WO2011030827A1 - 浸炭窒化部材の製造方法 - Google Patents

浸炭窒化部材の製造方法 Download PDF

Info

Publication number
WO2011030827A1
WO2011030827A1 PCT/JP2010/065532 JP2010065532W WO2011030827A1 WO 2011030827 A1 WO2011030827 A1 WO 2011030827A1 JP 2010065532 W JP2010065532 W JP 2010065532W WO 2011030827 A1 WO2011030827 A1 WO 2011030827A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonitriding
temperature
carburizing
shot peening
quenching
Prior art date
Application number
PCT/JP2010/065532
Other languages
English (en)
French (fr)
Inventor
直幸 佐野
雅之 堀本
善成 岡田
政樹 天野
彬仁 二宮
Original Assignee
住友金属工業株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社, 本田技研工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP2011530874A priority Critical patent/JP5639064B2/ja
Priority to CN201080040230.0A priority patent/CN102482756B/zh
Publication of WO2011030827A1 publication Critical patent/WO2011030827A1/ja
Priority to US13/415,198 priority patent/US9062364B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a method for producing a carbonitrided member (hereinafter referred to as “carbonitriding member”). More specifically, the present invention relates to a method for producing a carbonitrided member that is suitable as a power transmission component and has excellent wear resistance, limit strength against pitting, and bending fatigue strength.
  • alloy steels for machine structures specified in JIS G 4053 (2008) have been conventionally forged. It is manufactured by forming it into a predetermined shape by processing such as cutting, subjecting it to surface hardening treatment such as carburizing and quenching and carbonitriding and quenching, and further tempering.
  • Alloy steels for machine structural use that contain about 0.2% by mass of carbon and are used as materials for carburized parts and carbonitrided parts include manganese-based materials represented by SMn420 and manganese-chromium materials represented by SMnC420.
  • SMn420 manganese-based materials represented by SMn420
  • SMnC420 manganese-chromium materials represented by SMnC420.
  • SCr420 chromium system represented by SCr420
  • SCM420 chromium molybdenum system
  • Carbonitriding includes “gas carbonitriding” in which ammonia gas is mixed in a carburizing atmosphere and nitriding at the same time as carburizing. Nitrogen is said to have an effect of increasing the so-called “temper softening resistance”. ing. However, nitrogen has an action of suppressing the diffusion of carbon, and in addition, since the nitriding treatment is performed at a lower temperature than the carburizing treatment, there is a problem that the hardening depth becomes small. Furthermore, since nitrogen is an austenite stabilizing element and lowers the Ms point in the same manner as C, residual austenite is likely to be present, and it is difficult to obtain hard martensite.
  • Patent Documents 1 to 4 are disclosed in Patent Documents 1 to 4, respectively, “Production method of gear with excellent tooth surface strength”, “High-strength gear”, and “Carburization with excellent pitting resistance”. It is disclosed as “heat treatment method for nitriding member” and “high hardness part”.
  • JP-A-11-51155 JP-A-7-190173 Japanese Patent Laid-Open No. 2001-140020 JP 2002-194492 A
  • the amount of retained austenite is 10 to 40% in order to make dense martensite containing nitrogen, or dense martensite containing nitrogen and lower bainite as a main structure. It is a technology that only limits to Therefore, sufficient wear resistance and pitching strength cannot always be obtained.
  • the soft retained austenite is decomposed into martensite and ⁇ carbide by tempering at a temperature of 200 to 560 ° C. higher than the conventional 150 to 180 ° C., and the surface hardness is reduced.
  • nitrides such as CrN and AlN can be finely precipitated and harden by precipitation, thereby improving the pitting resistance.
  • Patent Document 4 The carbonitriding steel applied to high-hardness parts disclosed in Patent Document 4 is based on the technical idea of increasing the Si content and increasing the temper softening resistance. However, when only general gas carbonitriding is applied without controlling the atmosphere of carbonitriding, acceleration of grain boundary oxidation cannot be avoided due to the high Si content. There was a problem that the surface hardness was not obtained.
  • the carbonitriding techniques proposed so far have been insufficient to efficiently provide a carbonitriding member excellent in both wear resistance and pitching strength. Furthermore, the carbonitriding technique described above may not ensure sufficient bending fatigue strength.
  • the present invention has been made in view of the above situation, and even if the content of Mo, which is an expensive alloy element, is reduced or Mo is not added, excellent wear resistance, large pitching strength and excellent
  • An object of the present invention is to provide a method for producing a carbonitrided member having high bending fatigue strength.
  • the present inventor conducted a carbonitriding experiment under various conditions using chromium-based case represented by SCr420 and chromium-molybdenum case-hardened steel represented by SCM420, and the wear resistance and pitching strength of the carbonitrided member
  • the relationship with the microstructure of the hardened surface layer was investigated.
  • knowledge about a microstructure capable of exhibiting excellent wear resistance and large pitching strength by carbonitriding was obtained, and based on this knowledge, in the application of Japanese Patent Application No. 2008-307250, “carbonitriding member” And a method for producing a carbonitrided member ”.
  • the present inventor has continuously conducted extensive research on a microstructure that is excellent in bending fatigue strength in addition to exhibiting excellent wear resistance and large pitching strength by carbonitriding. As a result, the following findings (a) to (c) were obtained.
  • the present invention has been completed based on the above findings, and the gist of the present invention resides in a method for producing a carbonitriding member shown in the following (1) to (4).
  • Steel material of the material is mass%, C: 0.10 to 0.35%, Si: 0.15 to 1.0%, Mn: 0.30 to 1.0%, Cr: 0.40
  • a method for producing a carbonitriding member containing ⁇ 2.0% and S: 0.05% or less, the balance being Fe and impurities Following carburizing to maintain a steel part having the above composition in a carburizing atmosphere of 900-950 ° C., Carburizing and nitriding to be performed in a carbonitriding atmosphere at a temperature of 800 to 900 ° C. and a nitrogen potential of 0.2 to 0.6%, Then quenching, Further shot peening is performed.
  • a method for producing a carbonitriding member characterized by that.
  • the steel material of the material is mass%, C: 0.10 to 0.35%, Si: 0.15 to 1.0%, Mn: 0.30 to 1.0%, Cr: 0.40
  • a method for producing a carbonitriding member containing ⁇ 2.0% and S: 0.05% or less, the balance being Fe and impurities Following carburizing to maintain a steel part having the above composition in a carburizing atmosphere of 900-950 ° C., Carburizing and nitriding to be performed in a carbonitriding atmosphere at a temperature of 800 to 900 ° C. and a nitrogen potential of 0.2 to 0.6%, Then quenching, Further, after tempering in a temperature range of more than 250 ° C. and 350 ° C. or less, a shot peening treatment is performed.
  • a method for producing a carbonitriding member characterized by that.
  • the steel material of the dough contains Mo: 0.50% or less in mass% instead of part of Fe
  • “immediately after heating to a temperature of 350 ° C. or lower” means “after heating to a temperature T ° C. of 350 ° C. or lower, and at that temperature T ° C.” and “a temperature T ° C. of 350 ° C. or lower. After heating up, immediately after taking out from the heating furnace.
  • the carbonitriding member obtained by the method for producing a carbonitriding member of the present invention is required to be further reduced in size and strength in order to realize a reduction in the weight of the vehicle body that directly leads to an improvement in fuel consumption. It can be used for power transmission parts such as a gear for an automobile transmission and a pulley for a belt type continuously variable transmission. Furthermore, the manufacturing cost can be reduced as compared with the conventional power transmission component.
  • FIG. 2 is a diagram showing the results of hardness measurement performed in Examples, comparing test symbols 1-a and 1-e in Table 1.
  • FIG. 2 is a diagram showing the result of hardness measurement performed in an example by comparing test symbols 1-b and 1-f in Table 1.
  • FIG. 2 is a diagram showing the results of hardness measurement performed in Examples, comparing test symbols 1-c and 1-h in Table 1.
  • C 0.10 to 0.35%
  • C is the most important element for determining the strength of the steel material, and in order to ensure the strength of the dough, that is, the strength of the core portion that is not hardened by quenching after carbonitriding, it is necessary to contain 0.10% or more. is there. On the other hand, when the content exceeds 0.35%, the toughness of the core part is lowered or the machinability is lowered. Therefore, the content of C is set to 0.10 to 0.35%.
  • the C content is preferably 0.20% or more and 0.30% or less.
  • Si 0.15-1.0%
  • Si is an element that has the effect of suppressing the precipitation of cementite and increasing the temper softening resistance, and also contributes to an increase in core strength as a solid solution strengthening element.
  • Si also has the effect of suppressing the transformation of austenite to pearlite.
  • Mn 0.30 to 1.0%
  • Mn is an austenite stabilizing element that lowers the activity of C in austenite and promotes carburization. Mn also has the effect of forming MnS together with S to improve machinability. In order to obtain these effects, a Mn content of 0.30% or more is necessary. However, even if Mn is contained in excess of 1.0%, the effect is saturated and the cost increases, and the machinability may even deteriorate. Therefore, the Mn content is set to 0.30 to 1.0%. The Mn content is desirably 0.50% or more and 0.90% or less.
  • Cr 0.40 to 2.0%
  • Cr is an element having a large affinity for carbon and nitrogen, and has an effect of promoting carbonitriding by lowering the activity of C and N in austenite during carbonitriding.
  • Cr also has the effect of increasing the strength of the core that is not hardened by quenching after carbonitriding by the action of solid solution strengthening.
  • the Cr content is set to 0.40 to 2.0%.
  • the Cr content is desirably 0.50% or more and 1.80% or less.
  • S 0.05% or less
  • S is an element contained as an impurity. Moreover, it is an element which forms MnS with Mn and improves machinability. In order to obtain this effect, the S content is desirably 0.01% or more. On the other hand, when the content of S becomes excessive, especially when it exceeds 0.05%, the hot ductility is lowered and cracking is likely to occur during forging. Therefore, the S content is 0.05% or less. The S content is preferably 0.03% or less.
  • One of the steel materials of the dough of the present invention is composed of Fe and impurities in the balance in addition to the above elements.
  • Impurity refers to materials mixed from ore and scrap as raw materials or the environment when steel materials are industrially produced.
  • Another one of the steel materials of the dough of the present invention contains the following amount of Mo in addition to the above elements.
  • Mo 0.50% or less
  • Mo is an element having an effect of suppressing the generation of an abnormal layer due to an incompletely quenched structure and / or grain boundary oxidation in the surface layer of the member, and also an effect of increasing the core hardness.
  • Mo may be contained. However, if the Mo content exceeds 0.50%, not only the material cost increases, but also the machinability deteriorates remarkably. Therefore, the amount of Mo in the case of inclusion is set to 0.50% or less. When Mo is contained, the amount of Mo is desirably 0.30% or less.
  • the amount of Mo is desirably 0.05% or more, and more desirably 0.10% or more.
  • P is contained as an impurity, but P is acceptable if the content is up to 0.05%.
  • the amount of P contained as an impurity is preferably 0.03% or less.
  • “Carbonitriding” process A “quenching” step after carbonitriding and a step of performing shot peening treatment while heating to a temperature of 350 ° C. or lower, or immediately after heating to a temperature of 350 ° C. or lower.
  • (Iii) a “carburizing” step of maintaining a carburizing atmosphere at 900 to 950 ° C .; Following the carburization described above, the temperature is lowered to 800 to 900 ° C., and the nitrogen potential is maintained in an atmosphere having a nitrogen potential of 0.2 to 0.6% while maintaining the carburizing atmosphere and also having nitriding properties.
  • the carburizing ability and nitriding ability of the atmosphere are defined as a carbon potential and a nitrogen potential, respectively, and are represented by the carbon concentration and the nitrogen concentration on the surface of the member to be treated when the treatment temperature reaches equilibrium with the treatment atmosphere.
  • the carbon concentration profile and the nitrogen concentration profile in the depth direction from the surface of the member to be processed are determined.
  • the nitrogen concentration in the surface layer portion of the member is analyzed to estimate the nitrogen potential during processing. Accordingly, the average concentration of nitrogen from the outermost surface of the processing member to the position of 50 ⁇ m when the processing temperature reaches equilibrium with the processing atmosphere is referred to as “nitrogen potential”.
  • FIG. 1 schematically shows conditions applied in the examples of the present invention as an example of a “carburizing” process, a “carbonitriding” process, a “quenching” process after carbonitriding, and a “heating” process after quenching.
  • “Cp” and “Np” in the figure represent a carbon potential and a nitrogen potential, respectively.
  • the figure in this example illustrates the “quenching” process as “oil quenching”, the “heating” process as “tempering”, and the cooling during tempering as “cooling in the atmosphere”. is there.
  • the carbon potential does not necessarily need to be kept constant in both the carburizing and carbonitriding processes. From the viewpoint of target surface carbon concentration, effective hardened layer depth, and efficient operation, it may be appropriately changed.
  • an endothermic gas that is a mixed gas of CO, H 2 and N 2 obtained by modifying a hydrocarbon gas such as butane and propane with air (this gas is usually “ “Gas carburizing", which is carburized by adding together with a gas called “enriched gas” such as butane and propane.
  • the processing temperature in this “carburizing” step that is, the holding temperature of the carburizing atmosphere is set to 900 to 950 ° C. If the temperature exceeds 950 ° C., the crystal grains are likely to be coarsened, and the strength after quenching tends to be reduced. If the temperature is lower than 900 ° C., it becomes difficult to obtain a sufficient cured layer depth. The time for maintaining the temperature depends on the desired depth of the cured layer, but may be, for example, about 2 to 15 hours. The above carbon potential can be controlled exclusively by the amount of enriched gas added.
  • the “carbonitriding” step following the “carburizing” step is performed in a carbonitriding atmosphere at a temperature of 800 to 900 ° C. and a nitrogen potential of 0.2 to 0.6%.
  • both ⁇ -Fe 3 N and ⁇ -Fe 2 N which are iron nitride particles having a major axis of several tens to several hundreds of nm, particularly 50 to 300 nm, are precipitated and dispersed. Not only cannot be made, but incompletely hardened structures other than retained austenite and martensite may occur. If the nitrogen potential exceeds 0.6%, the iron nitride particles described above are likely to be coarsened, the major axis exceeds 300 nm, and dispersion strengthening by the iron nitride particles cannot be achieved.
  • the above-mentioned “carbonitriding” step may be performed, for example, by reducing the furnace temperature to 800 to 900 ° C., which is the temperature for carbonitriding, in the gas atmosphere of the carburizing step, and then adding ammonia gas.
  • the nitrogen potential at this time can be controlled by the amount of ammonia gas added.
  • the holding time in the carbonitriding atmosphere may be several hours, for example, 1 to 2 hours.
  • the “quenching” step after carbonitriding may be performed as an “oil quenching” step as illustrated in FIG.
  • austenite In the carbonitriding process, nitrogen dissolves in austenite, so that austenite is stabilized. For this reason, even when quenched by oil quenching, austenite that does not transform into martensite, that is, retained austenite is likely to be generated. Since the said retained austenite reduces the surface layer hardness of a carbonitriding member, pitching strength will fall.
  • 150 to Tempering was performed at a low temperature of about 180 ° C.
  • the retained austenite produced when quenching after carbonitriding under the conditions described as the steps (i) to (iii) is transformed into work-induced martensite by performing any of the following treatments after quenching, Hardness increases.
  • -Further shot peening is performed after the above quenching.
  • a shot peening process is performed, heating to the temperature of 350 degrees C or less, or immediately after heating to the temperature of 350 degrees C or less.
  • a shot peening process is performed after further tempering in the temperature range exceeding 250 degreeC and 350 degrees C or less.
  • the residual austenite in which iron nitride particles ( ⁇ -Fe 3 N and / or ⁇ -Fe 2 N) having a major axis of several tens to several hundreds of nanometers, particularly 50 to 300 nm are dispersed is represented by “i”
  • iron nitride particles ⁇ -Fe 3 N and / or ⁇ -Fe 2 N
  • the above retained austenite decomposes into ferrite, Fe 3 C and ⁇ ′-Fe 4 N when heated to a temperature exceeding 350 ° C. Therefore, even if shot peening is performed immediately after heating, the hardness increases. The effect is small.
  • the above retained austenite is (Ii) by performing a shot peening treatment while heating to a temperature of 350 ° C. or lower after quenching or immediately after heating to a temperature of 350 ° C. or lower, Alternatively, by (iii) "performing shot peening after performing quenching and further tempering in a temperature range of more than 250 ° C to 350 ° C or less"
  • the hardness of the surface layer increases as follows.
  • phase decomposition due to isothermal bainite transformation occurs, and the residual austenite is It becomes a fine bainitic ferrite having a width of about 50 to 200 nm and a length of about 200 nm to 1 ⁇ m, and Fe 3 C and ⁇ ′′ -Fe 16 N 2 , and the hardness is increased. Even if the isothermal bainite transformation is still in progress and the residual austenite is not completely decomposed and remains partially, the shot peening treatment should be performed while heating or immediately after heating. For example, since the isothermal bainite transformation is promoted by mechanical energy, a higher hardness increasing effect can be obtained.
  • the residual austenite hardly decomposes due to the isothermal bainite transformation, but is similar to the case where the shot peening treatment is performed after the quenching in (i). By performing the shot peening treatment, it is transformed into work-induced martensite, so that an effect of increasing hardness can be obtained.
  • phase decomposition due to isothermal bainite transformation occurs as described above.
  • the retained austenite becomes fine bainitic ferrite having a width of about 50 to 200 nm and a length of about 200 nm to 1 ⁇ m, and Fe 3 C and ⁇ ′′ -Fe 16 N 2 , and the hardness increases.
  • the remaining austenite is transformed into work-induced martensite by performing shot peening after tempering.
  • the hardness is further increased, and in addition, the bay formed by the isothermal bainite transformation by shot peening treatment. Because ticks ferrite also work hardening, the hardness of the surface layer is further increased.
  • ⁇ -Fe 3 N and ⁇ -Fe 2 N which are iron nitride particles having a major axis of several tens to several hundreds of nanometers existing before the shot peening in the step (i), are changed by the shot peening treatment. There is no.
  • ⁇ -Fe 3 N and ⁇ -Fe 2 N having a major axis of several tens to several hundreds of nanometers existing before heating in step (ii) and before tempering in step (iii) are similarly shot peened. It does not change with processing. That is, the effect that the iron nitride particles have a high hardness and the effect of so-called “dispersion strengthening” are not impaired by the shot peening treatment.
  • the compressive residual stress introduced by the shot peening process is effective in improving the bending fatigue strength.
  • martensite fabrics produced during the quenching process ferrite fabrics produced by isothermal bainite transformation of retained austenite, or martensite fabrics processed and transformed from retained austenite, those existing on the surface layer are plastically deformed by the impact of shot grains. As a result, elastic restraint occurs at the boundary with the region not plastically deformed.
  • compressive residual stress has the effect which suppresses generation
  • Ausfoam is a technique well known in the field of so-called “thermo-mechanically controlled process (TMCP)” of steel materials. This is a technique in which when supercooled austenite is processed at a relatively low temperature and then cooled to a bainite structure, the structure is further refined and a steel material having an excellent balance of strength and toughness can be obtained. If quenching is performed at a high cooling rate, martensite is refined. The fine bainite and martensite thus produced in ausfoam are called ausformed bainite and ausformed martensite, respectively.
  • TMCP thermo-mechanically controlled process
  • the member since it is once cooled to room temperature by carbonitriding and quenching before shot peening, it differs from ausfoam that is processed in the steel cooling process, but the residual austenite is “ Since it can be regarded as “supercooled austenite”, the processing of this can be referred to as austenite metallurgically.
  • an ausforming effect may be accompanied.
  • the heating temperature before starting shot peening and the heating holding temperature after starting shot peening may not be the same. For example, after putting in an electric furnace at 300 ° C. and heating, this may be taken out and placed on a hot plate set at 250 ° C., and shot peened while being “heated and held”.
  • shot peening As a method of shot peening, known shot peening using an air nozzle or an impeller can be applied. An example of typical conditions for shot peening in the present invention is shown below.
  • Diameter of shot material (particle diameter of shot particles): 0.2 to 0.8 mm, -Projection material hardness: 600 to 800 in terms of Vickers hardness ⁇ Projection pressure: 0.1 to 0.5 MPa, ⁇ Projection speed: 30-100m / s, ⁇ Coverage: 200-500%, -Arc height: 0.4 to 0.6 mmA.
  • the production conditions of the present invention consist of any of the above steps (i) to (iii).
  • ⁇ -Fe 3 N and ⁇ -Fe 2 N iron nitrides can be confirmed by, for example, collecting thin film samples and observing them with a transmission electron microscope (hereinafter referred to as “TEM”). Can do. Whether ⁇ -Fe 3 N or ⁇ -Fe 2 N is obtained by taking an electron diffraction pattern from a region containing these iron nitrides and analyzing the diffraction pattern to obtain a crystal structure and a lattice constant. Can be identified.
  • TEM transmission electron microscope
  • each phase can be identified.
  • the present inventor previously reduced the content of Mo, which is an expensive alloy element, according to the application of Japanese Patent Application No. 2008-307250 proposed as “carbonitriding member and carbonitriding member production method”. Even if it was not added, it was shown that excellent wear resistance and large pitching strength could be secured.
  • the carbonitriding member manufacturing method in the above-mentioned application is described as follows: “The steel material of the material is mass%, C: 0.10 to 0.35%, Si: 0.15 to 1.0%, Mn : 0.30 to 1.0%, Cr: 0.40 to 2.0%, S: 0.05% or less, and if necessary, Mo: 0.50% or less, the balance being A method for producing a carbonitriding member comprising Fe and impurities, wherein the temperature is 800 to 900 ° C. and the nitrogen potential is 0.2 to 0.6% following carburizing in a carburizing atmosphere at 900 to 950 ° C.
  • the carbonitriding is performed in a carbonitriding atmosphere, followed by quenching, and then tempering in a temperature range of more than 250 ° C. and 350 ° C. or less.
  • the present inventor reduced the content of Mo, which is an expensive alloy element, by the above manufacturing method, or a carbonitriding member having excellent wear resistance and high pitting strength even when Mo is not added. Was obtained.
  • the above steel 1 is a steel having an increased Cr content among steel elements corresponding to SCr420 described in JIS G 4053 (2008).
  • Steel 2 contains Mo in SCr420 and is equivalent to SCM420 described in the above JIS.
  • the content of Ni as an impurity was 0.03% or less, and the content of Cu was 0.02% or less.
  • the ingot thus obtained was heated to 1250 ° C. and then hot forged so that the finishing temperature was 1000 ° C. to obtain a round bar having a diameter of 35 mm. After completion of hot forging, it was allowed to cool in the atmosphere.
  • the round bar having a diameter of 35 mm was heated to 925 ° C. and held for 120 minutes, and then subjected to a normalizing treatment that was allowed to cool in the atmosphere to obtain a mixed structure of ferrite and pearlite.
  • the temperature was 930 ° C.
  • the holding time was 180 minutes
  • the carbon potential was constant at 0.8%.
  • the carbon potential was constant at 0.8% as in the carburizing process
  • the holding time was constant at 90 minutes
  • the holding temperature was 850 ° C.
  • Ammonia gas was mixed with the above carburizing atmosphere, and nitriding was performed simultaneously with carburizing.
  • Nitrogen potential was measured using a test piece for collecting chips that was oil-quenched after carbonitriding. That is, the curved surface portion of a cylindrical sample having a diameter of 30 mm and a height of 50 mm shown in FIG. 3 is turned by 50 ⁇ m from the outermost periphery to the center direction, and the collected chips are analyzed based on the melting and heat release conductivity method in a helium gas atmosphere. Analysis was performed using the apparatus “Leco TC-136”. As a result, the nitrogen concentration was 0.56%. That is, the nitrogen potential defined in the present invention was 0.56%.
  • the tempering process which is a heating process, was performed as follows.
  • the electric furnace was held at 200 ° C., 300 ° C. or 400 ° C. in advance, and a part of the Ono type rotating bending fatigue test specimen shown in FIG. 2 was inserted into the heating furnace.
  • the first group was held for 15 minutes after the furnace temperature returned to the initial set temperature, then removed from the heating furnace and immediately shot peened in the grooved notch with a curvature of 0.7 mm at the center of the specimen. Went. About some test pieces, after taking out from the furnace, the shot peening process was not performed but it stood to cool in air
  • the other group was held for 60 minutes after the furnace temperature returned to the initial set temperature, then removed from the heating furnace and allowed to cool to room temperature. Thereafter, a shot peening treatment was performed at room temperature on the groove-shaped notch in the center of the test piece having the same temperature as the room temperature.
  • test pieces that were not tempered were also subjected to shot peening treatment at a room temperature in the same manner as described above, at the center of the test piece at a groove-shaped notch portion having a curvature of 0.7 mm.
  • ⁇ Device Direct pressure shot peening device
  • ⁇ Projection material Round cut wire (diameter: 0.6 mm, Vickers hardness: 800), ⁇ Projection pressure: 0.4 MPa, ⁇ Coverage: 300% -Arc height: 0.45 mmA.
  • Some Ono-type rotating bending fatigue test pieces are not subjected to the Ono-type rotating bending fatigue test, but in the depth direction from the bottom to the center of the groove-shaped notch having a curvature of 0.7 mm at the center of the test piece. The hardness profile was measured.
  • Hardness measurement was performed using a micro Vickers hardness tester with a circular surface having a diameter of 8 mm transversely divided by a groove-shaped notch portion having a curvature of 0.7 mm at the center of the test piece as a test surface. .
  • the hardness at a depth of 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m is obtained from the surface, and thereafter, the hardness up to a depth of 1 mm is obtained while proceeding at a pitch of 100 ⁇ m in the depth direction. While proceeding at a pitch of 200 ⁇ m in the depth direction, the hardness up to a depth of 2 mm was obtained, and the hardness profile near the surface including the hardened layer was measured by continuously connecting the hardness at each position.
  • surface hardness the hardness at a depth of 30 ⁇ m from the surface
  • Figures 4 to 6 show a comparison of hardness profiles for some test symbols.
  • Table 2 shows the test results in the case of using steel 1, which is a steel corresponding to the steel with an increased Cr content of SCr420 described in JIS.
  • test symbols 1-a to 1-d The above is an example of the present invention.
  • the surface layer hardness is a high value of 800 or more in terms of Vickers hardness.
  • the rotational bending fatigue strength is also a high value of 500 MPa or more.
  • Table 3 shows the test results when steel 2 which is steel corresponding to SCM420 described in JIS is used.
  • test symbols 2-a to 2-d are examples of the present invention.
  • the surface layer hardness is a high value of 800 or more in terms of Vickers hardness.
  • the rotational bending fatigue strength is also a high value of 500 MPa or more.
  • Test symbol 1-d and test symbol 2-d are obtained by performing shot peening after tempering at 300 ° C. for 60 minutes.
  • the retained austenite on the surface layer is sufficiently decomposed by the isothermal bainite transformation, so that the hardness of the surface layer portion increases, and after such a state, shot peening treatment is performed at room temperature.
  • the surface hardness increased further, and the rotational bending fatigue strength was a high value exceeding 500 MPa.
  • test symbol 1-i and test symbol 2-i are obtained by performing shot peening after tempering at 400 ° C. for 60 minutes.
  • the retained austenite of the surface layer decomposes into ferrite, cementite and rod-like coarse ⁇ ′-Fe 4 N nitride, so the hardness of the surface layer portion does not increase.
  • the surface hardness increases only slightly. For this reason, the rotational bending fatigue strength is also a low value less than 500 MPa.
  • FIG. 4 compares the hardness profiles of test symbols 1-a and 1-e. Neither was tempered, but in test symbol 1-a subjected to shot peening treatment, the hardness increased from the surface to the inside over a depth of about 1 mm, and particularly the hardness of the surface layer of 100 ⁇ m increased remarkably. Yes.
  • FIG. 5 compares the hardness profiles of test symbols 1-b and 1-f. Both samples were tempered at 200 ° C. for 15 minutes, but test symbol 1-b that was further shot peened was compared to test symbol 1-f that was tempered at 200 ° C. for 15 minutes and not shot peened. Then, the hardness increases from the surface to the inside over a depth of about 0.7 mm, and particularly the hardness of the surface layer of 100 ⁇ m is remarkably increased.
  • test symbol 1-b When the hardness profile of test symbol 1-b is compared with the hardness profile of test symbol 1-a shown in FIG. 4 described above, it can be seen that the hardness of the surface layer of 100 ⁇ m is increased by several tens of Vickers hardnesses. . This indicates that a part of the retained austenite is transformed by isothermal bainite transformation by holding at 200 ° C. for 15 minutes, and the hardness profile is further increased by the effect of shot peening treatment. Is raised up to the test symbol 1-b.
  • FIG. 6 compares the hardness profiles of test symbols 1-c and 1-h. Both are shot peened, but in test symbol 1-h (ie, tempered at 400 ° C. for 15 minutes and then shot peened immediately), test symbol 1-c (ie, 15 ° C. at 300 ° C.) Compared with the case where the shot peening was performed immediately after tempering for minutes, the hardness of the surface layer 100 ⁇ m is low, and the Vickers hardness does not exceed 800. This is because the tempering temperature before shot peening and the temperature at which shot peening is performed are too high, so that the residual austenite does not transform into bainite and decomposes into ferrite and cementite, or the residual austenite is processed-induced martensite. Even if it changes, the temperature is high, so it decomposes immediately into ferrite and cementite, indicating that the hardness has not increased much.
  • test symbol 1-h ie, tempered at 400 ° C. for 15 minutes and then shot peened immediately
  • the carbonitriding member obtained by the method for producing a carbonitriding member of the present invention is required to be further reduced in size and strength in order to realize a reduction in the weight of the vehicle body that directly leads to an improvement in fuel consumption. It can be used for power transmission parts such as gears for automobile transmissions and pulleys for belt-type continuously variable transmissions, and can also reduce manufacturing costs compared to conventional power transmission parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%及びS≦0.05%を含有し、必要に応じてMo≦0.50%を含み、残部がFe及び不純物からなる浸炭窒化部材の製造方法であって、900~950℃の浸炭性雰囲気に保持する浸炭に続いて、温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、次いで焼入れを行い、更にショットピーニング処理する。この方法によると、Moの含有量が低いか、又はMoが非添加という低廉な鋼を素材とするものであっても、優れた耐摩耗性、大きなピッチング強度及び優れた曲げ疲労強度を有する浸炭窒化部材を得ることができる。焼入れ後、更に350℃以下の温度に加熱しながら、又は350℃以下の温度に加熱後直ちに、ショットピーニング処理してもよい。焼入れ後、更に250℃を超えて350℃以下の温度範囲で焼戻した後に、ショットピーニング処理してもよい。

Description

浸炭窒化部材の製造方法
 本発明は、浸炭窒化処理を施された部材(以下、「浸炭窒化部材」という。)の製造方法に関する。より詳しくは、動力伝達部品として好適な、耐摩耗性、ピッチングに対する限界強度および曲げ疲労強度に優れる浸炭窒化部材の製造方法に関する。
 自動車の変速機として使用される歯車、ベルト式無段変速機(CVT)用プーリーなどの動力伝達部品は、従来、JIS G 4053(2008)に規定されている機械構造用合金鋼鋼材を、鍛造、切削などの加工により所定の形状に成形して、浸炭焼入れ、浸炭窒化焼入れなどの表面硬化処理を施し、その後さらに焼戻しを行って製造されている。
 近年、自動車の燃費向上への要求はますます厳しくなっており、燃費の向上に直結する車体の軽量化を実現するために、上記の部品についても一層の小型化および高強度化が求められ、面圧疲労の一種であるピッチングに対する限界強度(以下、「ピッチング強度」という。)と耐摩耗性を向上させることが重視されてきた。
 質量%で0.2%程度の炭素を含み、浸炭部品および浸炭窒化部品の素材として使用される機械構造用合金鋼鋼材には、SMn420に代表されるマンガン系、SMnC420に代表されるマンガンクロム系、SCr420に代表されるクロム系およびSCM420に代表されるクロムモリブデン系などがある。近年の希少金属元素の価格高騰には著しいものがあり、特にモリブデンで顕著な価格高騰が生じている。
 「浸炭窒化」には、浸炭性の雰囲気にアンモニアガスを混合して浸炭と同時に浸窒を行う「ガス浸炭窒化」などがあり、窒素は、いわゆる「焼戻し軟化抵抗」を高める効果があるとされている。しかしながら、窒素には炭素の拡散を抑制する作用があり、加えて、浸窒処理が浸炭処理よりも低温で実施されるので、硬化深さが小さくなるという問題があった。さらに、窒素がオーステナイト安定化元素であり、Cと同様にMs点を下げるので残留オーステナイトが存在しやすくなって、硬質のマルテンサイトを得難いという問題もあった。
 そこで、浸炭窒化における上記の問題を解決する技術が、特許文献1~4にそれぞれ、「歯面強度に優れた歯車の製造方法」、「高強度歯車」、「耐ピッティング性に優れた浸炭窒化処理部材の熱処理方法」および「高硬度部品」として開示されている。
特開平11-51155号公報 特開平7-190173号公報 特開2001-140020号公報 特開2002-194492号公報
 前述の特許文献1で開示された歯車の製造方法の場合、窒素の侵入深さを深くして有効硬化深さを大きくさせるために再加熱焼入れを行う必要がある。このため、製造工程およびエネルギー消費の点で効率的ではなかった。
 特許文献2に開示された高強度歯車は、窒素を含有した緻密なマルテンサイト、あるいは窒素を含有した緻密なマルテンサイトと下部ベイナイトを主たる組織とするために、残留オーステナイトの量を10~40%に制限するだけの技術である。したがって、必ずしも十分な耐摩耗性とピッチング強度を得ることができないものであった。
 特許文献3で開示された熱処理方法は、従来の150~180℃よりも高い200~560℃の温度で焼戻しすることで、軟らかい残留オーステナイトがマルテンサイトとη炭化物に分解されて、表面硬さを高くすることができるとともに、CrN、AlNなどの窒化物が微細に析出して析出硬化し、それにより耐ピッチング性が向上するとの技術思想に基づくものである。しかしながら、200~560℃の温度範囲で焼戻した際に、表面硬さを高くすることができるマルテンサイトとη炭化物の混合組織に分解させるためには、もとの残留オーステナイト中の窒素濃度の制御が重要であるにも拘わらず、浸炭窒化工程においてどの程度の窒素を導入させるべきか(すなわち、最適な窒素ポテンシャル)に関しては全く開示されていない。このため、窒素ポテンシャルの選び方次第では上述のような混合組織が全く得られない場合があった。加えて、CrN、AlNなどの合金元素窒化物の析出までもが起こるような、指定の温度範囲の中でも高温側の温度で焼戻しを行うと、残留オーステナイトが、マルテンサイトとη炭化物ではなく、フェライトとセメンタイトに分解したり、粗大なγ’-FeN窒化物が析出したりして著しく硬さが低下し、かえってピッチング強度が低下するという問題があった。
 特許文献4に開示された高硬度部品に適用される浸炭窒化用鋼は、Siの含有量を増大させて焼戻し軟化抵抗を高めるという技術思想に基づくものである。しかしながら、浸炭窒化の雰囲気を制御することなく一般的なガス浸炭窒化を適用しただけの場合には、Siの含有量が高いために粒界酸化の促進を避けることができず、このため、十分な表面硬さが得られないという問題があった。
 上記の様に、これまでに提案された浸炭窒化技術では、耐摩耗性とピッチング強度の双方に優れた浸炭窒化部材を効率的に提供するには不十分であった。さらに、上述した浸炭窒化技術では、十分な曲げ疲労強度を確保できないこともあった。
 本発明は、上記現状に鑑みてなされたものであって、高価な合金元素であるMoの含有量を低減するか、あるいはMoを非添加としても、優れた耐摩耗性、大きなピッチング強度および優れた曲げ疲労強度を有する浸炭窒化部材の製造方法を提供することを目的とする。
 本発明者は、SCr420に代表されるクロム系およびSCM420に代表されるクロムモリブデン系の肌焼鋼を用いて、様々な条件で浸炭窒化実験を行い、浸炭窒化部材の耐摩耗性およびピッチング強度と表面硬化層のミクロ組織との関係を調べた。その結果、浸炭窒化により優れた耐摩耗性と大きなピッチング強度を発現させることができるミクロ組織についての知見を得、その知見に基づいて、先に、特願2008-307250の出願で「浸炭窒化部材および浸炭窒化部材の製造方法」を提案した。
 本発明者は、引き続いて、浸炭窒化により優れた耐摩耗性と大きなピッチング強度を発現させることに加えて、曲げ疲労強度にも優れるミクロ組織に関して、鋭意、研究を重ねた。その結果、下記(a)~(c)の知見を得た。
 (a)浸炭窒化後の焼入れで硬化層に生成した残留オーステナイトは、250℃を超えて350℃以下の温度範囲で焼戻すと、等温ベイナイト変態が起こって、幅が約50~200nm、長さが約200nm~1μm程度の微細なベイニティックフェライトと、FeCおよびα”-Fe16に分解する。しかしながら、焼戻し温度での保持時間が短い場合には少なからぬ残留オーステナイトが分解しないで残存してしまうことがあり、これがピッチング強度および曲げ疲労強度の低下をもたらす。
 (b)等温ベイナイト変態の進行が十分ではなく、残留オーステナイトが残存している状態の鋼材にショットピーニングを施すと、残留オーステナイトは加工誘起マルテンサイトに変態し、その状態ではピッチング強度および曲げ疲労強度が改善される。
 (c)残留オーステナイトにショットピーニングを施しながら等温ベイナイト変態させると表層部の硬度はショットピーニングを施さないで等温ベイナイト変態させた場合と比較して著しく増大する。その結果、ピッチング強度および曲げ疲労強度が大きく改善される。
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)~(4)に示す浸炭窒化部材の製造方法にある。
 (1)生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%およびS:0.05%以下を含有し、残部がFeおよび不純物からなる浸炭窒化部材の製造方法であって、
 前記組成を有する鋼部品を900~950℃の浸炭性雰囲気に保持する浸炭に続いて、
 温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、
 次いで焼入れを行い、
 さらにショットピーニング処理を施す、
ことを特徴とする浸炭窒化部材の製造方法。
 (2)生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%およびS:0.05%以下を含有し、残部がFeおよび不純物からなる浸炭窒化部材の製造方法であって、
 前記組成を有する鋼部品を900~950℃の浸炭性雰囲気に保持する浸炭に続いて、
 温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、
 次いで焼入れを行い、
 さらに、350℃以下の温度に加熱しながら、または350℃以下の温度に加熱後直ちに、ショットピーニング処理を施す、
ことを特徴とする浸炭窒化部材の製造方法。
 (3)生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%およびS:0.05%以下を含有し、残部がFeおよび不純物からなる浸炭窒化部材の製造方法であって、
 前記組成を有する鋼部品を900~950℃の浸炭性雰囲気に保持する浸炭に続いて、
 温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、
 次いで焼入れを行い、
 さらに250℃を超えて350℃以下の温度範囲で焼戻した後に、ショットピーニング処理を施す、
ことを特徴とする浸炭窒化部材の製造方法。
 (4)生地の鋼材が、Feの一部に代えて、質量%で、さらに、Mo:0.50%以下を含有することを特徴とする上記(1)から(3)までのいずれかに記載の浸炭窒化部材の製造方法。
 上記(2)の「350℃以下の温度に加熱後直ちに」とは、「350℃以下である温度T℃に加熱した後、その温度T℃で、」および「350℃以下である温度T℃に加熱した後、加熱炉から取り出してすぐに、」ということを指す。
 本発明の浸炭窒化部材の製造方法によると、高価な合金元素であるMoの含有量が低いか、あるいはMoが非添加という低廉な鋼を素材とするものであるにも拘わらず、優れた耐摩耗性、大きなピッチング強度および優れた曲げ疲労強度を有する浸炭窒化部材を得ることができる。このため、本発明の浸炭窒化部材の製造方法で得られた浸炭窒化部材は、燃費の向上に直結する車体の軽量化を実現するために、一層の小型化および高強度化が求められている自動車の変速機用の歯車、ベルト式無段変速機用プーリーなどの動力伝達部品に用いることができる。さらに、従来の動力伝達部品に比べて製造コストの低減を実現することもできる。
実施例で行った「浸炭」工程、「浸炭窒化」工程、浸炭窒化後の「焼入れ」工程および焼入れ後の「加熱」工程の条件を模式的に説明する図である。図1中の「Cp」と「Np」はそれぞれ、炭素ポテンシャルおよび窒素ポテンシャルを表す。図1では「加熱」工程を「焼戻し」工程で例示し、「焼戻し」の際の冷却を「大気中放冷」と表記した。 実施例の小野式回転曲げ疲労試験に用いた試験片の形状を示す図である。寸法の単位はmmである。 実施例の窒素濃度測定のために用いた切り粉採取用試験片の形状を示す図である。寸法の単位はmmである。 実施例で行った硬さ測定の結果を、表1での試験記号1-aと1-eとで比較して示す図である。 実施例で行った硬さ測定の結果を、表1での試験記号1-bと1-fとで比較して示す図である。 実施例で行った硬さ測定の結果を、表1での試験記号1-cと1-hとで比較して示す図である。
 以下、本発明の各要件について詳しく説明する。
 (A)生地の鋼材の化学組成について:
 以下に示す各元素の含有量の「%」は「質量%」を意味する。
 C:0.10~0.35%
 Cは、鋼材の強度を決定するのに最も重要な元素であり、生地の強度、すなわち浸炭窒化後の焼入れで硬化されない芯部の強度を確保するために、0.10%以上含有させる必要がある。一方、その含有量が0.35%を超えると、芯部の靱性が低下したり、被削性が低下したりする。したがって、Cの含有量を0.10~0.35%とした。Cの含有量は0.20%以上、0.30%以下とすることが望ましい。
 Si:0.15~1.0%
 Siは、セメンタイトの析出を抑制して焼戻し軟化抵抗を上昇させる効果を有するとともに、固溶強化元素として芯部強度の増大にも寄与する元素である。Siには、オーステナイトのパーライトへの変態を抑制する作用もある。これらの効果は、Siの含有量が0.15%以上で得られる。しかしながら、Siの含有量が多くなると、浸炭速度の低下および延性の低下を招き、特に、Siの含有量が1.0%を超えると、浸炭速度が著しく低下するうえ、熱間加工性も著しく劣化する。したがって、Siの含有量を0.15~1.0%とした。Siの含有量は0.20%以上、0.90%以下とすることが望ましい。
 Mn:0.30~1.0%
 Mnは、オーステナイト安定化元素で、オーステナイト中のCの活量を下げて、浸炭を促進する元素である。Mnには、SとともにMnSを形成して、被削性を高める作用もある。これらの効果を得るためには、0.30%以上のMn含有量が必要である。しかしながら、Mnを1.0%を超えて含有させてもその効果は飽和してコストが嵩むし、被削性が劣化することさえある。したがって、Mnの含有量を0.30~1.0%とした。Mnの含有量は0.50%以上、0.90%以下とすることが望ましい。
 Cr:0.40~2.0%
 Crは、炭素および窒素との親和力が大きく、浸炭窒化時のオーステナイト中のCおよびNの活量を下げて、浸炭窒化を促進する効果を有する元素である。Crには、浸炭窒化後の焼入れで硬化されない芯部の強度を、固溶強化の作用によって増大させる効果もある。これらの効果は、Crの含有量が0.40%以上で得られる。しかしながら、Crの含有量が多くなると、粒界にCr炭化物および/またはCr窒化物を生成して粒界近傍のCrが欠乏する結果、部材の表層に不完全焼入れ組織および/または粒界酸化による異常層が生成しやすくなって、ピッチング強度および耐摩耗性の劣化をきたす。特に、Crの含有量が2.0%を超えると、部材の表層における不完全焼入れ組織および/または粒界酸化による異常層の生成によって、ピッチング強度および耐摩耗性の劣化が著しくなる。したがって、Crの含有量を0.40~2.0%とした。Crの含有量は0.50%以上、1.80%以下とすることが望ましい。
 S:0.05%以下
 Sは、不純物として含有される元素である。また、MnとともにMnSを形成して被削性を高める元素である。この効果を得る場合には、Sの含有量は0.01%以上とすることが望ましい。一方、Sの含有量が過剰になって、特に、0.05%を超えると、熱間延性が低下して鍛造時に割れが発生しやすくなる。したがって、Sの含有量を0.05%以下とした。Sの含有量は0.03%以下とすることが望ましい。
 本発明の生地の鋼材の一つは、上記元素のほか、残部がFeと不純物からなるものである。
 「不純物」とは、鉄鋼材料を工業的に製造する際に、原料としての鉱石およびスクラップ、あるいは環境などから混入するものを指す。
 本発明の生地の鋼材の他の一つは、上記元素に加えて、さらに、下記の量のMoを含有するものである。
 Mo:0.50%以下
 Moは、部材の表層における不完全焼入れ組織および/または粒界酸化による異常層の生成を抑制する効果を有するとともに、芯部硬さを高める効果も有する元素である。これらの効果を得るためにMoを含有してもよい。しかしながら、Moの含有量が0.50%を超えると、素材コストが嵩むばかりか、被削性の低下が著しくなる。したがって、含有させる場合のMoの量を0.50%以下とした。含有させる場合のMoの量は、0.30%以下とすることが望ましい。
 一方、前記したMoの部材表層における不完全焼入れ組織および/または粒界酸化による異常層の生成を抑制する効果、さらには、芯部硬さを高める効果を確実に得るためには、含有させる場合のMoの量は、0.05%以上とすることが望ましく、0.10%以上とすれば一層望ましい。
 本発明の生地の鋼材には、Pが不純物として含有されるが、Pは0.05%までの含有量であれば許容できる。不純物として含有されるPの量は、0.03%以下とすることが望ましい。
 (B)製造条件について:
 本発明の製造条件は、次に示す(i)から(iii)までのいずれかの工程からなるものである。
 (i)900~950℃の浸炭性雰囲気に保持する「浸炭」工程、
 上記の浸炭に続いて、温度を800~900℃に低下させ、浸炭性雰囲気を維持したまま、例えばアンモニアガスなどを混合して浸窒性も合わせ持たせた、窒素ポテンシャルが0.2~0.6%の雰囲気に保持する「浸炭窒化」工程、
 浸炭窒化後の「焼入れ」工程、および
 ショットピーニング処理を施す工程。
 (ii)900~950℃の浸炭性雰囲気に保持する「浸炭」工程、
 上記の浸炭に続いて、温度を800~900℃に低下させ、浸炭性雰囲気を維持したまま、浸窒性も合わせ持たせた、窒素ポテンシャルが0.2~0.6%の雰囲気に保持する「浸炭窒化」工程、
 浸炭窒化後の「焼入れ」工程、および
 350℃以下の温度に加熱しながら、または350℃以下の温度に加熱後直ちに、ショットピーニング処理を施す工程。
 (iii)900~950℃の浸炭性雰囲気に保持する「浸炭」工程、
 上記の浸炭に続いて、温度を800~900℃に低下させ、浸炭性雰囲気を維持したまま、浸窒性も合わせ持たせた、窒素ポテンシャルが0.2~0.6%の雰囲気に保持する「浸炭窒化」工程、
 浸炭窒化後の「焼入れ」工程、
 250℃を超えて350℃以下の温度範囲での「焼戻し」工程、および
 ショットピーニング処理を施す工程。
 雰囲気の浸炭能力および浸窒能力はそれぞれ、炭素ポテンシャルおよび窒素ポテンシャルとして定義され、処理温度で、処理雰囲気と平衡に達したときの被処理部材の表面の炭素濃度および窒素濃度で表される。処理温度および処理時間と相まって、被処理部材の表面から深さ方向への炭素濃度プロファイルおよび窒素濃度プロファイルが決定される。ただし、本発明においては、処理後に部材の表層部の窒素濃度を分析して処理中の窒素ポテンシャルを推定する。したがって、処理温度で、処理雰囲気と平衡に達したときの処理部材の最表面から50μmの位置までの窒素の平均濃度を「窒素ポテンシャル」ということにする。
 図1に、「浸炭」工程、「浸炭窒化」工程、浸炭窒化後の「焼入れ」工程および焼入れ後の「加熱」工程の一例として、本発明の実施例で施した条件を模式的に示す。図中の「Cp」と「Np」はそれぞれ、炭素ポテンシャルおよび窒素ポテンシャルを表す。この実施例における図は、「焼入れ」工程を「油焼入」として、また、「加熱」工程を「焼戻し」として、さらに、焼戻しの際の冷却を「大気中放冷」として例示するものである。
 炭素ポテンシャルは、必ずしも図1に示すように、浸炭および浸炭窒化の両工程において一定の状態に保つ必要はない。目標とする表面炭素濃度、有効硬化層深さおよび効率的な操業の観点から、適宜変化させて構わない。
 例えば、浸炭工程での炭素ポテンシャルを、浸炭窒化部材の目標表面炭素濃度よりも高めに設定し、次の浸炭窒化工程に移行した際に炭素ポテンシャルを目標の表面炭素濃度に下げることによって、浸炭と浸炭窒化の合計処理時間を短縮することが可能である。
 「浸炭」工程には、例えば、ブタン、プロパンなど炭化水素ガスを空気と混合して変成して得られた、CO、HおよびNの混合ガスである吸熱性ガス(このガスは通常「RXガス」と称される。)を、ブタン、プロパンなど「エンリッチガス」と称されるガスとともに添加して浸炭する「ガス浸炭」が適用できる。この「浸炭」工程における処理温度、つまり、浸炭雰囲気の保持温度は、900~950℃とする。上記温度が950℃を上回れば、結晶粒の粗大化が起こりやすくなって焼入れ後の強度の低下を招きやすくなる。900℃を下回れば、十分な硬化層深さが得られにくくなる。上記温度に保持する時間は所望の硬化層深さの大きさに依存するが、例えば、2~15時間程度とすればよい。上記の炭素ポテンシャルはもっぱら、エンリッチガスの添加量で制御することができる。
 「浸炭」工程に続く「浸炭窒化」工程は、温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気で行う。
 従来の一般的な「浸炭窒化」工程よりも約50℃高く、オーステナイトへの窒素の溶解度が小さくなる800~900℃の温度で、窒素ポテンシャルを0.2%以上として浸炭窒化を施すことによって、長径が数十~数百nm、特に、50~300nmの鉄窒化物粒子であるε-FeNおよび/またはζ-FeNを析出・分散させることができる。窒素ポテンシャルを0.2%以上として浸炭窒化を施すことによって、オーステナイトが安定化されて残留オーステナイトが生成しやすくなる。窒素ポテンシャルが0.2%未満であれば、長径が数十~数百nm、特に、50~300nmの鉄窒化物粒子であるε-FeNおよびζ-FeNの双方を析出・分散させることができないだけでなく、残留オーステナイトとマルテンサイト以外の不完全焼入れ組織が生ずる場合がある。窒素ポテンシャルが0.6%を超えると、上記の鉄窒化物粒子が粗大化しやすくなって、その長径は300nmを超えてしまい鉄窒化物粒子による分散強化が図れなくなる。
 上記の「浸炭窒化」工程は、例えば、浸炭工程のガス雰囲気のまま、炉内温度を浸炭窒化する温度である800~900℃まで低下させた後、アンモニアガスを添加して行えばよい。この際の窒素ポテンシャルは、アンモニアガスの添加量で制御することができる。上記浸炭窒化雰囲気に保持する時間は数時間、例えば、1~2時間とすればよい。
 浸炭窒化後の「焼入れ」工程は、図1に例示したような「油焼入」工程として行えばよい。
