WO2011036089A1 - Verfahren zum herstellen eines elektronischen bauelements sowie elektronisches bauelement - Google Patents

Verfahren zum herstellen eines elektronischen bauelements sowie elektronisches bauelement Download PDF

Info

Publication number
WO2011036089A1
WO2011036089A1 PCT/EP2010/063623 EP2010063623W WO2011036089A1 WO 2011036089 A1 WO2011036089 A1 WO 2011036089A1 EP 2010063623 W EP2010063623 W EP 2010063623W WO 2011036089 A1 WO2011036089 A1 WO 2011036089A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
conductive layer
insulator
layer
conductive material
Prior art date
Application number
PCT/EP2010/063623
Other languages
English (en)
French (fr)
Inventor
Andrew Ingle
Tilman Schlenker
Karsten Heuser
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to US13/498,307 priority Critical patent/US9203029B2/en
Publication of WO2011036089A1 publication Critical patent/WO2011036089A1/de
Priority to US14/885,577 priority patent/US9583729B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • paint is here to be applied in liquid or in powder form coatable coating material.
  • the first electrically conductive material may be provided in particular for the anode of the finished device, the second electrically conductive material for the
  • Layer can comprise only one but also several partial layers.
  • the individual partial layers can then each consist independently of each other of the aforementioned materials or contain them; In addition to the metals explicitly mentioned above, these may also contain or consist of the metals chromium and molybdenum.
  • Examples of layer sequences in a multi-layered second electrically conductive layer are Mo / Al / Mo, Cr / Al / Cr, Cu / Cr and Cr / Cu.
  • a "functional layer" of the electronic component exerts a characteristic of the electronic component
  • Thermistor an organic electronic component such as an organic light emitting diode, a solar cell, and the like.
  • the substrate may be applied to the substrate, for example by means of printing, by deposition with the aid of SAMs (seif assembling monolayers) and the like.
  • the first section can be after
  • Contaminants are held, as in the etching of the second electrically conductive layer overlying
  • the method comprises the following step:
  • the predetermined separation area may be a kind of trench or gap between the first and second and each further
  • the method according to the two above comprises
  • Alternatives include removing the first electrically conductive material (step E)) or removing the first one
  • the method further comprises the step G) of arranging at least one protective material in at least a third subregion of the second electrically conductive layer, which is arranged in the second subregion.
  • Distance to the insulator is generated may be an area which corresponds to the separation area or the dividing line between the first and the second electrode region.
  • the second electrically conductive material is in the
  • such a pattern may be specified by means of coordinates or the like prior to the application of the insulator.
  • the insulator can by means of a mask or a
  • the insulator is in particular a liquefiable
  • Insulator such as a polymer or a varnish.
  • the insulator can be softened by heating the substrate layer or by direct heat radiation to the second electrically conductive layer with a suitable choice of material.
  • the method is carried out in such a way that at least one conductor track made of the second electrically conductive material is arranged on the first electrically conductive layer in the first electrode region.
  • the process according to the invention is usually free of photolithographic steps and can therefore be
  • an insulator 9 is applied in a structured manner to the second electrically conductive layer 5, so that at least a first subregion 11 is formed, which is covered with the insulator 9, and
  • the removal of second electrically conductive material of the second electrically conductive layer 5 is carried out next, wherein etching is preferably used.
  • etching is preferably used for the etching of the second electrically conductive layer 5 becomes an etching bath, such as 3%
  • step I) the protective material 15 (in Fig. 1H, the protective material is therefore no longer shown) is removed using a solvent.
  • the insulator 9 is applied by means of a printing process on the second electrically conductive layer 5 (see Fig. 2D), so that a first portion 11 with
  • the substrate layer 1 has on its upper side a first electrode region 21 and a second electrode region 23, which are insulated from one another by the insulator 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen eines elektronischen Bauelements mit zumindest einem ersten Elektrodenbereich (21) und einem zweiten Elektrodenbereich (23), die durch einen Isolator (9) voneinander getrennt sind und jeweils zumindest eine Teilschicht eines ersten elektrisch leitfähigen Materials aufweisen. Die vorliegende Erfindung betrifft ferner ein elektronisches Bauelement, welches mit dem erfindungsgemäßen Verfahren herstellbar ist.

Description

Beschreibung
Verfahren zum Herstellen eines elektronischen Bauelements sowie elektronisches Bauelement
Die vorliegende Erfindung betrifft ein Verfahren zum
Herstellen eines elektronischen Bauelements sowie ein
elektronisches Bauelement.
Diese Patentanmeldung beansprucht die Prioritäten der
deutschen Patentanmeldung 10 2009 060 066.3 und der deutschen Patentanmeldung 10 2009 043 066.0, deren Offenbarungsgehalte hiermit durch Rückbezug aufgenommen werden.
In elektronischen Bauelementen wie organischen Leuchtdioden dienen Isolatoren unter anderem dazu, zwei Elektrodenbereiche voneinander abzutrennen. Geeignete Isolatoren wie
beispielsweise lichtempfindliche Lacke sind meist sehr teuer und aufwendig aufzubringen.
Eine Aufgabe der vorliegenden Erfindung ist, ein gegenüber dem Stand der Technik verbessertes Verfahren zum Herstellen eines elektronischen Bauelements anzugeben, bei welchem der Isolator nur auf bestimmte Bereiche einer elektrisch leitfähigen
Schicht aufgebracht wird.
Die erfindungsgemäße Aufgabe wird durch ein Verfahren mit den Merkmalen des unabhängigen Anspruchs 1 sowie ein
elektronisches Bauelement mit den Merkmalen des unabhängigen Anspruchs 15 gelöst.
Unteransprüche geben weitere Ausführungsformen des
erfindungsgemäßen Verfahrens an. Das erfindungsgemäße Verfahren ist zum Herstellen eines elektronischen Bauelements mit zumindest einem ersten
Elektrodenbereich und einem zweiten Elektrodenbereich, die durch einen Isolator voneinander getrennt sind und jeweils zumindest eine Teilschicht eines ersten elektrisch leitfähigen Materials aufweisen, geeignet.
Das erfindungsgemäße Verfahren umfasst folgende Schritte:
A) Bereitstellen einer Substratschicht und wenigstens einer auf der Substratschicht angeordneten ersten elektrisch
leitfähigen Schicht aus dem ersten elektrisch leitfähigen
Material ;
B) Anordnen wenigstens einer zweiten elektrisch leitfähigen Schicht aus einem zweiten elektrisch leitfähigen Material auf der ersten elektrisch leitfähigen Schicht;
C) Anordnen wenigstens eines ersten Isolators auf dem Substrat, so dass die zweite elektrisch leitfähige Schicht zumindest einen ersten Teilbereich, welcher mit dem Isolator bedeckt ist, und einen zweiten Teilbereich, welcher nicht mit dem Isolator bedeckt ist, aufweist und wobei der Isolator so angeordnet wird, dass er dazu dienen kann, den ersten Elektrodenbereich und den zweiten Elektrodenbereich voneinander zu trennen; und
D) Anordnen wenigstens einer Funktionsschicht und wenigstens einer zweiten Elektrodenschicht auf der im vorhergehenden
Schritt erhaltenen zweiten elektrisch leitfähigen Schicht, welche in Abschnitten mit dem Isolator bedeckt ist.
Der Begriff „Elektrodenbereich", wie er hierin verwendet wird, bezeichnet einen als Elektrode fungierenden Bereich oder
Abschnitt des elektronischen Bauelements bzw. einer
Elektrodenschicht desselben. Die Elektrodenschicht kann eine Anodenschicht oder eine Kathodenschicht sein.
Der erste und der zweite Elektrodenbereich weisen jeweils zumindest eine Teilschicht aus einem ersten elektrisch leitfähigen Material auf. Der Begriff „elektrisch leitfähiges Material", wie er hierin verwendet wird, bezeichnet ein
Material oder eine Substanz mit der Fähigkeit, elektrischen Strom zu leiten. Der Begriff „Teilschicht eines ersten
elektrisch leitfähigen Materials", wie er hierin verwendet wird, meint, dass die Elektrodenbereiche jeweils einen als
Schicht ausgebildeten Abschnitt aus dem ersten elektrisch leitfähigen Material umfassen oder aus einem solchen bestehen. Die aus dem ersten elektrisch leitfähigen Material gebildete Teilschicht ist dabei klar von möglichen weiteren Schichten abgetrennt, so dass beispielsweise das Ausbilden einer
Legierung zwischen dem ersten elektrisch leitfähigen Material und jedem weiteren im jeweiligen Elektrodenbereich
aufgebrachten Material ausgeschlossen ist.
Der Begriff „Isolator", wie er hierin verwendet wird,
bezeichnet eine isolierende Substanz, welche derart
aufgebracht wird, dass sie einen Stromfluss zwischen dem
ersten Elektrodenbereich und dem zweiten Elektrodenbereich verhindert. Der Isolator kann ein Überzug oder ein
Beschichtungsmittel , wie ein Polymer und insbesondere ein Lack, und dergleichen sein.
Unter dem Begriff „Lack" ist hierbei ein in flüssiger oder auch in pulverförmiger Form aufbringbarer Beschichtungsstoff zu verstehen.
Der Begriff „erste elektrisch leitfähige Schicht", wie er hierin verwendet wird, bezeichnet eine das erste elektrisch leitfähige Material aufweisende oder eine aus dem ersten
elektrisch leitfähigen Material bestehende Schicht, welche direkt auf der Substratschicht abgeschieden wird. Die erste elektrisch leitfähige Schicht kann eine transparente leitende Schicht sein. Sie kann, ohne darauf beschränkt zu sein, aus einem transparenten leitfähigen Oxid (TCO), z.B. Indium- dotiertem Zinnoxid (ITO) oder ZnO, In/ZnO, SnZnO, Al-ZnO und dergleichen gebildet sein. Die erste elektrisch leitfähige
Schicht kann beispielsweise mittels Sputtern auf die
Substratschicht aufgebracht werden. Auf der ersten elektrisch leitfähigen Schicht wird eine zweite elektrisch leitfähige Schicht aus einem „zweiten elektrisch leitfähigen Material" abgeschieden, welches üblicherweise von dem ersten elektrisch leitfähigen Material verschieden ist.
Beispielsweise kann das erste elektrisch leitfähige Material insbesondere für die Anode der fertigen Vorrichtung vorgesehen sein, das zweite elektrisch leitfähige Material für die
Kathode vorgesehen sein und umgekehrt. Beispiele für das
zweite elektrisch leitfähige Material schließen, ohne darauf beschränkt zu sein, Metalle, beispielsweise Aluminium, Barium, Indium, Kupfer, Silber, Gold, Magnesium, Calcium und Lithium und dergleichen sowie deren Mischungen oder Kombinationen, insbesondere in Form von Legierungen untereinander oder mit anderen Metallen, ein. Die zweite elektrisch leitfähige
Schicht kann nur eine aber auch mehrere Teilschichten umfassen. Die einzelnen Teilschichten können dann unabhängig voneinander jeweils aus den vorgehend genannten Materialien bestehen oder diese enthalten; neben den vorstehend explizit aufgeführten Metallen können diese auch die Metalle Chrom und Molybdän enthalten oder daraus bestehen. Beispiele für Schichtenfolgen in einer mehrere Teilschichten aufweisenden zweiten elektrisch leitfähigen Schicht sind Mo/Al/Mo, Cr/Al/Cr, Cu/Cr und Cr/Cu.
Die zweite elektrisch leitfähige Schicht kann mittels Sputtern, physikalischer Gasphasenabscheidung (PVD) oder dergleichen auf die erste elektrisch leitfähige Schicht aufgebracht werden.
Der Begriff „Substratschicht", wie er hierin verwendet wird, bezeichnet eine Schicht aus einem Substrat, wie es
beispielsweise im Stand der Technik herkömmlich für ein elektronisches Bauelement verwendet wird. Das Substrat kann ein transparentes oder ein nicht transparentes Substrat sein. Beispielsweise kann das Substrat Glas, Quarz, Saphir,
Kunststofffolien, beschichtete Kunststofffolien, Metall,
Metallfolien, Metallfolien, Folien, welche mit einer
elektrisch isolierenden Schicht beschichtet sind,
Siliziumwafer oder ein anderes geeignetes Substratmaterial umfassen. Als Substratschicht wird erfindungsgemäß
insbesondere die Schicht verstanden, auf der bei der
Herstellung des elektronischen Bauelements nachfolgend alle anderen Schichten aufgebracht werden. Solche nachfolgenden Schichten können z.B. bei einem optischen elektronischen
Bauelement, beispielsweise einer Strahlungsemittierenden
Vorrichtung, für die Strahlungsemission erforderliche
Schichten sein.
Die „zweite Elektrodenschicht" kann ein Material aufweisen oder aus einem Material gebildet sein, das ausgewählt ist aus Metallen wie Aluminium, Barium, Indium, Silber, Gold,
Magnesium, Calcium und Lithium sowie Kombinationen derselben oder einer Verbindung derselben, insbesondere einer Legierung, sowie transparenten leitfähigen Oxiden, wie beispielsweise Metalloxiden, wie Zinkoxid, Zinnoxid, Cadmiumoxid, Titanoxid, Indiumoxid oder Indium-dotiertem Zinnoxid (ITO), Aluminium- dotiertem Zinkoxid (AZO) , Zn2Sn04, CdSn03, Mgln204, Galn03, Ζη2Ιη2θ5 oder In4Sn30i2 oder Mischungen unterschiedlicher transparenter leitender Oxide. Bevorzugt ist die zweite
Elektrodenschicht aus einem Metall gebildet. Die zweite
Elektrodenschicht des elektronischen Bauelements kann eine Kathodenschicht sein.
Eine „Funktionsschicht" des elektronischen Bauelements übt eine für das elektronische Bauelement charakteristische
Funktion aus. Beispielsweise können Funktionsschichten
Strahlungsemittierende Schichten, wie fluoreszierende und/oder phosphoreszierende Emitterschichten einer organischen Leuchtdiode, sein.
Ein „elektronisches Bauelement", welches mit dem
erfindungsgemäßen Verfahren herstellbar ist, kann, ohne darauf beschränkt zu sein, ein Transistor, ein Kondensator, ein
Thermistor, ein organisches elektronisches Bauelement, wie eine organische Leuchtdiode, eine Solarzelle, und dergleichen sein .
Mit dem erfindungsgemäßen Verfahren ist es möglich, zwei
Elektrodenbereiche voneinander zu trennen, wobei in eine bereits während des Aufbringens der Schichten der
Elektrodenbereiche oder später eine Strukturierung der
Elektrodenbereiche an einer vorselektierten Position erfolgt und in dem durch die Strukturierung gebildeten Bereich der auf die zweite elektrisch leitfähige Schicht aufgebrachte Isolator angeordnet wird. Üblicherweise wird die Strukturierung später eingebracht .
Wenn die Strukturierung schon vorhanden ist (also "früher" eingebracht wird) , kann dies erfolgen indem die erste und die zweite elektrisch leitfähige Schicht oder Teilbereiche
derselben beispielsweise mittels Drucken, durch Abscheidung unter Zuhilfenahme von SAMs (seif assembling monolayers) und dergleichen auf das Substrat aufgebracht werden.
Der Isolator wird (üblicherweise ausschließlich) auf die zweite elektrisch leitfähige Schicht aufgebracht.
Erfindungsgemäß ist vorgesehen, dass der Isolator dabei nur in vorbestimmen Bereichen oder Abschnitten auf der zweiten elektrisch leitfähigen Schicht aufgebracht wird.
Das Anordnen des Isolators nur in dem ersten Teilbereich der zweiten elektrisch leitfähigen Schicht kann - je nach Zusammensetzung des Isolators - mittels eines Druckverfahrens, mit Hilfe einer Spritze, einer Düse, einer Tülle und
dergleichen erfolgen. Der erste Teilbereich kann nach
Fertigstellung des elektronischen Bauelements als Bond päd bzw. als Bus bar zur nachträglichen Kontaktierung des
elektronischen Bauelements dienen.
Die zweite elektrisch leitfähige Schicht wird mittels des auf das Substrat aufgebrachten Isolators in wenigstens zwei
Teilbereiche unterteilt, von denen einer mit Isolator bedeckt und der andere nicht bedeckt ist. Gleichzeitig wird der
Isolator derart angeordnet, dass er dazu dienen kann, den ersten und den zweiten Elektrodenbereich der ersten elektrisch leitfähigen Schicht voneinander zu trennen. Hierunter ist insbesondere auch zu verstehen, dass in einem späteren
Verfahrensschritt der Isolator in einen umformbaren Zustand gebracht wird, der es erlaubt, den Isolator so anzuordnen, dass die Elektrodenbereiche durch den Isolator voneinander getrennt werden.
Das erfindungsgemäße Verfahren zum Herstellen eines
elektronischen Bauelements kann dazu eingesetzt werden,
elektronische Bauelemente unter Kosten- und Zeitersparnis herzustellen. Da jede Schicht des Bauteils einzeln aufgebracht und gegebenenfalls nach Wunsch oder Zweck strukturiert werden kann (wie den nachfolgenden Weiterbildungen des Verfahrens zu entnehmen ist) , können somit aufwendige Beschichtungs- oder Aufbringungsschritte vermieden und ferner (oftmals teures)
Material eingespart werden.
Indem die zweite elektrisch leitfähige Schicht erfindungsgemäß flächig auf die erste elektrisch leitfähige Schicht
aufgebracht wird, kann ferner verhindert werden, dass die erste elektrisch leitfähige Schicht, wie beispielsweise eine empfindliche ITO-Schicht, mit dem aufzudruckenden Isolator und/oder dem Schutzmaterial in Kontakt kommt und ggf. beschädigt bzw. beeinträchtigt werden könnte. Ferner gelangt die erste elektrisch leitfähige Schicht nicht in direkten Kontakt mit den Anlagen. Die erste elektrisch leitfähige
Schicht kann ferner insbesondere frei von Partikeln, wie
Verunreinigungen gehalten werden, da beim Ätzen der zweiten elektrisch leitfähigen Schicht darüberliegende
Verunreinigungen, wie Reste, welche durch Redeposition eines gegebenenfalls durchgeführten Laserablationsprozesses
entstehen können, entfernt werden.
Mittels des erfindungsgemäßen Verfahrens ist es möglich, ein „Seif Aligning" des zweiten elektrisch leitfähigen Materials und des Isolators zu erreichen. Auf diese Weise ist es z.B. möglich, Leiterbahnen oder Bond pads, auf einfache Weise leicht in dem erfindungsgemäß hergestellten elektronischen Bauelement vorzusehen.
In einer Weiterbildung des erfindungsgemäßen Verfahrens umfasst das Verfahren den folgenden Schritt:
E) Entfernen von erstem elektrisch leitfähigen Material der ersten elektrisch leitfähigen Schicht zumindest entlang eines vorbestimmten Trennbereichs zwischen dem ersten
Elektrodenbereich und dem zweiten Elektrodenbereich.
Dieser Schritt des Entfernens wird in der Regel nach Schritt A) und vor Schritt B) durchgeführt.
Der vorbestimmte Trennbereich kann eine Art Graben oder Spalte zwischen dem ersten und zweiten und jedem weiteren durch
Entfernen des ersten elektrisch leitfähigen Materials
gebildeten Elektrodenbereich der ersten elektrisch leitfähigen Schicht sein.
Alternativ ist es möglich, sowohl das erste elektrisch
leitfähige Material der ersten elektrisch leitfähigen Schicht als auch das über dem ersten elektrisch leitfähigen Material befindliche zweite elektrisch leitfähige Material der zweiten elektrisch leitfähigen Schicht zumindest entlang eines
vorbestimmten Trennbereichs zwischen dem ersten
Elektrodenbereich und dem zweiten Elektrodenbereich zu
entfernen (Schritt F) ) .
Dieser Schritt wird in der Regel nach Schritt B) und vor
Schritt C) ausgeführt. Das Entfernen von sowohl erstem als auch zweitem elektrisch leitfähigen Material kann hierbei bevorzugt gleichzeitig, d.h. in einem Arbeitsschritt erfolgen.
In einer Weiterbildung des erfindungsgemäßen Verfahrens umfasst das Verfahren gemäß den beiden vorstehenden
Alternativen das Entfernen des ersten elektrisch leitfähigen Materials (Schritt E) ) oder das Entfernen des ersten
elektrisch leitfähigen Materials und des zweiten elektrisch leitfähigen Materials (Schritt F) ) mittels Laserablation.
Der Begriff „Laserablation", wie er hierin verwendet wird, umfasst das Abtragen des ersten elektrisch leitfähigen
Materials oder das Abtragen des ersten und des zweiten
elektrisch leitfähigen Materials von der Oberfläche der
Substratschicht durch Beschuss mit gepulster Laserstrahlung.
Während des im Wesentlichen abschnittsweisen Entfernens oder Abtragens der zweiten elektrisch leitfähigen Schicht und der ersten elektrisch leitfähigen Schicht mittels Laserablation erwärmt sich insbesondere nur die oberste, d.h. die zweite elektrisch leitfähige Schicht. Dies kann besonders vorteilhaft sein, um die erste elektrisch leitfähige Schicht, zum Beispiel eine ITO-Schicht, die eine in der Regel sehr empfindliche Schicht ist, zu schützen. In einer Weiterbildung des erfindungsgemäßen Verfahrens umfasst das Verfahren ferner den Schritt G) des Anordnens wenigstens eines Schutzmaterials in zumindest einem dritten Teilbereich der zweiten elektrisch leitfähigen Schicht, der im zweiten Teilbereich angeordnet ist.
Der Begriff „Schutzmaterial", wie er hierin verwendet wird, bezeichnet ein Material oder eine Substanz, welche dazu dient, das zweite elektrisch leitfähige Material der zweiten
elektrisch leitfähigen Schicht in den Teilbereichen, auf welchen es auf der zweiten elektrisch leitfähigen Schicht aufgebracht wurde, insbesondere im weiteren Verfahrensablauf der Herstellung des elektronischen Bauelements, d.h. in weiteren Prozessschritten, zu schützen.
Das Schutzmaterial kann ein Überzug wie ein Lack und
dergleichen sein. Insbesondere kann das Schutzmaterial ein im alkalischen löslicher Ätz-stopplack sein, beispielsweise ein Ätz-stopplack, wie er bei der Herstellung von Leiterplatten (PCBs) verwendet wird. Dieser Ätzstopplack kann thermisch oder mittels UV-Strahlung vernetzt bzw. gehärtet sein. Das
Schutzmaterial ist bevorzugt in einem Lösungsmittel löslich, in welchem der Isolator nicht löslich ist. Zu nennen sind diesbezüglich etwa alkalische Lösungen beispielsweise schwach alkalische wässrige Lösungen von Salzen u.ä. (z.B. NaOH, KOH, NH40H, oder quartäre Ammoniumsalze wie N(CH3)4OH).
Das Anordnen des Schutzmaterials kann sowohl nach dem
Aufbringen der zweiten elektrisch leitfähigen Schicht auf der ersten elektrisch leitfähigen Schicht und vor dem Aufbringen des Isolators auf der zweiten elektrisch leitfähigen Schicht als auch nach dem Aufbringen des Isolators auf der zweiten elektrisch leitfähigen Schicht und vor dem Aufbringen einer Funktionsschicht auf der zweiten elektrisch leitfähigen
Schicht erfolgen. Das Aufbringen des Schutzmaterials erfolgt dabei derart, dass die zweite elektrisch leitfähige Schicht in dem dritten
Teilbereich mit Schutzmaterial bedeckt und in wenigstens einem vierten Teilbereich der im zweiten Teilbereich angeordnet ist, nicht mit dem Schutzmaterial und nicht mit dem Isolator
bedeckt ist.
Das Schutzmaterial kann - zumindest abschnittsweise - über bzw. auf dem Isolator angeordnet werden.
In einer Weiterbildung des erfindungsgemäßen Verfahrens wird das Schutzmaterial mit einem Abstand zum Isolator auf dem zweiten Teilbereich angeordnet, so dass eine Lücke zwischen dem ersten Teilbereich und dem dritten Teilbereich verbleibt. Das Schutzmaterial wird in dieser Ausführungsform nicht auf dem Isolator angeordnet.
Ein „Abstand", in welchem das Schutzmaterial zum Isolator angeordnet wird, kann ein vorbestimmter Abstand sein. Die „Lücke", welche durch Anordnen des Schutzmaterials unter
Abstand zum Isolator erzeugt wird, kann ein Bereich sein, welcher dem Trennbereich bzw. der Trennlinie zwischen dem ersten und dem zweiten Elektrodenbereich entspricht.
Gemäß dieser Weiterbildung des erfindungsgemäßen Verfahrens ist vorgesehen, dass zumindest ein Teil des ersten elektrisch leitfähigen Materials der ersten elektrisch leitfähigen
Schicht und des zweiten elektrisch leitfähigen Materials der zweiten elektrisch leitfähigen Schicht, welche sich im Bereich des Spalts befinden, wie vorstehend beschrieben ist, entfernt werden. Das abzutragende erste elektrisch leitfähige Material der ersten elektrisch leitfähigen Schicht und das zweite
elektrisch leitfähige Material der zweiten elektrisch leitfähigen Schicht befinden sich im Regelfall dabei unterhalb der Lücke.
In einer Weiterbildung des erfindungsgemäßen Verfahrens zum Herstellen des elektronischen Bauelements umfasst das
Verfahren folgenden Schritt:
H) zumindest teilweises Entfernen der zweiten elektrisch leitfähigen Schicht in wenigstens dem vierten Teilbereich. Dieser Schritt H) kann sowohl nach Schritt C) und vor Schritt D) als auch nach Schritt G) und vor Schritt D) erfolgen.
Das zweite elektrisch leitfähige Material wird dabei im
Wesentlichen im vierten Teilbereich des zweiten Teilbereichs, d.h. in demjenigen Bereich, welcher weder durch Schutzmaterial noch durch Isolator bedeckt ist, entfernt. Durch das Entfernen von zweitem elektrisch leitfähigem Material wird die unter der zweiten elektrisch leitfähigen Schicht liegende erste
elektrisch leitfähige Schicht im Bereich des vierten
Teilbereichs der zweiten elektrisch leitfähigen Schicht freigelegt (und nicht abgetragen) . Das Entfernen erfolgt also mittels einer Technik, die selektiv nur eine Schicht, z.B. eine Metallschicht, entfernt. In einer Weiterbildung des erfindungsgemäßen Verfahrens zum Herstellen des elektronischen Bauelements wird die zweite elektrisch leitfähige Schicht mittels Ätzen entfernt.
Das Ätzen des zweiten elektrisch leitfähigen Materials kann dabei mittels eines Ätzbads erfolgen.
Der Begriff „Ätzen", wie er hierin verwendet wird, bezeichnet das Abtragen des zweiten elektrisch leitfähigen Materials auf der Oberfläche der ersten elektrisch leitfähigen Schicht durch Anwendung geeigneter ätzende Stoffe; dies können chemische Stoffe sein, die das zu entfernende Material in einer chemischen Reaktion verändern (meistens oxidieren) und so meist in Lösung bringen. Ätzmittel sind in der Regel Säuren oder starke Oxidantien. Zu nennen sind beispielsweise HNO3, HCl, H3 PO4 , Essigsäure, H2 S O4 , Cerammoniumnitrat (CAN) und H2O2 .
In einer solchen Ausführungsform sind dabei sowohl der
Isolator als auch das Schutzmaterial resistent gegenüber den zum Ätzen des zweiten elektrisch leitfähigen Materials
verwendeten Chemikalien wie beispielsweise Säuren. Der
Isolator und das Schutzmaterial stellen in den Bereichen der zweiten elektrisch leitfähigen Schicht, auf denen sie
aufgebracht sind, eine Ätzstoppfunktion für die zweite
elektrisch leitfähige Schicht bzw. das zweite elektrisch
leitfähige Material in den entsprechenden Bereichen der
zweiten elektrisch leitfähigen Schicht bereit.
Ferner ist das Ätzbad so ausgewählt, dass die erste elektrisch leitfähige Schicht, beispielsweise eine empfindliche ITO- Schicht, nicht durch die eingesetzten Ätzmittel angegriffen oder beeinträchtigt wird.
Durch Ätzen des zweiten elektrisch leitfähigen Materials
bleiben die Strukturen der ersten elektrisch leitfähigen
Schicht und der zweiten elektrisch leitfähigen Schicht, welche unter der Isolator- und/oder unter der Schutzmaterialschicht liegen, erhalten.
Ein Vorteil des erfindungsgemäßen Verfahrens kann darin
bestehen, dass nur ein einzelner Ätzschritt erforderlich ist, um das zweite elektrisch leitfähige Material in dem im zweiten Teilbereich der zweiten elektrisch leitfähigen Schicht
angeordneten vierten Teilbereich der zweiten elektrisch
leitfähigen Schicht zu entfernen und so Teile der ersten
elektrisch leitfähigen Schicht als ersten und zweiten
Elektrodenbereich freizulegen. In einer Weiterbildung des erfindungsgemäßen Verfahrens umfasst das Verfahren folgenden Schritt:
I) Entfernen des Schutzmaterials von der zweiten elektrisch leitfähigen Schicht.
Das Entfernen des Schutzmaterials von der zweiten elektrisch leitfähigen Schicht erfolgt dabei nach Schritt H) .
Da der Isolator nur an bestimmten, vorher festgelegten Stellen auf die zweite elektrisch leitfähige Schicht aufgebracht wird, muss beim erfindungsgemäßen Verfahren gegebenenfalls nur einmal ein nicht elektrisch leitfähiges Material, das
Schutzmaterial, entfernt werden. Das verwendete Schutzmaterial kann in der Regel mit Hilfe eines geeigneten Lösungsmittels entfernt werden, anstatt, wie es im Stand der Technik üblich sein kann, mittels Ätzen entfernt zu werden.
Das Schutzmaterial kann z.B. auch mittels Strippen entfernt werden. Der Begriff „Strippen" bezeichnet dabei die Veraschung bzw. Entfernung von Schutzmaterial, wie beispielsweise eines (Foto)lacks. In der Regel wird dabei ein Sauerstoffplasma im sogenannten Stripper oder Verascher eingesetzt, um den
(Foto) lack abzubrennen.
Durch das Entfernen des Schutzmaterials von der zweiten elektrisch leitfähigen Schicht, wird zweites elektrisch leitfähiges Material vollständig freigelegt. Die freigelegten Bereiche der zweiten elektrisch leitfähigen Schicht können als zweite Elektrode des elektronischen Bauelements eingesetzt werden. Sie können einen Teil der zweiten Elektrode bilden oder vollständig als zweite Elektrode dienen.
In einer Weiterbildung des erfindungsgemäßen Verfahrens wird der Isolator direkt auf die zweite elektrisch leitfähige
Schicht aufgebracht und derart auf der zweiten elektrisch leitfähigen Schicht angeordnet, dass er sich in unmittelbarer Nähe des Trennbereichs zwischen dem ersten Elektrodenbereich und dem zweiten Elektrodenbereich befindet. Der Begriff „in unmittelbarer Nähe" meint, dass der Isolator derart räumlich auf die zweite elektrisch leitfähige Schicht aufgebracht wird, dass er durch eine nachfolgende Behandlung wie z.B. eine
Erweichung in der Lage ist, in den Trennbereich zwischen dem ersten Elektrodenbereich und dem zweiten Elektrodenbereich zu fließen. Beispielsweise kann der Isolator so angeordnet sein, dass sein Abstand vom Trennbereich nicht größer ist als die Breite des Trennbereichs.
Der Isolator kann in einem vorgegebenen Muster auf der zweiten elektrisch leitfähigen Schicht aufgebracht werden.
Beispielsweise kann ein solches Muster mittels Koordinaten oder dergleichen vor dem Aufbringen des Isolators vorgegeben werden. Der Isolator kann mittels einer Maske oder einer
Schablone oder definierten Koordinaten, welche auf die
Oberfläche der zweiten elektrisch leitfähigen Schicht als Bezugsystem bezogen sind, auf die zweite elektrisch leitfähige Schicht aufgebracht werden.
Durch das Aufbringen des Isolators und des Schutzmaterials an bestimmten Stellen mittels eines Druckverfahrens ist es zudem möglich, die Gefahr von Fehlern durch falsche Ausrichtung der photolithographischen Anlage während des Aufbringens der photoempfindlichen Lacke zu vermindern oder auszuschließen.
In einer Weiterbildung des erfindungsgemäßen Verfahrens wird der Isolator dabei mittels eines Druckverfahrens auf die zweite elektrisch leitfähige Schicht aufgebracht. Geeignete Druckverfahren schließen Flach-, Hoch-, Tief- und
Durchdruckverfahren sowie Kombinationen derselben ein. Der Isolator kann insbesondere mittels Siebdruck,
Tintenstrahldruck, Flexodrucken und dergleichen auf die zweite elektrisch leitfähige Schicht aufgedruckt werden. Weitere geeignete Druckverfahren schließen Tampondruck, Stempeldruck, Pochoir und dergleichen ein.
In gleicher Weise wie der Isolator kann auch das
Schutzmaterial auf die zweite elektrisch leitfähige Schicht aufgedruckt werden. Die vorstehend angegebenen Ausführungen bezüglich geeigneter Druckverfahren gelten daher gleichermaßen für das Aufdrucken des Schutzmaterials.
Mit dem erfindungsgemäßen Verfahren ist durch Aufdrucken des Isolators und des Schutzmaterials vorteilhaft möglich,
gegenüber den im Stand der Technik üblicherweise eingesetzten Verfahren, wie beispielsweise lithographischen Verfahren, sowohl Material als auch Zeit und damit Kosten einzusparen.
Anders als bei den herkömmlich verwendeten
Lithographieverfahren, in denen jeder Beschichtungsschritt individuell aufgebracht und photolithographisch strukturiert wird, ist in dem erfindungsgemäßen Verfahren vorgesehen, nur soviel Materials des Isolators und des Schutzmaterials, welche beide in der Regel teure Materialien sein können, aufzubringen, wie für die Herstellung des elektronischen Bauelements
benötigt werden. Auf diese Weise können beispielsweise OLED- Lichtkacheln, welche mit den herkömmlichen Verfahren aufwendig und teuer herzustellen waren, vorteilhaft zeit- und
materialsparend produziert werden.
Da als Isolator und/oder als Schutzmaterial im
erfindungsgemäßen Verfahren einfache Lacke eingesetzt werden können, kann ferner vorteilhaft auf die Verwendung teurer
Chemikalien, wie beispielsweise photoempfindlicher Lacke, welche in der Regel bei photolithographischen Verfahren
verwendet werden, verzichtet werden. Da erfindungsgemäß keine nachträgliche Strukturierung der einzelnen Schichten erforderlich ist, kann zudem vorteilhaft auf teure Anlagen verzichtet werden.
In einer Weiterbildung des erfindungsgemäßen Verfahrens umfasst das Verfahren den Schritt J) des Einstellens von
Bedingungen, bei denen der Isolator zumindest teilweise in einen fließfähigen Zustand gebracht werden kann und den
Schritt K) des Einbringen oder Einfließenlassen des Isolators in wenigstens einen Abschnitt des Trennbereichs zwischen dem ersten Elektrodenbereich und dem zweiten Elektrodenbereich.
Der Isolator ist dabei insbesondere ein verflüssigbarer
Isolator, wie z.B. ein Polymer oder ein Lack. Um den Isolator verflüssigen zu können, kann dabei vorgesehen sein eine oder mehrere der folgenden Bedingungen, Temperaturerhöhung, Druck, Licht, Reagenzien, Dampf und dergleichen als Bedingungen für die Verflüssigung des Isolators einzustellen. Beispielsweise kann der Isolator bei geeigneter Materialwahl durch Erwärmen der Substratschicht oder durch direkte Wärmeeinstrahlung auf die zweite elektrisch leitfähige Schicht erweichen. Der
Isolator kann dabei über die Kanten der zweiten elektrisch leitfähigen Schicht und/oder der ersten elektrisch leitfähigen Schicht fließen. Ferner kann der Isolator erweicht werden, indem er in eine Atmosphäre eines Lösungsmittels, z.B. Wasser, aber auch eines niedriger siedenden Lösungsmittels,
eingebracht wird. Auf diese Weise kann die Struktur des
Isolators vorteilhaft verrundet werden.
In einer weiteren Weiterbildung wird das Verfahren derart ausgeführt, dass auf der ersten elektrisch leitfähigen Schicht im ersten Elektrodenbereich wenigstens eine Leiterbahn aus dem zweiten elektrisch leitfähigen Material angeordnet wird.
Im fertig hergestellten elektronischen Bauelement ist sowohl mit dem bloßen Auge, als auch unter dem Mikroskop zu erkennen, dass der Isolator aufgedruckt wurde. An den Rändern sind jeweils wellenförmige bzw. zerklüftete Strukturen zu erkennen, welche bei Einsatz eines photolithographischen Verfahrens (deutliche gerade Linie) nicht auftreten.
Das erfindungsgemäß Verfahren ist üblicherweise frei von photolithographischen Schritten und kann daher ein
kostengünstiges Verfahren zum Herstellen eines elektronischen Bauelements, wie beispielsweise einer organischen Leuchtdiode, eingesetzt werden. Mittels des erfindungsgemäßen Verfahrens ist es möglich, ein elektronisches Bauelement mit robustem Design herzustellen. Das erfindungsgemäße Verfahren kann daher auch zur Massenproduktion elektronischer Bauelemente
eingesetzt werden.
In der Summe kann das erfindungsgemäße Verfahren somit ein sehr kostengünstiges Verfahren, beispielsweise zur Herstellung von OLED-Lichtkacheln, bereitstellen.
Die vorliegende Erfindung wird im Folgenden ohne Einschränkung der Allgemeinheit unter Bezugnahme auf die Figuren
veranschaulicht. In der Zeichnung bezeichnen gleiche
Bezugszeichen gleiche oder identische Elemente. Es gilt:
Fig. 1 A-I veranschaulichen ein Verfahren zum Herstellen eines elektronischen Bauelements gemäß einer ersten Ausführungsform der vorliegenden
Erfindung;
Fig. 2 A-I veranschaulichen ein Verfahren zum Herstellen eines elektronischen Bauelements gemäß einer zweiten Ausführungsform der vorliegenden
Erfindung; und
Fig. 3 zeigt eine Draufsicht auf eine Substratvorlage. Fig. 1A bis I zeigen die Vorbereitung eines Substrats zur
Herstellung eines elektronischen Bauelements mit dem
erfindungsgemäßen Verfahren gemäß einer ersten Ausführungsform.
Eine Substratschicht 1 (siehe Fig. 1A) kann beispielsweise aus Glas gebildet sein. Alternativ dazu kann die Substratschicht 1 auch aus Kunststofffolien, beschichteten Kunststofffolien,
Metallfolien, welche z.B. mit einer elektrisch isolierenden Schicht beschichtet sind, und dergleichen gebildet sein.
Die Prozessierung beginnt mit der flächigen Beschichtung der Substratschicht 1 mit einer ersten elektrisch leitfähigen
Schicht 3 (siehe Fig. 1B) .
Die erste elektrisch leitfähige Schicht 3 kann beispielsweise eine transparente Schicht aus ITO sein. Alternativ kann die erste elektrisch leitfähige Schicht 3 auch aus einem anderen transparenten elektrischen Material gebildet werden, wie
beispielsweise ZnO, IN/ZnO, SnZnO, Al-ZnO oder einem anderen geeigneten Material sein, welches dazu ausgelegt ist, dem
Ätzprozess des zweiten elektrisch leitfähigen Materials zu widerstehen . Die Beschichtung kann z.B. mittels Sputtern erfolgen.
Im nächsten Schritt wird die erste elektrisch leitfähige
Schicht 3 flächig mit einer zweiten elektrisch leitfähigen
Schicht 5 beschichtet (siehe Fig. IC) . Als zweites elektrisch leitfähiges Material für die zweite elektrisch leitfähige
Schicht 5 kann dabei ein Metall eingesetzt werden. Es sind jedoch viele weitere Metalle und Kombinationen derselben
möglich. Die zweite elektrisch leitfähige Schicht 5 kann
mittels Sputtern, PVD und dergleichen abgeschieden werden. Wie in Fig. 1D gezeigt, erfolgt anschließend eine
Laserablation, die einen Trennbereich 7 oder einen Graben in der zweiten elektrisch leitfähigen Schicht 5 und der ersten elektrisch leitfähigen Schicht 3 erzeugt. Der Trennbereich 7 stellt die spätere elektrische Isolierung zwischen der Kathode und der Anode des elektronischen Bauelements dar.
Im nächsten Schritt wird, wie in Fig. IE gezeigt, ein Isolator 9 strukturiert auf die zweite elektrisch leitfähige Schicht 5 aufgebracht, so dass zumindest ein erster Teilbereich 11 entsteht, welcher mit dem Isolator 9 bedeckt ist, und
zumindest ein zweiter Teilbereich 13, welcher nicht mit dem Isolator bedeckt ist. Der Isolator 9 kann ein Lack sein. Er kann mittels eines
Druckverfahrens, wie beispielsweise mittels Siebdruck,
Tintenstrahldruck oder Flexodrucken, auf die zweite elektrisch leitfähige Schicht 5 aufgebracht werden. Der Isolator 9 sollte so ausgewählt sein, dass er durch nachträgliche Behandlung erweichbar ist und in einen fließfähigen Zustand gebracht werden kann.
Die Funktion des Isolators 9 ist vorwiegend die elektrische Isolation in dem späteren elektronischen Bauelement und die Ätzstoppfunktion der zweiten elektrisch leitfähigen Schicht 5.
Als nächstes wird ein Schutzmaterial 15 auf die zweite
elektrisch leitfähige Schicht 5 aufgebracht (siehe Fig. 1F) , welches den Isolator 9 teilweise überdecken kann oder auch nicht. Dabei weist die zweite elektrisch leitfähige Schicht 5 nun einen dritten Teilbereich 17 auf, welcher mit
Schutzmaterial 15 bedeckt ist, und einen vierten Teilbereich 19, welcher nicht mit Schutzmaterial bedeckt ist. Das Schutzmaterial 15 kann ein Lack sein. Das Schutzmaterial 15 ist vorzugsweise in einem Lösungsmittel löslich, in welchem der Isolator 9 nicht oder zumindest nur schlecht löslich ist. Das Schutzmaterial 15 kann mittels eines Druckverfahrens, wie beispielsweise mittels Siebdruck, Tintenstrahldruck oder
Flexodrucken, auf die zweite elektrisch leitfähige Schicht 5 aufgebracht werden.
Die Funktion des Schutzmaterials 15 ist insbesondere die
Ätzstoppfunktion der zweiten elektrisch leitfähigen Schicht 5.
Wie in Fig. IG gezeigt, erfolgt als nächstes das Entfernen von zweitem elektrisch leitfähigem Material der zweiten elektrisch leitfähigen Schicht 5, wobei vorzugsweise Ätzen eingesetzt wird. Für das Ätzen der zweiten elektrisch leitfähigen Schicht 5 wird ein Atzbad, wie beispielsweise 3% ige
Trichloressigsäure in Wasser verwendet. Hierbei werden die Metallstrukturen der zweiten elektrisch leitfähigen Schicht 5 des vierten Teilbereichs 19 entfernt, die des ersten
Teilbereichs 11 und des dritten Teilbereichs 17 bleiben im Wesentlichen erhalten.
In Schritt I) wird das Schutzmaterial 15 (in Fig. 1H ist das Schutzmaterial daher nicht mehr gezeigt) unter Verwenden eines Lösungsmittels entfernt.
Anschließend wird die Substratschicht 1 oder der Isolator 9 direkt so erhitzt, dass der Isolator 9 erweicht (Reflow) und über die offenen Kanten der zweiten elektrisch leitfähigen Schicht 5 und der ersten elektrisch leitfähigen Schicht 3 fließt. Wie in Fig. II gezeigt, ist die Struktur des Isolators 9 verrundet.
Auf der so vorbereiteten Substratschicht kann nun in einem üblichen Verfahren das elektronische Bauelement, beispielsweise eine OLED, hergestellt werden. Zu diesem Zweck werden in nachfolgenden Prozessierungsschritten beispielsweise im Vakuum die halbleitenden, lichtgebenden organischen
Schichten und die zweite Elektrodenschicht, beispielsweise eine Kathodenschicht, auf die Substratschicht aufgedampft.
Fig. 2A bis I zeigen die Vorbereitung eines Substrats zur Herstellung eines elektronischen Bauelements mit dem
erfindungsgemäßen Verfahren gemäß einer zweiten
Ausführungsform.
Die zweite Ausführungsform entspricht im Wesentlichen der ersten Ausführungsform, außer dass die Laserablation der ersten elektrisch leitfähigen Schicht 3 und der zweiten elektrisch leitfähigen Schicht 5 nach Auftragen des Isolators 9 und des Schutzmaterials 15 erfolgt:
Nach dem flächigen Aufbringen der zweiten elektrisch
leitfähigen Schicht 5 auf die erste elektrisch leitfähige Schicht 3 wird der Isolator 9 mittels eines Druckverfahrens auf die zweite elektrisch leitfähige Schicht 5 aufgebracht (siehe Fig. 2D) , so dass ein erster Teilbereich 11 mit
Isolator 9 vorhanden ist.
Sodann wird das Schutzmaterial 15 auf die die zweite
elektrisch leitfähige Schicht 5 aufgebracht (siehe Fig. 2E) , dass ein dritter Teilbereich 17 mit Schutzmaterial 15 bedeckt ist .
Anschließend erfolgt, wie in Fig. 2F dargestellt ist, eine Laserablation, durch welche der Trennbereich 7 in der zweiten elektrisch leitfähigen Schicht 5 und in der ersten elektrisch leitfähigen Schicht 3 erzeugt wird. Ein solcher Trennbereich 7 kann beispielsweise die spätere elektrische Isolierung
zwischen Kathode und Anode des elektronischen Bauelements bereitstellen. In diesem Fall sollte der Laserschnitt in einer Lücke zwischen dem Isolator 9 und dem Schutzmaterial 15 verlaufen. Weiterhin sollte der Laserschnitt so nahe an der Kante des Isolators 9 verlaufen, dass beim Prozessschritt des Erweichens des
Isolators 9 der Isolator 9 über die durch den Laser erzeugte Kante der zweiten elektrisch leitfähigen Schicht 5 und der ersten elektrisch leitfähigen Schicht 3 fließt. Im weiteren Verfahren wird das zweite elektrisch leitfähige Material wiederum im vierten Teilbereich 19 der zweiten elektrisch leitfähigen Schicht 5 entfernt (siehe Fig. 2G) , das Schutzmaterial entfernt (siehe Fig. 2H) der Isolator 9 in einen fließfähigen Zustand gebracht und in den Trennbereich 7 eingebracht (siehe Fig. 21) und die restlichen Schichten des elektronischen Bauelements auf die so vorbereitete
Substratschicht abgeschieden (nicht gezeigt) .
Alternativ ist es auch möglich, die erste elektrisch
leitfähige Schicht mittels Laserablation zu strukturieren und sodann zweites elektrisch leitfähiges Material auf die
Bereiche der ersten elektrisch leitfähigen Schicht oder flächig auf die erste elektrisch leitfähige Schicht, so dass zweites elektrisch leitfähiges Material in die durch die
Strukturierung der ersten elektrisch leitfähigen Schicht erzeugten Lücken eingebracht wird, aufzubringen. Die
Strukturierung der ersten elektrisch leitfähigen Schicht kann dann später wieder freigelegt werden, indem der Isolator und das Schichtmaterial so angeordnet werden, dass beim Ätzprozess zweites elektrisch leitfähiges Material in dem Bereich
entfernt wird, in dem in der ersten elektrisch leitfähigen Schicht Gräben oder Ähnliches eingebracht wurden.
Wenn die zweite elektrisch leitfähige Schicht und die erste elektrisch leitfähige Schicht gemeinsam strukturiert werden, können jegliche beim Ablationsprozess entstehenden
Ablagerungen bzw. Verunreinigungen entfernt werden. Eine solche Vorgehensweise kann dem Reinigen von Siliziumwafern ähneln und vorteilhaft einen sehr sauberen Prozess darstellen. Alternativ kann es auch sinnvoll sein, dass der Laser durch den Isolator, die zweite elektrisch leitfähige Schicht und die erste elektrisch leitfähige Schicht schneidet, so dass beim Erweichen (Reflow) des Isolators von beiden Seiten der
Isolator den Trennbereich füllen kann.
Fig. 3 zeigt eine Draufsicht auf eine vorbereitete
Substratschicht 1 zur Herstellung eines elektronischen
Bauelements . Die Substratschicht 1 weist an ihrer Oberseite einen ersten Elektrodenbereich 21 und einen zweiten Elektrodenbereich 23 auf, welche durch den Isolator 9 voneinander isoliert sind.
In der Mitte der in Fig. 3 gezeigten Substratvorlage ist eine Leiterbahn 25 vorgesehen. Zuleitungen 27 sind zur elektrischen Kontaktierung des Bauelements angeordnet.

Claims

Ansprüche
Verfahren zum Herstellen eines elektronischen Bauelements mit zumindest einem ersten Elektrodenbereich (21) und einem zweiten Elektrodenbereich (23) , die durch einen Isolator (9) voneinander getrennt sind und jeweils zumindest eine Teilschicht eines ersten elektrisch leitfähigen Materials aufweisen, mit den Schritten:
A) Bereitstellen einer Substratschicht (1) und wenigstens einer auf der Substratschicht angeordneten ersten elektrisch leitfähigen Schicht (3) aus dem ersten elektrisch leitfähigen Material;
B) Anordnen wenigstens einer zweiten elektrisch
leitfähigen Schicht (5) aus einem zweiten elektrisch leitfähigen Material auf der ersten elektrisch leitfähigen Schicht (3) ;
C) Anordnen wenigstens eines ersten Isolators (9) auf dem Substrat, so dass die zweite elektrisch leitfähige Schicht (5) zumindest einen ersten Teilbereich (11), welcher mit dem Isolator (9) bedeckt ist, und einen zweiten Teilbereich (13), welcher nicht mit dem Isolator bedeckt ist, aufweist und wobei der Isolator (9) so angeordnet wird, dass er dazu dienen kann, den ersten Elektrodenbereich (21) und den zweiten
Elektrodenbereich (23) voneinander zu trennen; und D) Anordnen wenigstens einer Funktionsschicht und
wenigstens einer zweiten Elektrodenschicht auf der in Schritt C) erhaltenen zweiten elektrisch leitfähigen Schicht (5), welche in Abschnitten mit dem Isolator (9) bedeckt ist. Verfahren nach Anspruch 1, ferner umfassend wenigstens einen der folgenden Schritte:
E) Entfernen von erstem elektrisch leitfähigen Material der ersten elektrisch leitfähigen Schicht (3)
zumindest entlang eines vorbestimmten Trennbereichs zwischen dem ersten Elektrodenbereich (21) und dem zweiten Elektrodenbereich (23) , wobei der Schritt E) zwischen Schritt A) und Schritt B) erfolgt; oder
F) Entfernen von erstem elektrisch leitfähigen Material der ersten elektrisch leitfähigen Schicht (3) und über dem ersten elektrisch leitfähigen Material befindlichen zweiten elektrisch leitfähigen Material der zweiten elektrisch leitfähigen Schicht (5) zumindest entlang eines vorbestimmten Trennbereichs zwischen dem ersten Elektrodenbereich (21) und dem zweiten Elektrodenbereich (23) , wobei der Schritt F) zwischen Schritt B und Schritt C erfolgt .
Verfahren nach Anspruch 2, wobei das Entfernen des ersten elektrisch leitfähigen Materials gemäß Schritt E) oder das Entfernen des ersten elektrisch leitfähigen Materials und des zweiten elektrisch leitfähigen Materials gemäß Schritt
F) mittels Laserablation erfolgt.
Verfahren nach einem der vorangegangenen Ansprüche, ferner umfassend den Schritt:
G) Anordnen wenigstens eines Schutzmaterials (15) in
zumindest einem dritten Teilbereich (17), der zumindest teilweise im zweiten Teilbereich (13) angeordnet ist, zwischen Schritt B) und Schritt C) und/oder zwischen Schritt C) und Schritt D) , so dass die zweite elektrisch leitfähige Schicht (5) in wenigstens einem vierten Teilbereich (19), der zumindest teilweise im zweiten Teilbereich (13) angeordnet ist, nicht mit dem Schutzmaterial (15) bedeckt ist.
Verfahren nach einem der Ansprüche 2 bis 4, wobei das Schutzmaterial (15) mit einem Abstand zum Isolator (9) auf dem zweiten Teilbereich (13) angeordnet wird, so dass ein Spalt zwischen dem ersten Teilbereich (11) und dem dritten Teilbereich (13) verbleibt, und wobei zumindest ein Teil des ersten elektrisch leitfähigen Materials der ersten elektrisch leitfähigen Schicht (3) und des zweiten
elektrisch leitfähigen Materials der zweiten elektrisch leitfähigen Schicht (5) , welche sich im Bereich des Spalts befinden, gemäß der Schritt F) entfernt werden.
Verfahren nach einem der vorangegangenen Ansprüche, ferner umfassend den Schritt:
H) zumindest teilweises Entfernen der zweiten elektrisch leitfähigen Schicht (5) in wenigstens dem vierten Teilbereich (19) des zweiten Teilbereichs (13), wobei der Schritt H) zwischen dem Schritt C und dem
Schritt D und/oder zwischen dem Schritt G und dem Schritt D erfolgt.
Verfahren nach Anspruch 6, wobei zweite elektrisch
leitfähige Schicht (5) mittels Ätzen entfernt wird.
8. Verfahren nach einem der Ansprüche 6 bis 7, ferner
umfassend den Schritt:
I) Entfernen des Schutzmaterials (15) von der zweiten elektrisch leitfähigen Schicht (5) , wobei der Schritt I) nach dem Schritt H) erfolgt.
9. Verfahren nach einem der vorangegangenen Ansprüche, wobei der Isolator (9) in Schritt C) direkt auf die zweite elektrisch leitfähige Schicht (5) aufgebracht wird und derart auf der zweiten elektrisch leitfähigen Schicht (5) angeordnet wird, dass er sich im Wesentlichen in
unmittelbarer Nähe des Trennbereichs zwischen dem ersten Elektrodenbereich (21) und dem zweiten Elektrodenbereich
(23) befindet.
10. Verfahren nach Anspruch 9, wobei der Isolator (9) mittels eines Druckverfahrens auf die zweite elektrisch leitfähige Schicht (5) aufgebracht wird.
11. Verfahren nach einem der vorangegangenen Ansprüche, ferner umfassend die Schritte: J) Einstellen von Bedingungen, bei denen der Isolator
(9) zumindest teilweise in einen fließfähigen Zustand gebracht werden kann; und
K) Einbringen des Isolators (9) in wenigstens einen
Abschnitt des Trennbereichs zwischen dem ersten
Elektrodenbereich (21) und dem zweiten
Elektrodenbereich (23) .
12. Verfahren nach einem der vorangegangenen Ansprüche, wobei das erste elektrisch leitfähige Material ein transparentes leitfähiges Oxid ist. 13. Verfahren nach einem der vorangegangenen Ansprüche, wobei das zweite elektrisch leitfähige Material ein Metall ist.
14. Verfahren nach einem der vorangegangenen Ansprüche,
welches derart ausgeführt wird, dass auf der ersten elektrisch leitfähigen Schicht (3) im ersten
Elektrodenbereich (21) wenigstens eine Leiterbahn aus dem zweiten elektrisch leitfähigen Material angeordnet wird.
15. Elektronisches Bauelement, hergestellt mit einem Verfahren gemäß einem der Ansprüche 1 bis 14.
PCT/EP2010/063623 2009-09-25 2010-09-16 Verfahren zum herstellen eines elektronischen bauelements sowie elektronisches bauelement WO2011036089A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/498,307 US9203029B2 (en) 2009-09-25 2010-09-16 Method for producing an electronic component
US14/885,577 US9583729B2 (en) 2009-09-25 2015-10-16 Method for producing an electronic component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009043066.0 2009-09-25
DE102009043066 2009-09-25
DE102009060066.3 2009-12-22
DE102009060066.3A DE102009060066B4 (de) 2009-09-25 2009-12-22 Verfahren zum Herstellen eines elektronischen Bauelements sowie elektronisches Bauelement

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/498,307 A-371-Of-International US9203029B2 (en) 2009-09-25 2010-09-16 Method for producing an electronic component
US14/885,577 Division US9583729B2 (en) 2009-09-25 2015-10-16 Method for producing an electronic component

Publications (1)

Publication Number Publication Date
WO2011036089A1 true WO2011036089A1 (de) 2011-03-31

Family

ID=43662663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063623 WO2011036089A1 (de) 2009-09-25 2010-09-16 Verfahren zum herstellen eines elektronischen bauelements sowie elektronisches bauelement

Country Status (3)

Country Link
US (2) US9203029B2 (de)
DE (1) DE102009060066B4 (de)
WO (1) WO2011036089A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011086689B4 (de) 2011-11-21 2017-02-16 Osram Oled Gmbh Verfahren zum Herstellen eines opto-elektronischen Bauelements
WO2013101240A1 (en) 2011-12-31 2013-07-04 Intel Corporation Manufacturing advanced test probes
DE102012109142B4 (de) 2012-09-27 2019-04-25 Osram Oled Gmbh Verfahren zum Herstellen eines passiven elektronischen Bauelements und Verfahren zum Herstellen einer optoelektronischen Baugruppe
DE102012109218B4 (de) 2012-09-28 2018-06-28 Osram Oled Gmbh Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe
DE102013104604A1 (de) * 2013-05-06 2014-11-20 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen einer optoelektronischen Baugruppe und optoelektronische Baugruppe
DE102013105154A1 (de) * 2013-05-21 2014-12-11 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
DE102013107693B4 (de) 2013-07-18 2021-05-06 Pictiva Displays International Limited Verfahren zum Ausbilden einer Leiterbahnstruktur auf einer Elektrodenfläche eines elektronischen Bauelementes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156913A (ja) * 2007-12-25 2009-07-16 Kyocera Corp 有機elディスプレイ及びその製造方法
WO2009110186A1 (ja) * 2008-03-04 2009-09-11 パナソニック株式会社 発光素子及びディスプレイデバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2269692A (en) 1991-06-24 1993-01-25 Durel Corporation Electroluminescent lamp
US5866919A (en) * 1996-04-16 1999-02-02 Lg Electronics, Inc. TFT array having planarized light shielding element
DE19715048C2 (de) 1997-04-11 1999-08-19 Bosch Gmbh Robert Verfahren zum Strukturieren einer transparenten, elektrisch leitfähigen Schicht
TW413844B (en) 1998-11-26 2000-12-01 Samsung Electronics Co Ltd Manufacturing methods of thin film transistor array panels for liquid crystal displays and photolithography method of thin films
KR100556349B1 (ko) * 2003-10-28 2006-03-03 엘지.필립스 엘시디 주식회사 액정표시소자용 어레이 기판의 제조방법
TWI326375B (en) 2006-04-21 2010-06-21 Chimei Innolux Corp Liquid crystal display device
JP2009538497A (ja) 2006-05-22 2009-11-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機発光ダイオード(oled)内の光放出領域から非光放出領域を分離する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156913A (ja) * 2007-12-25 2009-07-16 Kyocera Corp 有機elディスプレイ及びその製造方法
WO2009110186A1 (ja) * 2008-03-04 2009-09-11 パナソニック株式会社 発光素子及びディスプレイデバイス
US20100084646A1 (en) * 2008-03-04 2010-04-08 Panasonic Corporation Light-emitting element and display device

Also Published As

Publication number Publication date
DE102009060066A1 (de) 2011-03-31
US20160043339A1 (en) 2016-02-11
US20120267147A1 (en) 2012-10-25
US9203029B2 (en) 2015-12-01
DE102009060066B4 (de) 2017-03-30
US9583729B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
DE102009060066B4 (de) Verfahren zum Herstellen eines elektronischen Bauelements sowie elektronisches Bauelement
EP0008359B1 (de) Verfahren zum Herstellen einer Dünnfilmstruktur
DE2321099C3 (de) Verfahren zur Herstellung einer Anordnung mit einem transparenten Leitermuster
DE69622607T2 (de) Flüssigkristall-Anzeige und Verfahren zu ihrer Herstellung
EP0002669B1 (de) Verfahren zum Entfernen von Material von einem Substrat durch selektive Trockemätzung und Anwendung dieses Verfahrens bei der Herstellung von Leitungsmustern
DE69012444T2 (de) Excimer-induzierte flexible Zusammenschaltungsstruktur.
DE68920291T2 (de) Verfahren zum Herstellen von leitenden Bahnen und Stützen.
DE2709933A1 (de) Verfahren zum herstellen durchgehender metallischer verbindungen zwischen mehreren metallisierungsebenen in halbleitervorrichtungen
EP0549791B1 (de) Mehrlagenleiterplatte und verfahren zu ihrer herstellung
DE3604368A1 (de) Verfahren zur herstellung eines duennfilm-transistors
DE68917918T2 (de) Kryogenes verfahren für metallabzug.
DE2504500A1 (de) Verfahren zur herstellung eines musters aus einer oder mehreren schichten auf einer unterlage durch oertliche entfernung dieser schicht oder schichten durch sputteraetzen und gegenstaende, insbesondere halbleiteranordnungen, die unter verwendung dieses verfahrens hergestellt sind
DE102016119676A1 (de) Verfahren und Halbleiterchipvorrichtung
DE3714920C1 (de) Verfahren zur Herstellung einer Duennschicht-Solarzellenanordnung
DE19509231C2 (de) Verfahren zum Aufbringen einer Metallisierung auf einem Isolator und zum Öffnen von Durchgangslöchern in diesem
DE19501693C2 (de) Verfahren zum Herstellen von elektronischen Bauelementen und mit diesem Verfahren hergestelltes elektronisches Bauelement
DE112016000795B4 (de) Verfahren zum herstellen eines elektronischen bauelements
WO2022028852A1 (de) Verfahren zur leiterplattenherstellung
DE112017004155T5 (de) Leiterplatte und Verfahren zur Herstellung derselben
DE69508019T2 (de) Verfahren zum photolithographischen metallisieren zumindest der innenseiten von löchern die in zusammenhang mit einem auf einer aus elektrisch isolierendem material bestehende platte befindlichen muster aufgebracht sind
DE102019112472B3 (de) Verfahren zur Herstellung eines ein Trägersubstrat aufweisenden Displays sowie ein nach diesem Verfahren hergestelltes Trägersubstrat
DE102019112030B4 (de) Verfahren zum Strukturieren eines Substrats
DE2703473C2 (de)
DE102015100692B4 (de) Verfahren zur Erstellung einer zweidimensionalen elektronischen Struktur und zweidimensionale elektronische Struktur
DE102008011248A1 (de) Verfahren zur Herstellung von Leiterplatten mit bestückten Bauelementen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10759844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13498307

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10759844

Country of ref document: EP

Kind code of ref document: A1