WO2011027751A1 - 定温保管容器及び輸送方法 - Google Patents
定温保管容器及び輸送方法 Download PDFInfo
- Publication number
- WO2011027751A1 WO2011027751A1 PCT/JP2010/064861 JP2010064861W WO2011027751A1 WO 2011027751 A1 WO2011027751 A1 WO 2011027751A1 JP 2010064861 W JP2010064861 W JP 2010064861W WO 2011027751 A1 WO2011027751 A1 WO 2011027751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage material
- temperature
- heat
- cold
- heat storage
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/38—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
- B65D81/3813—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
- B65D81/3816—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed of foam material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/02—Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
- F25D3/06—Movable containers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2303/00—Details of devices using other cold materials; Details of devices using cold-storage bodies
- F25D2303/08—Devices using cold storage material, i.e. ice or other freezable liquid
- F25D2303/085—Compositions of cold storage materials
Definitions
- the present invention relates to a container capable of storing and transporting articles requiring temperature control at a predetermined temperature for a long period of time regardless of the outside air temperature. More specifically, the present invention relates to pharmaceuticals and medical care requiring temperature control. The present invention relates to a container capable of storing and transporting various articles such as equipment, specimens, organs, chemical substances, foods, etc. at a predetermined temperature exceeding 0 ° C.
- a cold storage material or a heat storage material is provided by placing a cold storage material or a heat storage material that has been solidified or melted in advance in a heat insulating container and housing the article.
- a method of keeping cold or keeping warm by using latent heat of fusion of materials.
- a cold storage material or a heat storage material having a large latent heat of fusion is used. It is necessary to increase the thickness of the heat insulating container.
- the cold storage material that has been used in the past and has a large latent heat of fusion and is inexpensive and safe is water. However, since the melting temperature of water is 0 ° C., there is a possibility that the temperature in the heat insulating container is lowered to around 0 ° C. It was.
- a heat storage material having a melting point of 10 to 25 ° C. is used, and when the outside air temperature is higher than the melting point of the heat storage material, the heat storage material is frozen in advance.
- a thermostatic box is proposed in which the heat storage material is used in a thawed state in advance (see Patent Document 1). According to this constant temperature box, temperature control in a temperature range exceeding 0 ° C. is possible, but precise temperature control cannot be performed for a long time.
- the present invention enables precise temperature management over a long period of time by arranging two or more types of latent heat type cold storage materials or heat storage materials having different phase states. is there.
- the constant temperature storage container according to the present invention is a constant temperature storage container provided with a heat insulating box and two or more kinds of cold storage materials or heat storage materials arranged inside thereof, and is an article to be kept cold or warm.
- the latent heat type first cool storage material or heat storage material (a) in a solidified state is disposed adjacent to the first heat storage material or heat storage material (a), and the latent heat type heat storage material (a) in a molten state is disposed outside the first cool storage material or heat storage material (a).
- a second cold storage material or heat storage material (b) is disposed, and the solidification / melting temperature of the first cold storage material or heat storage material (a) exceeds 0 ° C.
- the 3rd cool storage material or heat storage material (c) which is in a low temperature state from the said 2nd cool storage material or heat storage material (b) outside the said 2nd cool storage material or heat storage material (b). ) To form a constant temperature storage container.
- a constant temperature storage container capable of precisely controlling the temperature in the container within the range of 1 to 30 ° C.
- the in-container management temperature is A (° C.)
- the solidification / melting temperature of the first cold storage material or heat storage material (a) and the second cold storage material or heat storage material (b) is (A-3) ° C. to (A + 3) ° C.
- the solidification / melting temperature of the third cold storage material or heat storage material (c) is (A-10) ° C. to (A-5) ° C. It is preferable that
- the solidification / melting temperature of the first cold storage material or heat storage material (a) and the second cold storage material or heat storage material (b) is preferably 2 ° C. to 8 ° C.
- the solidification / melting temperature of the cold storage material or heat storage material (c) is preferably ⁇ 5 to 0 ° C.
- the first cold storage material or heat storage material (a) and the second cold storage material or heat storage material (b) are insoluble in polyalkylene glycol and at least one aqueous solution of water-soluble salts, and A heat storage material composition containing polyalkylene glycol is suitable. Moreover, as said 3rd cool storage material or a heat storage material (c), the cool storage material which has water as a main component is suitable.
- an article to be kept cold or warm may be accommodated in a heat insulating inner box.
- the article transportation method in a situation where the outside air temperature of the container is lower than the in-container management temperature A, a molten state is formed outside the first heat storage material (a) of the latent heat type in the solidified state.
- the constant temperature storage container in which the latent heat type second cold storage material or heat storage material (b) is disposed the article to be kept cold or warm is stored and transported, and the outside air temperature of the container is
- the article to be kept cold or warm is stored and transported in a constant temperature storage container in which a third cold storage material or heat storage material (c) is further arranged.
- FIG. 3 The graph which shows the temperature change in the inner box 5 in Example 3.
- FIG. 4 The graph which shows the temperature change in the inner box 5 in the comparative example 1.
- FIG. 4 The graph which shows the temperature change in the inner box 5 in Example 4.
- FIG. 5 The graph which shows the temperature change in the inner box 5 in Example 5.
- the constant temperature storage container includes a heat insulating box and two or more kinds of latent heat type regenerators or heat accumulators disposed in the box, and adjacent to an article to be kept cool or warm.
- a cold insulation material or a heat insulation material in a solidified state in which the solidification / melting temperature exceeds 0 ° C. is used. It can be maintained for a long time in any temperature range exceeding 0 ° C.
- the cold storage material or the heat storage material is obtained by enclosing a cold storage component or a thermal storage component in a plastic container or a film bag.
- the latent heat type regenerator material or regenerator material is a regenerator material or regenerator material that uses thermal energy associated with the phase transition, and the phase state of the regenerator component or the regenerator component changes from a solidified state (solid) to a molten state (liquid ) Or the thermal energy released when the phase transition from the molten state (liquid) to the solidified state (solid) is utilized.
- the solidification / melting temperature of a cold storage material or a heat storage material is a temperature at which the phase state changes from a solidified state (solid) to a molten state (liquid), or from a molten state (liquid) to a solidified state (solid). For example, it is 0 ° C. in water.
- the solidification / melting temperature of the regenerator material or heat storage material is measured by, for example, using a differential scanning calorimeter DSC (Seiko Instruments Inc., SEIKO6200) and enclosing 28 mg of the regenerator material component or heat storage material component in the measurement pan, It can be measured by differential scanning calorimetry where the temperature is raised from 20 ° C. at 4 ° C./min. That is, the solidification / melting temperature of the regenerator material or regenerator material can be measured as the peak temperature value of the obtained chart (however, if there are multiple peaks, the peak temperature value indicating the maximum value at the peak height) And).
- the cold storage material or heat storage material having a solidification / melting temperature exceeding 0 ° C. in the present invention means that the solidification / melting temperature of 50% by weight or more of the cold storage component or heat storage component exceeds 0 ° C. ing. Therefore, for example, normally, a regenerator material or a heat storage material containing 50% or more of water is excluded, but even if it contains 50% or more of water, an inorganic salt hydrate system (for example, sodium sulfate decahydrate), etc. Some melts contain 50% by weight or more of water, while others have a solidification / melting temperature exceeding 0 ° C.
- the phase state in the present invention represents a general solid, liquid, or gas state.
- the solid and liquid phase states are used in order to reduce the container size.
- the phase state of the cold storage material or the heat storage material refers to a phase of 50% by weight or more.
- the phase state of the cold storage material or the heat storage material in which 80% by weight is solid and 20% by weight is liquid is solid (solid state). is there.
- FIG. 1 shows a first embodiment of a constant temperature storage container according to the present invention.
- the constant temperature storage container 1A according to the first embodiment is a container suitable for a situation where the outside temperature of the container is lower than a predetermined in-container management temperature.
- the cold storage container 1A is a constant temperature storage container including a heat insulating box 2 composed of a box body 3 and a lid 4, and two or more kinds of cold storage materials or heat storage materials arranged in the box 2,
- a latent heat type first cold storage material or heat storage material (a) having a solidification / melting temperature of 0 ° C. or higher and in a solidified state is disposed adjacent to an article (or inner box 5) to be kept cold or warm.
- the latent heat type 2nd cool storage material or heat storage material (b) in a molten state is arrange
- FIG. 2 shows a second embodiment of the constant temperature storage container according to the present invention.
- the constant temperature storage container 1B of the second embodiment is a container suitable for situations where the outside temperature of the container is higher than a predetermined in-container management temperature.
