WO2011021241A1 - 画像処理装置 - Google Patents

画像処理装置 Download PDF

Info

Publication number
WO2011021241A1
WO2011021241A1 PCT/JP2009/003976 JP2009003976W WO2011021241A1 WO 2011021241 A1 WO2011021241 A1 WO 2011021241A1 JP 2009003976 W JP2009003976 W JP 2009003976W WO 2011021241 A1 WO2011021241 A1 WO 2011021241A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
approximate curve
saturation
color
output
Prior art date
Application number
PCT/JP2009/003976
Other languages
English (en)
French (fr)
Inventor
今井良枝
馬場雅裕
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/003976 priority Critical patent/WO2011021241A1/ja
Publication of WO2011021241A1 publication Critical patent/WO2011021241A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention relates to an image processing apparatus that converts an input image signal according to the characteristics of the color gamut of a device that outputs the image signal.
  • color gamut the range in which colors can be reproduced by devices.
  • the color purity can be increased by improving the light source and the color filter.
  • a wide color gamut can be realized by increasing the primary colors of the color LEDs used for the backlight of the liquid crystal display.
  • an output device for example, a display device having a wide color gamut
  • a display device in order to display a vivid color utilizing the color gamut, it is necessary to expand the color of the input image signal, convert it to a signal of a wide color gamut, and display it.
  • the signal is mapped by expanding the color gamut on the input side according to the ratio between the color gamut on the input side and the output side in a predetermined hue.
  • a method is disclosed (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Document 1
  • the color gamut of the output device and the color gamut of the input device are greatly different, it may be felt that the image quality is deteriorated.
  • FIG. 2 shows an example of the outline of the color gamut of the input device and output device in a certain hue.
  • the vertical axis represents lightness L *
  • the horizontal axis represents saturation C *.
  • the input device and the output device have greatly different lightness values for maximum saturation. In this case, when mapping is performed using the entire color gamut in accordance with the color gamut ratio, the lightness of the highly saturated portion of the input device decreases. Then, even if the saturation increases and the image becomes brighter, it will be perceived as image quality degradation.
  • the present invention has been made in consideration of the above circumstances, an image processing apparatus capable of reducing the influence of a difference in color gamut shape between an input device and an output device, and performing color conversion that does not cause image quality degradation.
  • An object is to provide an image display device.
  • the present invention provides a maximum value of the saturation of an input approximate curve that approximates the shape of the input color gamut in each hue of the input color gamut indicating the color reproducible range in the input image signal, From the first calculation unit for calculating the lightness corresponding to the maximum value and the information on the output color gamut indicating the color reproducible range by the device that outputs the output image signal, in each hue, (a) the output color A maximum value of saturation of the output approximate curve in the region and a brightness corresponding to the maximum value, and (b) a point corresponding to the maximum value of saturation of the input approximate curve in the hue, and the output approximation For the point corresponding to the maximum value of the saturation of the curve, the corrected lightness corrected so that the lightness decreases as the saturation increases, and the maximum value of the input approximate curve and the saturation of the output approximate curve are calculated.
  • An image processing apparatus comprising: a conversion unit.
  • the present invention it is possible to perform color conversion that makes it difficult to perceive image quality degradation due to a difference in color gamut between the input device and the output device.
  • 1 is a diagram illustrating an image processing apparatus according to a first embodiment. An example of the outline of the color gamut of the input device and the output device in a predetermined hue. Explanatory drawing of the example of the input approximate curve calculation of the input device in 1st Embodiment. Explanatory drawing of the output approximate curve calculation in 1st Embodiment. Explanatory drawing of the mapping from an input approximate curve to an output approximate curve. Explanatory drawing of the process except the achromatic color area
  • the image processing apparatus of the present embodiment is provided as an image processing apparatus incorporated in, for example, a display that displays an image or a television.
  • FIG. 1 is a block diagram of the image processing apparatus of the present embodiment.
  • a color reproducible range in an input device or the like corresponding to an input image signal is used as an input color gamut.
  • an imaging system device such as a digital camera or a transmission system device such as a tuner for television broadcasting can be used.
  • the image processing apparatus of the present embodiment includes an input approximate curve calculation unit 10, an output approximate curve calculation unit 20, and a color conversion unit 30 that converts an input image signal.
  • An input image signal composed of lightness, saturation, and hue will be described below, but any signal may be used as long as it can be converted into lightness, saturation, and hue.
  • ITU-R BT ITU-R BT.
  • the YCbCr signal 709 can be converted to lightness, saturation, and hue via the tristimulus values XYZ.
  • the digital camera standard sRGB space color space component axes are red (R), green (G), and blue (B) is also converted to lightness, saturation, and hue via tristimulus values XYZ. Is possible.
  • the input approximate curve calculation unit 10 calculates an input approximate curve that is an approximate curve of the outline of the input color gamut.
  • the output approximate curve calculation unit 20 calculates an output approximate curve that becomes an approximate curve of the outline of the output color gamut from the input approximate curve and the output color gamut information 50.
  • an approximate curve of each color gamut may be calculated and held in advance.
  • the color conversion unit 30 maps the calculated input approximate curve to the output approximate curve, and performs color conversion in accordance with the internal points corresponding to the map.
  • the input color gamut information 40 is information indicating an outline of a color gamut that is a color range that can be reproduced by the input image signal or the input device.
  • the output color gamut information 50 is information indicating the outline of the color gamut of the output device.
  • the input color gamut information 40 can be specified according to the standard of a broadcast transmission system to be received.
  • the output color gamut information 50 can be obtained in advance according to the type of the display panel of the television that outputs the video.
  • a color can be represented by values of three attributes: brightness, saturation, and hue.
  • the color gamut information of the present embodiment includes information on the brightness and saturation of the outline in each hue. These values do not need to be continuous and may represent the outline of the outline of the color gamut. However, as the values become discrete, the error becomes larger and the accuracy of color conversion becomes lower.
  • the input approximate curve calculation unit 10 calculates an approximate curve of the outline of the input color gamut based on the input color gamut information.
  • the approximate curve and brightness axis calculated here are determined so as to substantially include the input color gamut.
  • FIG. 3 shows an example of input approximate curve calculation in the input device.
  • the vertical axis represents lightness L *
  • the horizontal axis represents saturation C *.
  • the broken line indicates the outline of the color gamut in a predetermined hue with brightness and saturation. This outline intersects with the lightness axis when the lightness L * is 0 and 100, and these points are designated as L 0 and L 100 , respectively.
  • a point corresponding to the maximum saturation of the outline at this time is denoted by T and is called a vertex.
  • the outline of the input color gamut is approximated by a straight line L 0 TL 100 connecting the vertex T and L 0 and L 100 , respectively.
  • a solid line indicates an approximate curve.
  • the input color gamut does not have to be completely within the area surrounded by the approximate curve and the brightness axis.
  • the color conversion unit 30 is large when mapping. There is a possibility of an error. Therefore, it is necessary to adjust the vertex T according to the color gamut shape.
  • the output approximate curve calculation unit 20 obtains an output approximate curve based on the input approximate curve obtained by the input approximate curve calculation unit 10 and the output color gamut information 50.
  • FIG. 4 is a diagram for explaining a method of calculating the output approximate curve.
  • 4 is the color gamut of the input device, and the thin broken line is the input approximate curve obtained by the input approximate curve calculation unit 10.
  • the solid thick line is the color gamut of the output device, and when mapping is performed using the entire output color gamut, it becomes like a dotted line. In this case, as described in the problem, the decrease in brightness becomes noticeable and the image quality is perceived as deterioration. Therefore, it is set within a range where color conversion can be vividly performed without feeling image quality degradation like a solid thin line.
  • the range in which such color conversion can be performed can be set by the following equation (1).
  • f is a corrected lightness that changes depending on the lightness and saturation of T, and is changed in consideration of human visual phenomena.
  • the Helmholtz-Kohlrausch effect is considered.
  • the Helmholtz-Colelausch effect is a visual phenomenon that makes bright colors feel brighter. Due to this phenomenon, even if the lightness is somewhat low, since the same brightness is felt if the saturation is high, the image quality is hardly deteriorated.
  • indicates a lower limit that allows image quality deterioration due to a decrease in lightness, and becomes a function of lightness and saturation so that the higher the saturation, the wider the range of lightness that does not feel deterioration.
  • the upper limit that allows the increase in brightness is also considered in g.
  • the output approximate curve calculation unit 20 finally sets T ′ within a range that satisfies the expression (1) and falls within the output color gamut, and calculates an output approximate curve. For example, an arbitrary point is sequentially selected, and a process of determining whether or not Expression (1) is satisfied is performed to obtain T ′ that satisfies the condition.
  • FIG. 5 is a diagram for explaining an example of color conversion.
  • the color conversion unit 30 performs conversion for mapping the input approximate curve to the output approximate curve.
  • T is the vertex of the input approximate curve
  • T ′ is the vertex of the output approximate curve.
  • P indicates an input image signal
  • P ′ indicates a point after color conversion is performed by mapping P.
  • ⁇ and ⁇ are normally in the range of 0 to 1, but they can be handled even in the outside. However, in that case, it is necessary to check whether the calculated value falls outside the range of the output color gamut.
  • the mapping is performed while suppressing the color gamut within the area surrounded by the intersection of the outline of the color gamut and the lightness axis, but it is not necessary to limit to the lightness axis.
  • the achromatic region is not expanded, it can be controlled by ⁇ , but it is not necessary to use L 0 and L 100 that intersect the lightness axis for each of the input approximate curve and the output approximate curve, as shown in FIG. It is also possible to calculate an input approximate curve and an output approximate curve with the achromatic region excluded, and perform mapping according to the calculation result.
  • the space for processing may be a color space composed of three attributes of brightness, saturation, and hue.
  • CIELAB which is a cylindrical coordinate format of CIELAB space and CIEUV space
  • CIEJCh defined by CIECAM97s and CIECAM02, and the like.
  • the image processing apparatus uses the color distribution in the input image signal as the input color gamut. That is, the point which calculates the approximated curve of the input image signal inputted is different from the first embodiment.
  • FIG. 7 is a diagram showing the image processing apparatus of the present embodiment. Hereinafter, the processing block will be described.
  • an input image signal is acquired by the color space conversion unit 110, and the input image signal is converted into a visually uniform color space composed of brightness, saturation, and hue.
  • the input approximate curve calculation unit 10 obtains the color distribution range of the input image signal, and calculates an approximate curve of the input image signal substantially including the color distribution range. Note that when the input image signal is a moving image, a configuration may be adopted in which an approximate curve is not calculated for each frame. For example, an input approximate curve may be calculated from one frame of the same scene or an average image in the same scene, and the input approximate curve calculated for all frames of the scene may be used.
  • the output approximate curve calculation unit 20 calculates an output approximate curve that becomes an approximate curve of the color gamut of the output image signal from the calculated input approximate curve and the output color gamut information 50.
  • the color conversion unit 30 maps the calculated input approximate curve to the output approximate curve, and performs color conversion in accordance with the internal points corresponding to the map.
  • the color space inverse conversion unit 120 converts each converted pixel into the color space of the output device.
  • the output color gamut information 50 is specific to the output device. Therefore, when the output device is known, an output approximate curve may be calculated and held in advance. Next, each block will be described in detail.
  • the color space conversion unit 110 first acquires an image.
  • This acquired image is an M ⁇ N pixel image in which M pixels are arranged in the horizontal direction and N pixels are arranged in the vertical direction. Since this image is an RGB image, each pixel has gradation data of red, green, and blue components. The gradation data of each component is expressed by 8 bits.
  • the input image signal is converted into a CIELAB color space or CIECH color space which is a visually uniform space.
  • the constituent axes of the CIELAB space are composed of an L * lightness axis and a * and b * chromaticity axes. Since the CIELAB space is a uniform color space, it is an excellent space for conversion while maintaining the continuity of the space.
  • the CIELAB color space expresses the CIELAB color space in a cylindrical coordinate format.
  • the constituent axes are represented by saturation C and hue h instead of a * and b *.
  • the three attributes of color are brightness, saturation, and hue, and can be said to be a color space in which it is possible to easily determine
  • the input approximate curve calculation unit 10 will be described with reference to FIG. First, the color distribution of the input image is obtained. This represents the distribution of lightness and saturation in a predetermined hue. Next, an approximate curve of the input image signal is calculated. The approximate curve and the brightness axis calculated here are determined so as to substantially include the input color gamut.
  • An example of the determination is as follows. First, (1) the brightness is classified in a predetermined hue, and the maximum value of the saturation of the color distribution of the image in the classification is calculated. (2) determine whether there is a maximum value of the other lightness divided into the side of higher saturation than the segment connecting the respective maximum values and the L 0. (3) The maximum value w of the saturation of the largest lightness section that satisfies the condition is extracted. (4) determine whether or not there is another maximum value larger side of saturation than the line connecting the maximum value of the saturation of smaller brightness section than and the L 100 w. (5) The maximum saturation value v of the largest lightness section that satisfies the condition is extracted.
  • the color distribution of the input image signal does not have to be completely enclosed within the approximate curve and the brightness axis, but if the color gamut outside the approximate curve is too wide, Since there is a possibility that a large error occurs during mapping in the color conversion unit 30, it is necessary to adjust the vertex T according to the color gamut shape.
  • FIG. 9 is a diagram for explaining the maintenance of the continuity of the input approximate curve with the adjacent hue.
  • FIG. 9 shows the chromaticity plane a * b * in the CIELAB color space. The vertex of the input approximate curve is projected onto the chromaticity plane.
  • the dotted line simply uses the approximate curve of the input image signal, the solid line indicates the adjusted approximate curve.
  • the color distribution of each hue is used as it is, so that the curve connecting the vertices with the neighboring hues is very uneven.
  • the output approximate curve is determined as it is, when color conversion is performed, the expansion amount in the adjacent hue reflects the unevenness as it is, and a discontinuous portion is generated in the converted value. In order to avoid such a phenomenon, it is necessary to smooth the vertices of the input approximate curve in advance.
  • the output approximate curve calculation unit 20 obtains an output approximate curve based on the input approximate curve obtained by the input approximate curve calculation unit 10 and the output color gamut information 50.
  • the processing here is performed not on the color gamut of the entire input device but on the part that requires the expansion range by specifying the color distribution of the image, and thus the image quality degradation is more effectively performed. It is possible to perform a decompression process with less.
  • FIG. 10 is a diagram for explaining output approximate curve calculation in the second embodiment.
  • a broken thick line indicates the color gamut of the input device, and a broken thin line indicates an approximate curve of the input image signal obtained by the input approximate curve calculation unit 10.
  • a solid thick line indicates the color gamut of the output device.
  • mapping is performed using the entire color gamut of the input device as in the first embodiment, the range in which the color distribution of the image exists as a result is a dotted line. Be inside. In this case, noticeable image quality degradation does not occur, but the brightness is lower than the original input, and the vividness is somewhat inferior. Therefore, if the output approximate curve is calculated only in the area where the input image signal is distributed, it can be expanded to the solid thin line part, and it can be converted to a vivid color without feeling image quality degradation It is.
  • the color conversion unit 30 performs conversion for mapping the approximate curve of the input image signal to the output approximate curve.
  • the processing here is also the same as in the first embodiment.
  • the color space inverse conversion unit 111 converts the uniform color space into a signal format suitable for the output device and outputs an output image signal.
  • the range included in the input approximate curve is narrowed by considering not only the color distribution range but also a histogram reflecting the density and frequency of distribution. Can do. In this case, the shape of the color gamut can be absorbed more effectively, and vivid color conversion can be performed without degrading the image quality.
  • the color conversion unit it is also possible to perform conversion for each pixel after creating a conversion table corresponding to input values at a certain interval in advance.
  • image data that can be converted by the image processing apparatus is not limited to 8-bit RGB data, but may be data that can be converted into a visually uniform space, such as sRGB data, YCC data, or XYZ data. That's fine.
  • Each channel is not limited to 8 bits.
  • the uniform color space to be processed may be any color space that can be converted into lightness, saturation, and hue, as in the first embodiment.
  • the image processing apparatus is different from the second embodiment in that an approximate curve is obtained from an image obtained by reducing the image size of the input image signal. This is effective for reducing the calculation cost when the image size of the input image signal is large.
  • FIG. 11 is a diagram illustrating the image processing apparatus according to the present embodiment.
  • the processing procedure will be described.
  • an input image signal is acquired by the color space conversion unit 110, and the input image signal is converted into a visually uniform color space composed of brightness, saturation, and hue.
  • the image reduction unit 210 performs sub-sampling of the input image signal to generate an image having a small image size.
  • the input approximate curve calculation unit 10 obtains a color distribution range using the generated reduced image, calculates an approximate curve of the input image signal substantially including the color distribution range, and further determines continuity with neighboring hues. Adjust to maintain.
  • the output approximate curve calculation unit 20 calculates an output approximate curve using the calculated input approximate curve and the output color gamut information 50.
  • the color conversion unit 30 maps the calculated input approximate curve to the output approximate curve. Color conversion is also performed for internal points corresponding to the mapping.
  • the color space reverse conversion unit 120 performs reverse conversion on the converted pixels into the color space of the output device.
  • This apparatus has an advantage that the calculation time is shortened compared to the second embodiment because the color distribution range of the input image signal is calculated with the reduced image.
  • the sub-sampling in the image reduction unit 210 is performed by the nearest neighbor method and the data in the original image is used. If pixel values are convolved from the neighborhood, color space values that are not in the original image will be generated, and the resulting input approximate curve or output approximate curve and the value until color conversion by mapping will be affected. .
  • the calculation time is shortened.
  • a thin line may be deleted and a specific color information may not be included. Reduction in a range that does not greatly reduce the characteristics of the target input image signal is desired.
  • the present invention is an image processing apparatus that can display an image with no deterioration in image quality by an output device having a color gamut of an input image signal and a color gamut wider than the input image signal.
  • the input image signal is applicable as long as the color gamut can be specified, such as a television broadcast signal, DVD content, a moving image distributed over the Internet, an image taken by a digital camera, or an image captured by a scanner.
  • the output device can be used not only for televisions and displays but also for projectors, printers and printing devices having a color gamut wider than that of the input image signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Color Image Communication Systems (AREA)

Abstract

 入力された入力画像信号を明度、彩度、色相に変換し、入力画像の色分布範囲をほぼ包含する入力近似曲線を算出する。算出後、出力近似曲線を、出力近似曲線と入力近似曲線それぞれの最大の彩度とそれに対応する明度の補正明度を算出し、その差分を所定の範囲におさめるように、出力機器の色域内で設定する。所定の範囲は人間の視覚現象を考慮した明度と彩度の関数により決定される。算出後、入力近似曲線を出力近似曲線に写像し、内部もその写像に対応させる色変換を行う。

Description

画像処理装置
 本発明は、入力された画像信号を出力する機器の色域の特性に合わせて変換する画像処理装置に関する。
 近年、カラー画像表示装置の発展により、デバイスで色が再現できる範囲(以下、色域と記載)が広がりつつある。例えば、液晶ディスプレイにおいては、光源やカラーフィルタの改善によって、色純度を高くすることが可能となった。あるいは、液晶ディスプレイのバックライトに用いるカラーLEDの原色を増やすことで広い色域を実現することができる。
 しかしながら、入力機器の色域との関係で入力される画像データ(以下、入力画像信号と記載)では物体は実際の色よりも浅く(低い彩度で)表現されている場合が多い。さらに、人間は実際の物体の色よりも鮮やかに色を記憶する、記憶色という現象がある。
 したがって、広い色域を有する出力機器(例えば表示装置)では、その色域を活かした鮮やかな色を表示するため、入力画像信号の色を伸張し、広い色域の信号に変換し表示する必要がある。
 出力機器の色域全体を利用した鮮やかな色表現を実現するために、所定の色相における入力側と出力側の色域の比に応じて、入力側の色域を伸張して信号を写像する方法が開示されている(例えば特許文献1)。しかしながら、上記従来技術では出力機器の色域と入力機器の色域とでその形状が大きく異なる場合、画質の劣化と感じてしまう場合がある。
 図2は、ある色相における入力機器と出力機器の色域の外郭の例を示している。縦軸が明度L*、横軸が彩度C*を示す。入力機器と出力機器では、最大彩度となる明度値が大きく異なっている。この場合、色域の比に応じて色域全体を使用して写像を行うと、入力機器で彩度の高い部分の明度が低下する。そうすると、彩度が高くなり鮮やかになったとしても、画質劣化と感じられてしまう。
特許第2845523号公報
 本発明は、上記事情を考慮してなされたものであって、入力機器と出力機器の色域形状の違いの影響を軽減し、画質劣化を感じさせない色変換を行うことのできる画像処理装置及び画像表示装置を提供することを目的とする。
 上記課題を解決するために本発明は、入力画像信号における色再現可能な範囲を示す入力色域のそれぞれの色相における前記入力色域の形状を近似する入力近似曲線の彩度の最大値と、該最大値に対応する明度を算出する第1の算出部と、出力画像信号を出力する機器が色再現可能な範囲を示す出力色域の情報から、それぞれの色相において、(a)前記出力色域内に出力近似曲線の彩度の最大値と、該最大値に対応する明度が含まれ、(b)前記色相において、前記入力近似曲線の彩度の最大値に対応する点と、前記出力近似曲線の彩度の最大値に対応する点について、彩度が大きくなるほど明度が低下するように補正した補正明度を算出し、前記入力近似曲線の彩度の最大値と前記出力近似曲線の彩度の最大値との補正明度の差分が所定の範囲内に納まるような前記出力近似曲線を算出する第2の算出部と、それぞれの色相において前記入力近似曲線を前記出力近似曲線に写像することで、前記入力画像信号の色変換を行う色変換部、とを有することを特徴とする画像処理装置を提供する。
 本発明によれば、入力機器と出力機器の色域の違いによる画質劣化を感じにくい色変換を行うことができる。
第1の実施形態の画像処理装置を示す図。 所定の色相における入力機器と出力機器の色域の外郭の例。 第1の実施形態における入力機器の入力近似曲線算出の例の説明図。 第1の実施形態における出力近似曲線算出の説明図。 入力近似曲線から出力近似曲線への写像の説明図。 第1の実施形態における無彩色領域を除く処理の説明図。 第2の実施形態の画像処理装置を示す図。 第2の実施形態における入力画像信号の入力近似曲線算出の説明図。 第2の実施形態における隣接色相との近似曲線の連続性の維持の説明図。 第2の実施形態における出力近似曲線算出の説明図。 第3の実施形態の画像処理装置を示す図。
 本発明の実施形態を以下に図面を参照して説明する。なお、互いに同様の動作をする構成や処理には共通の符号を付して、重複する説明は省略する。
 (第1の実施形態) 
 本実施形態の画像処理装置は、例えば画像を表示するディスプレイやテレビに組み込まれる画像処理装置として提供される。
 図1は、本実施形態の画像処理装置のブロック図である。本実施形態では、入力画像信号に対応する入力機器等において色再現可能な範囲を入力色域として利用する。入力機器として、例えば、デジタルカメラ等の撮像系装置や、テレビ放送用のチューナー等の伝送系装置を利用可能である。
 本実施形態の画像処理装置は、入力近似曲線算出部10と、出力近似曲線算出部20と、入力画像信号を変換する色変換部30を有する。なお、明度、彩度、色相からなる入力画像信号はについて以下説明するが、明度・彩度・色相に変換できれば、どの様な信号でもかまわない。例えば、テレビ放送の信号である、ITU-R BT.709のYCbCr信号は、三刺激値XYZを介して、明度・彩度・色相に変換できる。ディジタルカメラの標準規格であるsRGB空間(色空間の構成軸は赤(R)、緑(G)及び青(B))も同様に、三刺激値XYZを介して明度・彩度・色相に変換することが可能である。
 入力近似曲線算出部10は、入力色域情報40を元に、入力色域の外郭の近似曲線である入力近似曲線を算出する。 
 出力近似曲線算出部20は、入力近似曲線と出力色域情報50とから出力色域の外郭の近似曲線になる出力近似曲線を算出する。出力画像信号を出力する機器が色再現可能な範囲を示す出力色域の情報から、それぞれの色相において、(a)出力色域内に出力近似曲線の彩度の最大値と、該最大値に対応する明度が含まれ、(b)色相において、入力近似曲線の彩度の最大値に対応する明度と、出力近似曲線の彩度の最大値に対応する明度との差及び、入力近似曲線の彩度の最大値と前記出力近似曲線の彩度の最大値との差から求まる重み付き差分が所定の範囲内に納まるような出力近似曲線を算出する。 
 なお、入力色域情報40及び出力色域情報50は、それぞれの入力機器・出力機器に対して固有である。そのため、入力機器・出力機器が分かっている場合には、あらかじめそれぞれの色域の近似曲線を算出して保持しておく構成であっても良い。 
 色変換部30は、算出された入力近似曲線を出力近似曲線に写像し、内部の点もその写像に対応させて色変換を行う。
 次に色域情報について詳述する。入力色域情報40は、入力画像信号あるいは入力機器の再現できる色範囲である色域の外郭を示す情報である。同様に、出力色域情報50は、出力機器の色域の外郭を示す情報になる。例えばテレビに本実施形態の画像処理装置が組み込まれたとき、入力色域情報40は受信する放送の伝送系の規格に応じて特定することが出来る。また、出力色域情報50は映像を出力するテレビの表示パネルの種類などに応じてあらかじめ求めることが出来る。色は明度、彩度、色相の三属性の値で表すことができる。本実施形態の色域情報は、各色相における外郭の明度と彩度の情報を有する。これらの値は連続的である必要はなく、色域の外郭の概形を表せればよいが、離散的になる程に誤差が大きくなり色変換の精度が低くなる。
 次に、各ブロックの動作について詳述する。入力近似曲線算出部10は、入力色域情報を元に、入力色域の外郭の近似曲線を算出する。ここで算出された外郭の近似曲線と明度軸は入力色域をほぼ包含するように決定する。
 図3に入力機器における入力近似曲線算出の一例を示す。縦軸が明度L*、横軸が彩度C*を示す。破線は、所定の色相における色域の外郭を明度と彩度で示している。この外郭は明度L*が0と100のときに明度軸と交差し、この点をそれぞれ、L、L100とする。このときの外郭の最大の彩度に対応する点をTとし、頂点と呼ぶことにする。入力色域の外郭は頂点TとそれぞれL、L100を結ぶ直線、LTL100で近似されることになる。また、実線が、近似曲線を示す。
 なお、入力色域が完全に近似曲線と明度軸とで囲まれる領域内に納まる必要はないが、近似曲線より外側の色域があまりに広い場合には色変換部30での写像の際に大きな誤差となる可能性がある。そのため、色域形状に応じて頂点Tを調整する必要がある。
 出力近似曲線算出部20は、入力近似曲線算出部10で求められた入力近似曲線と出力色域情報50を元に、出力近似曲線を求める。
 図4は、出力近似曲線の算出する方法を説明する図である。図4の破線の太線は入力機器の色域であり、破線の細線は入力近似曲線算出部10で求めた入力近似曲線である。実線の太線は出力機器の色域であり、出力色域全体を使用して写像を行おうとすると、点線のようになる。この場合、課題で述べたように、明度の低下が顕著になり、画質劣化と感じてしまう。そこで、実線の細線のように画質劣化と感じずに、鮮やかに色変換が行える範囲に設定する。
 入力近似曲線の頂点Tとし、出力近似曲線の頂点をT’とすると、このような色変換が行える範囲は次の式(1)で設定できる。
Figure JPOXMLDOC01-appb-M000001
 ここで、fはTの明度、彩度により変わる補正明度であり、人間の視覚現象を考慮して変化させる。具体的には、Helmholtz‐Kohlrausch(ヘルムホルツ・コールラウシュ)効果を考慮する。ヘルムホルツ・コールラウシュ効果は鮮やかな色ほど明るく感じる視覚現象である。この現象により、多少明度が低くても、彩度が高ければ同じ明るさに感じるため、画質の劣化が起こりにくい。また、τは明度の低下による画質劣化が許容できる下限を示しており、彩度が高くなるほど、劣化を感じない明度の範囲が広くなるような、明度と彩度の関数になる。同様に、明度の上昇が許容できる上限もgで考慮する。
出力近似曲線算出部20は、最終的に、式(1)を満たし、かつ、出力色域におさまる範囲にT’を設定し、出力近似曲線を算出する。例えば、任意の点を順次選択し、式(1)を満たすかどうか判定する処理を繰り返す処理を行い、条件を満たすT’を求める。
 図5は、色変換の一例を説明する図である。
 色変換部30では、入力近似曲線を出力近似曲線に写像する変換を行う。図5において、Tは入力近似曲線の頂点で、T’は出力近似曲線の頂点である。さらにPは入力画像信号を、P’はPを写像して色変換を行った後の点を示す。PをTからLへのベクトル、TからL100へのベクトルであらわすと、式(2)のようになる。
Figure JPOXMLDOC01-appb-M000002
 このα、βを下記の式(3)に代入して、変換後の点P’を求める。
Figure JPOXMLDOC01-appb-M000003
 Pが、明度軸と入力近似曲線を結ぶ内部にある場合は、通常αとβは0から1の範囲にあるが、外部の場合でも対応が可能である。ただし、その際には、算出値が出力色域の範囲外にならないかを確認する必要がある。
 また、求まったP’の彩度に、彩度に依存する関数εを乗じて、彩度のごく低い無彩色とみなすことが出来る領域(以下、無彩色領域と記載)の部分の色つきを防止することができる。これを式(4)に示す。
Figure JPOXMLDOC01-appb-M000004
 これにより、無彩色領域の彩度が少しでも伸張すると色がついたと感じてしまう色つきに有効に寄与する。また、彩度によって伸張量を変化させることも可能である。
 本実施形態では、色域の外郭と明度軸との交点で囲む領域内に色域を抑えて写像することにしたが、明度軸に限定する必要はない。例えば、無彩色領域は伸張させないでおく場合は、εでも制御できるが、入力近似曲線と出力近似曲線のそれぞれを明度軸と交差するL、L100を用いる必要はなく、図6のように無彩色領域を除いた状態で、入力近似曲線と出力近似曲線を算出し、算出結果に応じた写像を行うことも可能である。
 図6において、無彩色領域の彩度の上限と入力色域との交点をL、Lとすると、点Pは以下の式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 出力色域と、無彩色領域の交点をL’、L’とし、式(5)のα、βを、以下の式(6)に代入すると、変換後の点P’が求められる。
Figure JPOXMLDOC01-appb-M000006
 また、処理を行う空間としては、明度・彩度・色相の三属性からなる色空間であればいい。例えば、CIELAB空間やCIELUV空間の円柱座標形式であるCIELCHや、CIECAM97sやCIECAM02により定義されるCIEJCh等がある。
 なお、信号が入力されるたびに演算する必要はない。本実施形態の変更例として、あらかじめ該当の入力装置と出力装置に対応させた色変換テーブルを算出しておき、その色変換テーブルを参照することも可能である。この場合の色変換テーブルの入力と出力は、明度・彩度・色相である必要はなく、入力機器と出力機器の信号形式に合わせた色空間に対応する形式のほうが好ましい。これにより、色変換を行う時間・演算量等のコストを軽減することができる。
 (第2の実施形態) 
 本実施形態の画像処理装置は、入力画像信号における色の分布を、入力色域として利用する。つまり、入力された入力画像信号の近似曲線を算出する点が第1の実施形態とは異なる。
 図7は、本実施形態の画像処理装置を示す図である。以下、処理ブロックについて説明する。
 まず、色空間変換部110で入力画像信号を取得し、入力画像信号を明度・彩度・色相からなる視覚的に均等な色空間に変換する。次に入力近似曲線算出部10において、入力画像信号の色分布範囲を求め、色分布範囲をほぼ包含する入力画像信号の近似曲線を算出する。なお、入力画像信号が動画像である場合、各フレームに対して逐次近似曲線を算出しない構成であっても構わない。例えば、同じシーンの内1フレームや、同じシーン内の平均画像から入力近似曲線を算出し、当該シーンの全フレームに対して算出された入力近似曲線を用いる構成であっても良い。
 その後、出力近似曲線算出部20において、算出した入力近似曲線と出力色域情報50とから出力画像信号の色域の外郭の近似曲線になる出力近似曲線を算出する。色変換部30は、算出された入力近似曲線を出力近似曲線に写像し、内部の点もその写像に対応させて色変換を行う。その後、色空間逆変換部120において、変換された各画素に対して、出力機器の色空間に変換させる。なお、出力色域情報50は、出力機器に対して固有である。そのため、出力機器が分かっている場合には、あらかじめ出力近似曲線を算出して保持しておく構成であっても良い。 
 次に、各ブロックについて詳述する。色空間変換部110では、まず画像が取得される。この取得される画像は横方向にM個の画素が配列され、縦方向にN個の画素が配列されたM×N画素の画像である。この画像はRGB画像であるので、各画素は赤・緑・青の成分の階調データを持つ。各成分の階調データは8ビットで表現される。次に、この入力画像信号を視覚的に均等な空間である、CIELAB色空間もしくはCIELCH色空間に変換する。CIELAB空間の構成軸は、L*の明度の軸と、a*およびb*の色度の軸から構成される。CIELAB空間は、均等色空間であることから、空間の連続性を保って変換するのに優れた空間である。CIELCH色空間は、CIELAB色空間を円柱座標形式に表現するものである。構成軸として、a*、b*に代わり、彩度Cおよび色相hで表される。色の三属性は、明度と彩度と色相とされ、どのような特性の色かを容易に判断できる色空間であると言える。
 入力近似曲線算出部10は図8を用いて説明する。まず入力された画像の色分布を求める。これは所定の色相における明度と彩度の分布を表すものである。次に、入力画像信号の近似曲線を算出する。ここで算出される近似曲線と明度軸は入力色域をほぼ包含するように決定する。
 決定の一例としては次の手順で行う。まず、(1)所定の色相において明度を区分して、区分における画像の色分布の彩度の最大値を算出する。(2)それぞれの最大値とLとを結ぶ線分よりも彩度の大きい側に他の明度区分の最大値がないかを調べる。(3)条件を満たす最も大きい明度区間の彩度の最大値wを抽出する。(4)wよりも小さい明度区間の彩度の最大値とL100とを結ぶ線分よりも彩度の大きい側に他の最大値がないかを調べる。(5)条件を満たす最も大きい明度区間の彩度最大値vを抽出する。(6)Lとw、L100とvの交点が近似曲線の最大の彩度Tになり、頂点と呼ぶことにする。これにより入力画像信号の色分布は頂点Tとそれぞれ結ぶ直線、LTL100で近似されることになる。
 なお、第1の実施形態と同様に、入力画像信号の色分布が完全に近似曲線と明度軸とで囲まれる内部に納まる必要はないが、近似曲線より外側の色域があまりに広い場合には色変換部30での写像の際に大きな誤差となる可能性があるので、色域形状に応じて頂点Tを調整する必要がある。
 図9は、隣接色相との入力近似曲線の連続性の維持を説明する図である。図9はCIELAB色空間における色度平面a*b*を示している。入力近似曲線の頂点を色度平面に射影したものである。点線が単純に入力画像信号の近似曲線を用いた場合を、実線は調整後の近似曲線を示している。調整前では、各色相の色分布をそのまま使用しているため、近隣の色相との頂点を結ぶ曲線は、凹凸が激しいものになっている。このまま、出力近似曲線を決定すると、色変換をした際に、隣接する色相における伸張量が凹凸をそのまま反映させたものになってしまい、変換後の値に不連続な部分が生じてしまう。こういった現象を避けるために、あらかじめ、入力近似曲線の頂点を滑らかにしておく必要がある。
 具体的な方法の一例として、頂点の明度あるいは彩度を連続する色相で結んだ場合、着目する色相における前後で、減少と増加が入れ替わるかどうか、またその差分がどの程度かで判断することができる。例えば、着目する色相hにおいて、頂点が(C、L)であり、小さい側に隣接する色相ha-1の頂点を(Ca-1、La-1)、大きい側に隣接する色相ha+1の頂点を(Ca+1、La+1)とする。まず彩度に着目し、次の式(7)を満たせば、増減は入れ替わらない。
  C-Ca-1>0、Ca+1-C>0 (7) 
しかしながら、式(8)のようになると、増減が入れ替わることになり、色相hにおいて、凹凸があることになる。
  Ca-Ca-1>0、Ca+1-Ca<0 (8) 
次に、色相ha+1に着目し、その前後の値と式(7)(8)を利用して増減を調べる。ここでも凹凸があると判断される場合は、色相ha+1不連続とみなせるので、その頂点(Ca+1、La+1)を補正する。補正には、前後の色相からの補間を用いることができる。なお、色相の間隔が狭い場合には、隣接する色相だけではなく、近隣の色相にまで範囲を広げて、凹凸を調整する必要がある。
 出力近似曲線算出部20は、入力近似曲線算出部10で求められた入力近似曲線と出力色域情報50を元に、出力近似曲線を求める。ここでの処理は第1の実施形態と比較し、入力機器全体の色域ではなく、画像の色分布を特定して伸張範囲が必要な部分に対して行われるため、より効果的に画質劣化の少ない伸張処理を行うことが可能になる。
 図10は、第2の実施形態における出力近似曲線算出を説明する図である。破線の太線は入力機器の色域を示し、破線の細線は入力近似曲線算出部10で求めた入力画像信号の近似曲線を示す。また、実線の太線は出力機器の色域を示し、第1の実施形態のように入力機器の色域全体を使用して写像を行おうとすると、結果として画像の色分布が存在する範囲は点線の内部になる。この場合、顕著な画質劣化は起きないが、元の入力よりも明度が低くなり、鮮やかさも多少劣ってしまう。そこで、入力画像信号が分布している領域に限定して出力近似曲線を算出すれば、実線の細線の部分に伸張させることができ、画質劣化を感じない、鮮やかな色に変換することが可能である。
 色変換部30では、入力画像信号の近似曲線を出力近似曲線に写像する変換を行う。ここでの処理も第1の実施形態と同様である。
 その後、色空間逆変換部111では、均等な色空間から出力機器に合わせた信号形式に変換して出力画像信号を出力する。
 なお、入力近似曲線を求める際には、色が分布している範囲ではなく、分布している密度や頻度を反映したヒストグラムをも考慮することで、入力近似曲線に包含される範囲を狭めることができる。この場合、より効果的に色域の形状を吸収することが可能になり、画質を劣化させることなく、鮮やかな色変換が可能になる。
 また、画素ごとに、都度、入力近似曲線および出力近似曲線を求める必要はなく、あらかじめ離散的な色相間隔に設定した所定の色相においての入力近似曲線および出力近似曲線の情報を保持しておき、画素に対応する色相の近似曲線を都度参照することも可能である。
 さらに、色変換部においては、あらかじめある間隔での入力値に対応する変換テーブルを一括して作成した後、画素ごとの変換を行うことも可能である。
 なお、本実施形態の画像処理装置によって変換処理が可能な画像データは、8ビットのRGBデータに限らず、sRGBデータやYCCデータ、XYZデータ等、視覚的に均等な空間に変換できるデータであればよい。また、各チャネルも8ビットに限定されない。
 また、処理する均等色空間としては第1の実施形態と同様に、明度・彩度・色相に変換できる色空間であればどのようなものであっても良い。
 
 (第3の実施形態) 
 本実施形態の画像処理装置は、入力画像信号の画像サイズを縮小した画像から近似曲線を求める点が、第2の実施形態とは異なる。入力画像信号の画像サイズが大きい場合の演算コストを削減するために有効である。
 図11は、本実施形態の画像処理装置を示す図である。以下、処理手順について説明すると、まず、色空間変換部110で入力画像信号を取得し、入力画像信号を明度・彩度・色相からなる視覚的に均等な色空間に変換する。その後、画像縮小部210で、この入力画像信号のサブサンプリングを行い、画像サイズの小さな画像を生成する。次に入力近似曲線算出部10において、生成された縮小画像を用いて色分布範囲を求め、色分布範囲をほぼ包含する入力画像信号の近似曲線を算出し、さらに近隣の色相との連続性を維持できるように調整する。その後、出力近似曲線算出部20において、算出した入力近似曲線と出力色域情報50を用いて、出力近似曲線を算出する。その後、色変換部30は、算出された入力近似曲線を出力近似曲線に写像する。内部の点もその写像に対応させて色変換を行う。その後、色空間逆変換部120において、変換された各画素に対して、出力機器の色空間に逆変換させる。
 この装置では、入力画像信号の色分布範囲の算出を縮小画像で行うことから、第2の実施形態に比較し、演算時間が短縮されるという利点がある。
 ここで、画像縮小部210におけるサブサンプリングは、最近隣法による縮小を行い、元の画像にあるデータを使用することが望ましい。近隣から画素値を畳み込んだりすると、本来の画像にはない、色空間値が生じ、結果として生じる、入力近似曲線や出力近似曲線とその写像による色変換までの値に影響を及ぼすことになる。
 また、縮小すればするほど、演算時間が短縮されるが、縮小しすぎると画像によっては、細線が削除され、特定の色の情報が含まれないといった現象が起こることも考えられる。対象の入力画像信号の特徴を大きく削らない範囲での縮小が望まれる。
 残りのブロックについての詳細は、第2の実施形態に準じるものとなる。
 本発明は、入力画像信号の色域と入力画像信号より広い色域を持つ出力機器で、画質劣化なく表示できる画像処理装置である。
 入力画像信号は、テレビ放送信号、DVDコンテンツ、インターネット配信された動画像、ディジタルカメラにより撮影した画像やスキャナにより取り込んだ画像など、色域が特定できるものであれば適用可能である。また、出力機器はテレビやディスプレイはもちろん、プロジェクタやプリンタや印刷機器でも、入力画像信号における色域より広い色域を持つもので利用可能である。
10 入力近似曲線算出部
20 出力近似曲線算出部
30 色変換部
40 入力色域情報
50 出力色域情報
110 色空間変換部
120 色空間逆変換部
210 画像縮小部

Claims (7)

  1.  入力画像信号における色再現可能な範囲を示す入力色域のそれぞれの色相における前記入力色域の形状を近似する入力近似曲線の彩度の最大値と、該最大値に対応する明度を算出する第1の算出部と、
     出力画像信号を出力する機器が色再現可能な範囲を示す出力色域の情報から、それぞれの色相において、
     (a)前記出力色域内に出力近似曲線の彩度の最大値と、該最大値に対応する明度が含まれ、
     (b)前記色相において、前記入力近似曲線の彩度の最大値に対応する点と、前記出力近似曲線の彩度の最大値に対応する点について、彩度が大きくなるほど明度が低下するように補正した補正明度を算出し、前記入力近似曲線の彩度の最大値と前記出力近似曲線の彩度の最大値との補正明度の差分が所定の範囲内に納まるような前記出力近似曲線を算出する第2の算出部と、
     それぞれの色相において前記入力近似曲線を前記出力近似曲線に写像することで、前記入力画像信号の色変換を行う色変換部、
     とを有することを特徴とする画像処理装置。
  2.  前記第1の算出部は、前記入力画像信号の明度と彩度の分布している範囲をほぼ包含する入力近似曲線を算出することを特徴とする請求項1記載の画像処理装置。
  3.  前記色変換部は、所定の範囲の閾値を、前記入力近似曲線における最大の彩度に応じて変更することを特徴とする請求項2記載の画像処理装置。
  4.  前記入力近似曲線算出部は、前記彩度の最大値とそれに対応する明度が、所定の色相と隣接する色相における入力近似曲線の彩度の最大値とそれに対応する明度と連続的になるように調整することを特徴とする請求項3記載の画像処理装置。
  5.  前記入力近似曲線算出部は、所定の彩度よりも彩度の低い領域を除いた領域の入力画像信号に基づいて前記入力近似曲線を算出することを特徴とする請求項4記載の画像処理装置。
  6.  前記入力画像信号から、縮小画像を生成する画像縮小部をさらに有し、
     前記入力近似曲線算出部は、前記縮小画像を用いて入力近似曲線を算出する、
    請求項5記載の画像処理装置。
  7.  前記第1の算出部は、前記入力画像信号に対応する入力機器が色再現可能な範囲を示す前記入力色域のれぞれの色相における前記入力色域の形状を近似する入力近似曲線の彩度の最大値と、該最大値に対応する明度を算出することを特徴とする請求項1記載の画像処理装置。
PCT/JP2009/003976 2009-08-20 2009-08-20 画像処理装置 WO2011021241A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003976 WO2011021241A1 (ja) 2009-08-20 2009-08-20 画像処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003976 WO2011021241A1 (ja) 2009-08-20 2009-08-20 画像処理装置

Publications (1)

Publication Number Publication Date
WO2011021241A1 true WO2011021241A1 (ja) 2011-02-24

Family

ID=43606712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003976 WO2011021241A1 (ja) 2009-08-20 2009-08-20 画像処理装置

Country Status (1)

Country Link
WO (1) WO2011021241A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019283A (ja) * 2013-07-11 2015-01-29 株式会社東芝 画像処理装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224162A (ja) * 1996-02-15 1997-08-26 Ricoh Co Ltd 色変換装置
JP2000083177A (ja) * 1998-07-02 2000-03-21 Fuji Xerox Co Ltd 画像処理方法および画像処理装置
JP2001036757A (ja) * 1999-07-16 2001-02-09 Fuji Photo Film Co Ltd 色再現空間の圧縮・伸張方法
JP2005109930A (ja) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd 画像処理装置、画像処理プログラム、記録媒体、および画像処理方法
WO2005048583A1 (ja) * 2003-11-14 2005-05-26 Mitsubishi Denki Kabushiki Kaisha 色補正装置および色補正方法
JP2005157516A (ja) * 2003-11-21 2005-06-16 Canon Inc 画像処理装置、画像処理方法、記憶媒体、プログラム
JP2005311805A (ja) * 2004-04-23 2005-11-04 Olympus Corp 色変換装置および色変換プログラムとその記録媒体
JP2007043613A (ja) * 2005-08-05 2007-02-15 Canon Inc 色データ処理方法、色データ処理装置、およびプログラム
JP2008278251A (ja) * 2007-04-27 2008-11-13 Fuji Xerox Co Ltd 画像処理装置、画像処理方法、及び画像処理プログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224162A (ja) * 1996-02-15 1997-08-26 Ricoh Co Ltd 色変換装置
JP2000083177A (ja) * 1998-07-02 2000-03-21 Fuji Xerox Co Ltd 画像処理方法および画像処理装置
JP2001036757A (ja) * 1999-07-16 2001-02-09 Fuji Photo Film Co Ltd 色再現空間の圧縮・伸張方法
JP2005109930A (ja) * 2003-09-30 2005-04-21 Fuji Photo Film Co Ltd 画像処理装置、画像処理プログラム、記録媒体、および画像処理方法
WO2005048583A1 (ja) * 2003-11-14 2005-05-26 Mitsubishi Denki Kabushiki Kaisha 色補正装置および色補正方法
JP2005157516A (ja) * 2003-11-21 2005-06-16 Canon Inc 画像処理装置、画像処理方法、記憶媒体、プログラム
JP2005311805A (ja) * 2004-04-23 2005-11-04 Olympus Corp 色変換装置および色変換プログラムとその記録媒体
JP2007043613A (ja) * 2005-08-05 2007-02-15 Canon Inc 色データ処理方法、色データ処理装置、およびプログラム
JP2008278251A (ja) * 2007-04-27 2008-11-13 Fuji Xerox Co Ltd 画像処理装置、画像処理方法、及び画像処理プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019283A (ja) * 2013-07-11 2015-01-29 株式会社東芝 画像処理装置
US9584702B2 (en) 2013-07-11 2017-02-28 Kabushiki Kaisha Toshiba Image processing apparatus for correcting color information and method therefor

Similar Documents

Publication Publication Date Title
CN100372357C (zh) 使用矢量伸展的色域映射装置及其方法
JP5611508B2 (ja) 周辺光適応的な色補正装置および方法
JP4308392B2 (ja) デジタル画像処理方法及びマッピング方法
US20090060326A1 (en) Image processing apparatus and method
JP7117915B2 (ja) 画像処理装置、制御方法、及びプログラム
KR20070111389A (ko) 화상 보정 회로, 화상 보정 방법, 및 화상 디스플레이
JP2006325201A (ja) 色相、彩度および輝度方向における検出、補正フェーディングおよび処理
US7969628B2 (en) Apparatus and method for segmenting an output device color gamut and mapping an input device color gamut to the segmented output device color gamut
JP2008278465A (ja) 広色相範囲画像のディスプレイ方法及び装置
JP6122716B2 (ja) 画像処理装置
JP2006229925A (ja) 動的画像彩度処理装置
US8411944B2 (en) Color processing apparatus and method thereof
JP2010183232A (ja) 色域変換装置
KR20050098949A (ko) 화상 처리 장치 및 방법과 프로그램
JP2007286120A (ja) 画像表示装置及び画像表示方法
JP6539032B2 (ja) 表示制御装置、表示制御方法、およびプログラム
KR102617117B1 (ko) 색상 변경 컬러 색역 매핑
JP4047859B2 (ja) 平板表示装置の色補正装置及びその方法
US20150085162A1 (en) Perceptual radiometric compensation system adaptable to a projector-camera system
US20100328343A1 (en) Image signal processing device and image signal processing program
JP5517594B2 (ja) 画像表示装置および画像表示方法
WO2011021241A1 (ja) 画像処理装置
JP2007312313A (ja) 画像処理装置、画像処理方法及びプログラム
JP4423226B2 (ja) 色調整方法及び装置
KR100463831B1 (ko) 인간 시각 특성을 이용한 최적화 화질 추출장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP