WO2011023339A1 - Endoskop und verfahren zu dessen verwendung - Google Patents

Endoskop und verfahren zu dessen verwendung Download PDF

Info

Publication number
WO2011023339A1
WO2011023339A1 PCT/EP2010/005128 EP2010005128W WO2011023339A1 WO 2011023339 A1 WO2011023339 A1 WO 2011023339A1 EP 2010005128 W EP2010005128 W EP 2010005128W WO 2011023339 A1 WO2011023339 A1 WO 2011023339A1
Authority
WO
WIPO (PCT)
Prior art keywords
optics
endoscope
endoscope according
guide
light
Prior art date
Application number
PCT/EP2010/005128
Other languages
English (en)
French (fr)
Other versions
WO2011023339A4 (de
Inventor
Charles Findeisen
Bruno Knobel
Christof Ballweg
Original Assignee
Naviswiss Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naviswiss Ag filed Critical Naviswiss Ag
Priority to EP10752717A priority Critical patent/EP2470058A1/de
Priority to DE112010003417T priority patent/DE112010003417A5/de
Priority to CN201080048684.2A priority patent/CN102573602B/zh
Priority to US13/391,128 priority patent/US9068824B2/en
Priority to JP2012525914A priority patent/JP5807787B2/ja
Publication of WO2011023339A1 publication Critical patent/WO2011023339A1/de
Publication of WO2011023339A4 publication Critical patent/WO2011023339A4/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00183Optical arrangements characterised by the viewing angles for variable viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2415Stereoscopic endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1077Measuring of profiles

Definitions

  • the invention relates to an endoscope with two entrance optics, which are arranged at a distance from each other and whose fields of view intersect, and with guide devices. More particularly, the invention relates to variable base stereomicroscopic endoscopes for medical applications, particularly in surgery, with illumination of the object surface and with optional projection of structured light onto the object surface.
  • Endoscopes have become indispensable for minimally invasive surgical techniques. With the help of endoscopy, optical systems can be introduced into the body of humans and animals through minute skin openings.
  • An endoscope is an image guide with an entrance optics at the distal end of the image guide and an exit optics at the other end of the image guide. Often, a large opening angle of the entrance optics is needed in order to be able to orient themselves. Depth information can only be derived to a limited extent, for example via known structures or via navigated insertion of the endoscope with the aid of an externally mounted navigation system.
  • Stereometrically operating endoscopes are based on two optical axes located in the endoscope tube. By these two-lingual systems can be worked in principle stereometric. The two optical axes are directly next to each other. The visual angle between the optical axis of the first image guide to the object and the optical axis of the second image guide is small. Therefore, depth information can be obtained only very inaccurate.
  • an endoscope is described with a video device arranged at the distal end. This endoscope is characterized in that at least the objective and the image recorder are combined to form a video unit which, after insertion into the cavity to be observed as a whole, is movable relative to the distal end of the endoscope shaft. Two such video units allow extended viewing stereo viewing.
  • WO 2010/020397 A1 discloses a stereo endoscope in combination with patterns attached to objects.
  • the photogrammetric analysis of the stereo images describes three-dimensionally the surface topology of the measured object with the help of the previously applied on the surface pattern.
  • General surface patterns which are not completely patterned are only conditionally measurable with this arrangement.
  • the invention is based on the basic idea that with stereoscopically arranged endoscopes a substantial improvement in the depth information is achieved by means of an increased spacing of the entrance lenses.
  • a substantial improvement in the depth information is achieved by means of an increased spacing of the entrance lenses.
  • natural structures and / or flexible and / or rigid patterns previously applied to object surfaces are measured three-dimensionally.
  • by means of optional projection of structured light onto the object surface its three-dimensional topology is recorded and related to the natural structures and / or to the patterns.
  • a lighting device that emits structured light is integrated in the endoscope.
  • an optical system which displaces the axis beam in parallel is inserted between an inlet optics and the guide devices.
  • An optical axis that displaces the axis beam in parallel is, for example, a rhomboid prism or a pair of mirrors.
  • at least a part of the optics is equipped with a surface tension reducing coating.
  • a particularly preferred embodiment provides that the entry optics can be arranged in an identically spaced manner to one another by means of a device integrated in the guide devices.
  • a further embodiment of the invention provides that, if necessary, the entry optics and the optics which displace the axis beam in parallel occupy a surface whose outer edges do not protrude beyond the cross-sectional area of the guide devices.
  • a particularly advantageous embodiment provides that the optical axes of the entrance optics are spaced apart from each other to at least two and a half times the diameter of the cross section at the narrowest point of the guide devices.
  • the patterned light is generated by means of laser light and a diffractive optical element (DOE).
  • DOE diffractive optical element
  • the structured light is generated by means of light beams which are guided in the image conductor equipped with an input and output optics. These rays of light are as needed white or colored.
  • a further embodiment of the invention provides that the optics displacing the axis of the beam are arranged on a common imaging sensor.
  • the method provides that an optical specification is given with the endoscope in order to carry out a precise measurement of the surface topology of at least one object part with respect to a coordinate system formed by natural structures on the object or by flexible and / or applied on the object surface. or rigid patterns is defined.
  • the method provides that the entry optics and the optics which offset the axis beam in parallel, the outer edges of which do not project beyond the cross-sectional area of the guide devices, are placed through a feed-through tube to a measuring location, after which the entrance optics are spaced so far apart from each other, that their outer edges project beyond the cross-sectional area of the guiding devices, that a pattern and / or a natural structure is projected and / or structured light is projected on the object surface, that the light reflected from the object surface is analyzed photogrammetrically and as a three-dimensional point cloud with respect to the patterns and / or natural structures is provided.
  • the object surface can be illuminated with white light.
  • a further embodiment of the invention provides that at least one pattern is attached to the object surface.
  • the endoscope is manually guided.
  • the invention is not only suitable for use in medical applications. Wherever the endoscope has to be pushed in through a narrow hole and where there is more space in the actual measuring room, the system can be used to obtain precise measuring results of surfaces and shapes.
  • FIG. 2 is a schematic view of two different distances of entry optics pairs
  • FIG. 3 is a schematic side view of the endoscope in the closed state
  • FIG. 9 schematically shows the side view of a lighting device for the illumination of an object with natural structures and applied patterns and for structured light generated by means of a diffractive optical element and laser light beam,
  • FIG. 10 shows schematically the side view of a further embodiment of a lighting device with two light beams parallel to the image conductor axis
  • 1 1 schematically shows the side view of a further embodiment of a lighting device with two light beams, which do not run parallel to the image conductor axis, and
  • FIG. 12 is a schematic side view of another embodiment of an endoscope in the unfolded state with an imaging sensor integrated in the optical head.
  • Laparoscopy refers to a method in which the abdominal cavity and its internal organs are made visible with special rod lens optics (for rigid endoscopes) through small openings in the abdominal wall created by the surgeon.
  • rod lens optics for rigid endoscopes
  • endoscopes with flexible image guides are possible.
  • FIG. 1 schematically shows the side view of the endoscope 1 in the unfolded state.
  • the optical system 5 is positioned in front of the object 4 to be examined.
  • the image and light guides 6, 6a, 11a of the guide devices between the optical system 5 and the external supply module 12 are integrated in the tube 13.
  • the tube 13 is located within the passage tube 2 passing through the abdominal wall 3.
  • Each of the two optical heads 7 and 7a consists of an optics 8 or 8a which displaces the axis beam in parallel and of an entrance optics 9 or 9a.
  • the axis beam parallel offset optics 8 and 8a is for example a pair of mirrors or a rhomboid prism.
  • the distance 10 between the optical axes of the entrance optics 9 and 9a is for the measurement defined by means of mechanical devices integrated in the guide devices adjustable.
  • the positioning of the optical heads 7 and 7a can be done for example by rotating and / or moving the image guide 6 and 6a.
  • the endoscope 1 In the unfolded state, the endoscope 1 can not be removed from the lead-through tube 2.
  • the unfolded state means that the optical heads 7 and 7a are in their ready-to-measure positions.
  • the illumination device 1 1 illuminates the object surface 4.
  • the illumination device 11 can optionally be positioned at approximately the same height as the entry optics 9 and 9a.
  • the illumination device 1 1 serves to illuminate the object surface 4 and / or the surface scanning and detection using structured light.
  • the illumination device 11 is connected to the external supply module 12 by means of light and / or image conductors I Ia integrated in the guide devices.
  • the external supply module 12 serves to supply the illumination device 11 with the necessary light and to receive the image signals of the entry optics 9 and 9a.
  • the images can be viewed directly visually.
  • the image signals can be recorded with imaging sensors and analyzed photogrammetrically.
  • the external supply module 12 includes means for mechanically moving the optical heads 7 and 7a.
  • FIGS. 2a and 2b schematically show the influence of the distance 10 or 10b of the entrance optics pairs 9 and 9a on the accuracy of the depth information.
  • FIG. 2 a schematically shows a metrologically unfavorable situation with an acute angle 21, which is defined by the distance 10 and the distance 20.
  • the distance 20 is the mean distance of the entrance optics pairs to the point 22 on the object surface 4.
  • Figure 2b shows schematically a metrologically favorable situation with a large angle 21b, by the large distance 10b and the relatively small distance 20b to the point 22b on the surface 4b is defined.
  • FIG. 3 schematically shows the side view of the endoscope 1 in the closed state.
  • the optical heads 7 and 7a are rotated by the angle 30 and 30a.
  • one of the two image guides 6 or 6a can be displaced along its axis by the distance 31.
  • the endoscope 1 can easily be taken out of the through-hole 2 remaining at the location or pushed into the measuring location.
  • the optical heads 7 and 7 a are positioned such that their outer edges do not protrude beyond the cross-sectional area of the guide means provided by the tube 13.
  • the two optical heads are turned out with the angles 30 and 30a and optionally longitudinally displaced by the distance 31.
  • the rotational movement of the two image conductors 6 and 6a by the angles 30 and 30a is typically in the range of 140 to 170 degrees in order to obtain an optimum distance of the entrance optics pair for the metrology.
  • the entry optics 9 and 9a are symmetrical to the illumination device 11.
  • the optical system 5 is inserted into the lead-through tube 2 with the optical heads 7 and 7a screwed in.
  • the optical heads 7 and 7a are now laterally rotated in the abdominal space by the angle 30 or 30a and optionally longitudinally displaced by the distance 31, so that their entry optics 9 and 9a form an optimal distance of the entrance optics pair to one another for the measurement technique.
  • the rotational movements of the image guide and the optional longitudinal movement of one of the two image guides are play-free and precise possible with specially provided mechanical guides. This allows the endoscope to be calibrated for the unfolded state for optical measurements. After adjusting to the closed state and unfolding again, the system calibration is still valid.
  • the closed state means that the optical heads 7 and 7a are not in their ready-to-measure positions. In the closed state, the outer edges of the optical heads 7 and 7a are not over the cross-sectional area of the guide devices.
  • FIG. 4 shows a schematic side view of the individual components of the endoscope described in FIGS. 1 and 3.
  • FIG. 5 schematically shows the side view of further details of the illumination device 11 of the endoscope.
  • the illumination device 11 For the illumination of object surfaces with preferably white light serve the exit optics 50 and the light guide 52.
  • the diffractive optical element 30 For the projection of structured light on the object surface is the diffractive optical element 30 with the light guide 51 for the supply of the laser beam.
  • Schematically drawn is the tube 13 containing all the guiding devices, which is located in the bushing 2.
  • FIG. 6 schematically shows, on the left, the top view of the optical system 5 in the closed state. The optical axes of the entrance optics 9 and 9a and the illumination device 1 1 are in close proximity to each other in the supervision.
  • the optical head 7 or 7a with the axis beam parallel offset optics 8 and 8a is such that in the closed state, the outer edges do not project beyond the cross-sectional area of the guide means in the tube 13.
  • the optical head 7 or 7a can be opened and closed by means of the sleeve 6 or enveloping the image guide 6 or 60a.
  • the lighting device 1 1 is covered in the closed state by the optical heads 7 and 7a.
  • FIG. 6 shows diagrammatically the center axes of the two image conductors 6 and 6a and the optical axes of the illumination device 11 and of the two entrance optics 9 and 9a on the right in the plan view, in the closed state.
  • FIG. 7 schematically shows on the left the view of the optical system 5 in the unfolded state.
  • the angle of rotation 30 about the axis of the image guide 6 is shown by way of example.
  • the optical axes of the entrance optics 9 and 9a at a distance 10 are maximally apart.
  • FIG. 7 schematically shows, on the right in the plan view of the optical system in the unfolded state, the optical axes of the two entrance optics 9 and 9a, which are spaced apart by 10.
  • the lighting device 11 is not covered in the unfolded state by the optical heads.
  • FIG. 8 schematically shows the top view of the optical system 5 in the unfolded state with another embodiment of the illumination device 11.
  • the optical axes of the entrance optics 9 and 9a are at a distance 10 apart maximally.
  • FIG. 9 schematically shows the side view of the optical system 5 with a lighting device 11 having a diffractive optical element 92 which divides the laser light beam guided through the optical waveguide 90 into structured light 94.
  • the structured light 94 projects onto the surface 4 patterns of dots and / or dashes.
  • the optical elements 93 and the image conductor 91 With the optical elements 93 and the image conductor 91, the measurement volume is illuminated with natural structures 96 present on object surfaces and / or attached flexible and / or rigid patterns 95. It is advantageous to use colored structured light and white light for lighting.
  • FIG. 10 schematically shows the side view of a further embodiment of a structured light illumination device 11.
  • the two exemplified light beams 103 and 104 are parallel to the optical axis 100 of the image guide 102.
  • the optics 101 deflects the parallel light beams.
  • the light beam 103 is deflected at a distance 106 from the optical axis 100 of the image conductor 102 by the optics 101 by the angle 105.
  • the deflection angle 105 is preferably dependent on the distance 106.
  • With a change in the distance 106 and thereby caused continuous movement of the light beam 103 can be generated with the optics 101 light patterns that move continuously in space.
  • systematically moved light rays are projected onto the object surface 107 to be measured without moving the endoscope.
  • the generation of parallel light beams at a distance 106 from the optical axis 100 is state of the art and will not be discussed further here.
  • FIG. 11 shows schematically the side view of a further illumination device 1 1 for structured light.
  • the two exemplified light beams 1 10 and 11 1 are not parallel to the optical axis 100 of the image guide 102.
  • the optics 101 deflects the light rays.
  • the light beam 110 is deflected at a distance 1 12 and an angle 113 to the optical axis 100 of the image guide 102 through the optics 101 by the angle 114.
  • the deflection angle 114 is in this embodiment depending on the distance 112 and the angle 1 13.
  • the generation of light beams which are not parallel to the optical axis 100 of the image guide 102 at a distance 1 12 and an angle 113 is prior art and will not be explained further here.
  • FIG. 12 schematically shows the side view of a further embodiment of an optical system 5 with the optics heads 7 and 7a of an endoscope in the unfolded state.
  • the imaging sensor 120 and associated electronic module 121 is integrated in the optical system 5.
  • the visible object surface is transmitted to the common imaging sensor via the entrance optics 9 and 9a and the axis beam parallel-shifting optics 8 and 8a 120 shown.
  • the distance 10 between the optical axes of the entrance optics 9 and 9a is defined adjustable for the measurement.
  • the guide 122 in the tube 13 of the endoscope connects the electronic module 121 with the not shown in the figure supply module. Not shown is the lighting device.

Abstract

Die Erfindung betrifft ein Endoskop (1) mit zwei Eintrittsoptiken (9, 9a), die beabstandet zueinander angeordnet sind und deren Sichtfelder sich überschneiden, und mit Leiteinrichtungen, bei dem die Eintrittsoptiken (9, 9a) so weit voneinander beabstandet sind, dass deren äussere Ränder über die Querschnittsfläche der Leiteinrichtungen vorstehen und zwischen einer Eintrittsoptik und den Leiteinrichtungen eine den Achsstrahl versetzende Optik (8, 8a) eingefügt ist, sowie ein Verfahren zu dessen Verwendung.

Description

Endoskop und Verfahren zu dessen Verwendung
[01] Die Erfindung betrifft ein Endoskop mit zwei Eintrittsoptiken, die beabstandet zueinander angeordnet sind und deren Sichtfelder sich überschneiden, und mit Leiteinrichtungen. Insbesondere betrifft die Erfindung stereometrische Endoskope mit veränderbarer Basis für medizinische Anwendungen insbesondere in der Chirurgie mit Beleuchtung der Objektoberseite und mit optionaler Projektion von strukturiertem Licht auf die Objektoberseite.
[02] Für minimalinvasive Operationstechniken sind Endoskope nicht mehr wegzudenken. Mit der Endoskopie können durch kleinste Hautöffnungen optische Systeme in den Körper von Mensch und Tier eingeführt werden.
[03] Spezielle Techniken erlauben eine Kombination von optischen Systemen (Bildleiter und Beleuchtung) mit mechanischen Instrumenten. Zum Beispiel in der Laparoskopie wird ein Rohr in den Bauchraum des Patienten eingebracht. Durch das zur Bauchdecke hin abgedichtete Rohr wird oft ein Gas (CO2) in den Bauchraum hineingepumpt, sodass die Bauchdecke sich von den Organen abhebt. Dadurch entsteht ein Hohlraum, in welchem mit geeigneten optischen Systemen eine Orientierung möglich wird. Mechanische Instrumente sowie Beleuch- tungs- und bildgebende Systeme werden in das Rohr eingeführt. Der Chirurg kann minima- linvasive Eingriffe am Patienten vornehmen.
[04] Ein Endoskop ist ein Bildleiter mit einer Eintrittsoptik am distalen Ende des Bildleiters und einer Austrittsoptik am anderen Ende des Bildleiters. Häufig wird ein grosser Öffnungswinkel der Eintrittsoptik benötigt, um sich orientieren zu können. Eine Tiefeninformation ist nur bedingt ableitbar, zum Beispiel über bekannte Strukturen oder über navigiertes Einsetzen des Endoskops mithilfe eines aussen angebrachten Navigationssystems.
[05] Stereometrisch arbeitende Endoskope beruhen auf zwei sich im Endoskoprohr befindenden optischen Achsen. Durch diese zweilinsigen Systeme kann grundsätzlich stereometrisch gearbeitet werden. Die beiden optischen Achsen liegen unmittelbar nebeneinander. Der Sehwinkel zwischen der optischen Achse des ersten Bildleiters zum Objekt und zur optischen Achse des zweiten Bildleiters ist klein. Deshalb kann eine Tiefeninformation nur sehr ungenau erhalten werden. [06] In der Offenlegungsschrift DE 39 212 33 Al wird ein Endoskop mit einer am distalen Ende angeordneten Videoeinrichtung beschieben. Dieses Endoskop zeichnet sich dadurch aus, dass wenigstens das Objektiv und der Bildaufnehmer zu einer Videoeinheit zusammengefasst sind, die nach dem Einführen in den zu beobachtenden Hohlraum als Ganzes gegenüber dem distalen Ende des Endoskop-Schafts bewegbar ist. Zwei solcher Videoeinheiten gestatten eine Stereobetrachtung mit erweiteter Basis.
[07] In der Offenlegungsschrift WO 2010/020397 Al wird ein Stereoendoskop in Kombination mit auf Objekten angebrachten Mustern vorgestellt. Die photogrammetrische Analyse der Stereobilder beschreibt dreidimensional die Oberflächentopologie des vermessenen Objekts mit Hilfe der vorgängig auf der Oberfläche angebrachten Muster. Allgemeine nicht vollständig mit Mustern ausgestattete Oberflächenfreiformen sind mit dieser Anordnung nur bedingt messbar.
[08] Die Erfindung geht vom Grundgedanken aus, dass mit stereoskopisch angeordneten Endoskopen eine wesentliche Verbesserung der Tiefeninformation mittels vergrössεrtεr Beabstandung der Eintrittsobjektive erreicht wird. Darüber hinaus werden mittels optionaler Beleuchtung des Messvolumens natürliche Strukturen und/oder vorgängig auf Objektoberflächen angebrachte flexible und/oder starre Muster dreidimensional vermessen. Darüber hinaus wird mittels optionaler Projektion von strukturiertem Licht auf die Objektoberfläche deren dreidimensionale Topologie erfasst und auf die natürlichen Strukturen und/oder auf die Mus- ter bezogen.
[09] Der Erfindung liegt die Aufgabe zugrunde, ein Endoskop weiter zu entwickeln um insbesondere die Oberflächentopologie von Objekten in Höhlungen zu messen.
[010] Eine erfindungsgemässe Lösung dieser Aufgabe ist in Anspruch 1 beschrieben. Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
[OH] In einer bevorzugten Ausgestaltung ist im Endoskop eine Beleuchtungseinrichtung integriert, die strukturiertes Licht abgibt.
[012] Vorzugsweise ist zwischen einer Eintrittsoptik und den Leiteinrichtungen eine den Achsstrahl parallel versetzende Optik eingefügt. Eine den Achsstrahl parallel versetzende Optik ist beispielsweise ein Rhomboidprisma oder ein Spiegelpaar. [013] Vorzugsweise ist zumindest ein Teil der Optik mit einer die Oberflächenspannung verringernden Beschichtung ausgerüstet.
[014] Eine besonders bevorzugte Ausgestaltung sieht vor, dass die Eintrittsoptiken zueinander variabel beabstandet definiert anordenbar sind mittels einer in den Leiteinrichtungen in- tegrierten Einrichtung.
[015] Eine weitere Ausgestaltung der Erfindung sieht vor, dass bedarfsweise die Eintrittsoptiken und die den Achsstrahl parallel versetzenden Optiken eine Fläche einnehmen, deren äussere Ränder nicht über die Querschnittsfläche der Leiteinrichtungen vorstehen.
[016] Eine besonders vorteilhafte Ausgestaltung sieht vor, dass die optischen Achsen der Eintrittsoptiken voneinander beabstandet sind auf mindestens den zweieinhalbfachen Durchmesser des Querschnitts an der schmälsten Stelle der Leiteinrichtungen.
[017] Vorzugsweise wird das strukturierte Licht mittels Laserlicht und einem diffraktiven optischen Element (DOE) erzeugt.
[018] Vorzugsweise wird das strukturierte Licht mittels Lichtstrahlen, die im mit einer Ein- und Austrittsoptik ausgestatteten Bildleiter definiert geführt werden, erzeugt. Diese Lichtstrahlen sind bedarfsweise weiss oder farbig.
[019] Eine weitere Ausgestaltung der Erfindung sieht vor, dass die den Achsstrahl versetzenden Optiken an einem gemeinsamen bildgebenden Sensor angeordnet sind.
[020] In der vorliegenden Erfindung wird ein Verfahren zur Verwendung eines im Anspruch 1 und weiteren Unteransprüchen beschriebenen Endoskops mit den Merkmalen des Patentanspruchs 11 vorgestellt. Dabei werden Bilder von beleuchteten und/oder mit strukturiertem Licht angestrahlten Objektoberflächen photogrammetrisch analysiert und diese Objektoberflächen werden als dreidimensionale Punktwolke verfügbar gemacht.
[021] Das Verfahren sieht vor, dass mit dem Endoskop eine optische Vorgabe gegeben ist, um ein präzises Vermessen der Oberflächentopologie von mindestens einem Objektteil zu bewerkstelligen bezüglich einem Koordinatensystem, das durch natürliche Strukturen auf dem Objekt oder durch auf der Objektoberfläche aufgebrachten flexiblen und/oder starren Mustern definiert wird. [022] Das Verfahren sieht vor, dass die Eintrittsoptiken und die den Achsstrahl parallel versetzenden Optiken, deren äussere Ränder nicht über die Querschnittsfläche der Leiteinrichtungen vorstehen, durch ein Durchführrohr an einen Messort platziert werden, dass danach die Eintrittsoptiken so weit voneinander definiert beabstandet werden, dass deren äussere Ränder über die Querschnittsfläche der Leiteinrichtungen vorstehen, dass ein Muster und/oder eine natürliche Struktur beleuchtet wird und/oder auf die Objektoberfläche strukturiertes Licht projiziert wird, dass das von der Objektoberfläche reflektierte Licht photogrammetrisch analysiert und als dreidimensionale Punktwolke bezüglich den Mustern und/oder natürlichen Strukturen bereitgestellt wird. Die Objektoberfläche kann mit weissem Licht beleuchtet wer- den.
[023] Eine weitere Ausgestaltung der Erfindung sieht vor, dass mindestens ein Muster an der Objektoberfläche angebracht wird.
[024] Vorzugsweise wird bei der Messung der Objektoberflächentopologie das Endoskop manuell geführt.
[025] Die Erfindung eignet sich in ihrer Anwendung nicht nur für medizinische Anwendungen. Überall wo durch ein enges Loch das Endoskop hineingeschoben werden muss und wo im eigentlichen Messraum mehr Platz vorhanden ist, kann das System eingesetzt werden, um genaue Messresultate von Oberflächen und Formen zu erhalten.
[026] Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsge- dankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch beschrieben, auf die im übrigen bezüglich der Offenbarung aller im Text nicht näher erläuterten erfindungsgemässen Einzelheiten ausdrücklich verwiesen wird. Es zeigen:
Fig. 1 schematisch die Seitenansicht des Endoskops in situ im aufgeklappten Zustand,
Fig. 2 schematisch zwei unterschiedlich große Abstände von Eintrittsoptikpaaren, Fig. 3 schematisch die Seitenansicht des Endoskops im zugeklappten Zustand,
Fig. 4 schematisch die Seitenansicht der Einzelkomponenten im zugeklappten Zustand,
Fig. 5 schematisch die Seitenansicht der Komponente für die Beleuchtungseinrichtung,
Fig. 6 schematisch die Aufsicht des Optiksystems im zugeklappten Zustand, Fig. 7 schematisch die Aufsicht des Optiksystems im aufgeklappten Zustand,
Fig. 8 schematisch die Aufsicht des Optiksystems im aufgeklappten Zustand mit freigegebener Durchführung für zusätzliche Instrumente,
Fig. 9 schematisch die Seitenansicht einer Beleuchtungseinrichtung für die Beleuchtung eines Objekts mit natürlichen Strukturen und aufgebrachten Mustern und für strukturiertes Licht generiert mittels einem diffraktiven optischen Element und Laserlichtstrahl,
Fig. 10 schematisch die Seitenansicht einer weiteren Ausführung einer Beleuchtungseinrichtung mit zwei Lichtstrahlen parallel zur Bildleiterachse,
Fig. 1 1 schematisch die Seitenansicht einer weiteren Ausführung einer Beleuchtungseinrichtung mit zwei Lichtstrahlen, die nicht parallel zur Bildleiterachse verlaufen, und
Fig. 12 schematisch die Seitenansicht einer weiteren Ausführung eines Endoskops im aufgeklappten Zustand mit im Optikkopf integriertem bildgebendem Sensor.
[027] Im Folgenden wird das Endoskop beispielhaft für die laparoskopische Anwendung beschrieben. Die Laparoskopie, auch Bauchspiegelung genannt, bezeichnet eine Methode, bei der die Bauchhöhle und die darin liegenden Organe mit speziellen Stablinsen-Optiken (für starre Endoskope) durch kleine, vom Chirurgen geschaffene Öffnungen in der Bauchdecke sichtbar gemacht werden. Anstelle von Endoskopen mit starren Stablinsen-Optiken sind En- doskope mit flexiblen Bildleitern möglich.
[028] Figur 1 zeigt schematisch die Seitenansicht des Endoskops 1 in situ im aufgeklappten Zustand. Das Optiksystem 5 ist vor dem zu untersuchenden Objekt 4 positioniert. Die BiId- und Lichtleiter 6, 6a, I Ia der Leiteinrichtungen zwischen dem Optiksystem 5 und dem externen Versorgungsmodul 12 sind im Rohr 13 integriert. Das Rohr 13 befindet sich innerhalb dem durch die Bauchdecke 3 durchführenden Durchführrohr 2.
[029] Jeder der beiden Optikköpfe 7 bzw. 7a besteht aus einer den Achsstrahl parallel versetzenden Optik 8 bzw. 8a und einer Eintrittsoptik 9 bzw. 9a. Die den Achsstrahl parallel versetzende Optik 8 bzw. 8a ist beispielsweise ein Spiegelpaar oder ein Rhomboidprisma. Der Abstand 10 zwischen den optischen Achsen der Eintrittsoptiken 9 und 9a ist für die Messung mittels in den Leiteinrichtungen integrierten mechanischen Einrichtungen definiert einstellbar. Die Positionierung der Optikköpfe 7 und 7a kann beispielsweise durch Drehen und/oder Verschieben der Bildleiter 6 und 6a erfolgen. Im aufgeklappten Zustand kann das Endoskop 1 nicht aus dem Durchführrohr 2 entfernt werden. Der aufgeklappte Zustand bedeutet, dass die Optikköpfe 7 und 7a in ihren messbereiten Positionen sind.
[030] Die Beleuchtungseinrichtung 1 1 beleuchtet die Objektoberfläche 4. Die Beleuchtungseinrichtung 1 1 kann optional auf etwa die gleiche Höhe wie die Eintrittsoptiken 9 und 9a positioniert werden. Die Beleuchtungseinrichtung 1 1 dient der Beleuchtung der Objektoberfläche 4 und/oder der Oberflächenabtastung und -Erfassung mithilfe von strukturiertem Licht. Die Beleuchtungseinrichtung 11 wird mittels in den Leiteinrichtungen integrierten Licht- und/oder Bildleitern I Ia mit dem externen Versorgungsmodul 12 verbunden.
[031] Das externe Versorgungsmodul 12 dient der Versorgung der Beleuchtungseinrichtung 1 1 mit dem notwendigen Licht und zum Empfangen der Bildsignale der Eintrittsoptiken 9 und 9a. Die Bilder können direkt visuell betrachtet werden. Die Bildsignale können mit bildge- benden Sensoren erfasst und photogrammetrisch analysiert werden. Darüber hinaus enthält das externe Versorgungsmodul 12 Einrichtungen für das mechanische Bewegen der Optikköpfe 7 und 7a.
[032] Die Figuren 2a und 2b zeigen schematisch den Einfluss des Abstandes 10 bzw. 10b der Eintrittsoptikpaare 9 und 9a auf die Genauigkeit der Tiefeninformation. Die Figur 2a zeigt schematisch eine messtechnisch ungünstige Situation mit spitzem Winkel 21, der durch den Abstand 10 und die Distanz 20 definiert ist. Die Distanz 20 ist der mittlere Abstand der Eintrittsoptikpaare zum Punkt 22 auf der Objektoberfläche 4. Figur 2b zeigt schematisch eine messtechnisch günstige Situation mit grossem Winkel 21b, der durch den grossen Abstand 10b und die relativ dazu geringe Distanz 20b zum Punkt 22b auf der Oberfläche 4b definiert ist.
[033] Figur 3 zeigt schematisch die Seitenansicht des Endoskops 1 im zugeklappten Zustand. Dabei werden die Optikköpfe 7 und 7a um die Winkel 30 und 30a gedreht. Optional kann einer der beiden Bildleiter 6 bzw. 6a entlang seiner Achse um die Strecke 31 verschoben werden. Im zugeklappten Zustand kann das Endoskop 1 leicht aus dem am Ort bleibenden Durch- führrohr 2 herausgenommen oder in den Messort hineingeschoben werden. Im Zustand des Einfahrens durch das Durchführrohr 2 sind die Optikköpfe 7 und 7a dergestalt positioniert, dass deren äussere Ränder nicht über die Querschnittsfläche der Leiteinrichtungen, die durch das Rohr 13 gegeben ist, vorstehen. Im Arbeitszustand, d.h. im ausgeklappten Zustand, sind die beiden Optikköpfe ausgedreht mit den Winkeln 30 und 30a und optional längsverschoben um die Strecke 31. Die Drehbewegung der beiden Bildleiter 6 und 6a um die Winkel 30 und 30a liegt typischerweise im Bereich von 140 bis 170 Grad, um einen für die Messtechnik optimalen Abstand des Eintrittsoptikpaars zueinander zu bekommen. Nach der Drehbewegung um die Winkel 30 und 30a und der Längsbewegung um die Strecke 31 stehen die Eintrittsoptiken 9 und 9a symmetrisch zur Beleuchtungseinrichtung 1 1.
[034] Bei der Verwendung wird das Optiksystem 5 in das Durchführrohr 2 mit eingedrehten Optikköpfen 7 und 7a hineingeschoben. Die Optikköpfe 7 und 7a werden im Bauchraum nun seitlich um die Winkel 30 bzw. 30a herausgedreht und optional längsverschoben um die Strecke 31 , sodass deren Eintrittsoptiken 9 und 9a einen für die Messtechnik optimalen Abstand des Eintrittsoptikpaars zueinander bilden.
[035] Die Rotationsbewegungen der Bildleiter und die optionale Längsbewegung eines der beiden Bildleiter sind mit eigens dafür vorgesehenen mechanischen Führungen spielfrei und präzise möglich. Dadurch kann das Endoskop für den ausgeklappten Zustand für optische Messungen kalibriert werden. Nach dem Verstellen in den zugeklappten Zustand und erneutem Ausklappen ist die Systemkalibration immer noch gültig. Der zugeklappte Zustand be- deutet, dass die Optikköpfe 7 und 7a nicht in ihren messbereiten Positionen sind. Im zugeklappten Zustand stehen die äusseren Ränder der Optikköpfe 7 und 7a nicht über die Querschnittsfläche der Leiteinrichtungen vor.
[036] Die Figur 4 zeigt schematisch in der Seitenansicht die in den Figuren 1 und 3 beschriebenen Einzelkomponenten des Endoskops.
[037] Die Figur 5 zeigt schematisch die Seitenansicht weiterer Details der Beleuchtungseinrichtung 11 des Endoskops. Für die Beleuchtung von Objektoberflächen mit bevorzugt weissem Licht dienen die Austrittsoptik 50 und der Lichtleiter 52. Für die Projektion von strukturiertem Licht auf die Objektoberfläche dient das diffraktive optische Element 30 mit dem Lichtleiter 51 für die Zuführung des Laserstrahls. Schematisch eingezeichnet ist das alle Leit- einrichtungen enthaltende Rohr 13, das sich im Durchführungsrohr 2 befindet. [038] Die Figur 6 zeigt links schematisch die Aufsicht des Optiksystems 5 im zugeklappten Zustand. Die optischen Achsen der Eintrittsoptiken 9 und 9a sowie der Beleuchtungseinrichtung 1 1 liegen in der Aufsicht nahe beieinander. Der Optikkopf 7 bzw. 7a mit der den Achsstrahl parallel versetzenden Optik 8 bzw. 8a ist dergestalt, dass im zugeklappten Zustand die äusseren Ränder nicht über die Querschnittsfläche der Leiteinrichtungen im Rohr 13 vorstehen. Der Optikkopf 7 bzw. 7a kann mittels der den Bildleiter 6 bzw. einhüllenden Hülse 60 bzw. 60a auf- und zugeklappt werden. Die Beleuchtungseinrichtung 1 1 ist im zugeklappten Zustand durch die Optikköpfe 7 und 7a abgedeckt.
[039] Die Figur 6 zeigt rechts in der Aufsicht schematisch im zugeklappten Zustand die Mit- telachsen der beiden Bildleiter 6 und 6a und die optischen Achsen der Beleuchtungseinrichtung 1 1 und der beiden Eintrittsoptiken 9 und 9a.
[040] Die Figur 7 zeigt links schematisch die Aufsicht des Optiksystems 5 im aufgeklappten Zustand. Der Drehwinkel 30 um die Achse des Bildleiters 6 ist beispielhaft eingezeichnet. Die optischen Achsen der Eintrittsoptiken 9 und 9a im Abstand 10 liegen maximal auseinander.
[041] Die Figur 7 zeigt rechts schematisch in der Aufsicht des Optiksystems im aufgeklappten Zustand die im Abstand 10 beabstandeten optischen Achsen der beiden Eintrittsoptiken 9 und 9a. Die Beleuchtungseinrichtung 11 ist im aufgeklappten Zustand durch die Optikköpfe nicht abgedeckt.
[042] Die Figur 8 zeigt schematisch die Aufsicht des Optiksystems 5 im aufgeklappten Zu- stand mit einer anderen Ausführung der Beleuchtungseinrichtung 11. Durch die Durchführung 80 im Rohr 13 können beispielsweise weitere Instrumente in den Hohlraum mit dem Objekt geführt werden. Die optischen Achsen der Eintrittsoptiken 9 und 9a liegen im Abstand 10 maximal auseinander.
[043] Die Figur 9 zeigt schematisch die Seitenansicht des Optiksystems 5 mit einer Beleuch- tungseinrichtung 1 1 mit einem diffraktiven optischen Element 92, das den durch den Lichtleiter 90 geleiteten Laserlichtstrahl in strukturiertes Licht 94 aufteilt. Das strukturierte Licht 94 projiziert auf die Oberfläche 4 Muster von Punkten und/oder Strichen. Mit den optischen Elementen 93 und dem Bildleiter 91 wird das Messvolumen ausgeleuchtet mit auf Objektoberflächen vorhandenen natürlichen Strukturen 96 und/oder angebrachten flexiblen und/oder starren Mustern 95. Vorteilhaft ist, farbiges strukturiertes Licht und weisses Licht für die Beleuchtung zu verwenden.
[044] Die Figur 10 zeigt schematisch die Seitenansicht einer weiteren Ausführung einer Beleuchtungseinrichtung 11 für strukturiertes Licht. Die beiden beispielhaft eingezeichneten Lichtstrahlen 103 und 104 verlaufen parallel zur optischen Achse 100 des Bildleiters 102. Die Optik 101 lenkt die parallelen Lichtstrahlen aus. Beispielsweise wird der Lichtstrahl 103 mit einem Abstand 106 zur optischen Achse 100 des Bildleiters 102 durch die Optik 101 um den Winkel 105 ausgelenkt. Der Auslenkwinkel 105 ist vorzugsweise abhängig vom Abstand 106. Mit einer Änderung des Abstandes 106 und der dadurch hervorgerufenen kontinuierlichen Bewegung des Lichtstrahls 103 lassen sich mit der Optik 101 Lichtmuster erzeugen, die sich kontinuierlich im Raum bewegen. Damit werden auf die auszumessende Objektoberfläche 107 systematisch bewegte Lichtstrahlen projiziert ohne das Endoskop zu bewegen. Die Erzeugung von parallelen Lichtstrahlen in einem Abstand 106 zur optischen Achse 100 ist Stand der Technik und wird hier nicht weiter erläutert.
[045] Die Figur 11 zeigt schematisch die Seitenansicht einer weiteren Beleuchtungseinrichtung 1 1 für strukturiertes Licht. Die beiden beispielhaft eingezeichneten Lichtstrahlen 1 10 und 11 1 verlaufen nicht parallel zur optischen Achse 100 des Bildleiters 102. Die Optik 101 lenkt die Lichtstrahlen aus. Beispielsweise wird der Lichtstrahl 110 mit einem Abstand 1 12 und einem Winkel 113 zur optischen Achse 100 des Bildleiters 102 durch die Optik 101 um den Winkel 114 ausgelenkt. Der Auslenkwinkel 114 ist in diesem Ausführungsbeispiel abhängig vom Abstand 112 und vom Winkel 1 13. Damit werden auf die auszumessende Objektoberfläche 1 15 durch eine kontinuierliche Änderung des Abstandes und/oder des Winkels systematisch bewegte Lichtstrahlen projiziert ohne das Endoskop zu bewegen. Die Erzeugung von nicht zur optischen Achse 100 des Bildleiters 102 parallelen Lichtstrahlen in einem Ab- stand 1 12 und einem Winkel 113 ist Stand der Technik und wird hier nicht weiter erläutert.
[046] Die Figur 12 zeigt schematisch die Seitenansicht einer weiteren Ausführung eines Optiksystems 5 mit den Optikköpfen 7 und 7a eines Endoskops im aufgeklappten Zustand. Der bildgebende Sensor 120 und dazugehörendem Elektronikmodul 121 ist im Optiksystem 5 integriert. Die einsehbare Objektoberfläche wird über die Eintrittsoptiken 9 und 9a und den Achsstrahl parallel versetzenden Optiken 8 und 8a auf den gemeinsamen bildgebenden Sensor 120 abgebildet. Der Abstand 10 zwischen den optischen Achsen der Eintrittsoptiken 9 und 9a ist für die Messung definiert einstellbar. Die Leiteinrichtung 122 im Rohr 13 des Endoskops verbindet das Elektronikmodul 121 mit dem in der Figur nicht eingezeichneten Versorgungsmodul. Nicht eingezeichnet ist die Beleuchtungseinrichtung.

Claims

Patentansprüche
1. Endoskop mit zwei Eintrittsoptiken, die beabstandet zueinander angeordnet sind und deren Sichtfelder sich überschneiden, und mit Leiteinrichtungen, dadurch gekenn- zeichnet, dass die Eintrittsoptiken so weit voneinander beabstandet sind, dass deren äussere Ränder über die Querschnittsfläche der Leiteinrichtungen vorstehen und zwischen einer Eintrittsoptik und den Leiteinrichtungen eine den Achsstrahl versetzende Optik eingefügt ist.
2. Endoskop nach Anspruch 1, gekennzeichnet durch eine Beleuchtungseinrichtung, die strukturiertes Licht abgibt.
3. Endoskop nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen einer Eintrittsoptik und den Leiteinrichtungen eine den Achsstrahl parallel versetzende Optik eingefügt ist.
4. Endoskop nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Eintrittsoptiken mit einer die Oberflächenspannung verringernden Beschichtung ausgerüstet ist.
5. Endoskop nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Eintrittsoptiken zueinander variabel beabstandet definiert anordenbar sind mittels einer in den Leiteinrichtungen integrierten Einrichtung.
6. Endoskop nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bedarfsweise die Eintrittsoptiken und die den Achsstrahl parallel versetzenden Optiken eine Fläche einnehmen, deren äussere Ränder nicht über die Querschnittsfläche der Leiteinrichtungen vorstehen.
7. Endoskop nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die optischen Achsen der Eintrittsoptiken voneinander beabstandet sind auf mindestens den zweieinhalbfachen Durchmesser des Querschnitts an der schmälsten Stelle der Leiteinrichtungen.
8. Endoskop nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass das strukturierte Licht mittels Laserlicht und einem diffraktiven optischen Element (DOE) erzeugt wird.
9. Endoskop nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass das strukturierte Licht mittels Lichtstrahlen, die im mit einer Ein- und Austrittsoptik ausgestatteten Bildleiter definiert geführt werden, erzeugt wird.
10. Endoskop nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die den Achsstrahl versetzenden Optiken an einem gemeinsamen bildgebenden Sensor angeordnet sind.
11. Verfahren zur Verwendung eines Endoskops gemäss mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Eintrittsoptiken und die den Achsstrahl parallel versetzende Optiken, deren äussere Ränder nicht über die Querschnittsfläche der Leiteinrichtungen vorstehen, durch ein Durchführrohr an einen Messort platziert werden, dass danach die Eintrittsoptiken so weit voneinander dεfi- niert beabstandet werden, dass deren äussere Ränder über die Querschnittsfläche der
Leiteinrichtungen vorstehen, dass ein Muster und/oder eine natürliche Struktur beleuchtet wird und/oder auf die Objektoberfläche strukturiertes Licht projiziert wird, dass das von der Objektoberfläche reflektierte Licht photogrammetrisch analysiert und als dreidimensionale Punktwolke bezüglich den Mustern und/oder natürlichen Struktu- ren bereitgestellt wird.
12. Verfahren gemäss Anspruch 1 1, dadurch gekennzeichnet, dass mindestens ein Muster an der Objektoberfläche angebracht wird.
13. Verfahren gemäss Anspruch 11 oder 12, dadurch gekennzeichnet, dass bei der Messung der Objektoberflächentopologie das Endoskop manuell geführt wird.
PCT/EP2010/005128 2009-08-27 2010-08-20 Endoskop und verfahren zu dessen verwendung WO2011023339A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10752717A EP2470058A1 (de) 2009-08-27 2010-08-20 Endoskop und verfahren zu dessen verwendung
DE112010003417T DE112010003417A5 (de) 2009-08-27 2010-08-20 Endoskop und verfahren zu dessen verwendung
CN201080048684.2A CN102573602B (zh) 2009-08-27 2010-08-20 内窥镜及其使用方法
US13/391,128 US9068824B2 (en) 2009-08-27 2010-08-20 Stereoscopic endoscope for measuring a three dimensional surface
JP2012525914A JP5807787B2 (ja) 2009-08-27 2010-08-20 内視鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009038755 2009-08-27
DE102009038755.2 2009-08-27

Publications (2)

Publication Number Publication Date
WO2011023339A1 true WO2011023339A1 (de) 2011-03-03
WO2011023339A4 WO2011023339A4 (de) 2011-05-12

Family

ID=43127725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/005128 WO2011023339A1 (de) 2009-08-27 2010-08-20 Endoskop und verfahren zu dessen verwendung

Country Status (6)

Country Link
US (1) US9068824B2 (de)
EP (1) EP2470058A1 (de)
JP (1) JP5807787B2 (de)
CN (1) CN102573602B (de)
DE (1) DE112010003417A5 (de)
WO (1) WO2011023339A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2836106A4 (de) * 2012-04-10 2015-11-25 Conmed Corp Stereoendoskop mit 360-grad-verschiebung
CN106539554A (zh) * 2016-11-10 2017-03-29 李景 一种消化内镜异物测量系统及方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129246A (ko) 2010-12-17 2013-11-27 아브니르 메디컬 아이엔씨. 수술 중에 보철물을 정렬하기 위한 방법 및 시스템
US11911117B2 (en) 2011-06-27 2024-02-27 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
AU2012319093A1 (en) 2011-06-27 2014-01-16 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
AU2014236718B2 (en) 2013-03-14 2018-07-05 Sri International Compact robotic wrist
US10383699B2 (en) 2013-03-15 2019-08-20 Sri International Hyperdexterous surgical system
US9247998B2 (en) 2013-03-15 2016-02-02 Intellijoint Surgical Inc. System and method for intra-operative leg position measurement
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US9107578B2 (en) * 2013-03-31 2015-08-18 Gyrus Acmi, Inc. Panoramic organ imaging
KR102107402B1 (ko) * 2013-05-03 2020-05-07 삼성전자주식회사 내시경 및 이를 이용한 영상 처리 장치
DE102014204243A1 (de) * 2014-03-07 2015-09-10 Siemens Aktiengesellschaft Endoskop mit Tiefenbestimmung
DE102014204244A1 (de) * 2014-03-07 2015-09-10 Siemens Aktiengesellschaft Endoskop mit Tiefenbestimmung
US20170181666A1 (en) * 2014-03-31 2017-06-29 Spiration, Inc. D.B.A. Olympus Respiratory America Light-based endoluminal sizing device
US10687956B2 (en) * 2014-06-17 2020-06-23 Titan Spine, Inc. Corpectomy implants with roughened bioactive lateral surfaces
JP6253526B2 (ja) * 2014-06-24 2017-12-27 オリンパス株式会社 内視鏡装置
JP6253527B2 (ja) * 2014-06-24 2017-12-27 オリンパス株式会社 内視鏡装置
DE102014216027A1 (de) * 2014-08-13 2016-02-18 Siemens Aktiengesellschaft Endoskop mit Tiefenbestimmung
US10154239B2 (en) 2014-12-30 2018-12-11 Onpoint Medical, Inc. Image-guided surgery with surface reconstruction and augmented reality visualization
WO2017015599A1 (en) 2015-07-23 2017-01-26 Sri International Robotic arm and robotic surgical system
CN111329553B (zh) 2016-03-12 2021-05-04 P·K·朗 用于手术的装置与方法
CN110430809B (zh) 2017-01-16 2023-09-26 P·K·朗 用于外科、医疗和牙科手术的光学引导
US10477190B2 (en) * 2017-03-14 2019-11-12 Karl Storz Imaging, Inc. Constant horizon 3D imaging system and related method
US11801114B2 (en) 2017-09-11 2023-10-31 Philipp K. Lang Augmented reality display for vascular and other interventions, compensation for cardiac and respiratory motion
US11348257B2 (en) 2018-01-29 2022-05-31 Philipp K. Lang Augmented reality guidance for orthopedic and other surgical procedures
KR102545980B1 (ko) 2018-07-19 2023-06-21 액티브 서지컬, 인크. 자동화된 수술 로봇을 위한 비전 시스템에서 깊이의 다중 모달 감지를 위한 시스템 및 방법
US11857378B1 (en) 2019-02-14 2024-01-02 Onpoint Medical, Inc. Systems for adjusting and tracking head mounted displays during surgery including with surgical helmets
US11553969B1 (en) 2019-02-14 2023-01-17 Onpoint Medical, Inc. System for computation of object coordinates accounting for movement of a surgical site for spinal and other procedures
CN113950279B (zh) 2019-04-08 2023-04-14 艾科缇弗外科公司 用于医疗成像的系统和方法
US20210052189A1 (en) * 2019-08-22 2021-02-25 Wisconsin Alumni Research Foundation Lesion Volume Measurements System
US10960094B1 (en) * 2020-06-16 2021-03-30 Innovative Technologies Disinfection system
EP4304490A1 (de) 2021-03-10 2024-01-17 Onpoint Medical, Inc. Führung der erweiterten realität für bildgebungssysteme und roboterchirurgie

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242033A (ja) * 1988-03-23 1989-09-27 Toshiba Corp 計測内視鏡装置
DE3921233A1 (de) 1989-06-28 1991-02-14 Storz Karl Gmbh & Co Endoskop mit einer am distalen ende angeordneten videoeinrichtung
DE4130237A1 (de) * 1991-09-11 1993-03-18 Zeiss Carl Fa Verfahren und vorrichtung zur dreidimensionalen optischen vermessung von objektoberflaechen
WO1997014932A1 (en) * 1995-10-20 1997-04-24 Optronic Consult Ab Process and device for the measuring of a three-dimensional shape
US5928137A (en) * 1996-05-03 1999-07-27 Green; Philip S. System and method for endoscopic imaging and endosurgery
US20020082476A1 (en) * 1994-03-17 2002-06-27 Olympus Optical Co. Stereoendoscope wherein images having passed through plural incident pupils are transmitted by common relay optical systems
US20050234296A1 (en) * 2004-04-14 2005-10-20 Usgi Medical Inc. Method and apparatus for obtaining endoluminal access
WO2010020397A1 (de) 2008-08-18 2010-02-25 Naviswiss Ag Medizinisches messsystem, verfahren zum chirurgischen eingriff sowie die verwendung eines medizinischen messsystems

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986262A (en) * 1987-03-31 1991-01-22 Kabushiki Kaisha Toshiba Measuring endoscope
JPH02106714A (ja) * 1988-10-17 1990-04-18 Olympus Optical Co Ltd 内視鏡の調光装置
JPH0412724A (ja) * 1990-05-02 1992-01-17 Nippon Telegr & Teleph Corp <Ntt> 計測内視鏡
US5217453A (en) * 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
JPH05115425A (ja) * 1991-10-25 1993-05-14 Olympus Optical Co Ltd 内視鏡
US5305121A (en) * 1992-06-08 1994-04-19 Origin Medsystems, Inc. Stereoscopic endoscope system
JP3628717B2 (ja) * 1994-03-17 2005-03-16 オリンパス株式会社 立体視内視鏡
JPH08101351A (ja) * 1994-09-30 1996-04-16 Shimadzu Corp 3次元内視鏡
US6066090A (en) * 1997-06-19 2000-05-23 Yoon; Inbae Branched endoscope system
US6277064B1 (en) * 1997-12-30 2001-08-21 Inbae Yoon Surgical instrument with rotatably mounted offset endoscope
KR100556232B1 (ko) * 2003-07-23 2006-03-03 국립암센터 이격조절이 가능한 양안구조 복강경
JP3802912B2 (ja) * 2004-09-17 2006-08-02 テルモ株式会社 撮像装置
US8556806B2 (en) * 2004-09-24 2013-10-15 Vivid Medical, Inc. Wavelength multiplexing endoscope
US20070049794A1 (en) * 2005-09-01 2007-03-01 Ezc Medical Llc Visualization stylet for medical device applications having self-contained power source
US8517933B2 (en) * 2006-06-13 2013-08-27 Intuitive Surgical Operations, Inc. Retraction of tissue for single port entry, robotically assisted medical procedures
CN104688281B (zh) * 2006-06-13 2017-04-19 直观外科手术操作公司 微创手术系统
US8105233B2 (en) * 2007-10-24 2012-01-31 Tarek Ahmed Nabil Abou El Kheir Endoscopic system and method for therapeutic applications and obtaining 3-dimensional human vision simulated imaging with real dynamic convergence
CN201171665Y (zh) * 2008-02-04 2008-12-31 长春理工大学 立体电子内窥镜双路视频信号获得装置
US8562513B2 (en) * 2008-05-20 2013-10-22 Olympus Medical Systems Corp. Endoscope device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242033A (ja) * 1988-03-23 1989-09-27 Toshiba Corp 計測内視鏡装置
DE3921233A1 (de) 1989-06-28 1991-02-14 Storz Karl Gmbh & Co Endoskop mit einer am distalen ende angeordneten videoeinrichtung
DE4130237A1 (de) * 1991-09-11 1993-03-18 Zeiss Carl Fa Verfahren und vorrichtung zur dreidimensionalen optischen vermessung von objektoberflaechen
US20020082476A1 (en) * 1994-03-17 2002-06-27 Olympus Optical Co. Stereoendoscope wherein images having passed through plural incident pupils are transmitted by common relay optical systems
WO1997014932A1 (en) * 1995-10-20 1997-04-24 Optronic Consult Ab Process and device for the measuring of a three-dimensional shape
US5928137A (en) * 1996-05-03 1999-07-27 Green; Philip S. System and method for endoscopic imaging and endosurgery
US20050234296A1 (en) * 2004-04-14 2005-10-20 Usgi Medical Inc. Method and apparatus for obtaining endoluminal access
WO2010020397A1 (de) 2008-08-18 2010-02-25 Naviswiss Ag Medizinisches messsystem, verfahren zum chirurgischen eingriff sowie die verwendung eines medizinischen messsystems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2836106A4 (de) * 2012-04-10 2015-11-25 Conmed Corp Stereoendoskop mit 360-grad-verschiebung
EP3375348A1 (de) * 2012-04-10 2018-09-19 ConMed Corporation Stereoendoskop mit 360-grad-verschiebung
US10143359B2 (en) 2012-04-10 2018-12-04 Conmed Corporation 360 degree panning stereo endoscope
CN106539554A (zh) * 2016-11-10 2017-03-29 李景 一种消化内镜异物测量系统及方法

Also Published As

Publication number Publication date
JP2013502939A (ja) 2013-01-31
DE112010003417A5 (de) 2012-08-16
US20130030250A1 (en) 2013-01-31
JP5807787B2 (ja) 2015-11-10
EP2470058A1 (de) 2012-07-04
WO2011023339A4 (de) 2011-05-12
US9068824B2 (en) 2015-06-30
CN102573602A (zh) 2012-07-11
CN102573602B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
EP2470058A1 (de) Endoskop und verfahren zu dessen verwendung
DE3512602C2 (de)
DE3516164C2 (de)
EP0630487B1 (de) Verfahren und vorrichtung zur darstellung eines arbeitsbereiches in einer dreidimensionalen struktur
EP1618836B1 (de) Laryngoskop mit OCT
DE10116056A1 (de) Endoskopische Visualisierungsvorrichtung mit unterschiedlichen Bildsystemen
WO2018011106A2 (de) Endoskopische vorrichtung und verfahren zur endoskopischen untersuchung
WO2011039235A1 (de) Endoskop
WO2012059253A1 (de) Endoskop mit 3d-funktionalität
DE19638758A1 (de) Verfahren und Vorrichtung zur dreidimensionalen Vermessung von Objekten
WO2014111190A1 (de) Endoskop, insbesondere für die minimal-invasive chirurgie
DE60206005T2 (de) Vorrichtung zum Ausrichten eines ophthalmologischen Instruments
DE102014010350A1 (de) Augenchirurgiesystem
DE19750698A1 (de) Anordnung zur dreidimensionalen Vermessung von Hohlräumen, insbesondere organischen Hohlräumen
DE2847561A1 (de) Vorrichtung zum messen von objektlaengen in koerperhoehlen unter beobachtung
EP3033997B1 (de) Endoskopsystem zur Bestimmung einer Position und einer Orientierung eines Endoskops in einem Hohlraum
DE102017109128B4 (de) Endoskop zur 3D-Vermessung von Objekten sowie zugehöriger Baukasten und Verwendung
DE202004012992U1 (de) Endoskopisches Video-Meßsystem
DE102017111819B4 (de) Bohrungsinspektionsvorrichtung
DE102016205370A1 (de) OCT-System
DE102014107586A1 (de) 3D-Video-Endoskop
DE60304343T2 (de) Vorrichtung für einen in vivo konfokalen optischen tomographieschnitt
EP4124283A1 (de) Messverfahren und eine messvorrichtung
DE10137719B4 (de) Vorrichtung und Verfahren zur Einstellung der Phasenbeziehung zwischen kohärenten Lichtwellen in einem endoskopischen Speckle-Interferometer
DE102012211396A1 (de) Endoskopieeinrichtung und Endoskopieverfahren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048684.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10752717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012525914

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010752717

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010752717

Country of ref document: EP

Ref document number: 1120100034176

Country of ref document: DE

Ref document number: 112010003417

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13391128

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112010003417

Country of ref document: DE

Effective date: 20120816