- the constant temperature storage container 1B of the second embodiment includes a second cold storage material in addition to the first cold storage material or heat storage material (a) and the second cold storage material or heat storage material (b). Or it arrange
- the box 2 has a box body 3 made of a heat-insulating material and having a bottom, and the box body 3 is attached with a lid 4 made of the same heat-insulating material. It is preferable that the lid 4 can make the opening of the box body 3 in a closed state and a released state. Furthermore, it can be set as the container excellent in heat insulation by providing a fitting structure in the joint surface of the box main body 3 and the cover body 4.
- the material and configuration of the box 2 are not particularly limited, but are preferably made of a material having a heat insulation property, for example, a foamed synthetic resin molded product, and in order to further increase the heat insulation property, the foamed synthetic resin is made of aluminum foil or resin. A laminate of films may also be used.
- a polystyrene resin such as polystyrene, a polyolefin resin such as polyethylene or polypropylene, and the like can be used.
- polystyrene-based resins particularly commonly used polystyrene, are preferably used in terms of price and strength.
- the article to be kept cold or warm stored in the box 2 may be left as it is, or may be stored in the box 2 in a state of being wrapped with a synthetic resin sheet or film.
- an inner box 5 that holds an internal shape and that stores articles to be kept cold or warm may be housed in the box 2.
- the inner box 5 may also be provided with a lid so that the opening of the inner box 5 can be closed and released by this lid. Further, the lid of the inner box 5 is not particularly required when it does not affect the heat retaining or cooling function. If the inner box 5 is also heat-insulating like the outer box 2, the time during which the temperature can be controlled becomes longer, which is more preferable.
- a heat insulating material such as a foamed resin plate 6 as in a constant temperature storage container 1C shown in FIG. Material may be inserted.
- the base resin of the foamed resin plate 6 may be the same as that of the outer box 2, and for example, a polystyrene resin is used.
- the first cold storage material or heat storage material (a) and the second cold storage material or heat storage material (b) are in the solidified state of the first cold storage material or heat storage material (a), As long as the heat storage material (b) is in a molten state and the phase states thereof are different, the respective solidification / melting temperatures may be the same or different. In the present invention, it is possible to perform temperature management for a long time by arranging two or more kinds of latent heat type cold storage materials or heat storage materials having different phase states as described above.
- the thing in a solidified state is arrange
- the second cool storage material or the heat storage material (b) is first cooled by the outside air temperature, the temperature is lowered, and heat is generated to cause a phase transition from a molten state (liquid) to a solidified state (solid).
- the first cold storage material or the heat storage material (a) can be prevented from being exposed to the low temperature outside air, and the first cold storage material or the heat storage material (a) is excessively cooled.
- the first cold storage material or the thermal storage material (a) can maintain the inside of the container 1A within a predetermined temperature range exceeding 0 ° C. for a long time.
- the outside of the second cool storage material or heat storage material (b) is more external than the second cool storage material or heat storage material (b).
- the third cold storage material or the heat storage material (c) is heated by the outside air temperature and absorbs the thermal energy.
- the second cold storage material or heat storage material (b) can be suppressed from being heated by high temperature outside air, and the second cold storage material or heat storage material (b) is cooled by the third cold storage material or heat storage material (c).
- the first cool storage material or the heat storage material (a) becomes the third cool storage material by releasing thermal energy to lower the temperature and further phase transition from the molten state (liquid) to the solidified state (solid).
- the first cool storage material or heat storage material is not cooled excessively by the heat storage material (c). By a), it can be maintained within a predetermined temperature range above 0 °C the container 1B for a long time.
- the first cold storage material or the heat storage material (a) is a cold storage material or a heat storage material having a solidification / melting temperature exceeding 0 ° C.
- the container management temperature is preferably 1 to 30 ° C. and more preferably 2 to 8 ° C. in view of the characteristics of articles subject to temperature management such as pharmaceuticals and foods.
- the solidification / melting temperature of the third cold storage material or heat storage material (c) when the outside air temperature is higher than the inside management temperature A (° C.) is (A-15) ° C. to A (° C.).
- the temperature is preferably (A-10) ° C. to (A-5) ° C.
- regenerator material or regenerator material (a), (b) By using this combination of regenerator material or regenerator material (a), (b), the time during which the temperature can be controlled at a temperature of 5 ° C. ⁇ 3 ° C., which is particularly difficult to control the temperature, becomes longer. The effect is great when the temperature is lower than the control temperature of 5 ° C. ⁇ 3 ° C.
- the third cold storage material or heat storage material (c) is a cold storage material having water as a main component and a solidification / melting temperature of ⁇ 5 to 0 ° C. It is particularly preferred to use By using this combination of regenerators or regenerators (a) to (c), the time during which the temperature can be controlled at a container management temperature of 5 ° C ⁇ 3 ° C, which is particularly difficult to control the temperature, becomes longer. The effect is large when the temperature is higher than the control temperature of 5 ° C. ⁇ 3 ° C.
- heat storage type first and second heat storage materials or heat storage materials (a) and (b) used in the present invention there are no particular limitations on the materials of the heat storage type first and second heat storage materials or heat storage materials (a) and (b) used in the present invention.
- sodium sulfate decahydrate, sodium acetate 3 Inorganic hydrate salt heat storage material such as hydrate, potassium chloride hexahydrate, quaternary ammonium salt hydrate; paraffin wax, saturated fatty acid having C 6 to C 18 carbon chain, C 6 Amount of organic compound heat storage material such as unsaturated fatty acid having a C 18 carbon chain, polyalkylene glycol, etc .; described in JP-A-2006-96898, insoluble in water and soluble in polyalkylene glycol Examples include an aqueous solution of at least one salt and a heat storage material composition containing polyalkylene glycol.
- the heat storage material composition described in Japanese Patent Application Laid-Open No. 2006-96898 is preferable in that it is inexpensive, safe
- the material of the third regenerator material or the regenerator material (c) is not particularly limited, and a regenerator material mainly composed of water such as an aqueous potassium hydrogen carbonate solution, an aqueous potassium chloride solution, an aqueous ammonium chloride solution, or an aqueous sodium chloride solution; And a regenerator material containing a superabsorbent polymer.
- a regenerator material having water as a main component and a solidification / melting temperature of ⁇ 5 to 0 ° C. is inexpensive, safe and preferable.
- the first to third cold storage materials or the heat storage materials (a), (b), and (c) are stacked only on the upper and lower sides in the box 2.
- the regenerators or regenerators (a) and (b), and (c) may be arranged in this order only on the side surface of the box 1, and these regenerators on all the upper and lower surfaces and side surfaces.
- the heat storage materials (a), (b), and (c) may be stacked in this order.
- Example 1 Inside the insulated polystyrene foam container 1 (outer dimensions are 620 mm ⁇ 420 mm ⁇ 470 mm, inner dimensions are 500 mm ⁇ 300 mm ⁇ 350 mm), as shown in FIG.
- the foamed polystyrene inner box 5 (outer dimensions 430 mm ⁇ 297 mm ⁇ 165 mm, inner dimensions 390 mm ⁇ 255 mm ⁇ 125 mm) was accommodated in the approximate center of the space to obtain a measurement package.
- 1st heat storage material (a) [manufactured by Tamai Kasei Co., Ltd., with a solidification (solid) state in a 4 ° C environment and a solidification / melting temperature of 5 ° C with respect to the upper and lower surfaces of the inner box 5 [Solidified under 4 ° C. environment]
- Four 500 g pieces were arranged on the top and the bottom, and two pieces of the heat storage material (a) were also arranged on the side surfaces.
- the second heat storage material (b) [Passaimo P, manufactured by Tamai Kasei Co., Ltd.], which is in a molten (liquid) state at a room temperature of about 20 ° C.
- the thing filled in the polyethylene blow container of 140 mm x 220 mm x 25 mm was used for the 500g 1st heat storage material (a).
- 200 g of the second heat storage material (b) is a bag made of foamed polyethylene having a thickness of 1 mm and containing a heat storage material filled in a 0.9 mm bag in which polyethylene and polyamide are laminated, and the size is 230 mm ⁇ 290 mm ⁇ A 7 mm object was used.
- the third cold storage material (c) of 500 g a material filled in a polyethylene blow container of 140 mm ⁇ 220 mm ⁇ 25 mm was used.
- the measurement package as described above was left in a thermostatic chamber adjusted to 35 ° C., and the temperature in the inner box 5 was measured using a data logger [manufactured by T & D Co., Ltd., RTR-52]. .
- the result is shown in FIG.
- the vertical axis represents temperature
- the horizontal axis represents elapsed time.