 浸炭窒化の工程では、オーステナイトに窒素が固溶していくので、オーステナイトが安定化される。このため、油焼入れによって急冷しても、マルテンサイトに変態しないオーステナイト、すなわち、残留オーステナイトが生成しやすくなる。上記残留オーステナイトは、浸炭窒化部材の表層硬さを低下させるため、ピッチング強度が低下してしまう。
 このため、従来は、油焼入れの条件を変えて残留オーステナイトの生成を回避したり、油焼入れ後にサブゼロ処理を行って、生じた残留オーステナイトをマルテンサイトに変態させたりしたうえで、焼入れ後に150~180℃程度の低い温度で焼戻しを行っていた。
 しかしながら、(i)~(iii)の工程として述べた条件で浸炭窒化後に焼入れした場合に生成する残留オーステナイトは、焼入れ後に次のいずれかの処理を行うことによって、加工誘起マルテンサイトに変態し、硬さが上昇する。
 ・上記の焼入れ後にさらにショットピーニングを施す。
 ・上記の焼入れ後、さらに350℃以下の温度に加熱しながら、または350℃以下の温度に加熱後直ちに、ショットピーニング処理を施す。
 ・上記の焼入れ後、さらに250℃を超えて350℃以下の温度範囲で焼戻した後に、ショットピーニング処理を施す。
 すなわち、前記した長径が数十~数百nm、特に、50~300nmの鉄窒化物粒子(ε-FeNおよび/またはζ-FeN)が分散した残留オーステナイトは、(i)の「焼入れ後にショットピーニング処理を施す」ことによって、加工誘起マルテンサイトに変態して、硬さが増大する。
 上記の残留オーステナイトは、350℃を超える温度に加熱した場合には、フェライト、FeCおよびγ’-FeNに分解してしまうので、加熱後に直ちにショットピーニング処理しても、硬さ上昇効果は小さい。
 しかしながら、上記の残留オーステナイトは、
 (ii)の「焼入れ後に350℃以下の温度に加熱しながら、または350℃以下の温度に加熱後直ちに、ショットピーニング処理を施す」ことによって、
 あるいは、(iii)の「焼入れを行い、さらに250℃を超えて350℃以下の温度範囲で焼戻した後に、ショットピーニング処理を施す」ことによって、
次のようにして表層の硬さが増大する。
 焼入れ後に加熱する上記の(ii)における温度T℃が250℃を超えて350℃以下で、その温度で保持する時間が1時間以上の場合、等温ベイナイト変態による相分解が起こって、残留オーステナイトは幅が約50~200nm、長さが約200nm~1μm程度の微細なベイニティックフェライトと、FeCおよびα”-Fe16になり、硬さが上昇する。しかも、上記の場合には、たとえまだ等温ベイナイト変態の進行が途中で、残留オーステナイトが完全には分解せずに一部が残存したままであっても、加熱しながら、または加熱後に直ちに、ショットピーニング処理を施すのであれば、機械的エネルギーによって等温ベイナイト変態が促進されるので、より高い硬さ増大効果が得られる。
 上記の(ii)における温度T℃が250℃を超えて350℃以下で、保持時間が1時間未満の場合には、まだ等温ベイナイト変態の進行が途中で、上記の残留オーステナイトが完全には分解せずに一部が残存したままであっても、加熱しながら、または加熱後に直ちに、ショットピーニング処理を施すことによって、機械的エネルギーによって等温ベイナイト変態が促進されるので、硬さ増大効果が得られる。
 上記の(ii)における温度T℃が250℃未満の場合には、上記の残留オーステナイトには等温ベイナイト変態による分解は殆ど生じないものの、(i)の焼入れ後にショットピーニング処理を施す場合と同様に、ショットピーニング処理を施すことによって、加工誘起マルテンサイトに変態するので、硬さ増大効果が得られる。
 上記の(iii)における焼入れ後の焼戻し温度が250℃を超えて350℃以下で、しかも、その温度で保持する時間が1時間以上の場合、上述したように等温ベイナイト変態による相分解が起こって、残留オーステナイトは幅が約50~200nm、長さが約200nm~1μm程度の微細なベイニティックフェライトと、FeCおよびα”-Fe16になり、硬さが上昇する。この場合についても、焼戻し終了後にたとえ残留オーステナイトが完全に分解せずに一部が残存したままであっても、焼戻し後にショットピーニング処理を施すことによって、残存していた残留オーステナイトは加工誘起マルテンサイトに変態してさらに硬さが上昇し、加えて、ショットピーニング処理によって、等温ベイナイト変態で生成したベイニティックフェライトも加工硬化するため、表層の硬さが一層増大する。
 上記の(iii)における温度T℃が250℃を超えて350℃以下で、保持時間が1時間未満の場合には、まだ等温ベイナイト変態の進行が途中で、上記の残留オーステナイトが完全には分解せずに一部が残存したままであっても、焼戻し後にショットピーニング処理を施すことによって、機械的エネルギーによって等温ベイナイト変態が促進されるので、硬さ増大効果が得られる。
 (i)の工程のショットピーニングの前から存在する上記の長径が数十~数百nmの鉄窒化物粒子であるε-FeNおよびζ-FeNは、ショットピーニング処理によって変化することはない。(ii)の工程の加熱の前および(iii)の工程の焼戻しの前から存在する上記の長径が数十~数百nmのε-FeNおよびζ-FeNも同様に、ショットピーニング処理によって変化することはない。つまり、上記鉄窒化物粒子が有する、それ自体の硬さが高いという効果およびいわゆる「分散強化」の効果はショットピーニング処理によって何ら損なわれることがない。
 このため、上記した鉄窒化物粒子の作用とショットピーニングによる硬さ増大との相乗効果、あるいはこれらに加えてさらに等温ベイナイト変態による相分解による硬さ増大との相乗効果で、浸炭窒化部材の耐摩耗性とピッチング強度は大きく向上する。
 しかも、ショットピーニング処理によって導入される圧縮残留応力は曲げ疲労強度を向上させるのに効果的である。焼入れ過程で生成したマルテンサイト生地、残留オーステナイトの等温ベイナイト変態で生成したフェライト生地、あるいは残留オーステナイトから加工誘起変態したマルテンサイト生地のうちで、表層に存在するものがショット粒の衝撃によって塑性変形を受ける結果、塑性変形をしていない領域との境界で弾性的な拘束が発生するからである。そして、圧縮残留応力は疲労過程におけるき裂の発生および伝播を抑制する効果があるため、ピッチング強度および曲げ疲労強度が改善されることとなる。
 (ii)の焼入れ後に、350℃以下の温度に加熱しながら、または350℃以下の温度に加熱後直ちに、ショットピーニング処理する場合には、先に述べた機械的エネルギーによって等温ベイナイト変態が促進される効果と、いわゆる「オースフォーム」の効果が得られる場合もある。
 オースフォームとは、鋼材のいわゆる「加工熱処理(TMCP:Thermo-Mechanically Controlled Process)」の分野ではよく知られた技術である。過冷されたオーステナイトを比較的低温で加工し、その後冷却してベイナイト組織とすれば組織がより一層微細化されて強度・靱性バランスに優れた鋼材とすることができる技術である。冷却速度を高めて焼入れすれば、マルテンサイトが微細化される。このようにオースフォームで生成した微細なベイナイトおよびマルテンサイトはそれぞれ、オースフォームド・ベイナイトおよびオースフォームド・マルテンサイトと呼ばれている。本発明では、部材は、ショットピーニングされる前に、浸炭窒化焼入れにより一旦、室温にまで冷却されているので、鋼材の冷却工程で加工を行うオースフォームとは異なっているが、残留オーステナイトは「過冷されたオーステナイト」とみなせるので、これに加工を加えることは冶金学的にはオースフォームと呼ぶことができる。浸炭窒化焼入れを行い、さらに350℃以下の温度に加熱した後に、直ちにショットピーニング処理を施すことで、オースフォーム的な効果を付随させることができることもある。
 前記の(ii)の工程の場合、ショットピーニングを開始する前の加熱温度と,ショットピーニングし始めてからの加熱保持温度とは同じでなくてもよい。例えば、300℃の電気炉に入れて加熱してから,これを取り出し、250℃に設定しているホットプレートに載せて「加熱保持」しながら,ショットピーニングをしてもよい。
 ショットピーニングの方法としては、エアノズルまたはインペラーを用いる公知のショットピーニングが適用できる。以下に、本発明におけるショットピーニングの代表的な条件の一例を示す。
 ・投射材の直径(ショット粒の粒子径):0.2~0.8mm、
 ・投射材の硬さ:ビッカース硬さで600~800、
 ・投射圧力:0.1~0.5MPa、
 ・投射速度:30~100m/s、
 ・カバレージ:200~500%、
 ・アークハイト:0.4~0.6mmA。
 上記の理由から、本発明の製造条件は、前記の(i)から(iii)までのいずれかの工程からなるものとした。
 ε-FeNおよびζ-FeNの鉄窒化物は、例えば、薄膜試料を採取して透過電子顕微鏡(以下、「TEM」という。)で観察することによって、それらのサイズを確認することができる。これらの鉄窒化物を含む領域から電子線回折図形を撮影し、その回折パターンを解析して結晶構造と格子定数を求めることにより、ε-FeNあるいはζ-FeNのどちらであるかを同定することができる。
 残留オーステナイトの分解については、例えば、薄膜試料を採取してTEM観察することによって、相の形態およびサイズを確認することができ、特定の相を含む制限視野で電子線回折図形を撮影し、これを解析することにより各相を同定することができる。
 以下、実施例により本発明をさらに詳しく説明する。
 本発明者は、先に、「浸炭窒化部材および浸炭窒化部材の製造方法」として提案した特願2008-307250の出願によって、高価な合金元素であるMoの含有量を低減するか、あるいはMoが非添加であっても、優れた耐摩耗性と大きなピッチング強度を確保することができることを示した。
 上記の出願における浸炭窒化部材の製造方法は、具体的には、「生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%、S:0.05%以下を含有し、さらに必要に応じて、Mo:0.50%以下を含み、残部がFeおよび不純物からなる浸炭窒化部材の製造方法であって、900~950℃の浸炭性雰囲気に保持する浸炭に続いて、温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、次いで、焼入れを行い、その後さらに、250℃を超えて350℃以下の温度範囲で焼戻す。」というものである。本発明者は、上記の製造方法によって、高価な合金元素であるMoの含有量を低減するか、あるいはMoが非添加であっても、優れた耐摩耗性と大きなピッチング強度を有する浸炭窒化部材が得られることを示した。
 このため、以下の実施例では、本発明の特徴である曲げ疲労強度の改善に絞って説明する。
 表1に示す化学組成を有する鋼1および鋼2を50kg真空溶解炉によって溶解し、インゴットを作製した。
 上記の鋼1は、JIS G 4053(2008)に記載のSCr420に相当する鋼の元素のうち、Cr含有量を高めた鋼である。鋼2は、SCr420にMoを含有させたもので、上記JISに記載のSCM420に相当する鋼である。いずれの鋼についても不純物としてのNiの含有量は0.03%以下であり、Cuの含有量も0.02%以下であった。
Figure JPOXMLDOC01-appb-T000001
 このようにして得たインゴットを、1250℃に加熱した後、仕上げ温度が1000℃となるように熱間鍛造して、直径35mmの丸棒とした。熱間鍛造終了後は、大気中で放冷した。
 次いで、上記直径35mmの丸棒に、925℃に加熱して120分保持した後大気中で放冷する焼ならし処理を施し、フェライトとパーライトの混合組織とした。
 焼ならしした直径35mmの各丸棒の中心部から、鍛造方向(鍛錬軸)に平行に、図2に示す形状の小野式回転曲げ疲労試験用の試験片と図3に示す形状の切り粉採取用試験片を切り出した。
 次いで、上記の各試験片に対して、図1に模式的に示すような条件で「浸炭」、「浸炭窒化」および「油焼入」を行った。小野式回転曲げ疲労試験用の試験片の一部に対しては、図1に模式的に示すような条件で「焼戻し」も実施した。
 浸炭工程は、温度を930℃、保持時間を180分とし、炭素ポテンシャルは0.8%で一定とした。
 浸炭窒化工程では、炭素ポテンシャルは浸炭工程と同じく0.8%で一定とし、保持時間も90分で一定として、保持温度は850℃とした。上記の浸炭性の雰囲気にアンモニアガスを混合して浸炭と同時に浸窒を行った。
 窒素ポテンシャルは、浸炭窒化後に油焼入れした切り粉採取用試験片を用いて測定した。すなわち、図3に示した直径30mmで高さ50mmの円柱状試料の曲面部を、最外周から中心方向へ50μm旋削し、採取した切り粉をヘリウムガス雰囲気中溶融解熱伝導度法に基づいた分析装置「Leco TC-136」を用いて分析した。その結果、窒素濃度は0.56%であった。すなわち、本発明で定義する窒素ポテンシャルは0.56%であった。
 加熱工程である焼戻し工程は、次のように行った。
 すなわち、電気炉を予め200℃、300℃あるいは400℃に保持しておき、図2に示した小野式回転曲げ疲労試験用の試験片の一部を加熱炉に挿入した。
 最初のグループは、炉温がはじめの設定温度にもどってから15分間保持した後、加熱炉から取り出して、直ちに試験片の中央部の曲率0.7mmの溝状切欠きの部分にショットピーニング処理を行った。一部の試験片については、炉から取り出した後、ショットピーニング処理を行わずそのまま大気中で放冷した。
 もうひとつのグループは、炉温がはじめの設定温度にもどってから60分間保持した後、加熱炉から取り出して、室温まで大気中放冷した。その後、室温と同じ温度になった試験片に対して、中央部の溝状切欠きの部分に、室温において、ショットピーニング処理を行った。
 焼戻しを行わない試験片に対しても、その一部については、室温で上記と同様に試験片の中央部の曲率0.7mmの溝状切欠きの部分にショットピーニング処理を行った。
 上記ショットピーニング処理の条件は以下に示すとおりである。
 ・装置:直圧式ショットピーニング装置、
 ・投射材:ラウンドカットワイヤ(直径:0.6mm、ビッカース硬さ:800)、
 ・投射圧力:0.4MPa、
 ・カバレージ:300%、
 ・アークハイト:0.45mmA。
 上記のようにして作製した小野式回転曲げ疲労試験片を用いて、室温、大気中、回転数3400rpmの条件で小野式回転曲げ疲労試験を実施した。応力付加繰返し数10回において破断しない最大の応力を疲労強度として評価した。
 一部の小野式回転曲げ疲労試験片は小野式回転曲げ疲労試験には供さず、試験片の中央部の曲率0.7mmの溝状切欠きの底から中心部へ至る深さ方向への硬さプロファイルを測定した。
 硬さ測定は、試験片の中央部の曲率0.7mmの溝状切欠きの部分で横断的に半割にした直径8mmの円形面を被検面として、マイクロビッカース硬度計を用いて行った。
 すなわち、上記の面が被検面となるように樹脂に埋め込んで鏡面研磨し、前述の図2に表示した「曲率0.7mmの溝状切欠きの底」を表面側として、2.94N(300gf)の試験力で、表面から30μm、50μm、100μm深さ位置の硬さを求め、それ以降は深さ方向に100μmピッチで進みながら1mm深さ位置までの硬さを求め、さらにそれ以降は深さ方向に200μmピッチで進みながら2mm深さ位置までの硬さを求め、各位置での硬さを連続的に結んで硬化層を含む表面付近の硬さプロファイルを測定した。以下、上記の表面から30μm深さ位置の硬さを「表層硬さ」ということにする。
 鋼1および鋼2のそれぞれについて上記の試験結果を、表2および表3に整理して示す。各表における「Hv」はビッカース硬さを意味する。
 図4~6に、一部の試験記号について硬さプロファイルを比較して示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2は、JISに記載のSCr420のCr含有量を高めた鋼に相当する鋼である鋼1を用いた場合の試験結果を示すもので、表2中、試験記号1-aから1-dまでが本発明例である。
 浸炭窒化焼入れ後にショットピーニングを施すことによって、あるいは、浸炭窒化焼入れ後さらに200℃あるいは300℃で焼戻した後に、直ちにショットピーニング処理を施すことによって、表層硬さがビッカース硬さで800以上と高い値となっており、回転曲げ疲労強度も500MPa以上の高い値となっている。
 これに対して、試験記号1-eから1-hまでの比較例の場合、表層硬さが低く、回転曲げ疲労強度も劣る結果となっている。
 表3は、JISに記載のSCM420に相当する鋼である鋼2を用いた場合の試験結果を示すもので、表3中、試験記号2-aから2-dまでが本発明例である。
 浸炭窒化焼入れ後にショットピーニングを施すことによって、あるいは、浸炭窒化焼入れ後さらに200℃あるいは300℃で焼戻した後に、直ちにショットピーニング処理を施すことによって、表層硬さがビッカース硬さで800以上と高い値となっており、回転曲げ疲労強度も500MPa以上の高い値となっている。
 これに対して、試験記号2-eから2-hまでの比較例の場合、表層硬さが低く、回転曲げ疲労強度も劣る結果となっている。
 試験記号1-dおよび試験記号2-dは、300℃で60分焼戻した後に、ショットピーニング処理を行ったものである。300℃で60分の焼戻しでは、表層の残留オーステナイトは等温ベイナイト変態によって十分に分解するので、表層部分の硬さは増大し、そのような状態になった後で、室温にてショットピーニング処理を行ったので、表層硬さは一層、増大し、回転曲げ疲労強度も500MPaを超える高い値となっている。
 これに対して、試験記号1-iおよび試験記号2-iは、400℃で60分焼戻した後に、ショットピーニング処理を行ったものである。400℃で60分の焼戻しでは、表層の残留オーステナイトはフェライト、セメンタイトおよび棒状の粗大なγ’-FeN窒化物に分解してしまうので、表層部分の硬さは増大せず、そのような状態になった後で、室温にてショットピーニング処理を行っても、表層硬さは極くわずかしか増大しない。このため、回転曲げ疲労強度も500MPaに満たない低い値となっている。
 図4は、試験記号1-aと1-eの硬さプロファイルを比較したものである。ともに焼戻しを行っていないが、ショットピーニング処理を施した試験記号1-aでは、表面から内部へ約1mmの深さにわたって硬さが増大しており、特に表層100μmの硬さは著しく増大している。
 図5は試験記号1-bと1-fの硬さプロファイルを比較したものである。ともに200℃で15分の焼戻しを行っているが、さらにショットピーニングを施した試験記号1-bでは、200℃で15分間、焼戻したのみでショットピーニングを施していない試験記号1-fに比較して、表面から内部へ約0.7mmの深さにわたって硬さが増大しており、特に表層100μmの硬さは著しく増大している。
 試験記号1-bの硬さプロファイルを、前述の図4に示した試験記号1-aの硬さプロファイルと比較すると、表層100μmの硬さがビッカース硬さで数十増大していることがわかる。これは、200℃で15分間の保持で残留オーステナイトの一部が等温ベイナイト変態して硬さが増大したことを示しており、これにさらに、ショットピーニング処理の効果が加わることで、硬さプロファイルは試験記号1-bに示すまで上昇したものである。
 図6は、試験記号1-cと1-hの硬さプロファイルを比較したものである。どちらもショットピーニングを施しているが、試験記号1-h(すなわち、400℃で15分間、焼戻した後に、直ちにショットピーニングを施したもの)では、試験記号1-c(すなわち、300℃で15分間、焼戻した後に、直ちにショットピーニングを施したもの)と比較して、表層100μmの硬さが低く、ビッカース硬さで800を超えていない。これは、ショットピーニングをする前の焼戻し温度およびショットピーニングを施す温度が高すぎるために、残留オーステナイトがベイナイトへ変態せずにフェライトとセメンタイトに分解してしまったり、あるいは残留オーステナイトが加工誘起マルテンサイトに変化したとしても温度が高いので、直ちにフェライトとセメンタイトに分解してしまったりして、硬さがあまり増大しなかったことを示すものである。
 上記の図4~6に示した結果を踏まえて、表2に示した結果を見ると、ショットピーニングによって表層硬さが高くなった試験材で高い回転曲げ疲労強度が得られており、疲労強度の向上に効果的であることが明らかである。
 本発明の浸炭窒化部材の製造方法によると、高価な合金元素であるMoの含有量が低いか、あるいはMoが非添加という低廉な鋼を素材とするものであるにも拘わらず、優れた耐摩耗性、大きなピッチング強度および優れた曲げ疲労強度を有する浸炭窒化部材を得ることができる。このため、本発明の浸炭窒化部材の製造方法で得られた浸炭窒化部材は、燃費の向上に直結する車体の軽量化を実現するために、一層の小型化および高強度化が求められている自動車の変速機用の歯車、ベルト式無段変速機用プーリーなどの動力伝達部品に用いることができるうえに、従来の動力伝達部品に比べて製造コストの低減を実現することもできる。

