仪的光路快速找准方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071909A (ja) | 2000-09-04 | 2002-03-12 | Pioneer Electronic Corp | レンズ及びその製造方法 |
JP2006268015A (ja) | 2005-02-25 | 2006-10-05 | Sanyo Electric Co Ltd | 光学素子、光学系及びそれらの製造方法並びに光学装置 |
JP2007079318A (ja) * | 2005-09-15 | 2007-03-29 | Konica Minolta Opto Inc | 光学素子、そのマーキング方法、及び光学ユニットの組立方法 |
JP2007519020A (ja) | 2003-07-09 | 2007-07-12 | スリーエム イノベイティブ プロパティズ カンパニー | 少なくとも1つのレンズセントレーションマークを有するレンズおよび同レンズの製造方法および使用方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6919996B2 (en) * | 2001-01-24 | 2005-07-19 | Konica Corporation | Objective lens for use in optical pickup apparatus and optical pickup apparatus |
US6710947B1 (en) * | 2003-02-10 | 2004-03-23 | Electro Optical Sciences, Inc. | Method for assembling lens elements |
JP4258353B2 (ja) * | 2003-10-31 | 2009-04-30 | コニカミノルタオプト株式会社 | 光学素子 |
JP2006085837A (ja) * | 2004-09-16 | 2006-03-30 | Konica Minolta Opto Inc | 対物レンズユニット及びこれを用いた光ピックアップ装置 |
US7830610B2 (en) * | 2005-12-13 | 2010-11-09 | Panasonic Corporation | Lens, lens unit, and imaging device using the same |
US8226227B2 (en) | 2009-09-18 | 2012-07-24 | Sony Corporation | Glasses for image viewing |
CN102033284A (zh) * | 2009-09-28 | 2011-04-27 | 鸿富锦精密工业(深圳)有限公司 | 镜片卡合结构及应用该结构的镜头模组 |
US8789285B2 (en) * | 2009-09-30 | 2014-07-29 | Konica Minolta Opto, Inc. | Lens assembling method, lens assembly, and image capturing device with the lens assembly |
US9448338B2 (en) * | 2011-01-20 | 2016-09-20 | Fivefocal Llc | Passively athermalized infrared imaging system and method of manufacturing same |
-
2010
- 2010-08-17 US US13/498,520 patent/US8789285B2/en active Active
- 2010-08-17 JP JP2011534133A patent/JPWO2011040136A1/ja active Pending
- 2010-08-17 EP EP10820256.5A patent/EP2485078A4/en not_active Withdrawn
- 2010-08-17 WO PCT/JP2010/063861 patent/WO2011040136A1/ja active Application Filing
- 2010-08-17 CN CN2010800428654A patent/CN102576140A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071909A (ja) | 2000-09-04 | 2002-03-12 | Pioneer Electronic Corp | レンズ及びその製造方法 |
JP2007519020A (ja) | 2003-07-09 | 2007-07-12 | スリーエム イノベイティブ プロパティズ カンパニー | 少なくとも1つのレンズセントレーションマークを有するレンズおよび同レンズの製造方法および使用方法 |
JP2006268015A (ja) | 2005-02-25 | 2006-10-05 | Sanyo Electric Co Ltd | 光学素子、光学系及びそれらの製造方法並びに光学装置 |
JP2007079318A (ja) * | 2005-09-15 | 2007-03-29 | Konica Minolta Opto Inc | 光学素子、そのマーキング方法、及び光学ユニットの組立方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2485078A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528460A (ja) * | 2015-08-06 | 2018-09-27 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | サブミクロンウェーハ位置合わせ |
JP2019505852A (ja) * | 2016-02-22 | 2019-02-28 | アドレンズ リミテッドAdlens Limited | 選択的に調整可能な光学屈折力レンズを備えた眼鏡の改善 |
US11194174B2 (en) | 2016-02-22 | 2021-12-07 | Adlens Ltd | Glasses with selectively adjustable optical power lenses |
US11994754B2 (en) | 2016-02-22 | 2024-05-28 | Adlens Ltd | Glasses with selectively adjustable optical power lenses |
CN108695426A (zh) * | 2017-03-31 | 2018-10-23 | 豪雅冠得股份有限公司 | 发光装置、光照射模块、以及光照射装置 |
JP2018174183A (ja) * | 2017-03-31 | 2018-11-08 | Hoya Candeo Optronics株式会社 | 発光装置、光照射モジュール、及び光照射装置 |
US11309463B2 (en) | 2017-03-31 | 2022-04-19 | Hoya Corporation | Light emitting device, light illuminating module and light illuminating apparatus |
US10684429B2 (en) | 2017-10-27 | 2020-06-16 | Sumitomo Electric Industries, Ltd. | Optical component, method for manufacturing optical component, and optical connector cable |
Also Published As
Publication number | Publication date |
---|---|
EP2485078A4 (en) | 2014-09-10 |
US20120182459A1 (en) | 2012-07-19 |
US8789285B2 (en) | 2014-07-29 |
EP2485078A1 (en) | 2012-08-08 |
JPWO2011040136A1 (ja) | 2013-02-21 |
CN102576140A (zh) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011040136A1 (ja) | レンズの組立方法、レンズの組立体、及びレンズ組立体を備えた撮像装置 | |
US7830610B2 (en) | Lens, lens unit, and imaging device using the same | |
US20050134699A1 (en) | Imaging apparatus and method for producing the same, portable equipment, and imaging sensor and method for producing the same | |
JP5812521B2 (ja) | 複眼ユニット | |
JP2009163120A (ja) | 撮像装置用レンズの連結方法及びその連結方法を用いたレンズユニット並びにそのレンズユニットを内蔵した撮像装置 | |
US10821911B2 (en) | Method and system of camera focus for advanced driver assistance system (ADAS) | |
JP2015175918A (ja) | 広角レンズユニット | |
CN101210857A (zh) | 镜片偏心检测系统及方法 | |
WO2014098075A1 (ja) | 積層レンズアレイ、積層レンズアレイの製造方法、及び積層レンズの製造方法 | |
JP2013174784A (ja) | カメラモジュール、カメラモジュールの組み付け方法、レンズアレイの製造方法及び金型 | |
JP5694017B2 (ja) | レンズ駆動装置の製造方法 | |
CN102819082B (zh) | 透镜调心装置及摄像透镜 | |
JP2009053011A (ja) | 撮像装置 | |
JP2008268876A (ja) | 撮影レンズおよびその製造方法ならびに複合レンズ | |
JP2004246258A (ja) | 撮影レンズ及び該撮影レンズを用いた光学機器 | |
CN100543502C (zh) | 镜头模组、数码相机模组及便携式电子装置 | |
JP2011221244A (ja) | レンズ組立体及びそのレンズの組立方法 | |
JP2003149521A (ja) | 調心装置 | |
JP2008185832A (ja) | 光学素子および光学ユニットの組立方法 | |
JP2017146485A (ja) | レンズ装置 | |
JP2007256319A (ja) | 撮像装置及びその光軸調整方法 | |
JP2008241838A (ja) | 複合レンズおよびその製造方法 | |
JP2002174766A (ja) | 焦点検出装置 | |
JP2006058850A (ja) | 光学レンズ及びその製造方法 | |
JP2021004990A (ja) | 撮像装置、車両及び撮像装置の組立方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080042865.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10820256 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011534133 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010820256 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13498520 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |