WO2011036742A1 - 騒音制御装置及び騒音制御方法 - Google Patents

騒音制御装置及び騒音制御方法 Download PDF

Info

Publication number
WO2011036742A1
WO2011036742A1 PCT/JP2009/066506 JP2009066506W WO2011036742A1 WO 2011036742 A1 WO2011036742 A1 WO 2011036742A1 JP 2009066506 W JP2009066506 W JP 2009066506W WO 2011036742 A1 WO2011036742 A1 WO 2011036742A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
identification
noise
noise control
mute
Prior art date
Application number
PCT/JP2009/066506
Other languages
English (en)
French (fr)
Inventor
奨 藤原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP09849773.8A priority Critical patent/EP2472510B1/en
Priority to PCT/JP2009/066506 priority patent/WO2011036742A1/ja
Priority to JP2011532821A priority patent/JP5474079B2/ja
Publication of WO2011036742A1 publication Critical patent/WO2011036742A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/112Ducts
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3045Multiple acoustic inputs, single acoustic output
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3046Multiple acoustic inputs, multiple acoustic outputs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3048Pretraining, e.g. to identify transfer functions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3049Random noise used, e.g. in model identification

Definitions

  • the present invention relates to a noise control device and a noise control method for performing active noise control.
  • ANC active noise control
  • Patent Document 1 Patents 1
  • Patent Document 2 Patents 1
  • Reference 2 a noise signal having the same strength as that of the noise signal is radiated, and an opposite phase mute signal is radiated, and the noise signal and the mute signal are made to interfere with each other. The same shall apply hereinafter).
  • JP 2007-302134 A Japanese Patent No. 4078368
  • Feedforward control is required to mute the sound.
  • This feedforward control requires a sensor device for exploring a noise source, a sensor device for confirming a silencing area, and a speaker device for creating a silencing signal. And an algorithm for controlling these devices is required.
  • identification work This work for confirming the acoustic characteristics of the silence area is called “identification work”.
  • a sound signal having a constant sound pressure and a constant frequency is radiated from the control speaker for a certain time, and based on the time until the sound reflection from the control speaker is directly or indirectly input to the sensor device. Then check the size of the silence area and the influence of the reflector.
  • a signal including all frequency bands such as white noise and pink noise is radiated from the control speaker.
  • the signal is emitted at a sound pressure level equal to or higher than the sound pressure level to be silenced, it is necessary to temporarily stop the noise control.
  • the sound deadening region is in a “noise” state due to a signal radiated in the identification work.
  • the present invention has been made to solve the above-described problems, and provides a noise control device and a noise control method capable of performing noise control corresponding to a change in acoustic characteristics of a silenced region. .
  • a noise control device includes one or more reference sensors that detect a noise signal generated from a noise source, one or more radiation sources that radiate a silence signal and an identification signal, a noise signal, a silence signal, And an error sensor for detecting the identification signal, an identification means for identifying the acoustic characteristics of the silencing region based on the identification signal detected by the error sensor, and the silence by adaptive signal processing based on the detection results of the reference sensor and the error sensor
  • a muffler signal generating means for generating a signal, and the identification means performs identification work while the radiation source emits the mute signal.
  • the mute area is identified during noise control. For this reason, for example, even when a change occurs in the acoustic characteristics of the silencing region due to environmental fluctuations, appropriate noise control according to the change can be performed.
  • noise control requires a sensor device for exploring a noise source, a sensor device for confirming a silencing area, and a speaker device for creating a silencing signal.
  • types of noise control there are single channel control provided with each of these devices and multi-channel control provided with a plurality of at least one of the devices.
  • the noise control apparatus according to the present embodiment can be applied to both single channel control and multichannel control.
  • a configuration in the case of single channel control and a configuration in the case of multichannel control will be described in order.
  • FIG. 1 is a functional block diagram illustrating a noise control device 100 according to the present embodiment.
  • FIG. 1 shows an example of a noise control device 100 in the case of single channel control.
  • the duct 10 is a passage of air blown out from an air conditioning facility (not shown), and the noise source 11 is mounted on the upstream side and has an opening 10a opened toward the air-conditioning target area on the downstream side.
  • This noise control system suppresses the noise emitted from the upstream noise source 11 propagating through the duct 10 and being radiated to the area to be air-conditioned. That is, the area to be air-conditioned on the downstream side of the duct 10 is a muffler area.
  • the noise source 11 is a rotating mechanism such as a fan or a motor.
  • the noise control device 100 includes a reference sensor 2, a secondary sound source 3, an error sensor 4, and a calculation processing unit 5.
  • the reference sensor 2 is a sensor that detects an acoustic signal component of the noise source 11 propagating through the duct 10 and transmits the detected value to the calculation processing unit 5.
  • a case will be described as an example where a microphone is used as the reference sensor 2 for capturing a propagation sound transmitted in space.
  • the reference sensor 2 is installed in the vicinity of the noise source 11 so that the acoustic characteristics of the noise source 11 can be detected. Further, a plurality of input signal paths from the reference sensor 2 are represented as an input signal path R (N).
  • a vibration sensor that detects a signal generated by vibration can be used in addition to the microphone.
  • the vibration sensor can be directly installed on the noise source 11 such as a fan or a motor to directly detect the vibration, and the duct 10 in which the noise source 11 is installed according to the fixing method of the noise source 11 or the like. It is also possible to detect vibration indirectly by adhering to the structure.
  • the secondary sound source 3 is controlled by the calculation processing unit 5 and emits a mute signal.
  • a case where a speaker is used will be described as an example.
  • the secondary sound source 3 is referred to as a control speaker 3.
  • the control speaker 3 is installed at an arbitrary position in the duct 10 on the downstream side of the reference sensor 2.
  • the error sensor 4 is a sensor that is installed at an arbitrary position further downstream of the control speaker 3, detects an acoustic signal component, and transmits the detected value to the calculation processing unit 5.
  • the error sensor 4 A case where a microphone is used as the sensor 4 will be described as an example.
  • a transmission path of a plurality of input signals from the error sensor 4 (hereinafter referred to as error signal e (N)) is represented as an error signal path E (N).
  • the acoustic signal component detected by the error sensor 4 represents noise at the position where the error sensor 4 is installed. Therefore, it can be said that the noise control device 100 aims at minimizing the error signal e (N) (to zero as much as possible).
  • the calculation processing unit 5 includes an inverse filter stage 8, a calculation stage 6, and an adaptive filter stage 7, and performs signal processing and filter processing for noise control. Specifically, the calculation processing unit 5 performs adaptive signal processing for creating a mute signal for muffing the acoustic characteristics of noise based on the detection signals of the reference sensor 2 and the error sensor 4. In FIG. 1, the calculation processing unit 5 corresponds to the mute signal generation unit and identification unit of the present invention.
  • the transmission path 20 is a transmission path of an acoustic component that connects the control speaker 3 and the error sensor 4.
  • the transfer path 20 has a signal transfer characteristic C, and the signal transfer characteristic C is represented by a transfer function A.
  • the transmission path 30 is a transmission path of an acoustic component that connects the reference sensor 2 and the control speaker 3.
  • the transfer path 30 has a signal transfer characteristic F, and the signal transfer characteristic F is represented by a transfer function B.
  • an arbitrary signal is emitted from the control speaker 3 for an arbitrary time, and the arbitrary signal is detected by the reference sensor 2 and the error sensor 4 to obtain time characteristics of the transfer function A and the transfer function B. be able to. Further, the installation position and the number of installations of the reference sensor 2 and the error sensor 4 can be confirmed.
  • the inverse filter stage 8 performs convolution integration on the input signal input from the reference sensor 2 through the input signal path R (N), and creates a signal having a phase opposite to that of the input signal.
  • the signal having the opposite phase is transmitted to the adaptive filter stage 7 and used for updating the filter characteristics of the adaptive filter stage 7. This antiphase signal is also transmitted to the calculation stage 6.
  • the calculation stage 6 performs a calculation process based on the least square method for minimizing the error signal e (N) input from the error sensor 4.
  • the calculation result in the calculation stage 6 is transmitted to the adaptive filter stage 7 and used to update the filter characteristics of the adaptive filter stage 7. Further, the calculation stage 6 performs a calculation for making the signal component of the antiphase generated and transmitted by the inverse filter stage 8 to zero as much as possible.
  • the calculation stage 6 compares the phase characteristic of the acoustic signal transmitted from the inverse filter stage 8 with the phase characteristic of the error signal e (N) transmitted from the error sensor 4. By doing in this way, signals other than the signal from the noise source 11 among the signals propagating to the silence region input to the error sensor 4 can be specified as the external signal. This extraneous signal can be said to be an environmental change factor that fluctuates the acoustic characteristics of the silence region. Then, the external signal is transmitted to the adaptive filter stage 7 and used for updating the filter characteristics of the adaptive filter stage 7.
  • the adaptive filter stage 7 is a filter in which a filter characteristic for creating a mute signal is set.
  • the adaptive filter stage 7 performs adaptive signal processing for updating the filter characteristics in a timely manner in order to cancel the noise signal from the noise source 11 that changes every moment.
  • the adaptive filter stage 7 updates the filter coefficient based on the signal having the opposite phase of the input signal created by the inverse filter stage 8 described above, the calculation result in the calculation stage 6, and the external signal. By using the external signal, it is possible to perform a stable silencing operation in which the influence of the external signal (environmental change factor of the silencing area) is taken into account.
  • the acoustic signal component of the mute signal created by the adaptive filter stage 7 is transmitted to the control speaker 3 and radiated from the control speaker 3. In this way, the sound signal component of the noise source 11 is canceled out by the sound signal component of the mute signal emitted from the control speaker 3.
  • FIG. 2 is an example of a functional block diagram illustrating the control operation of the noise control apparatus 100, and shows a configuration in the case of multi-channel control.
  • the duct 10 and the noise source 11 shown in FIG. 1 are not described, and only functional blocks are described.
  • the noise control operation in the case of multi-channel control will be described with a focus on differences from FIG.
  • the same reference numerals are given to the same components as in FIG. 1 or corresponding components.
  • the multi-channel control shown in FIG. 2 generates an M-channel mute signal based on the input from the K-channel reference sensor 2, thereby minimizing the error signal e (N) detected by the L-channel error sensor 4.
  • the control is performed.
  • K, L, and M are each 1 or more.
  • a mute signal transmission path from the control speaker 3 (not shown in FIG. 2) to the error sensor 4 is represented as an error path C (N).
  • the calculation processing unit 9 updates the filter characteristics of the adaptive filter stage 7a based on the signal input from the reference sensor 2 through the input signal path R (N) and the error signal e (N) from the error sensor 4. Perform the calculation process.
  • the adaptive filter stage 7a has an adaptive filter W for a plurality of channels, and creates a mute signal.
  • the adaptive filter stage 7a has one or more input channels and one or more output channels, and the control speaker 3 is connected to the adaptive filter stage 7a. Note that the mute signal generation means and identification means of the present invention correspond to the calculation processing section 9 and the adaptive filter stage 7a in FIG.
  • the acoustic signal component of the mute signal created by the adaptive filter stage 7a is transmitted to the control speaker 3 (not shown in FIG. 2) and radiated from the control speaker 3. In this way, the sound signal component of the noise source 11 is canceled out by the sound signal component of the mute signal emitted from the control speaker 3.
  • the noise control device 100 superimposes and emits a mute signal and an acoustic component signal for identification work (hereinafter referred to as an identification signal) from the control speaker 3.
  • the identification signal is an impulsive signal and has a sound pressure level that is 3 dB or more lower than the mute signal.
  • the identification signal is radiated at regular intervals for a certain time.
  • FIG. 3 is a diagram for explaining an identification signal used in identification work performed during noise control.
  • an identification signal having a radiation time of 0.5 seconds or less is emitted at intervals of about 3 seconds.
  • the time of this identification signal is a minimum time relationship for minimizing the influence of human sound reflection on cognition.
  • the time for emitting the identification signal (that is, the time for the identification work) is, for example, 1 minute or more and 5 minutes or less per time.
  • the frequency component of the identification signal a range from an arbitrary low frequency component (for example, 5 Hz) necessary for silence to a frequency component (for example, 1 kHz or less) having low sensitivity in human auditory characteristics is used. By doing in this way, the identification signal is not perceived by humans, and the discomfort felt by humans by the identification work can be suppressed.
  • the identification signal transmission path is represented by an identification signal path D (N), and the identification signal path D (N) is distinguished from the transmission path 40 to the transmission path 44 for explanation.
  • the identification signal created in the adaptive filter stage 7 is transmitted to the control speaker 3 through the transmission path 40 and is radiated from the control speaker 3.
  • the identification signal radiated from the control speaker 3 is input to the error sensor 4 through the transmission path 41.
  • the identification signal input to the error sensor 4 is transmitted to the adaptive filter stage 7 through the transmission path 42.
  • the adaptive filter stage 7 convolves and integrates the acoustic characteristics of the transmitted identification signal, and obtains a change in the silence region as a change in the frequency characteristics. Then, by comparing the acoustic characteristics obtained by the identification work during the noise control with the acoustic characteristics obtained by the identification work performed before the noise control, the change in the silence region is monitored.
  • the adaptive filter stage 7 reflects the change in the silence area obtained in the previous stage in the creation process of the silence signal as described above.
  • the muffler signal by the filter characteristic according to the change of the muffling region can be radiated from the control speaker 3. For this reason, stable noise control can be performed even when a change occurs in the sound field characteristics due to environmental fluctuations in the silence region.
  • the identification signal created by the adaptive filter stage 7 a is radiated from the control speaker 3 and input to the error sensor 4 through the transmission path 43. Then, the identification signal input to the error sensor 4 is input to the calculation processing unit 9 through the transmission path 44.
  • the calculation processing unit 9 performs calculation on the transmitted identification signal based on a predetermined algorithm, and obtains a change in the silencing environment as a change in frequency characteristics. Then, by comparing the acoustic characteristics obtained by the identification work during the noise control with the acoustic characteristics obtained by the identification work performed before the noise control, the change in the silence region is monitored.
  • the adaptive filter stage 7a reflects the change in the silence area obtained in the previous stage in the process of creating the silence signal as described above.
  • the muffler signal by the filter characteristic according to the change of the muffling region can be radiated from the control speaker 3. For this reason, stable noise control can be performed even when a change occurs in the sound field characteristics due to environmental fluctuations in the silence region.
  • Such identification work during noise control is repeated, for example, several times at an arbitrary timing in the control process of one day. For example, it can be performed three times at a predetermined time in the morning, noon, and night of the day, or can be performed twice at a predetermined time in the morning and night. By doing in this way, the environmental fluctuation
  • the mute area identification work is performed even during noise control. For this reason, it is possible to perform noise control according to the sound field characteristics of the silence area. Further, since the identification work is performed simultaneously with the noise control, it is not necessary to stop the noise control for the muffled area.
  • the identification signal used in the identification work during the noise control is assumed to be 3 dB or more lower than the sound pressure level of the mute signal. For this reason, the identification signal hardly affects the mute signal.
  • the identification signal used in the identification operation during noise control can be an energy component that is half the sound pressure level of the mute signal. Even if it does in this way, the same effect can be acquired.
  • the identification signal used in the identification work during noise control is a frequency (for example, 5 Hz or more, 1 kHz) having low sensitivity in human hearing. For this reason, it can suppress producing discomfort to the person who exists in a silence area by an identification signal. Further, in the identification work during noise control, an identification signal having a radiation time of 0.5 seconds or less is emitted at intervals of about 3 seconds. For this reason, the influence on the human perception by the identification signal can be suppressed.
  • the noise control device according to the present invention is applied to a closed space called an air conditioner including a duct
  • the noise control device of the present invention may be applied to an open space.
  • the noise control of noise radiated from a rotating mechanism such as a fan or a motor has been described as an example.
  • noise control of noise radiated from a moving mechanism such as an automobile or a machine tool is performed.
  • the present invention can be applied and the same effect can be obtained.
  • 2 reference sensor 3 control speaker (secondary sound source), 4 error sensor, 5 calculation processing section, 6 calculation stage, 7 adaptive filter stage, 7a adaptive filter stage, 8 inverse filter stage, 9 calculation processing section, 10 duct, 10a opening, 11 noise source, 20 transmission path, 30 transmission path, 40 transmission path, 41 transmission path, 42 transmission path, 43 transmission path, 44 transmission path, 100 noise control device, A transmission function, B transmission function, C Signal transfer characteristics, C (N) error path, D (N) identification signal path, E (N) error signal path, F signal transfer characteristics, R (N) input signal path, W adaptive filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Duct Arrangements (AREA)

Abstract

 消音領域の音響特性の変化に対応した消音制御を行うことのできる消音制御装置を提供する。 騒音源から発生される騒音信号を検出する一つ以上のリファレンスセンサーと、消音信号と同定信号を放射する一つ以上の放射音源と、騒音信号、消音信号、及び同定信号を検出するエラーセンサーと、エラーセンサーが検出した同定信号に基づいて、消音領域の音響特性を同定する同定手段と、リファレンスセンサーとエラーセンサーの検出結果に基づいて適応信号処理により消音信号を生成する消音生成手段と、を備え、同定手段は、放射音源が消音信号を放射中に、同定作業を行う。

Description

騒音制御装置及び騒音制御方法
 本発明は、能動的騒音制御を行う騒音制御装置及び騒音制御方法に関する。
 従来、能動的に騒音制御(アクティブノイズコントロール。以下、ANCと称する。)を行う技術が知られており、自動車や複写機などの騒音制御に広く用いられている(例えば、特許文献1、特許文献2参照)。
 このANCでは、騒音信号に対してその騒音信号と強さが同じで逆位相の消音信号を放射し、騒音信号と消音信号とを干渉させることによって、消音領域(騒音制御の対象となる領域をいう。以下同じ。)の騒音を打ち消す。
特開2007-302134号公報 特許第4078368号公報
 閉空間や開放空間(開空間)に伝播しリアルタイムに周波数成分が変更する騒音信号に対して、騒音制御をリアルタイムに処理するためには、騒音源の信号成分を正確に検出し、消音する帯域で消音するためのフィードフォワード制御が必要となる。このフィードフォワード制御には、騒音源を探査するためのセンサーデバイス、消音領域を確認するためのセンサーデバイス、消音信号を創生するためのスピーカデバイスが必要となる。そして、これらのデバイスを制御するためのアルゴリズムが必要となる。
 センサーデバイスとしてマイクロホンを利用する場合において、民生機器等のスピーカデバイスとマイクロホンとが近接して設置される環境であると、近接化に伴う波長問題でハウリングが生じうる。したがって、このような近接化に伴う波長問題を回避するために、消音領域の音場環境の事前調査や、騒音制御中の消音領域の音場環境の変動確認が重要となる。
 このような消音領域の音響特性を確認するための作業を、「同定作業」という。同定作業においては、一定音圧、一定周波数の音声信号を一定時間、制御用スピーカから放射し、この制御用スピーカからの音反射が、直接あるいは間接にセンサーデバイスに入力されるまでの時間に基づいて、消音領域の大きさや反射物の影響を確認する。
 従来、この同定作業は、騒音制御を開始する前に実施していた。しかし、消音動作中に未知の音場環境の何らかの変化や、制御用スピーカやセンサーデバイスの突発的な移動などが発生すると、消音領域の音響環境状態が変化する。そうなると、騒音制御を効果的に行うことができないという事態を招いていた。
 また、同定作業においては、消音領域の音響環境を確認するために消音領域の周波数特性を把握するため、ホワイトノイズやピンクノイズなどの全周波数帯域を含む信号を制御用スピーカから放射する。このとき、消音すべき音圧レベルと同等又はそれ以上の音圧レベルで信号を放射するため、騒音制御を一時停止する必要があった。また、この同定作業において放射される信号により、消音領域が「騒音」状態となる場合があった。
 本発明は、上記のような課題を解決するためになされたものであり、消音領域の音響特性の変化に対応した騒音制御を行うことのできる騒音制御装置及び騒音制御方法を提供するものである。
 本発明に係る騒音制御装置は、騒音源から発生される騒音信号を検出する一つ以上のリファレンスセンサーと、消音信号と同定信号を放射する一つ以上の放射音源と、騒音信号、消音信号、及び同定信号を検出するエラーセンサーと、エラーセンサーが検出した同定信号に基づいて、消音領域の音響特性を同定する同定手段と、リファレンスセンサーとエラーセンサーの検出結果に基づいて、適応信号処理により消音信号を生成する消音信号生成手段と、を備え、同定手段は、放射音源が消音信号を放射中に、同定作業を行うものである。
 本発明に係る騒音制御装置によれば、騒音制御中に消音領域の同定作業を行う。このため、例えば環境変動により消音領域の音響特性に変化が生じた場合でも、その変化に応じた適切な騒音制御を行うことができる。
実施の形態に係る騒音制御装置を説明する機能ブロック図である。 実施の形態に係る騒音制御装置の他の例を説明する機能ブロック図である。 実施の形態に係る、騒音制御中に行う同定作業において使用する同定信号を説明する図である。
実施の形態.
 以下、本発明の実施の形態を図面に基づいて説明する。本実施の形態では、本発明に係る騒音制御装置を、ダクトを有する空気調和システムに搭載した場合を例に説明する。この騒音制御装置は、空調設備の送風機などから発生した騒音が、送風ダクト内を伝播して空調対象の部屋に放射されるのを抑制するものである。
 ここで、上述したように騒音制御には、騒音源を探査するためのセンサーデバイス、消音領域を確認するためのセンサーデバイス、消音信号を創生するためのスピーカデバイスが必要となる。そして、騒音制御の種類として、これらのデバイスをそれぞれ一つずつ備えたシングルチャンネル制御と、少なくともいずれかのデバイスを複数備えたマルチチャンネル制御がある。本実施の形態に係る騒音制御装置は、シングルチャンネル制御とマルチチャンネル制御のいずれにも適用可能である。以下、シングルチャンネル制御の場合の構成と、マルチチャンネル制御の場合の構成を順に説明する。
 図1は、本実施の形態に係る騒音制御装置100を説明する機能ブロック図である。図1では、シングルチャンネル制御の場合の騒音制御装置100の一例を示している。
 ダクト10は、空調設備(図示せず)から吹き出される空気の通路であり、上流側に騒音源11を搭載し、下流側には空調対象領域に向けて開口した開口部10aを有する。この騒音制御システムは、上流側の騒音源11から発せられる騒音が、ダクト10内を伝播して空調対象の領域に放射されるのを抑制するものである。すなわち、ダクト10の下流側にある空調対象の領域が、消音領域となる。
 騒音源11は、本実施の形態では、例えばファンやモータなどの回転系機構である。
 騒音制御装置100は、リファレンスセンサー2と、二次音源3と、エラーセンサー4と、計算処理部5とを備える。
 リファレンスセンサー2は、ダクト10内を伝播する騒音源11の音響信号成分を検出してその検出値を計算処理部5に伝送するセンサーである。本実施の形態では、リファレンスセンサー2として、空間伝送する伝播音を捉えるためのマイクロホンを用いる場合を例に説明する。リファレンスセンサー2は、騒音源11の近傍に設置され、騒音源11の音響特性を検出できるようになっている。また、リファレンスセンサー2からの複数の入力信号の経路を、入力信号経路R(N)と表している。
 なお、リファレンスセンサー2としては、マイクロホンのほかに、振動で発生する信号を検出する振動センサーを用いることもできる。この場合、振動センサーを例えばファンやモータなどの騒音源11に直接設置して振動を直接検出することができるほか、騒音源11の固定方法に応じて騒音源11を設置しているダクト10などの構造体に固着して、振動を間接的に検出することもできる。
 二次音源3は、計算処理部5に制御されて消音信号を放射するものであり、本実施の形態ではスピーカを用いる場合を例に説明する。なお、以降の説明において、二次音源3を制御用スピーカ3と称する。制御用スピーカ3は、リファレンスセンサー2の下流側であってダクト10内の任意の位置に設置される。
 エラーセンサー4は、制御用スピーカ3の更に下流側の任意の位置に設置され、音響信号成分を検出してその検出値を計算処理部5に伝送するセンサーであり、本実施の形態では、エラーセンサー4としてマイクロホンを用いた場合を例に説明する。エラーセンサー4からの複数の入力信号(以下、エラー信号e(N)と表す)の伝達経路は、エラー信号経路E(N)と表している。エラーセンサー4が検出する音響信号成分は、エラーセンサー4が設置された位置での騒音を表すこととなる。したがって、騒音制御装置100は、エラー信号e(N)を最小にする(限りなくゼロにする)ことを目的としているといえる。
 計算処理部5は、逆フィルタ段8と、計算段6と、アダプティブフィルタ段7とを有し、騒音制御を行うための信号処理及びフィルタ処理を行う。具体的には、計算処理部5は、リファレンスセンサー2及びエラーセンサー4の検出信号に基づいて騒音の音響特性を消音するための消音信号を創生するという適応信号処理を行う。
 なお、図1において計算処理部5は、本発明の消音信号生成手段及び同定手段に相当する。
 次に、騒音制御における信号伝播及び計算処理部5による騒音制御処理について説明する。
 ここで、本実施の形態では、開口部10aの近傍が消音領域であるものとする。そして、この消音領域は、その音響特性が未知の状態であるものとする。
 伝達経路20は、制御用スピーカ3とエラーセンサー4とを結ぶ音響成分の伝達経路である。この伝達経路20は信号伝達特性Cを有しているものとし、信号伝達特性Cを伝達関数Aで表す。
 伝達経路30は、リファレンスセンサー2と制御用スピーカ3とを結ぶ音響成分の伝達経路である。この伝達経路30は信号伝達特性Fを有しているものとし、信号伝達特性Fを伝達関数Bで表す。
 騒音制御を始める前に、制御用スピーカ3から任意時間、任意信号を放射し、リファレンスセンサー2及びエラーセンサー4でその任意信号を検出することで、伝達関数Aと伝達関数Bの時間特性を得ることができる。また、リファレンスセンサー2及びエラーセンサー4の設置位置と設置個数を確認することができる。
 逆フィルタ段8は、リファレンスセンサー2から入力信号経路R(N)により入力された入力信号に対して畳込み積分して、この入力信号とは逆位相の信号を創生する。この逆位相の信号は、アダプティブフィルタ段7に伝送され、アダプティブフィルタ段7のフィルタ特性の更新に利用される。また、この逆位相の信号は、計算段6へも伝送される。
 計算段6は、エラーセンサー4から入力されるエラー信号e(N)を最小化する最小二乗法に基づく計算処理を行う。計算段6での計算結果はアダプティブフィルタ段7に伝送され、アダプティブフィルタ段7のフィルタ特性の更新に利用される。
 また、計算段6は、逆フィルタ段8で創生されて伝送された逆位相の信号成分を限りなくゼロにするための計算を行う。
 また、計算段6は、逆フィルタ段8から伝送された音響信号の位相特性と、エラーセンサー4から伝送されたエラー信号e(N)の位相特性とを比較する。このようにすることで、エラーセンサー4に入力される消音領域に伝播する信号のうち、騒音源11からの信号以外のものを、外来信号として特定することができる。この外来信号は、消音領域の音響特性を変動させる環境変化要因ということができる。そして、外来信号はアダプティブフィルタ段7に伝送され、アダプティブフィルタ段7のフィルタ特性の更新に利用される。
 アダプティブフィルタ段7は、消音信号を創生するためのフィルタ特性が設定されたフィルタである。アダプティブフィルタ段7は、時々刻々と変化する騒音源11からの騒音信号を打ち消すため、そのフィルタ特性を適時更新する適応信号処理を行う。
 アダプティブフィルタ段7は、前述した逆フィルタ段8で創生された入力信号の逆位相の信号、計算段6での計算結果、及び外来信号に基づいて、フィルタ係数を更新する。外来信号を利用することで、外来信号(消音領域の環境変化要因)の影響を取り入れた安定した消音動作が可能となる。
 アダプティブフィルタ段7で創生された消音信号の音響信号成分は、制御用スピーカ3に伝送され、制御用スピーカ3から放射される。このようにして、制御用スピーカ3から放射される消音信号の音声信号成分により、騒音源11の音声信号成分が打ち消される。
 次に、マルチチャンネル制御の場合の基本構成を説明する。
 図2は、騒音制御装置100の制御動作を説明する機能ブロック図の一例であり、マルチチャンネル制御の場合の構成を示している。なお、図2では、図1で示したダクト10及び騒音源11などは記載しておらず、機能ブロックのみ記載している。図2に基づいて、マルチチャンネル制御の場合の騒音制御動作を、図1と異なる点を中心に説明する。なお、図2では、図1と同一の構成要素又は対応するものには同一の符号を付している。
 図2に示すマルチチャンネル制御は、Kチャンネルのリファレンスセンサー2からの入力に基づいてMチャンネルの消音信号を生成し、これによりLチャンネルのエラーセンサー4により検出されるエラー信号e(N)を最小にする制御を行うものである。なお、K、L、Mはそれぞれ1以上である。また、制御用スピーカ3(図2には図示せず)からエラーセンサ4に至る消音信号の伝達経路を、誤差経路C(N)と表している。
 計算処理部9は、リファレンスセンサー2から入力信号経路R(N)により入力される信号とエラーセンサー4からのエラー信号e(N)に基づいて、アダプティブフィルタ段7aのフィルタ特性を更新するための計算処理を行う。
 アダプティブフィルタ段7aは、複数チャンネル用のアダプティブフィルタWを有し、消音信号を創生する。アダプティブフィルタ段7aは、1以上の入力チャンネルと1以上の出力チャンネルを有し、制御用スピーカ3が接続されている。
 なお、本発明の消音信号生成手段及び同定手段は、図2においては計算処理部9及びアダプティブフィルタ段7aに相当する。
 アダプティブフィルタ段7aで創生された消音信号の音響信号成分は、制御用スピーカ3(図2には図示せず)に伝送され、制御用スピーカ3から放射される。このようにして、制御用スピーカ3から放射される消音信号の音声信号成分により、騒音源11の音声信号成分が打ち消される。
 以上、図1と図2に基づいてシングルチャンネル制御とマルチチャンネル制御での騒音制御の基本動作を説明した。
 次に、本実施の形態に係る同定作業について説明する。前述したように、従来は、騒音制御を開始する前に同定作業を実行していた。しかし、本実施の形態では、騒音制御を開始する前に加えて、騒音制御中にも同定作業を実施する。
 以下、騒音制御中に行う同定作業について説明する。
 騒音制御装置100は、消音信号と、同定作業のための音響成分信号(以下、同定信号と称する)とを、制御用スピーカ3から重畳放射する。同定信号は、インパルス性の信号であり、消音信号よりも3dB以上低い音圧レベルである。そして、同定信号は、一定時間、一定間隔で放射される。
 図3は、騒音制御中に行う同定作業で使用する同定信号を説明する図である。図3に示すように、放射時間0.5秒以下の同定信号を、3秒程度の間隔で放射する。この同定信号の時間は、人間の音反射の認知への影響を最小限にするための最小時間関係である。また、この同定信号を放射する時間(すなわち、同定作業の時間)は、1回あたり、例えば1分以上、5分以下とする。
 また、同定信号の周波数成分は、消音に必要な任意の低周波成分(例えば5Hzなど))から、人間の聴覚特性では感度の低い周波数成分(例えば1kHz以下)までを用いる。このようにすることで、同定信号が人間に知覚されることもなく、同定作業により人間が感じる不快感を抑制することができる。
 次に、同定作業における信号伝播及び関連する制御処理を、図1、図2に基づいて説明する。図1、図2では、同定信号の伝達経路を同定信号経路D(N)で表し、説明のため、同定信号経路D(N)を伝達経路40~伝達経路44と区別して表している。
 まず、図1に基づいて説明する。
 図1において、アダプティブフィルタ段7で創生された同定信号は、伝達経路40により制御用スピーカ3に伝送され、制御用スピーカ3から放射される。制御用スピーカ3から放射された同定信号は、伝達経路41によりエラーセンサー4に入力される。そして、エラーセンサー4に入力された同定信号は、伝達経路42によりアダプティブフィルタ段7に伝送される。アダプティブフィルタ段7は、伝送された同定信号の音響特性を畳込み積分し、消音領域の変化を周波数特性の変化として得る。そして、この騒音制御中での同定作業により得た音響特性と、騒音制御前に行った同定作業により得た音響特性とを比較することにより、消音領域の変化を監視する。
 そして、アダプティブフィルタ段7は、上述したような消音信号の創生処理において、前段で求めた消音領域の変化を反映させる。このようにすることで、消音領域の変化に応じたフィルタ特性による消音信号を、制御用スピーカ3から放射させることができる。このため、消音領域の環境変動により音場特性に変化が生じた場合にも、安定した騒音制御を行うことができる。
 次に、図2に基づいて説明する。
 図2において、アダプティブフィルタ段7aで創生された同定信号は、制御用スピーカ3から放射され、伝達経路43によりエラーセンサー4に入力される。そして、エラーセンサー4に入力された同定信号は、伝達経路44により計算処理部9に入力される。計算処理部9は、所定のアルゴリズムに基づいて伝送された同定信号に計算を施し、消音環境の変化を周波数特性の変化として得る。そして、この騒音制御中での同定作業により得た音響特性と、騒音制御前に行った同定作業により得た音響特性とを比較することにより、消音領域の変化を監視する。
 そして、アダプティブフィルタ段7aは、上述したような消音信号の創生処理において、前段で求めた消音領域の変化を反映させる。このようにすることで、消音領域の変化に応じたフィルタ特性による消音信号を、制御用スピーカ3から放射させることができる。このため、消音領域の環境変動により音場特性に変化が生じた場合にも、安定した騒音制御を行うことができる。
 このような騒音制御中の同定作業を、例えば、一日の制御工程の中で任意のタイミングで複数回、繰り返し行う。例えば、一日のうち朝、昼、夜の決めた時間に3回行うこともできるし、朝、夜の決めた時間に2回行うこともできる。このようにすることで、消音領域の環境変動を確認することができる。また、騒音制御中に同定作業を行うので、消音領域に対する騒音制御動作を停止させることなく、変動した消音領域に応じた消音信号を放射することができる。
 以上のように、本実施の形態に係る騒音制御装置100によれば、消音領域の同定作業を、騒音制御中にも行うようにした。このため、消音領域の音場特性に応じた騒音制御を行うことができる。また、騒音制御と同時に同定作業を行うので、消音領域に対する騒音制御を停止する必要がない。
 また、騒音制御中の同定作業において使用する同定信号は、消音信号の音圧レベルよりも3dB以上低いものとした。このため、同定信号が消音信号に影響を与えることもほとんどない。あるいは、騒音制御中の同定作業において使用する同定信号は、消音信号の音圧レベルの半分のエネルギー成分とすることもできる。このようにしても、同様の効果を得ることができる。
 また、騒音制御中の同定作業において使用する同定信号は、人間の聴覚において感度の低い周波数(例えば5Hz以上、1kHz)とした。このため、同定信号により消音領域に存在する人間に不快感を生じさせるのを抑制することができる。
 また、騒音制御中の同定作業においては、放射時間0.5秒以下の同定信号を、3秒程度の間隔で放射するようにした。このため、同定信号による人間の知覚への影響を抑えることができる。
 なお、本実施の形態ではダクトを備えた空気調和装置という閉空間に本発明に係る騒音制御装置を適用した場合を例に説明したが、開放空間に本発明の騒音制御装置を適用することもでき、同様の効果を得ることができる。
 また、本実施の形態では、ファンやモータなどの回転系機構から放射される騒音の騒音制御を例に説明したが、例えば自動車や工作機械などの移動系機構から放射される騒音の騒音制御に本発明を適用でき、同様の効果を得ることができる。
 2 リファレンスセンサー、3 制御用スピーカ(二次音源)、4 エラーセンサー、5 計算処理部、6 計算段、7 アダプティブフィルタ段、7a アダプティブフィルタ段、8 逆フィルタ段、9 計算処理部、10 ダクト、10a 開口部、11 騒音源、20 伝達経路、30 伝達経路、40 伝達経路、41 伝達経路、42 伝達経路、43 伝達経路、44 伝達経路、100 騒音制御装置、A 伝達関数、B 伝達関数、C 信号伝達特性、C(N) 誤差経路、D(N) 同定信号経路、E(N) エラー信号経路、F 信号伝達特性、R(N) 入力信号経路、W アダプティブフィルタ。

Claims (8)

  1.  騒音源から発生される騒音信号を検出する一つ以上のリファレンスセンサーと、
     消音信号と同定信号を放射する一つ以上の放射音源と、
     前記騒音信号、消音信号、及び同定信号を検出するエラーセンサーと、
     前記エラーセンサーが検出した前記同定信号に基づいて、消音領域の音響特性を同定する同定作業を行う同定手段と、
     前記リファレンスセンサーと前記エラーセンサーの検出結果に基づいて、適応信号処理により前記消音信号を生成する消音信号生成手段と、を備え、
     前記同定手段は、前記放射音源が前記消音信号を放射中に、前記同定作業を行う
     ことを特徴とする騒音制御装置。
  2.  前記同定信号は、インパルス性信号である
     ことを特徴とする請求項1記載の騒音制御装置。
  3.  前記インパルス性信号は、
     前記放射音源から放射する前記消音信号の音圧レベルよりも3dB以上低い音圧レベル、又は、
     前記放射音源から放射する前記消音信号のエネルギー成分の半分のエネルギー成分で放射される
     ことを特徴とする請求項2記載の騒音制御装置。
  4.  前記同定作業の1回当たりの作業時間は1分以上かつ5分以下であり、
     前記1回当たりの同定作業においては、
     前記インパルス性信号を0.5秒以下の放射時間で放射し、この放射を3秒程度の間隔を置いて繰り返す
     ことを特徴とする請求項2または請求項3記載の騒音制御装置。
  5.  前記インパルス性の信号成分は、5Hz以上、1kHz以下の周波数成分を有する
     ことを特徴とする請求項2~請求項4のいずれか記載の騒音制御装置。
  6.  前記同定手段は、
     前記放射音源が前記消音信号を放射していないときに行った同定作業において同定された音響特性と、前記放射音源が前記消音信号を放射しているときに行った同定作業において同定された音響特性とに基づいて、消音領域の音響特性を同定する
     ことを特徴とする請求項1~請求項5のいずれか記載の騒音制御装置。
  7.  前記消音信号生成手段は、
     前記放射音源が前記消音信号を放射しているときに行った同定作業において同定された消音領域の音響特性を加味して前記消音信号を生成する
     ことを特徴とする請求項1~請求項6のいずれか記載の騒音制御装置。
  8.  消音対象となる消音領域の騒音を打ち消す消音信号を出力するステップと、
     前記消音領域の音響特性を同定する同定信号を出力するステップと、
     前記消音信号と前記同定信号を重畳して出力するステップと、を備えた
     ことを特徴とする騒音制御方法。
PCT/JP2009/066506 2009-09-24 2009-09-24 騒音制御装置及び騒音制御方法 WO2011036742A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09849773.8A EP2472510B1 (en) 2009-09-24 2009-09-24 Noise control device and noise control method
PCT/JP2009/066506 WO2011036742A1 (ja) 2009-09-24 2009-09-24 騒音制御装置及び騒音制御方法
JP2011532821A JP5474079B2 (ja) 2009-09-24 2009-09-24 騒音制御装置及び騒音制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066506 WO2011036742A1 (ja) 2009-09-24 2009-09-24 騒音制御装置及び騒音制御方法

Publications (1)

Publication Number Publication Date
WO2011036742A1 true WO2011036742A1 (ja) 2011-03-31

Family

ID=43795513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066506 WO2011036742A1 (ja) 2009-09-24 2009-09-24 騒音制御装置及び騒音制御方法