Claims (4)

  1.  生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%およびS:0.05%以下を含有し、残部がFeおよび不純物からなる浸炭窒化部材の製造方法であって、
     前記組成を有する鋼部品を900~950℃の浸炭性雰囲気に保持する浸炭に続いて、
     温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、
     次いで焼入れを行い、
     さらにショットピーニング処理を施す、
    ことを特徴とする浸炭窒化部材の製造方法。
  2.  生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%およびS:0.05%以下を含有し、残部がFeおよび不純物からなる浸炭窒化部材の製造方法であって、
     前記組成を有する鋼部品を900~950℃の浸炭性雰囲気に保持する浸炭に続いて、
     温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、
     次いで焼入れを行い、
     さらに、350℃以下の温度に加熱しながら、または350℃以下の温度に加熱後直ちに、ショットピーニング処理を施す、
    ことを特徴とする浸炭窒化部材の製造方法。
  3.  生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%およびS:0.05%以下を含有し、残部がFeおよび不純物からなる浸炭窒化部材の製造方法であって、
     前記組成を有する鋼部品を900~950℃の浸炭性雰囲気に保持する浸炭に続いて、
     温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、
     次いで焼入れを行い、
     さらに250℃を超えて350℃以下の温度範囲で焼戻した後に、ショットピーニング処理を施す、
    ことを特徴とする浸炭窒化部材の製造方法。
  4.  生地の鋼材が、Feの一部に代えて、質量%で、さらに、Mo:0.50%以下を含有することを特徴とする請求項1から3までのいずれかに記載の浸炭窒化部材の製造方法。
PCT/JP2010/065532 2009-09-11 2010-09-09 浸炭窒化部材の製造方法 WO2011030827A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011530874A JP5639064B2 (ja) 2009-09-11 2010-09-09 浸炭窒化部材の製造方法
CN201080040230.0A CN102482756B (zh) 2009-09-11 2010-09-09 碳氮共渗构件的制造方法
US13/415,198 US9062364B2 (en) 2009-09-11 2012-03-08 Method for producing carbonitrided member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-210019 2009-09-11
JP2009210019 2009-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/415,198 Continuation US9062364B2 (en) 2009-09-11 2012-03-08 Method for producing carbonitrided member