- the temperature in the box 5 could be maintained within 5 ° C. ⁇ 3 ° C. for 40 hours or more.
- Example 2 A measurement package was obtained in the same manner as in Example 1 with the arrangement of the cold storage material or the heat storage material. The measurement package was left in a thermostatic chamber adjusted to 15 ° C., and the temperature in the box 5 was measured using a data logger. The result is shown in FIG. In the graph of FIG. 5, the vertical axis represents temperature, and the horizontal axis represents elapsed time. As shown in the graph of FIG. 5, the temperature in the box 5 could be maintained within 5 ° C. ⁇ 3 ° C. for 96 hours or more without deviating to 2 ° C. or less.
- Example 3 A measurement package was obtained in the same manner as in Example 1 except that the arrangement of the cold storage material or the heat storage material was changed as follows.
- each of heat storage material (a) with a solidification / melting temperature of 5 ° C in a solidified (solid) state in an environment of 4 ° C with respect to the upper and lower surfaces of the inner box are arranged on the upper and lower sides.
- Two each of the heat storage materials (a) were arranged.
- Two 200 g of heat storage materials (b) each having a solidification / melting temperature of 5 ° C. in a molten (liquid) state at a room temperature of about 20 ° C. were arranged on the upper and lower surfaces.
- 500 g of water-based regenerator material (c) which is completely frozen (solid) in an environment of 0 ° C. or lower, was placed in the top 12 and the bottom 8.
- the measurement package was left in a thermostatic chamber adjusted to 35 ° C., and the temperature in the inner box 5 was measured using a data logger. The result is shown in FIG. In the graph of FIG. 6, the vertical axis represents temperature and the horizontal axis represents elapsed time. As shown in the graph of FIG. 6, the temperature in the inner box 5 could be maintained within 5 ⁇ 3 ° C. for 72 hours or more.
- the measurement package was left in a thermostatic chamber adjusted to 35 ° C., and the temperature in the box 5 was measured using a data logger. The result is shown in FIG. In the graph of FIG. 7, the vertical axis represents temperature and the horizontal axis represents elapsed time. As shown in the graph of FIG. 7, the temperature in the box 5 once decreased to 2 ° C. or less.
- Example 4 A measurement package was obtained in the same manner as in Example 1 except that the arrangement of the cold storage material or the thermal storage material was changed as shown in FIG.
- heat storage materials 500 g each having a solidification / melting temperature of 5 ° C. in a solidified (solid) state in a 4 ° C. environment are arranged up and down, and the same heat storage material ( Two a) were arranged.
- 12 each of 500 g of heat storage material (b) having a solidification / melting temperature of 5 ° C. in a molten (liquid) state at a room temperature of about 20 ° C. was arranged.
- the measurement package was left in a high-temperature bath adjusted to ⁇ 10 ° C., and the temperature in the inner box 5 was measured using a data logger. The result is shown in FIG. In the graph of FIG. 8, the vertical axis represents temperature and the horizontal axis represents elapsed time. As shown in the graph of FIG. 8, the temperature in the box 5 could be maintained within 5 ⁇ 3 ° C. over 66 hours or more.
- the thing filled in the polyethylene blow container of 140 mm x 220 mm x 25 mm was used for the 500-g heat storage material (a).
- the 500 g of the heat storage material (b) a material filled in a polyethylene blow container of 140 mm ⁇ 220 mm ⁇ 25 mm was used.
- Example 5 A measurement package was obtained in the same manner as in Example 1 except that the arrangement of the cold storage material or the heat storage material was changed to the following configuration shown in FIG.
- heat storage materials 500 g each having a solidification / melting temperature of 5 ° C. in a solidified (solid) state in a 4 ° C. environment are arranged up and down, and the same heat storage material (a ) Were arranged for each two.
- 8 pieces each of 500 g of the heat storage material (b) having a melting (liquid) state at a room temperature of about 20 ° C. and a solidification / melting temperature of 5 ° C. were arranged on the upper and lower surfaces of the foamed plastic plate 6.
- the measurement package was left in a thermostatic chamber adjusted to ⁇ 10 ° C., and the temperature in the box 5 was measured using a data logger. The result is shown in FIG. In the graph of FIG. 9, the vertical axis represents temperature, and the horizontal axis represents elapsed time. As shown in the graph of FIG. 9, the temperature in the inner box 5 could be maintained within 5 ° C. ⁇ 3 ° C. for 40 hours or more at a temperature of ⁇ 10 ° C.
- the measurement package was left in a thermostatic chamber adjusted to ⁇ 10 ° C., and the temperature in the inner box 5 was measured using a data logger. The result is shown in FIG. In the graph of FIG. 10, the vertical axis represents temperature and the horizontal axis represents elapsed time. As shown in the graph of FIG. 10, the temperature in the inner box 5 could be maintained within 5 ⁇ 3 ° C. for only 30 hours.
- 1A, 1B, 1C constant temperature storage container Foamed plastic insulated container (outer box). 3. Box body. 4). Lid. 5. Foamed plastic container (inner box) to hold the internal shape. 6).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Packages (AREA)
Abstract
【課題】外気温度に左右されず、温度管理の必要な物品を長時間にわたって所定の温度に維持し、保管、輸送できる容器を提供する。 【解決手段】断熱性の箱体と、その内側に配置される2種以上の蓄冷材又は蓄熱材を備え、保冷又は保温されるべき物品に隣接して、凝固状態にある潜熱型の第1の蓄冷材又は蓄熱材(a)を配置し、前記第1の蓄冷材又は蓄熱材(a)の外側に、溶融状態にある潜熱型の第2の蓄冷材又は蓄熱材(b)を配置してなり、かつ、前記第1の蓄冷材又は蓄熱材(a)の凝固・融解温度が0℃を超えることを特徴とする定温保管容器は、保冷又は保温すべき物品を、0℃を超える任意の温度範囲にて長時間にわたって維持することが可能である。
Description
本発明は、外気温度に左右されず、温度管理の必要な物品を、長時間にわたって所定の温度に維持して保管、輸送できる容器に関するものであり、より詳しくは温度管理の必要な医薬品や医療機器、検体、臓器、化学物質、食品等の各種物品を、0℃を超える所定の温度に維持して保管、輸送できる容器に関するものである。
病院やスーパーマーケット等で取り扱われる医薬品・検体等や食品等には、輸送、運搬時に品質保持のために、有効な所定の温度範囲に保冷又は保温する必要があるものがある。従来、この種の医薬品等の物品を保冷又は保温する方法として、断熱容器内に、予め凝固又は溶融させた蓄冷材又は蓄熱材を配置して、前記物品を収容することにより、蓄冷材又は蓄熱材の融解潜熱を利用して保冷又は保温する方法が知られている。
保冷又は保温されるべき物品(以下、「温度管理対象物品」と称する場合がある。)を、所定の温度範囲に長時間を維持するためには、大きな融解潜熱を持つ蓄冷材又は蓄熱材を用いること、断熱容器の厚さを厚くすること等が必要である。従来から使用されてきた、融解潜熱が大きく安価で安全な蓄冷材は水であるが、水の融解温度は0℃であるため、断熱容器内の温度が0℃付近まで低下する可能性があった。このため、0℃を超える温度領域での温度管理の場合には、輸送対象物と、水を主成分とする蓄熱材とを離して配置する方法や、断熱材で熱伝達を遮断する方法がとられている。しかし、それでも、外気温度の変化により断熱容器内の温度が0℃付近に低下することがあった。
そこで、内部をほぼ常温での保存に適した温度に保つために、融点が10~25℃の蓄熱材を用い、外気温度が蓄熱材の融点より高温の場合には蓄熱材を予め凍結させた状態、外気温度が蓄熱材の融点より低温の場合には蓄熱材を予め解凍状態にして使用する恒温ボックスが提案されている(特許文献1参照。)。この恒温ボックスによれば、0℃を超える温度領域での温度管理が可能となるが、長時間にわたって精密な温度管理を行うことはできなかった。
これに対して、断熱性の箱体内に互いに温度の異なる複数種類の蓄熱材を収容すると共に、外部の温度が高い場合には温度の低い方の蓄熱材を温度の高い方の蓄熱材よりも外側に配置し、外部の温度が低い場合には温度の高い方の蓄熱材を温度の低い方の蓄熱材よりも外側に配置することにより、外部の温度条件に応じて内部の温度を所定範囲内に維持する恒温ボックスも提案されている(特許文献2参照。)。しかし、そのように、単に温度が異なる蓄熱材を組み合わせて用いるだけでは、長時間にわたって精密な温度管理を行うことはできない。
このように、従来、外気温度に左右されず、温度管理の必要な物品を長時間にわたって所定の温度に維持し、保管、輸送できる容器はなかった。特に航空輸送を行う場合には、72時間程度の温度管理時間が要求されているが、外気温度に左右されず、72時間という長時間にわたって温度管理できる定温保管容器はなかった。
本発明は、前述の課題解決のために、相状態を異にする潜熱型の蓄冷材又は蓄熱材を2種以上重ねて配置することで、長時間にわたって精密な温度管理を可能としたものである。
即ち、本発明に係る定温保管容器は、断熱性の箱体と、その内側に配置される2種以上の蓄冷材又は蓄熱材を備えた定温保管容器であって、保冷又は保温されるべき物品に隣接して、凝固状態にある潜熱型の第1の蓄冷材又は蓄熱材(a)を配置し、前記第1の蓄冷材又は蓄熱材(a)の外側に、溶融状態にある潜熱型の第2の蓄冷材又は蓄熱材(b)を配置してなり、前記第1の蓄冷材又は蓄熱材(a)の凝固・融解温度が0℃を超えることを特徴とする。
また、本発明では、前記第2の蓄冷材又は蓄熱材(b)の外側に、該第2の蓄冷材又は蓄熱材(b)よりも低温状態にある第3の蓄冷材又は蓄熱材(c)を配置して定温保管容器を構成した。
本発明によれば、容器内管理温度A(℃)を1~30℃の範囲で精密に温度管理が可能な定温保管容器を提供することができる。
本発明においては、容器内管理温度をA(℃)とした場合に、前記第1の蓄冷材又は蓄熱材(a)及び前記第2の蓄冷材又は蓄熱材(b)の凝固・融解温度は、(A-3)℃~(A+3)℃であることが好ましく、前記第3の蓄冷材又は蓄熱材(c)の凝固・融解温度は、(A-10)℃~(A-5)℃であることが好ましい。
さらには、前記第1の蓄冷材又は蓄熱材(a)及び前記第2の蓄冷材又は蓄熱材(b)の凝固・融解温度は、2℃~8℃であることが好ましく、前記第3の蓄冷材又は蓄熱材(c)の凝固・融解温度は、-5~0℃であることが好ましい。
前記第1の蓄冷材又は蓄熱材(a)及び前記第2の蓄冷材又は蓄熱材(b)としては、ポリアルキレングリコールに対して不溶で、かつ水溶性の塩類の少なくとも1種の水溶液、及びポリアルキレングリコールを含有してなる蓄熱材組成物が好適である。また、前記第3の蓄冷材又は蓄熱材(c)としては、水を主成分とする蓄冷材が好適である。
上記のような本発明に係る定温保管容器にあっては、保冷又は保温されるべき物品が、断熱性内箱内に収容されていてもよい。
本発明に係る物品輸送方法は、容器の外気温度が容器内管理温度Aよりも低い状況においては、凝固状態にある潜熱型の第1の蓄冷材又は蓄熱材(a)の外側に、溶融状態にある潜熱型の第2の蓄冷材又は蓄熱材(b)を配置してなる定温保管容器に、保冷又は保温されるべき物品を収納して輸送するものであり、また、容器の外気温度が容器内管理温度Aよりも高い状況においては、さらに第3の蓄冷材又は蓄熱材(c)を配置した定温保管容器に、保冷又は保温されるべき物品を収納して輸送する。
以上にしてなる本発明に係る定温保管容器及び輸送方法によれば、外気温度に左右されず、長時間に渡って温度管理の必要な物品を所定の温度に維持し、保管、輸送することができる。
本発明に係る定温保管容器は、断熱性の箱体と、箱体内に配置される相状態の異なる2種以上の潜熱型の蓄冷材又は蓄熱材を備え、保冷又は保温されるべき物品に隣接して配置する第1の保冷材又は保温材として、凝固・融解温度が0℃を超える凝固状態にある保冷材又は保温材を用いることを特徴とするものであり、保冷又は保温すべき物品を、0℃を超える任意の温度範囲にて長時間にわたって維持することが可能である。
本発明において、前記蓄冷材又は蓄熱材とは、蓄冷成分又は蓄熱成分をプラスチック製容器やフィルム製の袋などに封入したものである。また、潜熱型の蓄冷材又は蓄熱材とは、相転移に伴う熱エネルギーを利用する蓄冷材又は蓄熱材であり、蓄冷成分又は蓄熱成分の相状態が、凝固状態(固体)から溶融状態(液体)に相転移する際に吸収する熱エネルギー、又は溶融状態(液体)から凝固状態(固体)に相転移する際に放出する熱エネルギーを利用するものである。
本発明において、蓄冷材又は蓄熱材の凝固・融解温度とは、その相状態が凝固状態(固体)から溶融状態(液体)に、もしくは溶融状態(液体)から凝固状態(固体)に変化する温度であり、例えば水においては0℃である。蓄冷材又は蓄熱材の凝固・融解温度は、例えば、示差走査熱量計DSC(セイコーインスツルメント社製、SEIKO6200)を用いて、蓄冷材成分又は蓄熱材成分28mgを測定用パンに封入し、-20℃から4℃/分にて昇温する示差走査熱量測定により測定できる。すなわち、蓄冷材又は蓄熱材の凝固・融解温度は、得られたチャートのピーク温度値として測定できる(ただし、複数のピークが存在する場合には、ピークの高さで最大値を示すピーク温度値とする。)。
また、本発明における凝固・融解温度が0℃を超える温度である蓄冷材又は蓄熱材とは、その50重量%以上の蓄冷成分又は蓄熱成分の凝固・融解温度が0℃を超えることを意味している。従って、例えば、通常、水を50%以上含有する蓄冷材又は蓄熱材は除かれるが、水を50%以上含有しても、無機塩水和物系(例えば、硫酸ナトリウム・10水和物)など、融解時に水が50重量%以上含有される状態となるものでも、凝固・融解温度が0℃を超えるものもある。
また、本発明における相状態とは、一般的な固体、液体、気体の状態を表すが、本発明では、容器サイズを小さくするために、固体と液体の相状態を利用する。蓄冷材又は蓄熱材の相状態とは、50重量%以上の相を指し、例えば80重量%が固体で20重量%が液体の状態の蓄冷材又は蓄熱材の相状態は固体(凝固状態)である。
図1に、本発明に係る定温保管容器の第1実施形態を示す。この第1実施形態の定温保管容器1Aは、容器外温度が、所定の容器内管理温度よりも低い状況に適した容器である。この冷温保管容器1Aは、箱本体3と蓋体4からなる断熱性の箱体2と、箱体2内に配置される2種以上の蓄冷材又は蓄熱材を備える定温保管容器であって、保冷又は保温されるべき物品(又は内箱5)に隣接して、凝固・融解温度が0℃以上で、かつ凝固状態にある潜熱型の第1の蓄冷材又は蓄熱材(a)を配置し、その外側に、溶融状態にある潜熱型の第2の蓄冷材又は蓄熱材(b)を配置してなる。
また、図2に示すものは、本発明に係る定温保管容器の第2実施形態である。この第2実施形態の定温保管容器1Bは、容器外温度が、所定の容器内管理温度よりも高い状況に適した容器である。この第2実施形態の定温保管容器1Bは、前記第1の蓄冷材又は蓄熱材(a)及び第2の蓄冷材又は蓄熱材(b)に加えて、さらにその外側に、第2の蓄冷材又は蓄熱材(b)よりも低温状態にある第3の蓄冷材又は蓄熱材(c)を配置してなる。
前記箱体2の構造は特に限定されないが、断熱性を有する材料からなり底部を備えた箱本体3を有し、箱本体3には、同じく断熱性を有する材料からなる蓋体4が取付けられており、蓋体4によって、箱本体3の開口部を閉止状態及び解放状態とすることができるものが好ましい。さらに、箱本体3と蓋体4との接合面に嵌合構造を設けることで、より断熱性に優れた容器とすることができる。
箱体2の材料や構成は特に限定されないが、好ましくは断熱性を有する材料からなり、例えば発泡合成樹脂製成形品からなり、さらに断熱性を増大させるために、発泡合成樹脂にアルミ箔や樹脂フィルムを積層したものでも良い。前記発泡合成樹脂の基材樹脂としては、ポリスチレンなどのポリスチレン系樹脂、ポリエチレン又はポリプロピレンなどのポリオレフィン系樹脂などを使用することができる。これらの中でも、価格や強度などの点でポリスチレン系樹脂、とりわけ汎用されているポリスチレンが好適に使用される。
また、箱体2内に収容する保冷又は保温されるべき物品は、そのままでもよいし、合成樹脂シート、フィルムなどで包んだ状態で箱体2内に収容しても良い。更に、箱体2内に、内部形状を保持し、かつ保冷又は保温されるべき物品を収納する内箱5を収容するようにしてもよい。なお、図示しないが、内箱5にも蓋体を設けて、この蓋体によって、内箱5の開口部を閉止状態及び解放状態にできるようにしてもよい。また、内箱5の蓋体は、保温又は保冷機能に影響を与えないような場合には、特に設ける必要はない。内箱5も、外箱2と同様に断熱性であれば、温度管理できる時間が長くなり、より好ましい。
また、各蓄冷材又は蓄熱材(a)、(b)、(c)の間に、断熱性を向上させる目的で、例えば図3に示す定温保管容器1Cの如く、発泡樹脂板6などの断熱材を挿入しても良い。発泡樹脂板6の基材樹脂としては、外箱2と同様でよく、例えばポリスチレン系樹脂が用いられる。
第1の蓄冷材又は蓄熱材(a)と、第2の蓄冷材又は蓄熱材(b)とは、第1の蓄冷材又は蓄熱材(a)が凝固状態にあり、第2の蓄冷材又は蓄熱材(b)が溶融状態にあって、互いの相状態が異なっていれば、それぞれの凝固・融解温度は同じでも異なっていても良い。本発明では、前記のように相状態が異なる、2種以上の潜熱型の蓄冷材又は蓄熱材を重ねた状態で配置することにより、長時間にわたる温度管理が可能となる。
本発明では、外気温度が所定の温度範囲より低い状況では、図1に示すように、保冷又は保温されるべき物品(又は内箱5)に隣接する第1の蓄冷材又は蓄熱材(a)として凝固状態にあるものを配置し、第1の蓄冷材又は蓄熱材の外側に配置される第2の蓄冷材又は蓄熱材(b)として溶融状態にあるものを配置する。この場合には、外気温度により、先ず第2の蓄冷材又は蓄熱材(b)が冷却されて温度が低下し、さらに溶融状態(液体)から凝固状態(固体)へと相転移するために熱エネルギーを放出することで、第1の蓄冷材又は蓄熱材(a)が低温度の外気に曝されるのを抑制でき、かつ第1の蓄冷材又は蓄熱材(a)が過剰に冷却されることがなく、第1の蓄冷材又は蓄熱材(a)により、容器1A内を長時間にわたって0℃を超える所定の温度範囲内に維持することができる。
一方、外気温度が所定の温度範囲より高い状況では、図2に示すように、第2の蓄冷材又は蓄熱材(b)の外側に、該第2の蓄冷材又は蓄熱材(b)よりも低温状態の第3の蓄冷材又は蓄熱材(c)をさらに重ねて配置することにより、該第3の蓄冷材又は蓄熱材(c)が外気温度により熱されて熱エネルギーを吸収する間、第2の蓄冷材又は蓄熱材(b)が高温度の外気によって熱されることを抑制でき、かつ第2の蓄冷材又は蓄熱材(b)が第3の蓄冷材又は蓄熱材(c)により冷却されて温度が低下し、さらに溶融状態(液体)から凝固状態(固体)へと相転移するために熱エネルギーを放出することで、第1の蓄冷材又は蓄熱材(a)が第3の蓄冷材又は蓄熱材(c)により過剰に冷却されることがなく、第1の蓄冷材又は蓄熱材(a)により、容器1B内を長時間にわたって0℃を超える所定の温度範囲内に維持することができる。
本発明では、少なくとも第1の蓄冷材又は蓄熱材(a)として、凝固・融解温度が0℃を超える蓄冷材又は蓄熱材を配置することより、0℃を超える任意の温度範囲において精密な温度管理が可能となる。但し、容器管理温度としては、医薬品等や食品などの温度管理対象物品の特性上、1~30℃が好ましく、2~8℃がより好ましい。
ここで、容器内管理温度とは、保冷又は保温されるべき物品に対する所定の温度範囲(必要な温度管理範囲)の下限温度と上限温度の中間温度を指し、例えば、下限温度2℃で上限温度8℃の場合には(2+8)÷2=5℃となる。
本発明では、容器内管理温度をA(℃)とした場合に、凝固・融解温度が(A-3)℃~(A+3)℃で凝固状態にある第1の蓄冷材又は蓄熱材(a)と、凝固・融解温度が(A-3)℃~(A+3)℃で溶融状態にある第2の蓄冷材又は蓄熱材(b)を使用することが好ましく、さらに凝固・融解温度が、いずれもA(℃)である蓄冷材又は蓄熱材(a)、(b)を用いることが好ましい。この組み合わせの蓄冷材又は蓄熱材(a)、(b)を使用することにより、精密に温度管理できる時間が長くなり、特に外気温度が容器内管理温度A(℃)よりも低い場合に効果が大きい。
一方、外気温度が容器内管理温度A(℃)よりも高い場合の第3の蓄冷材又は蓄熱材(c)の凝固・融解温度としては、(A-15)℃~A(℃)であることが好ましく、(A-10)℃~(A-5)℃であることがより好ましい。この組み合わせの蓄冷材又は蓄熱材(a)~(c)を使用することにより、精密に温度管理できる時間が長くなり、特に外気温度が容器内管理温度A(℃)よりも高い場合に効果が大きい。
さらに、凝固・融解温度が2~8℃であり、凝固状態(固体)にある蓄熱材(a)と、凝固・融解温度が2~8℃であり、溶融状態(液体)にある蓄熱材(b)とを使用することが特に好ましい。この組み合わせの蓄冷材又は蓄熱材(a)、(b)を使用することにより、温度管理が特に難しい容器内管理温度5℃±3℃で温度管理できる時間が長くなり、特に外気温度が容器内管理温度である5℃±3℃よりも低い場合には効果が大きい。
一方、外気温度が容器内管理温度よりも高い場合には、第3の蓄冷材又は蓄熱材(c)として、水を主成分とする、凝固・融解温度が-5~0℃である蓄冷材を使用することが、特に好ましい。この組み合わせの蓄冷材又は蓄熱材(a)~(c)を使用することにより、温度管理の特に難しい容器内管理温度5℃±3℃で温度管理できる時間が長くなり、特に外気温度が容器内管理温度である5℃±3℃よりも高い場合に効果が大きい。
本発明に使用される蓄熱型の第1、2の蓄冷材又は蓄熱材(a)、(b)の材料には特に限定はないが、例えば、硫酸ナトリウム・10水和物、酢酸ナトリウム・3水和物、塩化カリウム・6水和物、4級アンモニウム塩・水和物などの無機水和物塩系蓄熱材;パラフィン・ワックス、C6~C18の炭素鎖を有する飽和脂肪酸、C6~C18の炭素鎖を有する不飽和脂肪酸、ポリアルキレングリコールなどの有機化合物系蓄熱材量;特開2006-96898号公報に記載されている、ポリアルキレングリコールに対して不溶で、かつ水溶性の塩類の少なくとも1種の水溶液、及びポリアルキレングリコールを含有してなる蓄熱材組成物などが挙げられる。これらの内でも、特開2006-96898号公報に記載されている蓄熱材組成物が、安価・安全かつ、温度制御・温度管理時間に優れている点で好ましく、航空輸送を実施する場合には特に好ましい。
また、第3の蓄冷材又は蓄熱材(c)の材料にも特に限定はなく、炭酸水素カリウム水溶液、塩化カリウム水溶液、塩化アンモニウム水溶液、塩化ナトリウム水溶液などの水を主成分とする蓄冷材;水及び高吸水性ポリマーを含有する蓄冷材などが挙げられる。これらの内でも、水を主成分とし、凝固・融解温度が、-5~0℃である蓄冷材が安価かつ安全で好ましい。
なお、図1、2、3に示す実施の形態では、箱体2内の上下のみに第1~第3の蓄冷材又は蓄熱材(a)、(b)、(c)を重ねているが、箱体2内における、蓄冷材又は蓄熱材(a)~(c)の配置場所には特に限定はない。即ち、蓄冷材又は蓄熱材(a)、(b)、(c)を重ねる順番さえ本発明に従って配置されていれば良い。例えば、箱体1の側面のみに蓄冷材又は蓄熱材(a)及び(b)、さらには(c)をこの順番で配置してもよいし、上下面及び側面の全ての面にこれら蓄冷材又は蓄熱材(a)、(b)さらには(c)を、この順番で重ねて配置してもよい。通常、容器内管理温度と外気温度の差が大きいほど、より多数の面に蓄冷材又は蓄熱材を配置することが好ましい。
以下、実施例によって本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。
<実施例1>
発泡ポリスチレン製断熱容器1(外寸が620mm×420mm×470mm、内寸が500mm×300mm×350mm)の内側に、図2に示すように、下記構成の蓄冷材又は蓄熱材を配置して、内部空間のほぼ中央に、発泡ポリスチレン製内箱5(外寸430mm×297mm×165mm、内寸が390mm×255mm×125mm)を収納して、測定用パッケージとした。
発泡ポリスチレン製断熱容器1(外寸が620mm×420mm×470mm、内寸が500mm×300mm×350mm)の内側に、図2に示すように、下記構成の蓄冷材又は蓄熱材を配置して、内部空間のほぼ中央に、発泡ポリスチレン製内箱5(外寸430mm×297mm×165mm、内寸が390mm×255mm×125mm)を収納して、測定用パッケージとした。