Country Status (3)

Country Link
EP (1) EP2472510B1 (ja)
JP (1) JP5474079B2 (ja)
WO (1) WO2011036742A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135008A (ja) * 2014-01-17 2015-07-27 株式会社熊谷組 騒音マスキング装置
CN104864562A (zh) * 2015-05-06 2015-08-26 海信(广东)空调有限公司 噪音控制方法和装置、家用电器及中央控制器
WO2016043062A1 (ja) * 2014-09-17 2016-03-24 ソニー株式会社 騒音抑制装置および騒音抑制方法、並びにプログラム
CN111536681A (zh) * 2020-04-24 2020-08-14 青岛海信日立空调系统有限公司 空调器及主动降噪调试方法
CN111536587A (zh) * 2020-04-24 2020-08-14 青岛海信日立空调系统有限公司 空调器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564509B (zh) * 2017-10-23 2022-08-19 上海联影医疗科技股份有限公司 降噪系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272684A (ja) * 1993-03-17 1994-09-27 Toshiba Corp 適応形能動消音装置
JPH08123446A (ja) * 1994-10-28 1996-05-17 Alpine Electron Inc 騒音キャンセルシステム
JPH10254459A (ja) * 1997-03-14 1998-09-25 Toa Corp 伝達関数同定装置及び能動型雑音除去装置
JP2007302134A (ja) 2006-05-12 2007-11-22 Nissan Motor Co Ltd 騒音制御方法および騒音制御装置
JP2008015046A (ja) * 2006-07-03 2008-01-24 Masaaki Okuma アクティブ消音装置におけるオンライン同定時の信号処理方法
JP4078368B2 (ja) 2005-09-14 2008-04-23 キヤノン株式会社 消音装置及び画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677676A (en) * 1986-02-11 1987-06-30 Nelson Industries, Inc. Active attenuation system with on-line modeling of speaker, error path and feedback pack
JP2882170B2 (ja) * 1992-03-19 1999-04-12 日産自動車株式会社 能動型騒音制御装置
JP3489137B2 (ja) * 1993-07-20 2004-01-19 日産自動車株式会社 能動型騒音制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272684A (ja) * 1993-03-17 1994-09-27 Toshiba Corp 適応形能動消音装置
JPH08123446A (ja) * 1994-10-28 1996-05-17 Alpine Electron Inc 騒音キャンセルシステム
JPH10254459A (ja) * 1997-03-14 1998-09-25 Toa Corp 伝達関数同定装置及び能動型雑音除去装置
JP4078368B2 (ja) 2005-09-14 2008-04-23 キヤノン株式会社 消音装置及び画像形成装置
JP2007302134A (ja) 2006-05-12 2007-11-22 Nissan Motor Co Ltd 騒音制御方法および騒音制御装置
JP2008015046A (ja) * 2006-07-03 2008-01-24 Masaaki Okuma アクティブ消音装置におけるオンライン同定時の信号処理方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135008A (ja) * 2014-01-17 2015-07-27 株式会社熊谷組 騒音マスキング装置
WO2016043062A1 (ja) * 2014-09-17 2016-03-24 ソニー株式会社 騒音抑制装置および騒音抑制方法、並びにプログラム
CN106688033A (zh) * 2014-09-17 2017-05-17 索尼公司 降噪装置、降噪方法、和程序
US10255899B2 (en) 2014-09-17 2019-04-09 Sony Corporation Noise reduction device and noise reduction method
CN106688033B (zh) * 2014-09-17 2020-09-08 索尼公司 降噪装置、降噪方法、和程序
CN104864562A (zh) * 2015-05-06 2015-08-26 海信(广东)空调有限公司 噪音控制方法和装置、家用电器及中央控制器
CN111536681A (zh) * 2020-04-24 2020-08-14 青岛海信日立空调系统有限公司 空调器及主动降噪调试方法
CN111536587A (zh) * 2020-04-24 2020-08-14 青岛海信日立空调系统有限公司 空调器
CN111536681B (zh) * 2020-04-24 2021-11-05 青岛海信日立空调系统有限公司 空调器及主动降噪调试方法

Also Published As

Publication number Publication date
JP5474079B2 (ja) 2014-04-16
EP2472510A1 (en) 2012-07-04
EP2472510A4 (en) 2016-12-21
JPWO2011036742A1 (ja) 2013-02-14
EP2472510B1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP5474079B2 (ja) 騒音制御装置及び騒音制御方法
KR102448107B1 (ko) 무성역 생성
JP2955855B1 (ja) 能動型雑音除去装置
JPH0270195A (ja) 電子消音システム
JP2008534991A (ja) フィルムスピーカーを利用した能動騒音制御方法及び装置
JPH06272684A (ja) 適応形能動消音装置
KR20160089582A (ko) 소음제어방법
JP5297657B2 (ja) 能動的消音システム
US20050276422A1 (en) Integral active noise cancellation section
JPH0336897A (ja) 電子消音システム
JPH07160280A (ja) 空調設備の電子消音装置
JP2791510B2 (ja) アクティブ消音装置
JPH0342999A (ja) 開口部放射騒音用消音装置
JP2695910B2 (ja) 冷蔵庫の消音装置
JPH0376500A (ja) 電子消音システム
JPH0313998A (ja) 電子消音システム
KR101283105B1 (ko) 능동잡음 제어장치 및 그 방법
JPH06348282A (ja) 消音装置
KR20070008800A (ko) 능동소음 제어장치 및 방법
JP2009175535A (ja) 能動的消音システム
JP5866142B2 (ja) アクティブ消音装置
JP2001056691A (ja) 能動的消音システム
JPH09258741A (ja) アクティブ消音装置
JP3250225B2 (ja) 能動騒音低減装置
JP2002123260A (ja) 能動騒音制御装置および能動騒音制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532821

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009849773

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE