WO2019233213A1 - 光学镜头、摄像模组及其组装方法 - Google Patents

光学镜头、摄像模组及其组装方法 Download PDF

Info

Publication number
WO2019233213A1
WO2019233213A1 PCT/CN2019/084450 CN2019084450W WO2019233213A1 WO 2019233213 A1 WO2019233213 A1 WO 2019233213A1 CN 2019084450 W CN2019084450 W CN 2019084450W WO 2019233213 A1 WO2019233213 A1 WO 2019233213A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical axis
mark
lens component
Prior art date
Application number
PCT/CN2019/084450
Other languages
English (en)
French (fr)
Inventor
田中武彦
吴雨榕
虞建中
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820882347.7U external-priority patent/CN208506341U/zh
Priority claimed from CN201810584365.1A external-priority patent/CN110632727B/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2019233213A1 publication Critical patent/WO2019233213A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present application relates to the field of optical imaging technology, and in particular, the present application relates to an optical lens, a camera module, and an assembly method thereof.
  • the errors of each component and its assembly include errors such as the optical surface thickness of each lens element, the sagittal height of the optical surface of the lens, the optical surface shape, the radius of curvature, the eccentricity of the single side of the lens and the deflection between the surfaces, and the tilt of the optical surface of the lens.
  • the size depends on the precision of the mold and the ability to control the molding accuracy.
  • the error of the thickness of the lens spacer element depends on the processing accuracy of the element.
  • the error of the assembly and matching of each lens depends on the dimensional tolerance of the component to be assembled and the assembly accuracy of the lens.
  • the error introduced by the change in the refractive index of the lens material depends on the stability of the material and the batch consistency. There is a phenomenon of cumulative deterioration of the errors affecting the resolution of each of the above components. This cumulative error will increase with the number of lenses.
  • Existing resolution solutions are to control the size of each relatively sensitive component and compensate for the rotation of the lens to improve the resolution.
  • the applicant proposes a method for adjusting and determining the relative positions of the upper and lower sub-lenses based on an active calibration process, and then bonding the upper and lower sub-lenses together according to the determined relative positions, thereby manufacturing a complete optical lens or camera module Assembly method.
  • This solution can improve the process capability index (CPK) of mass-produced optical lenses or camera modules; it can enable the evaluation of individual components of materials such as sub-lenses or photosensitive components used to assemble optical lenses or camera modules
  • CPK process capability index
  • the requirements for precision and assembly accuracy have been loosened, thereby reducing the overall cost of the optical imaging lens and the camera module; it can adjust various aberrations of the camera module in real time during the assembly process, reduce the defect rate, reduce production costs, and improve Imaging quality.
  • active calibration of the optical system of the lens itself is a new production process, which needs to be improved in terms of production efficiency, automation, and safety measures.
  • the current active calibration process requires the operator to pre-position the upper and lower sub-lenses according to experience, so that the optical system composed of the upper and lower sub-lenses can be imaged, and then the actual imaging results of the optical system are collected, and the resolution is drawn according to the actual imaging results.
  • Defocus curve and analyze the imaging quality of the optical system in the current state according to the resolution defocus curve. If the imaging quality in the current state cannot meet the standard, the relative positions of the upper and lower sub-lenses need to be adjusted, and then the above process is repeated, and this cycle continues until the imaging quality meets the standard.
  • active calibration is a kind of personalized calibration, that is, the adjustment paths of the upper and lower sub-lenses of each group are inconsistent. In other words, it takes many trial and error to adjust the state of the optical system to the imaging quality standard. The above factors may cause the production efficiency of optical lenses based on the active calibration process to decrease, which is not conducive to mass production.
  • the output of camera modules (such as mobile phone camera modules) of the same specification can reach as high as 10 million or even hundreds of millions, so production efficiency is often one of the important indicators to be considered.
  • the present application aims to provide a solution capable of overcoming at least one drawback of the prior art.
  • an optical lens assembly method includes a first lens component and a second lens component, the first lens component includes at least one first lens, and the second lens component includes a first lens component.
  • the method for assembling an optical lens includes pre-positioning the first lens component and the second lens component separated from each other so that the at least one first lens and the at least one second lens together form an imageable optical lens.
  • a system adjusting and determining the relative positions of the first lens component and the second lens component based on active calibration; and bonding the first lens component and the second lens component through a first connection adhesive, so that The first lens component and the second lens component are fixed and maintained at a relative position determined by active calibration; wherein the at least one first lens has at least one optical axis calibration lens, and the optical axis calibration lens has A mark, and the mark may be presented in an image with the optical axis calibration lens as a subject; and the pre-positioning step includes: shooting the optical axis calibration lens, and according to the mark presented in the captured image, A first optical axis position is identified, and a predetermined position is performed with the second lens component according to the identified first optical axis position.
  • the first optical axis position is a projection position of the optical axis of the first lens component on a reference plane recognizable by the active calibration device.
  • the pre-positioning step further includes: arranging a light source and a photosensitive chip on both sides of the second lens component to form a test light path; and searching for the first light source according to the optical information characteristics of the optical signal received by the photosensitive chip
  • the optical centers of the two lens components are further used to calculate a second optical axis position, wherein the second optical axis position is a projection position of the optical axis of the second lens component on the reference plane, and the optical information feature includes light One or more of a strong two-dimensional distribution, a light intensity spatial frequency, and a light intensity peak; and moving the first lens component on the reference plane until the identified first optical axis position and the calculated
  • the distance between the second optical axis positions is less than a preset first threshold.
  • the pre-positioning step further includes: arranging a target and a photosensitive chip on both sides of the second lens component to form a test optical path; and determining the second lens component according to a position where the measured resolution of the photosensitive chip is greatest.
  • the second optical axis position is calculated, where the second optical axis position is a projection position of the optical axis of the second lens component on the reference plane; and the first lens component is made Moving on the reference plane until the distance between the identified first optical axis position and the calculated second optical axis position is less than a preset first threshold.
  • the second lens component has a third mark and the third mark can be displayed in an image with the second lens component as a subject; and the pre-positioning step further includes: shooting the second lens A component to identify a second optical axis position according to the third mark presented in the captured image, and to the first lens component and the second lens component according to the identified first optical axis position and the second optical axis position.
  • the second lens component is pre-positioned.
  • the mark is a convex portion or a concave portion located on an optical surface of the optical axis calibration lens.
  • the convex portion or the concave portion is located at the center of the optical surface.
  • the optical surface includes a light incident surface and a light emitting surface, and the mark is located on the light incident surface or the light emitting surface.
  • the mark is tapered; and the pre-positioning step further comprises: identifying a first optical axis inclination angle based on a apex of the mark and a contour of a root of the mark as shown in the captured image, and according to the identified The first optical axis position and the identified first optical axis inclination angle are predetermined with the second lens component.
  • the optical surface includes a light incident surface and a light emitting surface
  • the mark includes a first mark and a second mark
  • the first mark and the second mark are located on the light incident surface and the light emitting surface, respectively.
  • the pre-positioning step further includes: identifying a first optical axis tilt angle according to the first mark and the second mark presented in the captured image, and according to the identified first optical axis position and the The identified first optical axis tilt angle is used to perform a predetermined position with the second lens component, wherein the first optical axis tilt angle is a gap between the optical axis of the first lens component and a normal line of the reference plane. angle.
  • the mark is a non-visible light mark
  • the non-visible light mark can be displayed in an image with the optical axis-calibrated lens as a subject under the illumination of a light source in a non-visible light band.
  • the pre-positioning step further includes: shooting the optical axis calibration lens under the illumination of the light source in the non-visible light band, identifying the first optical axis position according to the mark presented in the captured image, and The identified first optical axis position is predetermined with the second lens member.
  • the second lens component has a third mark and the third mark can be displayed in an image with the second lens component as a subject; and the pre-positioning step further includes: shooting the second lens A component to identify a second optical axis position according to the third mark presented in the captured image, and to the first lens component and the second lens component according to the identified first optical axis position and the second optical axis position.
  • the second lens component is pre-positioned.
  • the first lens component further includes a first lens barrel, and the at least one first lens is mounted inside the first lens barrel.
  • the active calibration step further includes: adjusting and determining the first lens component by clamping or adsorbing the first lens component and / or the second lens component according to the measured resolution of the optical system. And a relative positional relationship with the second lens component.
  • the active calibration step further includes: moving the first lens component along the reference plane, and determining the distance between the first lens and the second lens component along the reference lens according to the measured resolution of the optical system.
  • the movement further includes translation or rotation on the reference plane.
  • the active calibration step further includes: adjusting and determining the inclination angle of the first optical axis and the inclination angle of the second optical axis according to a measured resolution of the optical system.
  • the active calibration step further includes: moving the first lens component along a normal direction of the reference plane, and determining the first lens component and the second lens according to a measured resolution of the optical system. The relative position between the components in the normal direction of the reference plane.
  • a gap is provided between a bottom surface of the first lens component and a top surface of the second lens component; and in the bonding step, the first connecting adhesive material is arranged on the The gap.
  • a method for assembling a camera module includes: assembling an optical lens by using the aforementioned method for assembling an optical lens; and mounting the optical lens on a photosensitive component to obtain a camera module.
  • the step of mounting the optical lens on the photosensitive component includes: bonding a bottom surface of the second lens component to a top surface of the photosensitive component through a second connecting adhesive material.
  • an optical lens including: a first lens component including at least one first lens, the at least one first lens having at least one optical axis calibration lens, the light
  • the axis-calibrated lens has a mark and the mark can be presented in an image with the optical axis-calibrated lens as a subject; a second lens component including a second lens barrel and at least one mounted in the second lens barrel A second lens, and the at least one first lens and the at least one second lens together constitute an imageable optical system; and a first connecting glue, which bonds the first lens component and the second lens Components, and support and fix the relative positions of the first lens component and the second lens component after curing, and the optical axis of the first lens component and the optical axis of the second lens component have The angle is zero.
  • the first connection glue is adapted to maintain the relative position of the first lens component and the second lens component at a relative position determined by active calibration, wherein the active calibration is based on the optical system.
  • the actual imaging results are used to adjust the relative positions of the first lens component and the second lens component.
  • the mark is a convex portion or a concave portion located on an optical surface of the optical axis calibration lens.
  • the convex portion or the concave portion is located at the center of the optical surface.
  • the optical surface includes a light incident surface and a light emitting surface, and the mark is located on the light incident surface or the light emitting surface.
  • the mark is tapered, and the apex of the mark and the outline of the root of the mark can be presented in an image in which a lens is calibrated with the optical axis as a subject.
  • the optical surface includes a light incident surface and a light emitting surface
  • the mark includes a first mark and a second mark
  • the first mark and the second mark are located on the light incident surface and the light emitting surface, respectively.
  • the mark is a non-visible light mark
  • the non-visible light mark can be displayed in an image with the optical axis-calibrated lens as a subject under the illumination of a light source in a non-visible light band.
  • the second lens component has a third mark, and the third mark can be presented in an image using the second lens component as a subject.
  • the first lens component further includes a first lens barrel, and the at least one first lens is mounted inside the first lens barrel.
  • a camera module including: the aforementioned optical lens; and a photosensitive component, the optical lens is mounted on the photosensitive component.
  • the angle between the axis of the photosensitive component and the optical axis of the second lens component is not zero.
  • This application can ensure a stable feeding position when the lens is pre-positioned.
  • This application can improve the production efficiency of optical lenses or camera modules and the product yield, which is suitable for mass production.
  • This application can monitor during the production of optical lens or camera module to check the quality of the product during manufacture.
  • FIG. 1A is a schematic longitudinal sectional view of a first lens component 100 and a second lens component 200 separated from each other in an embodiment of the present application;
  • FIG. 1A is a schematic longitudinal sectional view of a first lens component 100 and a second lens component 200 separated from each other in an embodiment of the present application;
  • FIG. 1B shows a schematic top view of the first lens component 100 shown in FIG. 1A;
  • FIG. 1C shows a schematic top view of the second lens component 200 shown in FIG. 1A;
  • FIG. 2 shows a schematic diagram of active calibration in an embodiment of the present application
  • FIG. 3A is a schematic cross-sectional view of a first lens component 100 in an embodiment of the present application.
  • FIG. 3B is a schematic cross-sectional view of the first lens component 100 shown in FIG. 3A in an inclined state
  • FIG. 3C is a schematic top view of the first lens component 100 shown in FIG. 3A in a horizontal state
  • FIG. 3D is a schematic top view of the first lens component 100 shown in FIG. 3A in an inclined state
  • FIG. 4A is a schematic cross-sectional view of an optical lens according to another embodiment of the present application.
  • 4B is a schematic cross-sectional view of an assembled optical lens according to another embodiment of the present application.
  • 5A is a schematic cross-sectional view of an optical lens in another embodiment of the present application.
  • FIG. 5B is a schematic top view of a first lens component of the optical lens of the embodiment of FIG. 5A;
  • 5C and 5D show schematic top views of the first lens component in two modified embodiments
  • FIG. 6 is a schematic top view of a second lens component in an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional view of a camera module according to an embodiment of the present application.
  • FIG. 8A illustrates a relative position adjustment method in active calibration according to an embodiment of the present application
  • FIG. 8C shows a relative position adjustment method in which v and w direction adjustments are added in active calibration according to another embodiment of the present application.
  • the expressions of the first, second, etc. are only used to distinguish one feature from another feature, and do not indicate any limitation on the feature. Therefore, without departing from the teachings of this application, the first subject discussed below may also be referred to as the second subject.
  • an optical lens assembly method including steps S10 to S40.
  • Steps S10 to S40 are as follows.
  • FIG. 1A is a schematic longitudinal sectional view of a first lens component 100 and a second lens component 200 separated from each other in an embodiment of the present application.
  • FIG. 1B is a schematic top view of the first lens component 100 shown in FIG. 1A.
  • FIG. 1C is a schematic top view of the second lens component 200 shown in FIG. 1A.
  • the first lens component 100 includes a first lens barrel 102 and a first lens 101 mounted inside the first lens barrel 102.
  • the second lens component 200 includes a second lens barrel 202 and a plurality of (five in this embodiment) second lenses 201 installed in the second lens barrel 202.
  • the first lens 201 is an optical axis calibration lens, the optical axis calibration lens has a mark, and the mark 109 can be presented in an image with the optical axis calibration lens as a subject.
  • the first lens component 100 and the second lens component 200 are pre-positioned, so that the first lens 101 and the five second lenses 201 together form an imageable optical system.
  • the pre-positioning step may include photographing the optical axis calibration lens, identifying a first optical axis position according to the mark presented in the captured image, and according to the identified first optical axis position and the second Lens components are aligned (Because the "alignment” process is a mechanical positioning without optical active calibration, the accuracy is limited. Therefore, in this article, “alignment” can be understood as “predetermined position” and is completed at "predetermined position” Later, further optical active calibration is required to determine the final positioning).
  • the first optical axis position is a projection position of the optical axis of the first lens component 100 on a reference plane recognizable by an active calibration device.
  • the reference plane may be, for example, a horizontal plane, and the first lens component 100 may be located above the second lens component 200.
  • the first optical axis position can be expressed as a (x, y) coordinate value.
  • the pre-positioning step may further include: arranging the test light source and the photosensitive chip 301 on both sides (for example, the upper side and the lower side) of the second lens component 200 (ie, the sub-optical system composed of the second lens 202) to form a test light path.
  • the offset of the optical center of the two lens components 200 relative to the center of the photosensitive chip 301 is used to calculate the second optical axis position.
  • the second optical axis position is a projection position of the optical axis of the second lens component on the reference plane; and the first lens component is translated on the reference plane until the identified first light
  • the distance between the axis position and the calculated second optical axis position is less than a preset first threshold.
  • the position of the second optical axis can also be expressed as a (x, y) coordinate value. It should be noted that in this step, the calculation of the position of the second optical axis may be performed based on software of an active calibration device. Such calculation may be understood, for example, to determine the optical center of the optical system based on the energy value of the optical signal actually received by the photosensitive chip. position. It is completely different from the recognition of the first optical axis position based on image recognition.
  • the method for calculating the position of the second optical axis may include: receiving, by a photosensitive chip in a test optical path, a light signal passing through the second lens component, and according to the intensity of the optical signal (ie, light intensity) on the surface of the photosensitive chip.
  • the dimensional space distribution acquires a peak point of the optical signal, and the peak point can be considered as the center of the blurred image formed by the second lens component, that is, the position of the second optical axis.
  • the position of the photosensitive chip with respect to the reference plane is known (for example, the position of the geometric center of the photosensitive chip with respect to the origin of the reference plane), then the deviation of the optical center position of the second lens component relative to the geometric center of the photosensitive chip can be found. Shift to calculate the position of the second optical axis.
  • the photosensitive chip is composed of pixels arranged in an array, so the optical information on the photosensitive chip can be detected (for example, the position with the highest light intensity can be detected), and because of the axisymmetric lens (The second lens is usually an axisymmetric lens)
  • the optical center is not refracted, and due to the oblique rays and vignetting phenomenon of the non-center light, as long as the light exits the second lens part, it is not a parallel beam.
  • the light intensity at the position of the optical center of the second lens component is the largest (for example, the optical center may be the position of the maximum light intensity in all areas of the entire photosensitive chip, or the peak point in a local area of the photosensitive chip).
  • the position of the optical center of the second lens component can be determined, and the offset of the optical center from the geometric center of the photosensitive chip can be determined.
  • the position of the second optical axis (for example, the position of the second optical axis relative to the origin of the reference plane) can be calculated.
  • the optical center of the second lens component and the geometric center of the photosensitive chip can be overlapped by moving the photosensitive chip.
  • the position of the second optical axis (for example, the position of the second optical axis with respect to the origin of the reference plane) can be calculated according to the offset between the geometric center of the photosensitive chip and the origin of the reference plane.
  • the optical center position of the second lens component is determined based on the position of the light intensity of the photosensitive chip, the present application is not limited to this.
  • a variety of optical information can be obtained after the light passes through the second lens component, including but not limited to: a variety of optical signals such as the optical signal intensity distribution, optical spatial frequency (such as the rate of change of optical intensity in space), and optical intensity peaks. feature.
  • one or more combinations of these optical signal characteristics may be used to identify the optical center position of the second lens component.
  • a determination condition based on one or more of the characteristics of the optical signal may be determined according to the physical characteristics of the optical center (for example, the light in the optical center does not undergo refraction), and then a match is found based on the optical signal actually sensed by the photosensitive chip.
  • the position of the above-mentioned determination condition determines the position of the optical center of the second lens member.
  • the physical characteristics of the optical center include: the resolution of the optical center is better than that of the non-optical center. Therefore, in another embodiment, a target plate (that is, a target) may be set between the test light source and the second lens component, and then the second lens component and the photosensitive chip in the z-direction (referring to the optical axis direction of the optical lens) may be moved. The relative position enables the target on the target plate to be imaged on the photosensitive chip. Finally, based on the actual imaging results, the position where the measured resolution is best measured on the photosensitive chip is found and the second optical axis position is obtained according to this position.
  • the measured resolution can be a measured SFR (Spatial Frequency Response) value or a MTF (Modulation Transfer Function) value.
  • Step S30 Adjust and determine the relative positions of the first lens component 100 and the second lens component 200 based on the active calibration.
  • active calibration is to analyze the imaging quality of the optical system in the current state based on the actual imaging results of the test optical path (for example, the imaging quality of the optical system in the current state can be analyzed based on the resolution defocus curve), and then the first The relative positions of the first lens component 100 and the second lens component 200 are adjusted until the imaging quality of the optical system in the current state reaches the standard.
  • step S40 the first lens component 100 and the second lens component 200 are bonded by a first connecting adhesive material, so that the first lens component 100 and the second lens component 200 are fixed and maintained at an active calibration station. Determine the relative position.
  • the marking and image recognition technology can be used to automatically load and unload using a machine.
  • the loading may be to move the materials (that is, the first lens component 100 and the second lens component 200 separated from each other) to the active calibration device, and the loading may be to move the finished product out of the active calibration device.
  • the active calibration device may include a pickup mechanism, and the pickup mechanism may be a clamp or an adsorption mechanism.
  • the first lens part 100 may be a main part taken by the taking mechanism and moved during the pre-positioning and active calibration process.
  • the second lens component 200 may be stationary (for example, it may be fixed to a fixed platform). Of course, in other embodiments, the second lens component 200 may also be movable.
  • image recognition is performed using the mark 109 located on the first lens 101 to obtain a first optical axis position, and positioning is performed with the second lens component 200 according to the identified first optical axis position, so that a predetermined
  • the results are consistent and help improve the efficiency of active calibration, thereby increasing production efficiency, so it is very suitable for mass production.
  • the pre-positioning results of the same batch of products may cause inconsistencies.
  • the pre-positioning result is the initial state of the active calibration.
  • the pre-positioning status of each group of the first lens component 100 and the second lens component 200 is uneven, it will bring difficulties to the subsequent active calibration, such as This may result in an increase in the number of relative position adjustments during active calibration, or an increase in the movement trajectory.
  • the time consumed by active calibration can be shortened in a statistical sense, thereby improving production efficiency. This advantage is even more pronounced when there is more freedom in active calibration.
  • image recognition using the mark 109 located on the first lens 101 can more accurately obtain the first optical axis position.
  • a conventional lens ie, an unmarked lens
  • image recognition can often only be performed according to the boundary contour line between the lens barrel and the lens.
  • the assembly of the lens and the lens barrel often has tolerances, and sometimes the center axis of the lens may deviate from the mechanical center axis of the lens barrel. Therefore, using the marker located on the first lens 101 for image recognition can more accurately obtain the position of the first optical axis, thereby improving the efficiency of active calibration, thereby improving production efficiency.
  • the attitude of the first lens component 100 is recognized by laser height measurement.
  • Laser altimetry usually measures the positions of a plurality of points on the top surface of the lens barrel, and then recognizes the posture of the first lens part 100 based on the positions of these points.
  • the assembly of the lens and the lens barrel often has tolerances, and sometimes the center axis of the lens may deviate from the mechanical center axis of the lens barrel, so the attitude measurement based on the top surface of the lens barrel may be inaccurate.
  • identifying the attitude of the first lens component 100 by laser height measurement and adjusting it to a horizontal state requires more steps and time, which is not conducive to improving the efficiency of active calibration.
  • the number of the first lens 101 may also be multiple, at least one of which is a lens having the mark 109.
  • this lens is sometimes referred to herein as an optical axis lens.
  • FIG. 2 shows a schematic diagram of active calibration in an embodiment of the present application.
  • the actively calibrated optical path includes a light source 800, a target plate 700 (the target plate 700 is used as a target in this embodiment), a first lens component 100, a second lens component 200, and a photosensitive component 300 in this order.
  • the photosensitive module 300 includes a photosensitive chip 301.
  • the first lens component 100 is captured by the capturing mechanism 500 and can be moved by the capturing mechanism 500.
  • the pickup mechanism 500 may be, for example, a gripping mechanism (for example, a clamp).
  • the pickup mechanism 500 may be six-axis adjustable.
  • the second lens component 200 may be fixed by the fixing mechanism 600.
  • a light through hole may be provided in the center of the fixing mechanism 600 to avoid blocking the light path.
  • the photosensitive assembly 300 may be fixed on a platform, and the platform may be a six-axis platform 400 (that is, a six-axis adjustable platform).
  • the active calibration can adjust the relative positions of the first lens component 100 and the second lens component 200 in multiple degrees of freedom.
  • FIG. 8A illustrates a relative position adjustment method in active calibration according to an embodiment of the present application.
  • the first lens component 100 also the first lens 101
  • the second lens component 200 that is, the relative position in this embodiment.
  • Adjustment has three degrees of freedom).
  • the z direction is a direction along the optical axis
  • the x and y directions are directions perpendicular to the optical axis. Both the x and y directions are in an adjustment plane P, and the translation in the adjustment plane P can be decomposed into two components in the x and y directions.
  • FIG. 8B illustrates a rotation adjustment in active calibration according to another embodiment of the present application.
  • the relative position adjustment in addition to the three degrees of freedom of Fig. 8A, the relative position adjustment also increases the degree of freedom of rotation, that is, the adjustment in the r direction.
  • the adjustment in the r direction is a rotation in the adjustment plane P, that is, a rotation about an axis perpendicular to the adjustment plane P.
  • FIG. 8C illustrates a relative position adjustment method in which v and w direction adjustments are added in active calibration according to another embodiment of the present application.
  • the v direction represents the rotation angle of the xoz plane
  • the w direction represents the rotation angle of the yoz plane
  • the rotation angles of the v direction and the w direction can be combined into a vector angle
  • this vector angle represents the total tilt state. That is, by adjusting the v direction and the w direction, the tilting attitude of the first lens component 100 relative to the second lens component 200 (that is, the optical axis of the first lens component 100 relative to the second lens component can be adjusted. 200 optical axis tilt).
  • the relative position adjustment method may be to adjust only any one of the above six degrees of freedom, or a combination of any two or more of them.
  • the movement further includes a translation on the adjustment plane, that is, a movement in the x and y directions.
  • the active calibration further includes: adjusting and determining the first lens component 100 according to a measured resolution of the optical system (referring to a resolution measured according to an actual imaging result of the optical system).
  • a measured resolution of the optical system referring to a resolution measured according to an actual imaging result of the optical system.
  • An included angle of the axis of the axis with respect to the axis of the second lens component 200 that is, adjustment in the w and v directions.
  • an angle between the axis of the first lens component 100 and the axis of the second lens component 200 may be non-zero.
  • the active calibration further includes: moving the first lens component 100 (ie, adjustment in the z direction) along a direction perpendicular to the adjustment plane, according to the actual measurement of the optical system
  • the resolving power determines a relative position between the first lens component 100 and the second lens component 200 in a direction perpendicular to the adjustment plane.
  • a gap is formed between a bottom surface of the first lens component 100 and a top surface of the second lens component 200; and in the bonding step, The first connection glue is arranged in the gap.
  • the second lens component 200 may be fixed, the first lens component 100 may be clamped by a clamp, and the first lens component 100 may be moved by a six-axis movement mechanism connected to the clamp, thereby The relative movement between the first lens component 100 and the second lens component 200 in the above six degrees of freedom is achieved.
  • the jig may be abutted or partially abutted on a side surface of the first lens component 100 so as to clamp the first lens component 100.
  • the curvature of the first lens 101 may be greater than the curvature of the second lens 201, so that the first lens component 100 is more sensitive to position changes than the second lens component 200, thereby facilitating active calibration.
  • the stroke of the first lens component 100 during the active calibration process can be reduced, or the adjustment capability of the active calibration can be enhanced (that is, the ability to compensate for various errors in the manufacturing and assembly processes is enhanced.
  • a greater adjustment capability means that Larger errors are compensated so that the optical system can meet the design requirements).
  • the mark in the preparation step (ie step S10), may be a convex portion located on an optical surface of the optical axis calibration lens.
  • the convex portion may be located at the center of the optical surface.
  • the mark may be a recessed portion located on an optical surface of the optical axis calibration lens.
  • the recessed portion may be located at the center of the optical surface.
  • the convex portion or the concave portion may be presented in a picture taken by a camera provided directly above the first lens component, thereby identifying the first optical axis position.
  • the convex portion is located at the center of the optical surface, and does not affect the imaging quality. In particular, during imaging, the light passing through the raised markings has passed through more lens paths, reducing the amount of light passing, so there is also an effect of darkening the center, which brings about the OTP burning in the camera module. Effect of color and brightness balance.
  • FIG. 3A shows a schematic cross-sectional view of the first lens component 100 in an embodiment of the present application.
  • the optical surface includes a light incident surface 101a and a light emitting surface 101b, and the mark 109 may be located on the light incident surface 101a. In another embodiment, the mark 109 may also be located on the light emitting surface 101b.
  • FIG. 3B shows a schematic cross-sectional view of the first lens component 100 shown in FIG. 3A in an inclined state
  • FIG. 3C shows a schematic top view of the first lens component 100 shown in FIG. 3A in a horizontal state
  • FIG. 3D shows A schematic plan view of the first lens component 100 in an inclined state shown in FIG. 3A is shown.
  • the mark is tapered in the preparing step (ie step S10).
  • the pre-positioning step (ie step S20) further comprises: identifying a first optical axis tilt angle based on the pointed apex 109c of the marker and the root contour 109d of the marker presented in the captured image, and according to the identified first An optical axis position and the identified first optical axis inclination angle are aligned with the second lens component 200.
  • the first optical axis tilt angle may be an angle between the optical axis of the first lens component 100 and a normal line of the reference plane. 3A-D, in a horizontal state, the marked apex 109c is at the center of the marked root profile 109d, and in an inclined state, the marked apex 109c is offset from the center of the marked root profile 109d.
  • the inclination of the marked 109 can be calculated to obtain the first lens 101
  • the degree of tilt This degree of tilt can be expressed as the first optical axis tilt angle.
  • the pre-position results can have better consistency, which is more conducive to improving the efficiency of active calibration, thereby improving production efficiency.
  • the mark 109 may be a convex portion located on an optical surface of the optical axis calibration lens, and an axial dimension (for example, a height) of the convex portion is, for example, 20 ⁇ m or less.
  • the dimension (for example, the diameter) is, for example, 30 ⁇ m or less.
  • the axial dimension refers to the dimension along the optical axis direction of the optical lens
  • the radial dimension refers to the dimension perpendicular to the optical axis direction of the optical lens.
  • the radial dimension is the diameter of the conical root profile.
  • FIG. 4A is a schematic cross-sectional view of an optical lens according to another embodiment of the present application.
  • the first lens component 100 may not have the first lens barrel 102, that is, the first lens 101 may constitute the first lens component 100 alone.
  • the first lens 101 may include an optical surface and a structural surface around the optical surface, and a light shielding layer may be attached to the top surface and the side surface of the structural surface to form a diaphragm.
  • FIG. 4B shows a schematic cross-sectional view of an assembled optical lens according to another embodiment of the present application.
  • the optical surface in the preparation step (ie step S10), includes a light incident surface 101a and a light emitting surface 101b, the mark 109 includes a first mark 109a and a second mark 109b, and the first mark 109a and the second mark 109b are respectively located on the light incident surface 101a and the light emitting surface 101b.
  • the pre-positioning step (ie step S20) further includes: identifying a first optical axis tilt angle based on the first mark 109a and the second mark 109b presented in the captured image, and according to the identified first The optical axis position and the identified first optical axis tilt angle are aligned with the second lens component 200, wherein the first optical axis tilt angle is the optical axis of the first lens component 100 and the reference plane The angle between the normals.
  • the first optical axis tilt angle can be calculated based on a certain algorithm according to a deviation degree of the apex and / or root contour of the first mark 109a and the apex and / or root contour of the second mark 109b in the captured image.
  • the pre-position results can have better consistency, which is more conducive to improving the efficiency of active calibration, thereby improving production efficiency.
  • the pre-positioning step (ie step S20) further comprises: calculating a second optical axis tilt angle according to the optical signal received by the photosensitive chip, wherein the second optical axis tilt angle Is the angle between the optical axis of the second lens component and the normal to the reference plane; and keeping the distance between the identified first optical axis position and the calculated second optical axis position smaller than a preset The first threshold value of the first lens component and / or the attitude of the first lens component until the difference between the identified first optical axis tilt angle and the calculated second optical axis tilt angle is less than a preset first Two thresholds.
  • the pre-position results can have better consistency, which is more conducive to improving the efficiency of active calibration, thereby improving production efficiency.
  • the second optical axis tilt angle may be calculated according to various optical information characteristics of the optical signal received by the photosensitive chip.
  • the two-dimensional spatial distribution may include, but is not limited to, one or more of a spatial distribution of light intensity on a chip surface, a spatial frequency of light intensity (a rate of change of light intensity in two-dimensional space), and a peak value of light intensity.
  • the second optical axis tilt angle may be calculated by a multi-point laser height measurement method.
  • the multiple points used for laser height measurement may be distributed on the top surface of the second lens barrel.
  • FIG. 5A shows a schematic cross-sectional view of an optical lens in another embodiment of the present application.
  • FIG. 5B is a schematic top view of a first lens component of the optical lens of the embodiment of FIG. 5A.
  • the mark 109 is a non-visible light mark (for example, an ultraviolet mark), and the non-visible light mark can be presented under the illumination of a light source in a non-visible light band (for example, an ultraviolet band).
  • a non-visible light mark for example, an ultraviolet mark
  • a non-visible light band for example, an ultraviolet band
  • the pre-positioning step (that is, step S20) further includes: photographing the optical axis calibration lens under the illumination of the light source in the non-visible light band, and identifying the first optical axis position according to the mark presented in the captured image And aligning with the second lens component according to the identified first optical axis position.
  • This embodiment can make the pre-positioned results consistent, and help improve the efficiency of active calibration, thereby improving production efficiency, so it is very suitable for mass production.
  • the shape of the invisible light mark may be a cross mark 109 (fork mark), a dot mark 109, a frame mark 109, and the like.
  • the shape of the non-visible light mark can be selected as required, as long as the mark can be recognized in the image.
  • FIG. 6 shows a schematic top view of a second lens component in an embodiment of the present application.
  • the second lens component in the preparation step (step S10), may have a third mark and the third mark may be presented in an image with the second lens component as a subject.
  • the pre-positioning step (step S20) further includes: photographing the second lens component, identifying a second optical axis position according to the third mark presented in the captured image, and according to the identified first optical axis The position is aligned with the second optical axis position, and the first lens component and the second lens component are aligned.
  • the second lens barrel may be injection-molded.
  • the mark of the second lens component may be a gate 202a located on the top surface of the second lens barrel.
  • the gate 202 a corresponds to an injection port of a molding material (for example, an inlet of a molding cavity in a mold when a liquid molding material is injected into the mold).
  • the outer side surface of the second lens barrel may have a notch 202b (sometimes referred to as a cut), which is formed by cutting out a cut on the side of the second lens barrel. Since the cutout 202b on the outer side surface of the second lens barrel can also be recognized in a top-view image of the second lens barrel, the cutout 202b can also be used as the third mark.
  • the active calibration step may further include: by clamping or adsorbing the first lens component 100 and / or the second lens component 200 according to the measured resolution of the optical system, To adjust and determine the relative positional relationship between the first lens component 100 and the second lens component 200.
  • the active calibration step may further include: moving the first lens component 100 along the reference plane, and determining the first lens 101 and the first lens 101 according to a measured resolution of the optical system. The relative position between the second lens members 200 in the direction of movement along the plane, wherein the movement includes rotation on the reference plane.
  • the movement further includes translation or rotation on the reference plane.
  • the active calibration step may further include: adjusting and determining the first optical axis tilt angle and the second optical axis tilt angle according to a measured resolution of the optical system.
  • the active calibration step may further include: moving the first lens component 100 along a normal direction of the reference plane, and determining the first lens component 100 according to a measured resolution of the optical system. A relative position between a lens component 100 and the second lens component 200 in a normal direction of the reference plane.
  • a gap may be provided between a bottom surface of the first lens component 100 and a top surface of the second lens component 200; and the bonding step
  • the first connecting glue is disposed in the gap.
  • a method for assembling a camera module including: assembling an optical lens by using the optical lens assembling method according to any one of the foregoing; and mounting the optical lens on the photosensitive component 300 to obtain an image. Module.
  • the step of mounting the optical lens on the photosensitive component 300 includes: bonding a bottom surface of the second lens component 200 to a top surface of the photosensitive component 300 through a second connection adhesive; and The second connection glue material is cured simultaneously with the first connection glue material.
  • an optical lens including: a first lens component 100 including at least one first lens 101 having at least one optical axis calibration lens therein;
  • the optical axis calibration lens has a mark 109, and the mark can be presented in an image with the optical axis calibration lens as a subject;
  • a second lens component 200 which includes a second lens barrel 202 and is mounted on the second At least one second lens 201 in the lens barrel 202, and the at least one first lens 101 and the at least one second lens 201 together form an imageable optical system;
  • a first connection glue is bonded to the first lens A lens component 100 and the second lens component 200, and support and fix the relative positions of the first lens component 100 and the second lens component 200 after curing, and the optical axis of the first lens component 100 There is a non-zero included angle with the optical axis of the second lens component 200.
  • the first connection glue is adapted to maintain the relative positions of the first lens component 100 and the second lens component 200 at the relative positions determined by active calibration, wherein the active calibration is based on the optical system.
  • the actual imaging results are used to adjust the relative positions of the first lens component 100 and the second lens component 200.
  • the first optical axis position and the second optical axis position may be staggered.
  • the first optical axis position is a projection position of the optical axis of the first lens component 100 on a reference plane recognizable by an active calibration device
  • the second optical axis position is a position of the second lens component 200.
  • the mark may be a convex portion or a concave portion located on an optical surface of the optical axis calibration lens.
  • the convex portion or the concave portion may be located at the center of the optical surface.
  • the optical surface may include a light incident surface 101a and a light emitting surface 101b, and the mark 109 may be located on the light incident surface or the light emitting surface.
  • the mark may be tapered, and the apex 109c of the mark and the root contour 109d of the mark may be presented in an image in which the lens is the object to be calibrated with the optical axis.
  • the optical surface includes a light incident surface 101a and a light emitting surface 101b
  • the mark 109 may include a first mark 109a and a second mark 109b, and the first mark 109a and the second mark 109b are respectively Located on the light incident surface and the light emitting surface.
  • the mark 109 is a non-visible light mark
  • the non-visible light mark can be presented in an image of the subject whose lens is the optical axis calibration lens under the illumination of the light source in the non-visible light band.
  • the second lens component 200 has a third mark, and the third mark can be presented in an image using the second lens component 200 as a subject.
  • the first lens component 100 may further include a first lens barrel 102, and the at least one first lens 101 is installed inside the first lens barrel 102.
  • a camera module is also provided. It includes: the optical lens 300 and the photosensitive component 301 according to any one of the foregoing embodiments.
  • FIG. 7 is a schematic cross-sectional view of a camera module according to an embodiment of the present application. As shown in FIG. 7, the optical lens is mounted on the photosensitive assembly 300.
  • the photosensitive module 300 includes a photosensitive chip 301.
  • the second lens component 200 may include a motor 200a (or other type of optical actuator).
  • the second lens barrel 202 may be mounted in a carrier of the motor 200a (for example, by a screw connection). An angle between the axis of the photosensitive component 300 and the optical axis of the second lens component 200 may be non-zero.

Abstract

一种光学镜头组装方法,包括:准备彼此分离的第一和第二镜头部件(100、200);对第一和第二镜头部件(100、200)进行预定位;基于主动校准来调整和确定第一和第二镜头部件(100、200)的相对位置;以及粘结第一和第二镜头部件(100、200),二者固定并保持在主动校准所确定的相对位置。其中,第一镜片(101)具有标记(109)且标记(109)可在以光轴标定镜片为被拍摄物的图像中呈现;以及在预定位步骤中,拍摄光轴标定镜片,根据所拍摄的图像中呈现的标记(109)来识别第一光轴位置,并且根据所识别的第一光轴位置与第二镜头部件(200)进行预定位。光学镜头组装方法、摄像模组组装方法以及相应的光学镜头和摄像模组,可以保证镜头进行预定位时能有一稳定的上料位置,可以提高生产效率以及提升产品良率。

Description

光学镜头、摄像模组及其组装方法
交叉引用
本申请要求于2018年06月08日向中国专利局提交的、发明名称为“光学镜头、摄像模组及其组装方法”的第201810584365.1号发明专利申请、于2018年06月08日向中国专利局提交的、名称为“光学镜头及摄像模组”的第201820882347.7号实用新型专利申请的优先权,上述专利申请的全部内容通过引用并入本文。
技术领域
本申请涉及光学成像技术领域,具体地说,本申请涉及光学镜头、摄像模组及其组装方法。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
为了满足越来越广泛的市场需求,高像素、小尺寸、大光圈是现有摄像模组不可逆转的发展趋势。然而,要在同一摄像模组实现高像素、小尺寸、大光圈三个方面的需求是有很大难度的。例如,手机的紧凑型发展和手机屏占比的增加,让手机内部能够用于摄像模组的空间越来越小,而市场对摄像模组的成像质量又提出了越来越高的需求。容易理解,摄像模组的占用空间越小,则其成像质量就约难以提升。
目前在紧凑型摄像模组(例如用于手机的摄像模组)领域,往往需要考虑到光学成像镜头的品质和模组封装过程中的制造误差。具体来说,在光学成像镜头的制造过程中,影响镜头解像力因素来自于各元件及其装配的误差、镜片间隔元件厚度的误差、各镜片的装配配合 的误差以及镜片材料折射率的变化等。其中,各元件及其装配的误差包含各镜片单体的光学面厚度、镜片光学面矢高、光学面面型、曲率半径、镜片单面及面间偏心,镜片光学面倾斜等误差,这些误差的大小取决于模具精度与成型精度控制能力。镜片间隔元件厚度的误差取决于元件的加工精度。各镜片的装配配合的误差取决于被装配元件的尺寸公差以及镜头的装配精度。镜片材料折射率的变化所引入的误差则取决于材料的稳定性以及批次一致性。上述各个元件影响解像力的误差存在累积恶化的现象,这个累计误差会随着透镜数量的增多而不断增大。现有解像力解决方案为对于对各相对敏感度高的元件的尺寸进行公差控制、镜片回转进行补偿提高解像力,但是由于高像素大光圈的镜头较敏感,要求公差严苛,如:部分敏感镜头1um镜片偏心会带来9′像面倾斜,导致镜片加工及组装难度越来越大,同时由于在组装过程中反馈周期长,造成镜头组装的过程能力指数(CPK)低、波动大,导致不良率高。且如上所述,因为影响镜头解像力的因素非常多,存在于多个元件中,每个因素的控制都存在制造精度的极限,如果只是单纯提升各个元件的精度,提升能力有限,提升成本高昂,而且不能满足市场日益提高的成像品质需求。
本申请人提出了一种基于主动校准工艺调整和确定上、下子镜头的相对位置,然后将上、下子镜头按照所确定的相对位置粘结在一起,进而制造出完整的光学镜头或摄像模组的组装方法。这种解决方案能够提升大批量生产的光学镜头或摄像模组的过程能力指数(CPK);能够使得对物料(例如用于组装光学镜头或摄像模组的子镜头或感光组件)的各个元件的精度及其装配精度的要求变宽松,进而降低光学成像镜头以及摄像模组的整体成本;能够在组装过程中对摄像模组的各种像差进行实时调整,降低不良率,降低生产成本,提升成像品质。
然而,对镜头的光学系统本身进行主动校准是一种新的生产工艺,在生产效率、自动化、安全措施等方面均有待完善。例如,目前主动校准工艺需要由操作人员根据经验对上、下子镜头进行预定位,使上、下子镜头组成的光学系统可以进行成像,然后再采集光学系统的实际成像结果,根据实际成像结果绘制解像力离焦曲线,以及根据解像力 离焦曲线分析光学系统在当前状态下的成像品质。如果当前状态下的成像品质不能达标,则需要调整上、下子镜头的相对位置,然后再重复上述过程,这样不断循环,直至成像品质达标。需要注意,当使用标板和感光芯片分别作为主动校准的测试光路的物方和像方时,对于上、下子镜头的每一个相对位置,解像力离焦曲线的绘制均需要沿着光路移动感光芯片,记录一系列位置的实测解像力,因此主动校准过程中的每一次循环均会消耗一定的时间。并且,主动校准是一种个性化的校准,即每一组上、下子镜头的调整路径都是不一致的,换句话说要将光学系统的状态调整至成像品质达标需要经过多次试错。以上因素都可能会导致基于主动校准工艺的光学镜头的生产效率降低,不利于大规模量产。需注意在工业界,同一规格的摄像模组(例如手机摄像模组)的产量可以高达千万甚至上亿量级,因此生产效率往往是需要考虑的重要指标之一。
发明内容
本申请旨在提供一种能够克服现有技术的至少一个缺陷的解决方案。
根据本申请的一个方面,提供了一种光学镜头组装方法,光学镜头包括第一镜头部件和第二镜头部件,所述第一镜头部件包括至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片。所述光学镜头组装方法包括对彼此分离的所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及通过第一连接胶材粘结所述第一镜头部件和所述第二镜头部件,使所述第一镜头部件和所述第二镜头部件固定并保持在主动校准所确定的相对位置;其中,所述至少一个第一镜片中具有至少一个光轴标定镜片,所述光轴标定镜片具有标记且该标记可在以所述光轴标定镜片为被拍摄物的图像中呈现;以及所述预定位步骤包括:拍摄所述光轴标定镜片,根据所拍摄的图像中呈现的所述标记来识别第一光 轴位置,并且根据所识别的第一光轴位置与所述第二镜头部件进行预定位。
其中,所述第一光轴位置是所述第一镜头部件的光轴在主动校准设备可识别的基准平面上的投影位置。
其中,所述预定位步骤还包括:将光源和感光芯片布置于所述第二镜头部件的两侧形成测试光路;根据所述感光芯片所接收到的光信号的光学信息特征来寻找所述第二镜头部件的光学中心,进而计算出第二光轴位置,其中所述第二光轴位置是所述第二镜头部件的光轴在所述基准平面的投影位置,所述光学信息特征包括光强二维分布、光强空间频率和光强峰值中的一项或多项;以及使所述第一镜头部件在所述基准平面上移动,直至所识别的第一光轴位置与所计算的第二光轴位置之间的距离小于预设的第一阈值。
其中,所述预定位步骤还包括:将目标物和感光芯片布置于所述第二镜头部件的两侧形成测试光路;根据所述感光芯片的实测解像力最大的位置来确定所述第二镜头部件的光学中心所在位置,进而计算出第二光轴位置,其中所述第二光轴位置是所述第二镜头部件的光轴在所述基准平面的投影位置;以及使所述第一镜头部件在所述基准平面上移动,直至所识别的第一光轴位置与所计算的第二光轴位置之间的距离小于预设的第一阈值。
其中,所述第二镜头部件具有第三标记且该第三标记可在以所述第二镜头部件为被拍摄物的图像中呈现;以及所述预定位步骤还包括:拍摄所述第二镜头部件,根据所拍摄的图像中呈现的所述第三标记来识别第二光轴位置,并且根据所识别的第一光轴位置与所述第二光轴位置,对所述第一镜头部件和所述第二镜头部件进行预定位。
其中,所述标记为位于所述光轴标定镜片的光学面的凸起部或凹陷部。
其中,所述凸起部或所述凹陷部位于所述光学面的中心。
其中,所述光学面包括入光面和出光面,所述标记位于所述入光面或所述出光面。
其中,所述标记呈锥形;以及所述预定位步骤还包括:根据所拍 摄的图像中呈现的所述标记的尖顶和所述标记的根部轮廓识别出第一光轴倾角,并且根据所识别出的第一光轴位置和所识别出的第一光轴倾角来与所述第二镜头部件进行预定位。
其中,所述光学面包括入光面和出光面,所述标记包括第一标记和第二标记,所述第一标记和所述第二标记分别位于所述入光面和所述出光面。
其中,所述预定位步骤还包括:根据所拍摄的图像中呈现的所述第一标记和所述第二标记识别出第一光轴倾角,并且根据所识别出的第一光轴位置和所识别出的第一光轴倾角来与所述第二镜头部件进行预定位,其中所述第一光轴倾角是所述第一镜头部件的光轴与所述基准平面的法线之间的夹角。
其中,所述标记是非可见光标记,该非可见光标记可在非可见光波段的光源的照射下,呈现于以所述光轴标定镜片为被拍摄物的图像中。
其中,所述预定位步骤还包括:在所述非可见光波段的光源的照射下拍摄所述光轴标定镜片,根据所拍摄的图像中呈现的所述标记来识别第一光轴位置,并且根据所识别的第一光轴位置与所述第二镜头部件进行预定位。
其中,所述第二镜头部件具有第三标记且该第三标记可在以所述第二镜头部件为被拍摄物的图像中呈现;以及所述预定位步骤还包括:拍摄所述第二镜头部件,根据所拍摄的图像中呈现的所述第三标记来识别第二光轴位置,并且根据所识别的第一光轴位置与所述第二光轴位置,对所述第一镜头部件和所述第二镜头部件进行预定位。
其中,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧。
其中,所述主动校准步骤还包括:根据所述光学系统的实测解像力,通过夹持或吸附所述第一镜头部件和/或所述第二镜头部件,来调节并确定所述第一镜头部件和所述第二镜头部件的相对位置关系。
其中,所述主动校准步骤还包括:沿着所述基准平面移动第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜片与所述 第二镜头部件之间的沿着所述平面的移动方向上的相对位置,其中所述移动包括在所述基准平面上的转动。
其中,所述主动校准步骤中,所述移动还包括在所述基准平面上的平移或旋转。
其中,所述主动校准步骤还包括:根据所述光学系统的实测解像力,调节并确定所述第一光轴倾角和所述第二光轴倾角。
其中,所述主动校准步骤还包括:沿着所述基准平面的法线方向移动所述第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜头部件与所述第二镜头部件之间的在所述基准平面的法线方向上的相对位置。
其中,所述预定位步骤中,使所述第一镜头部件的底面和所述第二镜头部件的顶面之间具有间隙;以及所述粘结步骤中,所述第一连接胶材布置于所述间隙。
根据本申请的另一方面,还提供了一种摄像模组组装方法,包括:利用前述光学镜头组装方法组装光学镜头;以及将所述光学镜头安装于感光组件得到摄像模组。
其中,将所述光学镜头安装于感光组件的步骤包括:通过第二连接胶材将所述第二镜头部件的底面与所述感光组件的顶面粘合。
根据本申请的另一方面,还提供了一种光学镜头,包括:第一镜头部件,其包括至少一个第一镜片,所述至少一个第一镜片中具有至少一个光轴标定镜片,所述光轴标定镜片具有标记且该标记可在以所述光轴标定镜片为被拍摄物的图像中呈现;第二镜头部件,其包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,并且所述至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;以及第一连接胶材,其粘结所述第一镜头部件和所述第二镜头部件,并在固化后支撑和固定所述第一镜头部件和所述第二镜头部件的相对位置,并且所述第一镜头部件的光轴与所述第二镜头部件的光轴之间具有不为零的夹角。
其中,所述第一连接胶材适于使所述第一镜头部件和所述第二镜头部件的相对位置保持在主动校准所确定的相对位置,其中所述主动 校准是根据所述光学系统的实际成像结果来对所述第一镜头部件和所述第二镜头部件的相对位置进行调整。
其中,所述标记为位于所述光轴标定镜片的光学面的凸起部或凹陷部。
其中,所述凸起部或所述凹陷部位于所述光学面的中心。
其中,所述光学面包括入光面和出光面,所述标记位于所述入光面或所述出光面。
其中,所述标记呈锥形,并且所述标记的尖顶和所述标记的根部轮廓可在以所述光轴标定镜片为被拍摄物的图像中呈现。
其中,所述光学面包括入光面和出光面,所述标记包括第一标记和第二标记,所述第一标记和所述第二标记分别位于所述入光面和所述出光面。
其中,所述标记是非可见光标记,该非可见光标记可在非可见光波段的光源的照射下,呈现于以所述光轴标定镜片为被拍摄物的图像中。
其中,所述第二镜头部件具有第三标记且该第三标记可在以所述第二镜头部件为被拍摄物的图像中呈现。
其中,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧。
根据本申请的另一方面,还提供了一种摄像模组,包括:前述光学镜头;以及感光组件,所述光学镜头安装于所述感光组件。
其中,所述感光组件的轴线与所述第二镜头部件的光轴之间具有不为零的夹角。
与现有技术相比,本申请具有下列至少一个技术效果:
1、本申请可以保证镜头进行预定位时能有一稳定的上料位置。
2、本申请可以提高光学镜头或摄像模组的生产效率以及提升产品良率,适合于大批量生产。
3、本申请可以在光学镜头或摄像模组生产的过程中进行监控以检测产品制造时的质量。
附图说明
在参考附图中示出示例性实施例。本文中公开的实施例和附图应被视作说明性的,而非限制性的。
图1A示出了本申请一个实施例中的彼此分离的第一镜头部件100和第二镜头部件200的纵剖面示意图;
图1B示出了图1A所示第一镜头部件100的俯视示意图;
图1C示出了图1A所示第二镜头部件200的俯视示意图;
图2示出了本申请一个实施例中的主动校准的示意图;
图3A示出了本申请一个实施例中的第一镜头部件100的剖面示意图;
图3B示出了图3A所示第一镜头部件100在倾斜状态下的剖面示意图;
图3C示出了图3A所示第一镜头部件100在水平状态下的俯视示意图;
图3D示出了图3A所示第一镜头部件100在倾斜状态下的俯视示意图;
图4A示出了本申请另一个实施例的光学镜头的剖面示意图;
图4B示出了本申请另一个实施例的组装完成的光学镜头的剖面示意图;
图5A示出了本申请另一个实施例中的光学镜头的剖面示意图;
图5B示出了图5A实施例的光学镜头的第一镜头部件的俯视示意图;
图5C和图5D示出了两个变形的实施例中的第一镜头部件的俯视示意图;
图6示出了本申请一个实施例中的第二镜头部件的俯视示意图;
图7示出了本申请一个实施例中的摄像模组的剖面示意图;
图8A示出了本申请一个实施例中的主动校准中相对位置调节方式;
图8B示出了本申请另一个实施例的主动校准中的旋转调节;
图8C示出了本申请又一个实施例的主动校准中的增加了v、w方 向调节的相对位置调节方式。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
根据本申请的一个实施例,提供了一种光学镜头组装方法,包括步骤S10~S40。步骤S10~S40分别如下。
步骤S10,准备彼此分离的第一镜头部件100和第二镜头部件200。图1A示出了本申请一个实施例中的彼此分离的第一镜头部件100和第二镜头部件200的纵剖面示意图。图1B示出了图1A所示第一镜头部件100的俯视示意图。图1C示出了图1A所示第二镜头部件200的俯视示意图。参考图1A-C,所述第一镜头部件100包括第一镜筒102和安装在第一镜筒102内侧的一个第一镜片101。所述第二镜头部件200包括第二镜筒202和安装在所述第二镜筒202内的多个(本实施例中为五个)第二镜片201。其中,所述第一镜片201为光轴标定镜片,所述光轴标定镜片具有标记且该标记109可在以所述光轴标定镜片为被拍摄物的图像中呈现。
步骤S20,对所述第一镜头部件100和所述第二镜头部件200进行预定位,使所述第一镜片101与所述五个第二镜片201共同构成可成像的光学系统。所述预定位步骤可以包括:拍摄所述光轴标定镜片,根据所拍摄的图像中呈现的所述标记来识别第一光轴位置,并且根据所识别的第一光轴位置与所述第二镜头部件进行对位(由于“对位”过程是一种未经光学主动校准的机械定位,因此精度有限。因此本文中,“对位”可以理解为“预定位”,在“预定位”完成后,还需进一步进行光学主动校准以确定最终定位)。本实施例中,所述第一光轴位置是所述第一镜头部件100的光轴在主动校准设备可识别的基准平面上的投影位置。该基准平面例如可以是水平面,第一镜头部件100可以位于第二镜头部件200上方。当基准平面为xoy平面时,第一光轴位置可以表示为(x,y)坐标值。所述预定位步骤还可以包括:将测试光源和感光芯片301布置于第二镜头部件200(即由第二镜片202组成的子光学系统)的两侧(例如上侧和下侧)形成测试光路;根据 所述感光芯片所接收到的光信号来寻找所述五个第二镜片202所构成的子光学系统的光学中心(即第二镜头部件200的光学中心)位置,然后根据所找到的第二镜头部件200的光学中心相对于所述感光芯片301中心的偏移来计算第二光轴位置。其中所述第二光轴位置是所述第二镜头部件的光轴在所述基准平面的投影位置;以及使所述第一镜头部件在所述基准平面上平移,直至所识别的第一光轴位置与所计算的第二光轴位置之间的距离小于预设的第一阈值。当基准平面为xoy平面时,第二光轴位置也可以表示为(x,y)坐标值。需注意,本步骤中,计算第二光轴位置可以是基于主动校准设备的软件进行计算,这种计算例如可以理解为根据感光芯片实际接收到的光信号的能量值来判断光学系统的光学中心位置。它与基于图像识别的第一光轴位置的识别是完全不同的。例如在一个实施例中,计算第二光轴位置的方法可以包括:由测试光路中的感光芯片接收通过第二镜头部件的光信号,根据光信号强度(即光强)在感光芯片表面的二维空间分布获取光信号的峰值点,该峰值点可以被认为是由第二镜头部件所成的模糊像的中心,即第二光轴位置。如果已知感光芯片相对于基准平面的位置(例如感光芯片的几何中心相对于基准平面原点的位置),那么就可以根据所找到的第二镜头部件光学中心位置相对于感光芯片的几何中心的偏移,来计算出第二光轴位置。
具体来说,感光芯片是由阵列排布的像素组成的,因此位于感光芯片上的光学信息是能被检测到的(例如光强最大的位置是可以被检测到的),另外由于轴对称镜片(第二镜片通常均为轴对称镜片)的光学中心不发生折射,且由于非中心光线斜射及渐晕现象,只要使光线射出第二镜头部件后不为平行光束,那么在感光芯片表面,对应于第二镜头部件的光学中心的位置的光强最大(例如光学中心可以是整个感光芯片所有区域的光强最大位置,也可以是感光芯片局部区域内的峰值点)。因此根据光强最大的像素所在的位置,可以确定第二镜头部件的光学中心的位置,进而确定该光学中心相对于感光芯片几何中心的偏移,此时只要感光芯片相对于基准平面原点的位置是已知的,就可以计算出第二光轴位置(例如第二光轴相对于基准平面原点的位 置)。
在另一个实施例中,还可以通过移动感光芯片来使第二镜头部件的光学中心和感光芯片的几何中心重叠。其中当感光芯片的几何中心的光强达到峰值时,可以认为所述光学中心和感光芯片的几何中心重叠。此时,根据感光芯片的几何中心与相对于基准平面原点的偏移,即可计算出第二光轴位置(例如第二光轴相对于基准平面原点的位置)。
需要注意,上述实施例中,虽然基于感光芯片的光强最大位置来确定第二镜头部件的光学中心位置,但本申请并不限于此。基于感光芯片可以获得光线通过第二镜头部件后的多种光学信息,包括但不限于:光信号强度分布、光空间频率(例如光强在空间的变化率)以及光强峰值等多种光信号特征。在本申请的其他实施例中,可以利用这些光信号特征中的一项或者多项组合,来识别第二镜头部件的光学中心位置。例如可以先根据光学中心的物理特性(例如光学中心的光不发生折射)来确定基于一项或多项所述光信号特征的判定条件,然后基于感光芯片实际感测的光信号来找出符合上述判定条件的位置,从而确定第二镜头部件的光学中心的位置。
进一步地,光学中心的物理特性还包括:光学中心的解像力优于非光学中心。因此,在另一个实施例中,可以在测试光源和第二镜头部件之间设置标板(即目标物),然后移动第二镜头部件和感光芯片z方向(指光学镜头的光轴方向)的相对位置,使得标板上的标靶可以在感光芯片上成像,最后基于实际成像结果找出感光芯片上实测解像力最佳的位置并根据这个位置得出所述第二光轴位置。其中实测解像力可以是实测SFR(Spatial Frequency Response)值或MTF(Modulation Transfer Function)值。
步骤S30,基于主动校准来调整和确定所述第一镜头部件100和所述第二镜头部件200的相对位置。本步骤中,主动校准是根据测试光路的实际成像结果分析光学系统在当前状态下的成像品质(例如可以根据解像力离焦曲线分析光学系统在当前状态下的成像品质),然后基于成像品质对第一镜头部件100和第二镜头部件200的相对位置进 行调整,直至光学系统在当前状态下的成像品质达标。
步骤S40,通过第一连接胶材粘结所述第一镜头部件100和所述第二镜头部件200,使所述第一镜头部件100和所述第二镜头部件200固定并保持在主动校准所确定的相对位置。
上述实施例中,通过所述标记和图像识别技术,可以利用机器自动化地进行上料和下料。其中上料可以是将物料(即彼此分离的第一镜头部件100和第二镜头部件200)移动至主动校准设备,下料可以是将成品移出主动校准设备。其中主动校准设备可以包括摄取机构,该摄取机构可以是夹具也可以是吸附机构。第一镜头部件100可以是被摄取机构所摄取并在预定位和主动校准过程中进行移动的主要部件。第二镜头部件200可以是静止的(例如可以被固定于一个固定平台)。当然,在其它实施例中,第二镜头部件200也可以是可移动的。
上述实施例中,利用位于第一镜片101的标记109进行图像识别以获得第一光轴位置,并且根据所识别的第一光轴位置与所述第二镜头部件200进行对位,可以使预定位的结果具有一致性,并且有助于提高主动校准的效率,从而提升生产效率,因此非常适合于进行大规模量产。具体来说,在实际生产过程中,如果由操作人员根据经验进行预定位,可能会导致同一批次产品的预定位结果出现不一致的问题。预定位结果是主动校准的初始状态,对于同一批次产品,如果每组第一镜头部件100、第二镜头部件200的预定位的状态参差不齐,将给后续的主动校准带来困难,例如可能会导致主动校准过程中的相对位置调整次数增加,或者导致移动轨迹增加。而上述实施例中,由于可以使预定位的结果具有一致性,因此可以在统计意义上缩短主动校准所消耗的时间,从而提升生产效率。尤其是在主动校准的自由度较多时,这一优势将更加明显。
另一方面,利用位于第一镜片101的标记109进行图像识别可以更准确地获得第一光轴位置。如果采用传统镜片(即无标记的镜片),对第一镜头部件100进行拍摄后,往往只能根据镜筒与镜片的边界轮廓线进行图像识别。然而镜片和镜筒的组装往往具有公差,有时镜片的中轴线可能会偏离镜筒的机械中轴线。因此,利用位于第一镜片101 的标记进行图像识别可以更准确地获得第一光轴位置,进而提高主动校准的效率,从而提升生产效率。例如,在一个比较例中,通过激光测高来识别第一镜头部件100的姿态。激光测高通常测量镜筒的顶面的多个点的位置,然后根据这些点的位置识别第一镜头部件100的姿态。然而,如前文所述,镜片和镜筒的组装往往具有公差,有时镜片的中轴线可能会偏离镜筒的机械中轴线,因此基于镜筒顶面的姿态测量可能是不准确的。再者,通过激光测高来识别第一镜头部件100的姿态并将其调整为水平状态需要较多的步骤和时间,不利于提高主动校准的效率。
需注意,所述第一镜片101的个数也可以是多个,其中至少具有一个是具有所述标记109的镜片。为便于描述,本文中有时将这个具有标记的镜片称为光轴标记镜片。
图2示出了本申请一个实施例中的主动校准的示意图。主动校准的光路依次包括光源800、标板700(本实施例中标板700被作为目标物)、第一镜头部件100、第二镜头部件200以及感光组件300。所述感光组件300中具有感光芯片301。其中第一镜头部件100被摄取机构500所摄取,并可在摄取机构500的带动下移动。摄取机构500例如可以是夹取机构(例如夹具)。摄取机构500可以是六轴可调的。第二镜头部件200可以由固定机构600固定。该固定机构600的中央可以具有通光孔,以避免遮挡光路。感光组件300可以固定于一平台,该平台可以是六轴平台400(即六轴可调的平台)。
进一步地,步骤S30中,所述的主动校准可以在多个自由度上对第一镜头部件100和第二镜头部件200的相对位置进行调整。图8A示出了本申请一个实施例中的主动校准中相对位置调节方式。在该调节方式中,所述第一镜头部件100(也可以是第一镜片101)可以相对于所述第二镜头部件200沿着x、y、z方向移动(即该实施例中的相对位置调整具有三个自由度)。其中z方向为沿着光轴的方向,x,y方向为垂直于光轴的方向。x、y方向均处于一个调整平面P内,在该调整平面P内平移均可分解为x、y方向的两个分量。
图8B示出了本申请另一个实施例的主动校准中的旋转调节。在 该实施例中,相对位置调整除了具有图8A的三个自由度外,还增加了旋转自由度,即r方向的调节。本实施例中,r方向的调节是在所述调整平面P内的旋转,即围绕垂直于所述调整平面P的轴线的旋转。
进一步地,图8C示出了本申请又一个实施例的主动校准中的增加了v、w方向调节的相对位置调节方式。其中,v方向代表xoz平面的旋转角,w方向代表yoz平面的旋转角,v方向和w方向的旋转角可合成一个矢量角,这个矢量角代表总的倾斜状态。也就是说,通过v方向和w方向调节,可以调节第一镜头部件100相对于第二镜头部件200的倾斜姿态(也就是所述第一镜头部件100的光轴相对于所述第二镜头部件200的光轴的倾斜)。
上述x、y、z、r、v、w六个自由度的调节均可能影响到所述光学系的成像品质(例如影响到解像力的大小)。在本申请的其它实施例中,相对位置调节方式可以是仅调节上述六个自由度中的任一项,也可以其中任两项或者更多项的组合。
进一步地,在一个实施例中,主动校准步骤中,所述移动还包括在所述调整平面上的平移,即x、y方向上的运动。
进一步地,在一个实施例中,所述主动校准还包括:根据所述光学系统的实测解像力(指根据光学系统的实际成像结果所测得的解像力),调节并确定所述第一镜头部件100的轴线相对于所述第二镜头部件200的轴线的夹角,即w、v方向上的调节。所组装的光学镜头或摄像模组中,所述第一镜头部件100的轴线与所述第二镜头部件200的轴线之间可以具有不为零的夹角。
进一步地,在一个实施例中,所述主动校准还包括:沿着垂直于所述调整平面的方向移动所述第一镜头部件100(即z方向上的调节),根据所述光学系统的实测解像力,确定所述第一镜头部件100与所述第二镜头部件200之间的在垂直于所述调整平面的方向上的相对位置。
进一步地,在一个实施例中,所述预定位步骤中,使所述第一镜头部件100的底面和所述第二镜头部件200的顶面之间具有间隙;以及所述粘结步骤中,所述第一连接胶材布置于所述间隙。
在一个实施例中,主动校准步骤中,可以固定第二镜头部件200,通过夹具夹持第一镜头部件100,在与夹具连接的六轴运动机构的带动下,移动第一镜头部件100,从而实现第一镜头部件100和第二镜头部件200之间的上述六个自由度下的相对移动。其中,夹具可以承靠于或部分承靠于第一镜头部件100的侧面,从而将第一镜头部件100夹起。在一个实施例中,第一镜片101的曲率可以大于第二镜片201的曲率,以使第一镜头部件100对位置改变的敏感度大于第二镜头部件200,从而便于主动校准。例如可以减小主动校准过程中的第一镜头部件100的行程,或者增强主动校准的调节能力(即增强对制造和组装环节中的各种误差进行补偿的能力,调节能力更大意味着可以对更大的误差进行补偿,从而使光学系统可以达到设计要求)。
进一步地,本申请的一个实施例中,所述准备步骤(即步骤S10)中,所述标记可以是位于所述光轴标定镜片的光学面的凸起部。所述凸起部可以位于所述光学面的中心。需注意在其它实施例中,所述标记也可以是位于所述光轴标定镜片的光学面的凹陷部。所述凹陷部可以位于所述光学面的中心。上述凸起部或凹陷部可以在设置在第一镜头部件正上方的摄像机所拍摄的图片中呈现,从而识别出所述第一光轴位置。并且上述凸起部位于光学面的中心,不会影响成像质量。特别地,在进行成像时,经过凸起标记的光线经过了更多的镜片路程,减少了光线通过量,因此还有使得中心变暗的效果,带来了摄像模组中对于OTP烧录中的色彩、亮度平衡的效果。
进一步地,本申请的一个实施例中,所述准备步骤(即步骤S10)中,图3A示出了本申请一个实施例中的第一镜头部件100的剖面示意图。所述光学面包括入光面101a和出光面101b,所述标记109可以位于所述入光面101a。在另一个实施例中,所述标记109也可以位于所述出光面101b。
进一步地,图3B示出了图3A所示第一镜头部件100在倾斜状态下的剖面示意图,图3C示出了图3A所示第一镜头部件100在水平状态下的俯视示意图,图3D示出了图3A所示第一镜头部件100在倾斜 状态下的俯视示意图。本申请的一个实施例中,所述准备步骤(即步骤S10)中,所述标记呈锥形。所述预定位步骤(即步骤S20)还包括:根据所拍摄的图像中呈现的所述标记的尖顶109c和所述标记的根部轮廓109d识别出第一光轴倾角,并且根据所识别出的第一光轴位置和所识别出的第一光轴倾角来与所述第二镜头部件200进行对位。其中所述第一光轴倾角可以是所述第一镜头部件100的光轴与所述基准平面的法线之间的夹角。参考图3A-D,在水平状态下,标记的尖顶109c处于标记的根部轮廓109d的中心,在倾斜状态下,标记的尖顶109c偏离于标记的根部轮廓109d的中心。拍摄第一镜头部件100的俯视图像,根据所拍摄图像中标记的尖顶109c相对于标记的根部轮廓109d的偏离程度,基于一定的算法可以计算出标记109的倾斜程度,从而得出第一镜片101的倾斜程度。这种倾斜程度可以表示为所述第一光轴倾角。
本实施例中,可以使得预定位结果具有更好的一致性,更有助于提高主动校准的效率,从而提升生产效率。
进一步地,本申请的一个实施例中,所述标记109可以是位于所述光轴标定镜片的光学面的凸起部,该凸起部的轴向尺寸(例如高度)例如小于等于20μm,径向尺寸(例如直径)例如小于等于30μm。此处轴向尺寸是指沿着光学镜头的光轴方向的尺寸,径向尺寸是指垂直于光学镜头的光轴方向的尺寸。当凸起部为圆锥形时,径向尺寸为该圆锥形的根部轮廓的直径。
进一步地,图4A示出了本申请另一个实施例的光学镜头的剖面示意图。在该实施例中,所述第一镜头部件100可以没有第一镜筒102,即所述第一镜片101可以单独构成所述第一镜头部件100。第一镜片101可以包括光学面和光学面周围的结构面,所述结构面的顶面和侧面可以附着遮光层以形成光阑。
进一步地,图4B示出了本申请另一个实施例的组装完成的光学镜头的剖面示意图。本实施例中,所述准备步骤(即步骤S10)中,所述光学面包括入光面101a和出光面101b,所述标记109包括第一标记109a和第二标记109b,所述第一标记109a和所述第二标记109b 分别位于所述入光面101a和所述出光面101b。所述预定位步骤(即步骤S20)还包括:根据所拍摄的图像中呈现的所述第一标记109a和所述第二标记109b识别出第一光轴倾角,并且根据所识别出的第一光轴位置和所识别出的第一光轴倾角来与所述第二镜头部件200进行对位,其中所述第一光轴倾角是所述第一镜头部件100的光轴与所述基准平面的法线之间的夹角。其中,第一光轴倾角可以根据所拍摄图像中的第一标记109a的尖顶和/或根部轮廓、以及第二标记109b的尖顶和/或根部轮廓的偏离程度,基于一定的算法计算得出。本实施例中,可以使得预定位结果具有更好的一致性,更有助于提高主动校准的效率,从而提升生产效率。
进一步地,在一个实施例中,所述预定位步骤(即步骤S20)还包括:根据所述感光芯片所接收到的光信号,来计算第二光轴倾角,其中所述第二光轴倾角是所述第二镜头部件的光轴与所述基准平面的法线之间的夹角;以及保持所识别的第一光轴位置与所计算的第二光轴位置之间的距离小于预设的第一阈值,调整所述第一镜头部件和/或所述第一镜头部件的姿态,直至所识别的第一光轴倾角与所计算的第二光轴倾角的差值小于预设的第二阈值。本实施例中,可以使得预定位结果具有更好的一致性,更有助于提高主动校准的效率,从而提升生产效率。在一个实施例中,可以根据感光芯片所接收的光信号的各种光学信息特征来计算所述第二光轴倾角。这里二维空间分布可以包括但不限于:芯片表面的光强空间分布、光强空间频率(光强在二维空间的变化率)和光强峰值中一项或多项。利用感光芯片接收的光学信息特征来计算第二光轴倾角,可以抑制或排除第二镜片和第二镜筒组装过程中所引入组装误差。
在另一个实施例中,可以通过多点激光测高的方法来计算所述第二光轴倾角。其中用于激光测高的多个点可以分布在第二镜筒的顶面。
进一步地,图5A示出了本申请另一个实施例中的光学镜头的剖面示意图。图5B示出了图5A实施例的光学镜头的第一镜头部件的俯视示意图。本实施例中,所述准备步骤(即步骤S10)中,所述标记109是非可见光标记(例如紫外标记),该非可见光标记可在非可见光 波段(例如紫外波段)的光源的照射下,呈现于以所述光轴标定镜片为被拍摄物的图像中。所述预定位步骤(即步骤S20)还包括:在所述非可见光波段的光源的照射下拍摄所述光轴标定镜片,根据所拍摄的图像中呈现的所述标记来识别第一光轴位置,并且根据所识别的第一光轴位置与所述第二镜头部件进行对位。本实施例可以使预定位的结果具有一致性,并且有助于提高主动校准的效率,从而提升生产效率,因此非常适合于进行大规模量产。进一步地,变形的实施例中,所述非可见光标记的形状可以是十字标记109(叉形标记)、圆点形标记109、方框形标记109等等。所述非可见光标记的形状可以根据需要选择,只要该标记可以在图像中被识别即可。
进一步地,图6示出了本申请一个实施例中的第二镜头部件的俯视示意图。在该实施例中,所述准备步骤(步骤S10)中,所述第二镜头部件可以具有第三标记且该第三标记可在以所述第二镜头部件为被拍摄物的图像中呈现。所述预定位步骤(步骤S20)还包括:拍摄所述第二镜头部件,根据所拍摄的图像中呈现的所述第三标记来识别第二光轴位置,并且根据所识别的第一光轴位置与所述第二光轴位置,对所述第一镜头部件和所述第二镜头部件进行对位。其中,第二镜筒可以是注塑成型的。第二镜头部件的标记可以是位于第二镜筒顶面的浇口202a。所述浇口202a对应于成型材料的注入口(例如液态成型材料注入模具中成型腔的入口)。在一个实施例中,第二镜筒的外侧面可以具有缺口202b(有时称为切口),该切口是切除第二镜筒侧面的切口而形成的。由于第二镜筒的外侧面的缺口202b也可以在第二镜筒的俯视图像中被识别,因此也可以将该缺口202b也可以被作为所述第三标记。
进一步地,在一个实施例中,所述主动校准步骤可以还包括:根据所述光学系统的实测解像力,通过夹持或吸附所述第一镜头部件100和/或所述第二镜头部件200,来调节并确定所述第一镜头部件100和所述第二镜头部件200的相对位置关系。
进一步地,在一个实施例中,所述主动校准步骤可以还包括:沿着所述基准平面移动第一镜头部件100,根据所述光学系统的实测解 像力,确定所述第一镜片101与所述第二镜头部件200之间的沿着所述平面的移动方向上的相对位置,其中所述移动包括在所述基准平面上的转动。
进一步地,在一个实施例中,所述主动校准步骤中,所述移动还包括在所述基准平面上的平移或旋转。
进一步地,在一个实施例中,所述主动校准步骤可以还包括:根据所述光学系统的实测解像力,调节并确定所述第一光轴倾角和所述第二光轴倾角。
进一步地,在一个实施例中,所述主动校准步骤可以还包括:沿着所述基准平面的法线方向移动所述第一镜头部件100,根据所述光学系统的实测解像力,确定所述第一镜头部件100与所述第二镜头部件200之间的在所述基准平面的法线方向上的相对位置。
进一步地,在一个实施例中,所述预定位步骤中,可以使所述第一镜头部件100的底面和所述第二镜头部件200的顶面之间具有间隙;并且,所述粘结步骤中,所述第一连接胶材布置于所述间隙。
根据本申请的一个实施例,还提供了一种摄像模组组装方法,包括:利用前文任意一项所述的光学镜头组装方法组装光学镜头;以及将所述光学镜头安装于感光组件300得到摄像模组。
在一个实施例中,将所述光学镜头安装于感光组件300的步骤包括:通过第二连接胶材将所述第二镜头部件200的底面与所述感光组件300的顶面粘合;并且所述第二连接胶材与所述第一连接胶材同步固化。
根据本申请的一个实施例,还提供了一种光学镜头,包括:第一镜头部件100,其包括至少一个第一镜片101,所述至少一个第一镜片101中具有至少一个光轴标定镜片,所述光轴标定镜片具有标记109且该标记可在以所述光轴标定镜片为被拍摄物的图像中呈现;第二镜头部件200,其包括第二镜筒202和安装在所述第二镜筒202内的至少一个第二镜片201,并且所述至少一个第一镜片101与所述至少一个第二镜片201共同构成可成像的光学系统;第一连接胶材,其粘结所述第一镜头部件100和所述第二镜头部件200,并在固化后支撑和 固定所述第一镜头部件100和所述第二镜头部件200的相对位置,并且所述第一镜头部件100的光轴与所述第二镜头部件200的光轴之间具有不为零的夹角。所述第一连接胶材适于使所述第一镜头部件100和所述第二镜头部件200的相对位置保持在主动校准所确定的相对位置,其中所述主动校准是根据所述光学系统的实际成像结果来对所述第一镜头部件100和所述第二镜头部件200的相对位置进行调整。
在一个实施例中,所述光学镜头中,第一光轴位置和第二光轴位置可以是错开的。其中所述第一光轴位置是所述第一镜头部件100的光轴在主动校准设备可识别的基准平面上的投影位置,以及所述第二光轴位置是所述第二镜头部件200的光轴在所述基准平面的投影位置或者是所述光学系统的光轴在所述基准平面的投影位置。
在一个实施例中,所述标记可以是位于所述光轴标定镜片的光学面的凸起部或凹陷部。所述凸起部或所述凹陷部可以位于所述光学面的中心。所述光学面可以包括入光面101a和出光面101b,所述标记109可以位于所述入光面或所述出光面。
在一个实施例中,所述标记可以呈锥形,并且所述标记的尖顶109c和所述标记的根部轮廓109d可在以所述光轴标定镜片为被拍摄物的图像中呈现。
在一个实施例中,所述光学面包括入光面101a和出光面101b,所述标记109可以包括第一标记109a和第二标记109b,所述第一标记109a和所述第二标记109b分别位于所述入光面和所述出光面。
在一个实施例中,所述标记109是非可见光标记,该非可见光标记可在非可见光波段的光源的照射下,呈现于以所述光轴标定镜片为被拍摄物的图像中。
在一个实施例中,所述第二镜头部件200具有第三标记且该第三标记可在以所述第二镜头部件200为被拍摄物的图像中呈现。
在一个实施例中,所述第一镜头部件100可以还包括第一镜筒102,所述至少一个第一镜片101安装于所述第一镜筒102内侧。
根据本申请的一个实施例,还提供了一种摄像模组。其包括:前文任意一实施例所述的光学镜头300以及感光组件301。图7示出了 本申请一个实施例中的摄像模组的剖面示意图。如图7所示,所述光学镜头安装于所述感光组件300。所述感光组件300中包含感光芯片301。第二镜头部件200可以包括马达200a(或其他类型的光学致动器)。第二镜筒202可以安装于(例如通过螺纹连接的方式安装)马达200a的载体内。所述感光组件300的轴线可以与所述第二镜头部件200的光轴之间具有不为零的夹角。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (35)

  1. 一种光学镜头组装方法,其特征在于,所述光学镜头包括第一镜头部件和第二镜头部件,所述第一镜头部件包括至少一个第一镜片,所述第二镜头部件包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,所述光学镜头组装方法包括:
    对彼此分离的所述第一镜头部件和所述第二镜头部件进行预定位,使所述至少一个第一镜片与所述至少一个第二镜片共同构成可成像的光学系统;
    基于主动校准来调整和确定所述第一镜头部件和所述第二镜头部件的相对位置;以及
    通过第一连接胶材粘结所述第一镜头部件和所述第二镜头部件,使所述第一镜头部件和所述第二镜头部件固定并保持在主动校准所确定的相对位置;
    其中,所述至少一个第一镜片中具有至少一个光轴标定镜片,所述光轴标定镜片具有标记且该标记可在以所述光轴标定镜片为被拍摄物的图像中呈现;以及
    所述预定位步骤包括:拍摄所述光轴标定镜片,根据所拍摄的图像中呈现的所述标记来识别第一光轴位置,并且根据所识别的第一光轴位置与所述第二镜头部件进行预定位。
  2. 根据权利要求1所述的光学镜头组装方法,其特征在于,所述第一光轴位置是所述第一镜头部件的光轴在主动校准设备可识别的基准平面上的投影位置。
  3. 根据权利要求2所述的光学镜头组装方法,其特征在于,所述预定位步骤还包括:
    将光源和感光芯片布置于所述第二镜头部件的两侧形成测试光路;
    根据所述感光芯片所接收到的光信号的光学信息特征来寻找所述 第二镜头部件的光学中心,进而计算出第二光轴位置,其中所述第二光轴位置是所述第二镜头部件的光轴在所述基准平面的投影位置,所述光学信息特征包括光强二维分布、光强空间频率和光强峰值中的一项或多项;以及
    使所述第一镜头部件在所述基准平面上移动,直至所识别的第一光轴位置与所计算的第二光轴位置之间的距离小于预设的第一阈值。
  4. 根据权利要求2所述的光学镜头组装方法,其特征在于,所述预定位步骤还包括:
    将目标物和感光芯片布置于所述第二镜头部件的两侧形成测试光路;
    根据所述感光芯片的实测解像力最大的位置来确定所述第二镜头部件的光学中心所在位置,进而计算出第二光轴位置,其中所述第二光轴位置是所述第二镜头部件的光轴在所述基准平面的投影位置;以及
    使所述第一镜头部件在所述基准平面上移动,直至所识别的第一光轴位置与所计算的第二光轴位置之间的距离小于预设的第一阈值。
  5. 根据权利要求2所述的光学镜头组装方法,其特征在于,所述第二镜头部件具有第三标记且该第三标记可在以所述第二镜头部件为被拍摄物的图像中呈现;以及
    所述预定位步骤还包括:拍摄所述第二镜头部件,根据所拍摄的图像中呈现的所述第三标记来识别第二光轴位置,并且根据所识别的第一光轴位置与所述第二光轴位置,对所述第一镜头部件和所述第二镜头部件进行预定位。
  6. 根据权利要求3所述的光学镜头组装方法,其特征在于,所述标记为位于所述光轴标定镜片的光学面的凸起部或凹陷部。
  7. 根据权利要求6所述的光学镜头组装方法,其特征在于,所 述凸起部或所述凹陷部位于所述光学面的中心。
  8. 根据权利要求6所述的光学镜头组装方法,其特征在于,所述光学面包括入光面和出光面,所述标记位于所述入光面或所述出光面。
  9. 根据权利要求7所述的光学镜头组装方法,其特征在于,所述标记呈锥形;以及
    所述预定位步骤还包括:根据所拍摄的图像中呈现的所述标记的尖顶和所述标记的根部轮廓识别出第一光轴倾角,并且根据所识别出的第一光轴位置和所识别出的第一光轴倾角来与所述第二镜头部件进行预定位。
  10. 根据权利要求6所述的光学镜头组装方法,其特征在于,所述光学面包括入光面和出光面,所述标记包括第一标记和第二标记,所述第一标记和所述第二标记分别位于所述入光面和所述出光面。
  11. 根据权利要求10所述的光学镜头组装方法,其特征在于,所述预定位步骤还包括:根据所拍摄的图像中呈现的所述第一标记和所述第二标记识别出第一光轴倾角,并且根据所识别出的第一光轴位置和所识别出的第一光轴倾角来与所述第二镜头部件进行预定位,其中所述第一光轴倾角是所述第一镜头部件的光轴与所述基准平面的法线之间的夹角。
  12. 根据权利要求1所述的光学镜头组装方法,其特征在于,所述标记是非可见光标记,该非可见光标记可在非可见光波段的光源的照射下,呈现于以所述光轴标定镜片为被拍摄物的图像中。
  13. 根据权利要求12所述的光学镜头组装方法,其特征在于,所述预定位步骤还包括:在所述非可见光波段的光源的照射下拍摄所 述光轴标定镜片,根据所拍摄的图像中呈现的所述标记来识别第一光轴位置,并且根据所识别的第一光轴位置与所述第二镜头部件进行预定位。
  14. 根据权利要求1所述的光学镜头组装方法,其特征在于,
    所述第二镜头部件具有第三标记且该第三标记可在以所述第二镜头部件为被拍摄物的图像中呈现;以及
    所述预定位步骤还包括:拍摄所述第二镜头部件,根据所拍摄的图像中呈现的所述第三标记来识别第二光轴位置,并且根据所识别的第一光轴位置与所述第二光轴位置,对所述第一镜头部件和所述第二镜头部件进行预定位。
  15. 根据权利要求1所述的光学镜头组装方法,其特征在于,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧。
  16. 根据权利要求2所述的光学镜头组装方法,其特征在于,所述主动校准步骤还包括:根据所述光学系统的实测解像力,通过夹持或吸附所述第一镜头部件和/或所述第二镜头部件,来调节并确定所述第一镜头部件和所述第二镜头部件的相对位置关系。
  17. 根据权利要求16所述的光学镜头组装方法,其特征在于,所述主动校准步骤还包括:沿着所述基准平面移动第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜片与所述第二镜头部件之间的沿着所述平面的移动方向上的相对位置,其中所述移动包括在所述基准平面上的转动。
  18. 根据权利要求17所述的光学镜头组装方法,其特征在于,所述主动校准步骤中,所述移动还包括在所述基准平面上的平移或旋转。
  19. 根据权利要求16所述的光学镜头组装方法,其特征在于,所述主动校准步骤还包括:根据所述光学系统的实测解像力,调节并确定所述第一光轴倾角和所述第二光轴倾角。
  20. 根据权利要求16所述的光学镜头组装方法,其特征在于,所述主动校准步骤还包括:沿着所述基准平面的法线方向移动所述第一镜头部件,根据所述光学系统的实测解像力,确定所述第一镜头部件与所述第二镜头部件之间的在所述基准平面的法线方向上的相对位置。
  21. 根据权利要求15所述的光学镜头组装方法,其特征在于,所述预定位步骤中,使所述第一镜头部件的底面和所述第二镜头部件的顶面之间具有间隙;以及
    所述粘结步骤中,所述第一连接胶材布置于所述间隙。
  22. 一种摄像模组组装方法,其特征在于,利用如权利要求1-21中任意一项所述的光学镜头组装方法组装光学镜头;以及
    将所述光学镜头安装于感光组件得到摄像模组。
  23. 根据权利要求22所述的摄像模组组装方法,其特征在于,将所述光学镜头安装于感光组件的步骤包括:通过第二连接胶材将所述第二镜头部件的底面与所述感光组件的顶面粘合。
  24. 一种光学镜头,其特征在于,包括:
    第一镜头部件,其包括至少一个第一镜片,所述至少一个第一镜片中具有至少一个光轴标定镜片,所述光轴标定镜片具有标记且该标记可在以所述光轴标定镜片为被拍摄物的图像中呈现;
    第二镜头部件,其包括第二镜筒和安装在所述第二镜筒内的至少一个第二镜片,并且所述至少一个第一镜片与所述至少一个第二镜片 共同构成可成像的光学系统;以及
    第一连接胶材,其粘结所述第一镜头部件和所述第二镜头部件,并在固化后支撑和固定所述第一镜头部件和所述第二镜头部件的相对位置,并且所述第一镜头部件的光轴与所述第二镜头部件的光轴之间具有不为零的夹角。
  25. 根据权利要求24所述的光学镜头,其特征在于,所述第一连接胶材适于使所述第一镜头部件和所述第二镜头部件的相对位置保持在主动校准所确定的相对位置,其中所述主动校准是根据所述光学系统的实际成像结果来对所述第一镜头部件和所述第二镜头部件的相对位置进行调整。
  26. 根据权利要求25所述的光学镜头,其特征在于,所述标记为位于所述光轴标定镜片的光学面的凸起部或凹陷部。
  27. 根据权利要求26所述的光学镜头,其特征在于,所述凸起部或所述凹陷部位于所述光学面的中心。
  28. 根据权利要求25所述的光学镜头,其特征在于,所述光学面包括入光面和出光面,所述标记位于所述入光面或所述出光面。
  29. 根据权利要求26所述的光学镜头,其特征在于,所述标记呈锥形,并且所述标记的尖顶和所述标记的根部轮廓可在以所述光轴标定镜片为被拍摄物的图像中呈现。
  30. 根据权利要求25所述的光学镜头,其特征在于,所述光学面包括入光面和出光面,所述标记包括第一标记和第二标记,所述第一标记和所述第二标记分别位于所述入光面和所述出光面。
  31. 根据权利要求24所述的光学镜头,其特征在于,所述标记 是非可见光标记,该非可见光标记可在非可见光波段的光源的照射下,呈现于以所述光轴标定镜片为被拍摄物的图像中。
  32. 根据权利要求24所述的光学镜头,其特征在于,所述第二镜头部件具有第三标记且该第三标记可在以所述第二镜头部件为被拍摄物的图像中呈现。
  33. 根据权利要求24所述的光学镜头,其特征在于,所述第一镜头部件还包括第一镜筒,所述至少一个第一镜片安装于所述第一镜筒内侧。
  34. 一种摄像模组,其特征在于,包括:
    权利要求24-33中任意一项所述的光学镜头;以及
    感光组件,所述光学镜头安装于所述感光组件。
  35. 根据权利要求34所述的摄像模组,其特征在于,所述感光组件的轴线与所述第二镜头部件的光轴之间具有不为零的夹角。
PCT/CN2019/084450 2018-06-08 2019-04-26 光学镜头、摄像模组及其组装方法 WO2019233213A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201820882347.7U CN208506341U (zh) 2018-06-08 2018-06-08 光学镜头及摄像模组
CN201810584365.1A CN110632727B (zh) 2018-06-08 2018-06-08 光学镜头、摄像模组及其组装方法
CN201810584365.1 2018-06-08
CN201820882347.7 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019233213A1 true WO2019233213A1 (zh) 2019-12-12

Family

ID=68769587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084450 WO2019233213A1 (zh) 2018-06-08 2019-04-26 光学镜头、摄像模组及其组装方法

Country Status (1)

Country Link
WO (1) WO2019233213A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825141A (zh) * 2005-02-25 2006-08-30 三洋电机株式会社 光学元件、光学系统及它们的制造方法及光学装置
CN101174013A (zh) * 2006-11-02 2008-05-07 亚洲光学股份有限公司 具有识别标记的镜片
KR20090127649A (ko) * 2008-06-09 2009-12-14 삼성전기주식회사 렌즈 모듈
CN102576140A (zh) * 2009-09-30 2012-07-11 柯尼卡美能达精密光学株式会社 透镜组装方法、透镜组装体以及具备透镜组装体的摄像装置
CN207336902U (zh) * 2017-08-11 2018-05-08 宁波舜宇光电信息有限公司 光学镜头及摄像模组
CN208506341U (zh) * 2018-06-08 2019-02-15 宁波舜宇光电信息有限公司 光学镜头及摄像模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825141A (zh) * 2005-02-25 2006-08-30 三洋电机株式会社 光学元件、光学系统及它们的制造方法及光学装置
CN101174013A (zh) * 2006-11-02 2008-05-07 亚洲光学股份有限公司 具有识别标记的镜片
KR20090127649A (ko) * 2008-06-09 2009-12-14 삼성전기주식회사 렌즈 모듈
CN102576140A (zh) * 2009-09-30 2012-07-11 柯尼卡美能达精密光学株式会社 透镜组装方法、透镜组装体以及具备透镜组装体的摄像装置
CN207336902U (zh) * 2017-08-11 2018-05-08 宁波舜宇光电信息有限公司 光学镜头及摄像模组
CN208506341U (zh) * 2018-06-08 2019-02-15 宁波舜宇光电信息有限公司 光学镜头及摄像模组

Similar Documents

Publication Publication Date Title
CN110632727B (zh) 光学镜头、摄像模组及其组装方法
CN208506341U (zh) 光学镜头及摄像模组
TWI720343B (zh) 攝像模組及其組裝方法
US9638883B1 (en) Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US11974033B2 (en) Optical camera lens, including at least three smooth regions for reflecting a light beam emitted by distance measuring equipment camera module and assembly method thereof
US20180059354A1 (en) Miniature active alignment lens assembly and method of manufacturing same
CN111034169B (zh) 摄像模组及其组装方法
US11442239B2 (en) Assembly device and assembly method for optical assembly
CN109348129A (zh) 一种定焦摄像头的清晰度检测方法及系统
CN110998405B (zh) 光学镜头、摄像模组及其组装方法
WO2019228109A1 (zh) 摄像模组阵列及其组装方法
WO2020173223A1 (zh) 光学镜头、摄像模组及相应的组装方法
US20210011264A1 (en) Optical lens and camera module and assembling method therefor
WO2019228348A1 (zh) 光学镜头、摄像模组及其组装方法
EP3859419B1 (en) Optical zoom camera module and assembling method therefor
KR20210139159A (ko) 다수의 렌즈 요소를 정렬하기 위한 시스템 및 방법
WO2019233213A1 (zh) 光学镜头、摄像模组及其组装方法
CN112540436B (zh) 分体式镜头及其第一镜头部分、测试方法、组装方法和摄像模组
KR102443493B1 (ko) 광학 렌즈, 카메라 모듈 및 이의 조립 방법
CN110542969B (zh) 光学镜头、摄像模组及其组装方法
WO2020088039A1 (zh) 光学镜头、摄像模组及其组装方法
Leitel et al. Recent developments in wafer-level fabrication of micro-optical multi-aperture imaging systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815944

Country of ref document: EP

Kind code of ref document: A1