内箱5の上下面に対して、4℃環境において凝固(固体)状態にあり凝固・融解温度が5℃の第1の蓄熱材(a)[玉井化成(株)製、パッサーモP-5を、4℃環境下にて凝固させたもの]500gを上下に各4個配置し、側面にも同蓄熱材(a)を各2個配置した。前記蓄熱材(a)の上下面に、20℃前後の室温で融解(液体)状態にあり凝固・融解温度が5℃の第2の蓄熱材(b)[玉井化成(株)製、パッサーモP-5を、20℃前後の室温下にて融解させたもの]200gを各2個配置した。さらに、前記の蓄熱材(b)上下面に、0℃以下の環境で完全に凍結(固体)状態にある水を主体とした第3の蓄冷材(c)[玉井化成(株)製、コールドアイス(凝固・融解温度=0℃)を、完全に凍結させたもの]500gを各8個配置した。
なお、500gの第1の蓄熱材(a)は、140mm×220mm×25mmのポリエチレンブロー容器に充填した物を使用した。200gの第2の蓄熱材(b)は、厚さ1mmの発泡ポリエチレンで作成した袋にポリエチレンとポリアミドをラミネートした厚さ0.9mmの袋に充填した蓄熱材を納め、サイズは230mm×290mm×7mmの物を使用した。500gの第3の蓄冷材(c)は、140mm×220mm×25mmのポリエチレンブロー容器に充填した物を使用した。
上記のような測定用パッケージを35℃に調温した恒温槽に放置して、内箱5内の温度を、データロガー[(株)ティアンドディ製、RTR-52]を用いて、測定した。その結果を図4に示す。図4のグラフにおいて、縦軸は温度、横軸は経過時間を示す。図4のグラフで示すとおり、40時間以上にわたり、箱内5内の温度を、5℃±3℃以内に維持できた。
<実施例2>
蓄冷材又は蓄熱材の配置構成を、実施例1と同様にして、測定用パッケージを得た。
測定用パッケージを15℃に調温した恒温槽に放置して、箱内5内の温度を、データロガーを用いて測定した。その結果を図5に示す。図5のグラフにおいて、縦軸は温度、横軸は経過時間を示す。図5のグラフで示すとおり、2℃以下に逸脱することなく96時間以上にわたり、箱内5内の温度を、5℃±3℃以内に維持できた。
蓄冷材又は蓄熱材の配置構成を、実施例1と同様にして、測定用パッケージを得た。
測定用パッケージを15℃に調温した恒温槽に放置して、箱内5内の温度を、データロガーを用いて測定した。その結果を図5に示す。図5のグラフにおいて、縦軸は温度、横軸は経過時間を示す。図5のグラフで示すとおり、2℃以下に逸脱することなく96時間以上にわたり、箱内5内の温度を、5℃±3℃以内に維持できた。
<実施例3>
蓄冷材又は蓄熱材の配置構成を、下記のように変更した以外は、実施例1と同様にして、測定パッケージを得た。
蓄冷材又は蓄熱材の配置構成を、下記のように変更した以外は、実施例1と同様にして、測定パッケージを得た。
内箱の上下面に対して、4℃の環境において凝固(固体)状態にある凝固・融解温度が5℃の蓄熱材(a)500gを上下に各4個配置し、側面に対しても同蓄熱材(a)を各2個配置した。その上下面に対して、20℃前後の室温で融解(液体)状態の凝固・融解温度が5℃の蓄熱材(b)200gを各2個配置した。更に、その上下面に、0℃以下の環境で完全に凍結(固体)状態にある、水を主体とした蓄冷材(c)500gを上12個、下8個配置した。
上記測定用パッケージを35℃に調温した恒温槽に放置して、内箱5内の温度を、データロガーを用いて測定した。その結果を図6に示す。図6のグラフにおいて、縦軸は温度、横軸は経過時間を示す。図6のグラフで示すとおり、72時間以上にわたり、内箱5内の温度を5±3℃以内に維持できた。
<比較例1>
蓄冷材又は蓄熱材の配置構成を、下記のように変更した以外は、実施例1と同様にして、測定用パッケージを得た。
蓄冷材又は蓄熱材の配置構成を、下記のように変更した以外は、実施例1と同様にして、測定用パッケージを得た。
内箱5の上下面に、4℃環境に調温した水を主体とした蓄冷材(d、凝固・融解温度=0℃)500gを各4個配置し、側面に対しても同蓄冷材(d)を左右各2個を配置した。その上下面に対して、0℃以下の環境で完全に凍結(固体)状態にある水を主体とした蓄冷材(c、凝固・融解温度=0℃)500gを各8個配置した。
上記測定用パッケージを35℃に調温した恒温槽に放置して、箱内5内の温度を、データロガーを用いて測定した。その結果を図7に示す。図7のグラフにおいて、縦軸は温度、横軸は経過時間を示す。図7のグラフで示すとおり、箱内5内の温度は、一旦2℃以下に低下してしまった。
<実施例4>
蓄冷材又は蓄熱材の配置構成を、図1に示すように変更した以外は実施例1と同様にして、測定用パッケージを得た。
蓄冷材又は蓄熱材の配置構成を、図1に示すように変更した以外は実施例1と同様にして、測定用パッケージを得た。
内箱の上下面に、4℃環境において凝固(固体)状態にある凝固・融解温度が5℃の蓄熱材(a)500gを上下に各8個配置し、側面に対しても同蓄熱材(a)を各2個配置した。その上下面に、20℃前後の室温で融解(液体)状態の凝固・融解温度が5℃の蓄熱材(b)500gを各12個配置した。
上記測定用パッケージを、-10℃に調温した高温槽に放置して、内箱5内の温度を、データロガーを用いて測定した。その結果を図8に示す。図8のグラフにおいて、縦軸は温度、横軸は経過時間を示す。図8のグラフで示すとおり、66時間以上にわたり、箱内5内の温度を、5±3℃以内に維持できた。
なお、500gの蓄熱材(a)は、140mm×220mm×25mmのポリエチレンブロー容器に充填した物を使用した。500gの蓄熱材(b)は、140mm×220mm×25mmのポリエチレンブロー容器に充填した物を使用した。
<実施例5>
蓄冷材又は蓄熱材の配置構成を、図3に示す下記構成に変更した以外は、実施例1と同様にして、測定用パッケージを得た。
蓄冷材又は蓄熱材の配置構成を、図3に示す下記構成に変更した以外は、実施例1と同様にして、測定用パッケージを得た。
内箱5の上下面に、4℃環境において凝固(固体)状態にある凝固・融解温度が5℃の蓄熱材(a)500gを上下に各4個配置し、側面にも同蓄熱材(a)を各2個配置した。前記蓄熱材(a)の上下面に、厚さ10mmの発泡プラスチック板[発泡ポリスチレン製]6を各1枚配置した。さらに、前記発泡プラスチック板6の上下面に、20℃前後の室温で融解(液体)状態にあり凝固・融解温度が5℃の蓄熱材(b)500gを各8個配置した。
測定用パッケージを、-10℃に調温した恒温槽に放置して、箱内5内の温度を、データロガーを用いて、測定した。その結果を図9に示す。図9のグラフにおいて、縦軸は温度、横軸は経過時間を示す。図9のグラフで示すとおり、-10℃の温度下で40時間以上にわたり、内箱5内の温度を、5℃±3℃以内に維持できた。
<比較例2>
蓄冷材又は蓄熱材の配置構成を、下記に示すように変更した以外は、実施例1と同様にして、測定用パッケージを得た。
蓄冷材又は蓄熱材の配置構成を、下記に示すように変更した以外は、実施例1と同様にして、測定用パッケージを得た。
内箱5の上下面に、4℃の環境において凝固(固体)状態にある凝固・融解温度が5℃の蓄熱材(a)500gを上に12個、下に16個配置し、側面に対しても同蓄熱材(a)を各2個配置した。
上記測定用パッケージを、-10℃に調温した恒温槽に放置して、内箱5内の温度を、データロガーを用いて測定した。その結果を図10に示す。図10のグラフにおいて、縦軸は温度、横軸は経過時間を示す。図10のグラフで示すとおり、30時間しか、内箱5内の温度を、5±3℃以内に維持できなかった。
a. 4℃で凝固(固体)状態にある凝固・融解温度が5℃の第1の蓄熱材。
b. 20℃前後で融解(液体)状態にある凝固・融解温度が5℃の第2の蓄熱材。
c. 水を主体とした0℃以下の環境で完全に凍結(固体)状態にある第3の蓄冷材。
1A、1B、1C 定温保管容器
2. 発泡プラスチック断熱容器(外箱)。
3. 箱本体。
4. 蓋体。
5. 内部形状を保持するための発泡プラスチック容器(内箱)。
6. 厚さ10mmの発泡プラスチック板。
b. 20℃前後で融解(液体)状態にある凝固・融解温度が5℃の第2の蓄熱材。
c. 水を主体とした0℃以下の環境で完全に凍結(固体)状態にある第3の蓄冷材。
1A、1B、1C 定温保管容器
2. 発泡プラスチック断熱容器(外箱)。
3. 箱本体。
4. 蓋体。
5. 内部形状を保持するための発泡プラスチック容器(内箱)。
6. 厚さ10mmの発泡プラスチック板。
Claims (12)
- 断熱性の箱体と、その内側に配置される2種以上の蓄冷材又は蓄熱材を備えた定温保管容器であって、
保冷又は保温されるべき物品に隣接して、凝固状態にある潜熱型の第1の蓄冷材又は蓄熱材(a)を配置し、前記第1の蓄冷材又は蓄熱材(a)の外側に、溶融状態にある潜熱型の第2の蓄冷材又は蓄熱材(b)を配置してなり、前記第1の蓄冷材又は蓄熱材(a)の凝固・融解温度が0℃を超えることを特徴とする、定温保管容器。 - 前記第2の蓄冷材又は蓄熱材(b)の外側に、該第2の蓄冷材又は蓄熱材(b)よりも低温状態にある第3の蓄冷材又は蓄熱材(c)を配置してなる請求項1に記載の定温保管容器。
- 容器内管理温度A(℃)が1~30℃であることを特徴とする、請求項1又は2に記載の定温保管容器。
- 容器内管理温度をA(℃)とした場合に、前記第1の蓄冷材又は蓄熱材(a)及び前記第2の蓄冷材又は蓄熱材(b)の凝固・融解温度が、(A-3)℃~(A+3)℃である請求項1~3のいずれかに記載の定温保管容器。
- 容器内管理温度をA(℃)とした場合に、前記第3の蓄冷材又は蓄熱材(c)の凝固・融解温度が、(A-10)℃~(A-5)℃である請求項2~4のいずれかに記載の定温保管容器。
- 前記第1の蓄冷材又は蓄熱材(a)及び前記第2の蓄冷材又は蓄熱材(b)の凝固・融解温度が2℃~8℃である請求項1~5のいずれかに記載の定温保管容器。
- 前記第3の蓄冷材又は蓄熱材(c)の凝固・融解温度が-5~0℃である請求項2~6のいずれかに記載の定温保管容器。
- 前記第1の蓄冷材又は蓄熱材(a)及び前記第2の蓄冷材又は蓄熱材(b)の少なくとも一つが、ポリアルキレングリコールに対して不溶で、かつ水溶性の塩類の少なくとも1種の水溶液、及びポリアルキレングリコールを含有してなる蓄熱材組成物からなることを特徴とする、請求項1~7のいずれかに記載の定温保管容器。
- 前記第3の蓄冷材又は蓄熱材(c)が、水を主成分とする蓄冷材である、請求項2~8のいずれかに記載の定温保管容器。
- 保冷又は保温されるべき物品が、断熱性内箱内に収容されていることを特徴とする、請求項1~9のいずれかに記載の定温保管容器。
- 容器の外気温度が容器内管理温度A(℃)よりも低い状況において、請求項1、3、4、6、8、10のいずれかに記載の定温保管容器に、保冷又は保温されるべき物品を収納して輸送することを特徴とする、物品輸送方法。
- 容器の外気温度が容器内管理温度A(℃)よりも高い状況において、請求項2~10のいずれかに記載の定温保管容器に、保冷又は保温されるべき物品を収納して輸送することを特徴とする、物品輸送方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10813700.1A EP2474485A4 (en) | 2009-09-02 | 2010-09-01 | CONTAINER FOR STORAGE WITH CONSTANT TEMPERATURE AND TRANSPORT PROCESS THEREFOR |
CN201080039113.2A CN102482022B (zh) | 2009-09-02 | 2010-09-01 | 恒温保存容器和运输方法 |
US13/393,309 US20120156002A1 (en) | 2009-09-02 | 2010-09-01 | Constant-temperature storage container and transportation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009203155A JP5402416B2 (ja) | 2009-09-02 | 2009-09-02 | 定温保管容器及び輸送方法 |
JP2009-203155 | 2009-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011027751A1 true WO2011027751A1 (ja) | 2011-03-10 |
Family
ID=43649286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064861 WO2011027751A1 (ja) | 2009-09-02 | 2010-09-01 | 定温保管容器及び輸送方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120156002A1 (ja) |
EP (1) | EP2474485A4 (ja) |
JP (1) | JP5402416B2 (ja) |
CN (1) | CN102482022B (ja) |
WO (1) | WO2011027751A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045029A1 (ja) * | 2013-09-25 | 2015-04-02 | トッパン・フォームズ株式会社 | 定温保管箱 |
JP2017013820A (ja) * | 2015-06-30 | 2017-01-19 | 株式会社リンフォテック | 内容物の温度の調整方法、及び、内容物の調温容器 |
WO2018003768A3 (ja) * | 2016-06-28 | 2018-03-01 | シャープ株式会社 | 保冷容器、保冷皿および赤ワイン用サーバー |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110024432A1 (en) * | 2009-07-28 | 2011-02-03 | Jorgensen Roy W | Secondary containment system for DEF storage container |
CN102602620A (zh) * | 2012-03-16 | 2012-07-25 | 大连旅顺坤达浸渗设备制造有限公司 | 一种水冷式储液罐 |
CN102673894A (zh) * | 2012-05-15 | 2012-09-19 | 苏州国环环境检测有限公司 | 一种可制冷便携式样品箱 |
US8887515B2 (en) | 2012-08-23 | 2014-11-18 | Pelican Biopharma, Llc | Thermal management systems and methods |
DE102012025192A1 (de) * | 2012-12-10 | 2014-06-12 | Va-Q-Tec Ag | Verfahren und Vorrichtung zur Vorkonditionierung von Latentwärmespeicherelementen |
DE102013002555A1 (de) * | 2012-12-18 | 2014-06-18 | Va-Q-Tec Ag | Verfahren und Vorrichtung zur Vorkonditionierung von Latentwärmespeicherelementen |
JP6054740B2 (ja) * | 2012-12-27 | 2016-12-27 | トッパン・フォームズ株式会社 | 定温保管用具及びこれを収容した保管容器 |
CN103253450B (zh) * | 2013-05-23 | 2015-12-30 | 上海创始实业(集团)有限公司 | 保温箱 |
CN103359397B (zh) * | 2013-07-10 | 2015-10-28 | 广州赛能冷藏科技有限公司 | 冷链运输包装箱的制作方法 |
JP6498879B2 (ja) * | 2014-06-30 | 2019-04-10 | トッパン・フォームズ株式会社 | 保管容器 |
CN104058178A (zh) * | 2014-06-30 | 2014-09-24 | 苏州安特实业有限公司 | 一种用于保藏的隔热箱 |
CN105987556A (zh) * | 2015-01-29 | 2016-10-05 | 青岛海尔特种电器有限公司 | 冰蓄冷式制冷设备及制冷方法 |
CN105987557A (zh) * | 2015-01-29 | 2016-10-05 | 青岛海尔特种电器有限公司 | 冰蓄冷式制冷装置及制冷方法 |
JP6501579B2 (ja) * | 2015-03-26 | 2019-04-17 | 玉井化成株式会社 | 定温保管容器 |
US10549900B2 (en) * | 2015-05-26 | 2020-02-04 | Savsu Technologies Llc | Insulated storage and transport system |
WO2016194745A1 (ja) * | 2015-05-29 | 2016-12-08 | シャープ株式会社 | 保温容器およびその作製方法 |
CN105444488B (zh) * | 2015-07-16 | 2018-08-28 | 青岛海尔特种电器有限公司 | 蓄冷蓄热组合式恒温设备及控制方法 |
CN105000272B (zh) * | 2015-07-28 | 2018-06-12 | 中国人民解放军第一七五医院 | 一种便携式血液存储箱 |
JP2017172825A (ja) * | 2016-03-22 | 2017-09-28 | トッパン・フォームズ株式会社 | 保冷方法 |
EP3270081B1 (de) * | 2016-07-12 | 2023-06-07 | delta T Gesellschaft für Medizintechnik mbH | System für den transport und die lagerung von arzneimitteln |
JP6754983B2 (ja) * | 2016-09-05 | 2020-09-16 | パナソニックIpマネジメント株式会社 | 保冷庫 |
US20210107720A1 (en) * | 2017-03-28 | 2021-04-15 | Sharp Kabushiki Kaisha | Heat storage pack, cold storage pack, logistic packaging container, logistic system, and logistic method |
JP6865127B2 (ja) * | 2017-07-11 | 2021-04-28 | 積水化成品工業株式会社 | 温度管理方法および恒温ユニット |
CN107814034B (zh) * | 2017-11-29 | 2024-02-02 | 杭州鲁尔新材料科技有限公司 | 一种低成本长时效医药冷链保温箱 |
DE102018124162A1 (de) * | 2018-05-28 | 2019-11-28 | Va-Q-Tec Ag | Verfahren zum Bereitstellen eines Transportbehältersystems mit einem Sollbereich der Transportbehälterinnentemperatur sowie ein Transportbehältersystem |
KR101989583B1 (ko) * | 2019-01-28 | 2019-06-14 | (주)에프엠에스코리아 | 보냉 패키징 장치 |
US11137190B2 (en) * | 2019-06-28 | 2021-10-05 | Cold Chain Technologies, Llc | Method and system for maintaining temperature-sensitive materials within a desired temperature range for a period of time |
DE202019105348U1 (de) * | 2019-09-26 | 2019-10-07 | Va-Q-Tec Ag | Wärmeisolationsbehälter |
CN110926081A (zh) * | 2019-11-05 | 2020-03-27 | 广州小贝网络科技有限责任公司 | 一种反应时机可控的溶解吸热体系和蓄冷袋 |
CN111994434A (zh) * | 2020-08-26 | 2020-11-27 | 上海丹瑞生物医药科技有限公司 | 一种生物样品保存方法及生物样品保存箱 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968376A (ja) | 1995-08-30 | 1997-03-11 | Sun Lex Kogyo Kk | 恒温ボックス |
JP2001063776A (ja) | 1999-08-30 | 2001-03-13 | Sanden Corp | 恒温ボックス及びこれを用いた物品保存方法 |
US20040151851A1 (en) * | 2003-02-03 | 2004-08-05 | Drayton Miller | Novel package system and method |
EP1477751A1 (fr) * | 2003-05-12 | 2004-11-17 | Kalibox | Dispositif d'emballage isotherme pour produits sensibles à la température et procédé de fabrication |
JP2005300052A (ja) * | 2004-04-14 | 2005-10-27 | Inoac Corp | 保冷配送方法 |
JP2006096898A (ja) | 2004-09-30 | 2006-04-13 | Tamai Kasei Kk | ポリアルキレングリコールを含有する蓄熱材組成物 |
WO2008133374A1 (en) * | 2007-04-26 | 2008-11-06 | Taps International Co., Ltd. | Cool-keeping system |
WO2008137883A1 (en) * | 2007-05-04 | 2008-11-13 | Entropy Solutions, Inc. | Package having phase change materials and method of use in transport of temperature sensitive payload |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2300618C (en) * | 1999-03-12 | 2009-10-20 | Ted J. Malach | Constant temperature packaging system and phase change formulation |
ES2161600B1 (es) * | 1999-03-24 | 2002-06-16 | Gdhs Strategic Dev Group S L | Embalaje termicamente aislante para productos termosensibles. |
US7257963B2 (en) * | 2003-05-19 | 2007-08-21 | Minnesota Thermal Science, Llc | Thermal insert for container having a passive controlled temperature interior |
CN200951869Y (zh) * | 2006-07-17 | 2007-09-26 | 马建宏 | 保温和保冷的储物容器 |
-
2009
- 2009-09-02 JP JP2009203155A patent/JP5402416B2/ja active Active
-
2010
- 2010-09-01 CN CN201080039113.2A patent/CN102482022B/zh active Active
- 2010-09-01 WO PCT/JP2010/064861 patent/WO2011027751A1/ja active Application Filing
- 2010-09-01 EP EP10813700.1A patent/EP2474485A4/en not_active Withdrawn
- 2010-09-01 US US13/393,309 patent/US20120156002A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968376A (ja) | 1995-08-30 | 1997-03-11 | Sun Lex Kogyo Kk | 恒温ボックス |
JP2001063776A (ja) | 1999-08-30 | 2001-03-13 | Sanden Corp | 恒温ボックス及びこれを用いた物品保存方法 |
US20040151851A1 (en) * | 2003-02-03 | 2004-08-05 | Drayton Miller | Novel package system and method |
EP1477751A1 (fr) * | 2003-05-12 | 2004-11-17 | Kalibox | Dispositif d'emballage isotherme pour produits sensibles à la température et procédé de fabrication |
JP2005300052A (ja) * | 2004-04-14 | 2005-10-27 | Inoac Corp | 保冷配送方法 |
JP2006096898A (ja) | 2004-09-30 | 2006-04-13 | Tamai Kasei Kk | ポリアルキレングリコールを含有する蓄熱材組成物 |
WO2008133374A1 (en) * | 2007-04-26 | 2008-11-06 | Taps International Co., Ltd. | Cool-keeping system |
WO2008137883A1 (en) * | 2007-05-04 | 2008-11-13 | Entropy Solutions, Inc. | Package having phase change materials and method of use in transport of temperature sensitive payload |
Non-Patent Citations (1)
Title |
---|
See also references of EP2474485A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045029A1 (ja) * | 2013-09-25 | 2015-04-02 | トッパン・フォームズ株式会社 | 定温保管箱 |
JP2017013820A (ja) * | 2015-06-30 | 2017-01-19 | 株式会社リンフォテック | 内容物の温度の調整方法、及び、内容物の調温容器 |
WO2018003768A3 (ja) * | 2016-06-28 | 2018-03-01 | シャープ株式会社 | 保冷容器、保冷皿および赤ワイン用サーバー |
Also Published As
Publication number | Publication date |
---|---|
US20120156002A1 (en) | 2012-06-21 |
CN102482022A (zh) | 2012-05-30 |
EP2474485A1 (en) | 2012-07-11 |
EP2474485A4 (en) | 2014-11-12 |
JP2011051632A (ja) | 2011-03-17 |
CN102482022B (zh) | 2014-03-05 |
JP5402416B2 (ja) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5402416B2 (ja) | 定温保管容器及び輸送方法 | |
JP6840152B2 (ja) | 保冷輸送容器用の熱保護貯蔵セル | |
US7257963B2 (en) | Thermal insert for container having a passive controlled temperature interior | |
US10625922B2 (en) | Device and methods for transporting temperature-sensitive material | |
US8938986B2 (en) | Modular system for thermally controlled packaging devices | |
WO2012081581A1 (ja) | 定温保管容器及び定温保管方法 | |
US8887515B2 (en) | Thermal management systems and methods | |
JP6439676B2 (ja) | 定温保管輸送容器及び輸送方法 | |
EP2361203B1 (en) | Thermally insulated reusable transportation container | |
US10850047B2 (en) | Insulated storage system with balanced thermal energy flow | |
CN111372867B (zh) | 隔热运输箱以及隔热运输箱中的布置 | |
WO2017164304A1 (ja) | 蓄熱材組成物及びその利用 | |
WO2003083387A1 (en) | Apparatus and method for a temperature protected container | |
JP6653603B2 (ja) | 蓄冷熱材の使用方法、包装体、及び蓄冷熱材 | |
JP2017053545A (ja) | 蓄冷熱材の使用方法、包装体、及び蓄冷熱材 | |
JP2022041554A (ja) | 保冷方法 | |
JP7234209B2 (ja) | 定温保管輸送容器、および積載方法 | |
JP2020176730A (ja) | 蓄熱材シート、および定温保管方法 | |
CA1291073C (en) | Thermal packaging assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080039113.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10813700 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13393309 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010813700 Country of ref document: EP |