Publications (1)

Publication Number Publication Date
WO2011030827A1 true WO2011030827A1 (ja) 2011-03-17

Family

ID=43732496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065532 WO2011030827A1 (ja) 2009-09-11 2010-09-09 浸炭窒化部材の製造方法

Country Status (4)

Country Link
US (1) US9062364B2 (ja)
JP (1) JP5639064B2 (ja)
CN (1) CN102482756B (ja)
WO (1) WO2011030827A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962712A (zh) * 2015-07-29 2015-10-07 中石化石油工程机械有限公司第四机械厂 一种耐高压低碳合金钢的热处理方法
CN105349940A (zh) * 2015-11-27 2016-02-24 陕西东铭车辆系统股份有限公司 热锻标识模具钢的渗碳碳氮共渗复合热处理方法
JP2016183398A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 製品部材の製造方法及び製品部材
JPWO2015046593A1 (ja) * 2013-09-30 2017-03-09 Dowaサーモテック株式会社 鋼部材の窒化処理方法
CN114059009A (zh) * 2021-11-17 2022-02-18 湖南机电职业技术学院 一种喷丸碳氮化处理方法及装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776520B (zh) * 2012-08-03 2015-01-14 西北矿冶研究院 一种凿岩机钎尾热处理工艺
CN102979884B (zh) * 2012-11-23 2015-04-29 无锡威孚中意齿轮有限责任公司 矿用车轿轮边减速器行星齿轮的制造方法
WO2015073098A2 (en) * 2013-08-27 2015-05-21 University Of Virginia Patent Foundation Three-dimensional space frames assembled from component pieces and methods for making the same
GB2521220A (en) * 2013-12-16 2015-06-17 Skf Ab Process for treating steel components
CN103981352B (zh) * 2014-05-07 2016-09-21 西北矿冶研究院 一种冶金炉钎杆热处理工艺
CN105525211A (zh) * 2016-01-20 2016-04-27 广西丛欣实业有限公司 耐磨钢筋的制造方法
TWI580792B (zh) * 2016-05-09 2017-05-01 中國鋼鐵股份有限公司 減少含碳鋼胚高溫表面脫碳的方法
JP7077906B2 (ja) * 2018-10-12 2022-05-31 トヨタ自動車株式会社 歯車の製造方法
CN110216429A (zh) * 2019-04-30 2019-09-10 兴化市统一齿轮有限公司 一种汽车变速箱齿轮及其制造方法
CN110564940A (zh) * 2019-08-21 2019-12-13 徐州东坤耐磨材料有限公司 一种水泵叶轮的淬火加工工艺
CN110438302B (zh) * 2019-08-27 2021-10-22 冠鸿光电科技(武汉)有限公司 一种连续冲压设备铁盘背板前框制造工艺
CN110760784B (zh) * 2019-11-25 2023-01-20 和县卜集振兴标准件厂 一种改善螺母氮碳共渗稳定性的方法
CN114438503B (zh) * 2021-08-16 2022-11-29 浙江四达工具有限公司 一种套筒类五金工件的转炉热处理方法
CN114574800B (zh) * 2022-02-17 2023-12-01 合肥力和机械有限公司 一种微型钢球及表面渗碳与硬化协调处理工艺
CN115044861B (zh) * 2022-06-27 2023-11-17 滨中元川金属制品(昆山)有限公司 一种中碳合金钢精密紧固件微碳氮共渗工艺
DE102022002394A1 (de) * 2022-07-03 2024-01-04 LSV Lech-Stahl Veredelung GmbH Verfahren zur Hersteliung eines Werkstücks aus Stahl und durch das Verfahren hergestelltes Werkstück
CN116607099B (zh) * 2023-06-09 2024-02-20 江苏丰东热技术有限公司 一种大滚子复合热处理工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255731A (ja) * 1992-03-12 1993-10-05 Mazda Motor Corp クロム含有鋼部材の浸炭焼入れ方法
JP2006281343A (ja) * 2005-03-31 2006-10-19 Jfe Steel Kk 厚鋼板の温間ショットピーニング方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3701036B2 (ja) * 1993-12-27 2005-09-28 株式会社神戸製鋼所 高強度歯車
JP3705462B2 (ja) * 1997-07-31 2005-10-12 日産自動車株式会社 歯面強度に優れた歯車の製造方法
CN1131338C (zh) * 1998-06-15 2003-12-17 张秋英 齿轮二段碳氮共渗工艺
US6544360B1 (en) * 1999-06-08 2003-04-08 Nhk Spring Co., Ltd. Highly strengthened spring and process for producing the same
JP2001140020A (ja) * 1999-11-16 2001-05-22 Daido Steel Co Ltd 耐ピッティング性に優れた浸炭窒化処理部材の熱処理方法
JP2002194492A (ja) * 2000-12-22 2002-07-10 Sanyo Special Steel Co Ltd 高硬度部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255731A (ja) * 1992-03-12 1993-10-05 Mazda Motor Corp クロム含有鋼部材の浸炭焼入れ方法
JP2006281343A (ja) * 2005-03-31 2006-10-19 Jfe Steel Kk 厚鋼板の温間ショットピーニング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGEO OWAKU, JIS TEKKO ZAIRYO NYUMON, 10 February 1997 (1997-02-10), pages 56 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015046593A1 (ja) * 2013-09-30 2017-03-09 Dowaサーモテック株式会社 鋼部材の窒化処理方法
JP2016183398A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 製品部材の製造方法及び製品部材
CN104962712A (zh) * 2015-07-29 2015-10-07 中石化石油工程机械有限公司第四机械厂 一种耐高压低碳合金钢的热处理方法
CN105349940A (zh) * 2015-11-27 2016-02-24 陕西东铭车辆系统股份有限公司 热锻标识模具钢的渗碳碳氮共渗复合热处理方法
CN114059009A (zh) * 2021-11-17 2022-02-18 湖南机电职业技术学院 一种喷丸碳氮化处理方法及装置

Also Published As

Publication number Publication date
US20120211122A1 (en) 2012-08-23
US9062364B2 (en) 2015-06-23
CN102482756A (zh) 2012-05-30
JP5639064B2 (ja) 2014-12-10
JPWO2011030827A1 (ja) 2013-02-07
CN102482756B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5639064B2 (ja) 浸炭窒化部材の製造方法
JP5241455B2 (ja) 浸炭窒化部材および浸炭窒化部材の製造方法
US8475605B2 (en) Surface layer-hardened steel part and method of manufacturing the same
KR101129370B1 (ko) 고온에서의 면압 피로 강도가 우수한 침탄 질화 고주파 담금질 강 부품 및 그 제조 방법
JP4627776B2 (ja) 高濃度浸炭・低歪焼入れ部材およびその製造方法
JP4872846B2 (ja) 窒化歯車用粗形品および窒化歯車
WO2013065718A1 (ja) 鋼製部品の製造方法
KR20050046578A (ko) 기어부재 및 그 제조방법
JP5258458B2 (ja) 耐高面圧性に優れた歯車
JP4102866B2 (ja) 歯車の製造方法
JP7364895B2 (ja) 鋼部品及びその製造方法
JP2000129347A (ja) 高強度部品の製造方法
JP4940849B2 (ja) 減圧浸炭部品およびその製造方法
JP5402711B2 (ja) 浸炭窒化層を有する鋼製品およびその製造方法
WO2019244504A1 (ja) 機械部品の製造方法
JP4617783B2 (ja) 高温浸炭用熱間鍛造部品の製造方法
US11326244B2 (en) Steel material for CVT sheave, CVT sheave, and method for manufacturing CVT sheave
JP4821582B2 (ja) 真空浸炭歯車用鋼
JP4411096B2 (ja) 球状化後の冷間鍛造性に優れた肌焼用鋼線材・棒鋼
JP2023069388A (ja) 鋼、および、浸炭焼入れ部品
JP2023144674A (ja) 冷鍛性に優れる窒化用鋼および冷鍛窒化部品
JP2024034952A (ja) 窒化高周波焼入れ用鋼材及び鋼部品
JP2020033636A (ja) 部品およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040230.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530874

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815422

Country of ref document: EP

Kind code of ref document: A1