WO2011019042A1 - Matériau d’alliage de cuivre pour composants électriques/électroniques - Google Patents

Matériau d’alliage de cuivre pour composants électriques/électroniques Download PDF

Info

Publication number
WO2011019042A1
WO2011019042A1 PCT/JP2010/063587 JP2010063587W WO2011019042A1 WO 2011019042 A1 WO2011019042 A1 WO 2011019042A1 JP 2010063587 W JP2010063587 W JP 2010063587W WO 2011019042 A1 WO2011019042 A1 WO 2011019042A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
tin
copper alloy
layer
alloy
Prior art date
Application number
PCT/JP2010/063587
Other languages
English (en)
Japanese (ja)
Inventor
洋 金子
良聡 小林
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2011526771A priority Critical patent/JP5144814B2/ja
Publication of WO2011019042A1 publication Critical patent/WO2011019042A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to a copper alloy material applied to electrical and electronic parts such as a lead frame, a connector, a terminal material, a relay, a switch, and a socket, and a manufacturing method thereof.
  • FIG. 1A is an explanatory diagram of the deviation angle.
  • FIG. 1B is an explanatory diagram of the coordinate system in FIG. It is explanatory drawing of the test method of a stress relaxation resistance characteristic.
  • the present inventors investigated in detail the metal structure of the tin plating material after bending deformation. As a result, it was observed that the base material was not uniformly deformed, but non-uniform deformation progressed, in which the deformation was concentrated only in a region having a specific crystal orientation. It was found that due to the non-uniform deformation, wrinkles with a depth of several microns and fine cracks were generated on the surface of the base material after bending, resulting in cracks in the tin plating.
  • FIG. 1A and FIG. 1B are explanatory diagrams of the shift angle.
  • Example 1 in FIG. 1A is an example rotated with the (1 0 0) direction as the rotation axis
  • Example 2 is an example rotated with the (1 1 0) direction as the rotation axis
  • Example 3 is (1 1) 1) Each example rotated with the direction as the axis of rotation.
  • the information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio. The measurement was performed from the plate surface.
  • Ni nickel
  • Co cobalt
  • Si silicon
  • the total amount of one or two of nickel and cobalt is 0.4 to 5.0 mass%, preferably 0.6 to 4.5 mass%, more preferably 0.8 to 4.0 mass%.
  • the Si content is 0.1 to 1.5 mass%, preferably 0.2 to 1.2 mass%.
  • the total amount of these elements added is 0.5 to 5.1 mass%. If this amount is too large, the electrical conductivity is lowered, and if it is too small, the strength may be insufficient.
  • the work-affected layer is composed of a Bailby layer (upper layer) and a plastically deformed layer (lower layer), the Bailby layer is composed of an extremely fine crystalline texture or an amorphous structure, and the plastically deformed layer is non-uniform with many strains. It consists of a crystallographic texture, and the size of the crystal grains is approximately halfway between the crystal grains of the Bailby layer and the crystal grains inside the metal substrate.
  • these work-affected layers are removed. Whether or not the work-affected layer is completely removed can be determined in consideration of the surface state of the metal substrate after the work-affected layer is removed. preferable.
  • the work-affected layer of the metal substrate For removal of the work-affected layer of the metal substrate, sulfuric acid, nitric acid, hydrochloric acid, hydrogen peroxide, hydrofluoric acid and other acid single-solution solutions or mixed aqueous solutions, electrolysis in an electrolytic solution, sputtering method, Conventional methods such as an etching method can be applied.
  • the thickness of the work-affected layer is determined by the material, casting and rolling conditions, and buffing conditions. Therefore, if the thickness of the work-affected layer is examined in advance for each material and manufacturing method, the work-affected layer is a metal It can be removed without observing the exposed surface of the substrate.
  • the thickness of the oxide layer and the adsorbate layer on the surface of the cast and buffed plate is about 0.01 to 0.1 ⁇ m, and the thickness of the work-affected layer is about 0.3 to 0.4 ⁇ m. Accordingly, the work-affected layer is removed by removing the surface layer of the metal substrate by about 0.4 ⁇ m, preferably about 0.5 ⁇ m, before plating.
  • pickling treatment is known as a technique for treating the surface of a metal substrate with an acid.
  • the pickling treatment is intended to remove the oxide film on the surface of the metal substrate in order to improve adhesion. It is immersed in dilute sulfuric acid for several seconds. Therefore, the surface layer thickness dissolved and removed is only tens of nanometers at most, and the work-affected layer is hardly removed.
  • the electrotin plating may be performed, for example, using a tin sulfate bath at a plating temperature of 30 ° C. or less and a current density of 5 A / dm 2 .
  • the conditions are not limited to this, and can be set as appropriate.
  • Examples of tin plating that can be used in the present invention include tin, tin-silver, tin-nickel, tin-copper, tin-lead, and tin-antimony.
  • the thickness of the tin plating layer is preferably 0.1 ⁇ m or more, more preferably 0.5 to 5 ⁇ m.
  • the copper plating layer made of copper or a copper alloy is then formed with a tin plating layer made of tin or a tin alloy thereon, preferably with a thickness of 0.2 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m. Then, the tin plating layer can be melted by a heat melting process to form an alloy layer composed of the constituent elements of the copper plating layer and the constituent elements of the tin plating layer.
  • the heating and melting treatment is preferably 250 ° C. or more, more preferably 250 to 800 ° C., and the time is preferably 0.1 to 120 seconds.
  • Example 1 Manufacture of substrate materials
  • the first additive element is blended so as to contain the ratio shown in Table 1, and the remaining alloy of Cu and inevitable impurities is melted in a high-frequency melting furnace, and this is melted at a cooling rate of 0.1 to 100 ° C./second.
  • An ingot was obtained by casting. This was subjected to a homogenizing heat treatment at a temperature of 900 to 1020 ° C. for 3 minutes to 10 hours, and then hot-rolled at a temperature of 850 ° C. to 1020 ° C.
  • Comparative Examples 1-1, 1-2, 2-1, and 2-2 in Tables 1 and 2 high-temperature rolling in the above process is performed at a temperature higher than 900 ° C., and an intermediate solution heat treatment is performed at 700 ° C. It was produced by performing cold rolling at a processing rate of less than 30 ° C. and a processing rate of greater than 30%. Further, Comparative Examples 1-3, 1-4, 2-3, 2-4 in Tables 1 and 2 were produced by performing high temperature rolling at a temperature higher than 900 ° C. in the above process.
  • the base layer 1 is plated.
  • Plating conditions of the underlying layer for example in the case of nickel plating, the plating solution Ni (NH 2 SO 3) 2 ⁇ 4H 2 O 500 g / liter, the H 3 BO 3 30 g / l, NiCl 2 ⁇ 6H
  • An aqueous solution containing 2 O of 30 g / liter was used, the plating solution temperature was 55 ° C., and the current density was 10 A / dm 2 .
  • the same was done for cobalt plating.
  • the plating thickness was appropriately adjusted with a coating thickness of 0.5 to 1 ⁇ m. When the underlayer was made of nickel and cobalt, the respective coating thicknesses were adjusted as appropriate so that the total thickness was 0.5 to 1 ⁇ m.
  • the thickness of the test material was 0.15 mm.
  • b. Plating Configuration The cross section was mechanically polished, and the constituent elements of the underlayer 1, the intermediate layer 2, the alloy layer 4 and the outermost layer 3 were measured by EPMA measurement.
  • FIG. 2 is an explanatory view of a stress relaxation test method using a downward deflection type cantilever type deflection displacement load test jig.
  • ⁇ 0 ⁇ l s 2 /1.5Eh
  • surface maximum stress (N / mm 2 ) of the test piece
  • h plate thickness (mm)
  • E deflection coefficient (N / mm 2 )
  • l S span length (mm).
  • Example 2 Using the elements shown in Table 2 and a copper alloy consisting of Cu and inevitable impurities in the remainder, the substrate was manufactured by the same manufacturing method as that described in Example 1, and the treatment before plating was performed.
  • the condition of the pickling treatment in the pretreatment at this time was as a condition b, in which an aqueous solution containing 61 ml / liter of sulfuric acid was used as a pickling solution and immersed in a pickling solution at 25 ° C. for 30 seconds.
  • This condition is only an action of removing the oxide film formed on the surface layer, and is a condition that does not lead to removal of the work-affected layer.
  • the pickling treatment of the samples in Table 2 was performed.
  • Inventive Example 2-1 to Inventive Example 2-16 were all excellent in yield strength, electrical conductivity, stress relaxation resistance, and contact resistance after bending and heating. However, when the provisions of the present invention were not satisfied, the characteristics were inferior. That is, in Comparative Examples 2-1 to 2-4, since the cube azimuth area ratio of the substrate was low, cracks occurred in the plating during bending, and the contact resistance after heating increased. From the results of these examples, it can be seen that setting the cube orientation area ratio within a predetermined range affects the characteristics rather than whether or not the work-affected layer is removed. For this reason, since it turns out that the outstanding effect which cannot be obtained only by removal of a work-affected layer is obtained in this invention, it turns out that the outstanding effect which is not in a prior art is acquired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

L'invention concerne un matériau d'alliage en cuivre pour composants électriques/électroniques, dans lequel une couche d'alliage contenant au moins du cuivre et de l'étain est formée sur un substrat comprenant du cuivre ou un alliage de cuivre, le rapport surfacique de la région du substrat, qui est à moins de 20° de l'orientation cubique {001}<100> dans une mesure d'orientation de cristal au moyen du procédé EBSD, étant de 5 % ou plus.
PCT/JP2010/063587 2009-08-10 2010-08-10 Matériau d’alliage de cuivre pour composants électriques/électroniques WO2011019042A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011526771A JP5144814B2 (ja) 2009-08-10 2010-08-10 電気電子部品用銅合金材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-185921 2009-08-10
JP2009185921 2009-08-10

Publications (1)

Publication Number Publication Date
WO2011019042A1 true WO2011019042A1 (fr) 2011-02-17

Family

ID=43586217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063587 WO2011019042A1 (fr) 2009-08-10 2010-08-10 Matériau d’alliage de cuivre pour composants électriques/électroniques

Country Status (2)

Country Link
JP (1) JP5144814B2 (fr)
WO (1) WO2011019042A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211377A (ja) * 2011-03-31 2012-11-01 Jx Nippon Mining & Metals Corp Cu−Co−Si系合金条
JP2014019880A (ja) * 2012-07-12 2014-02-03 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
JP2014065976A (ja) * 2011-08-05 2014-04-17 Furukawa Electric Co Ltd:The 二次電池負極集電体用圧延銅箔およびその製造方法
JP2014527578A (ja) * 2011-08-13 2014-10-16 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft 銅合金
WO2015064357A1 (fr) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 Fil d'alliage de cuivre, fil multibrin d'alliage de cuivre, fil électrique enrobé, faisceau de fils et procédé de fabrication de fil d'alliage de cuivre
WO2015152261A1 (fr) * 2014-03-31 2015-10-08 古河電気工業株式会社 Feuille de cuivre laminée, procédé de production de feuille de cuivre laminée, câble plat flexible, et procédé de production de câble plat flexible
JP2017014624A (ja) * 2016-09-05 2017-01-19 Jx金属株式会社 コルソン合金及びその製造方法
JP2018070938A (ja) * 2016-10-27 2018-05-10 Dowaメタルテック株式会社 銅合金板材およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339028A (ja) * 2001-05-17 2002-11-27 Kobe Steel Ltd 電気電子部品用銅合金及び電気電子部品
JP2006152392A (ja) * 2004-11-30 2006-06-15 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板およびその製造方法
JP2006283059A (ja) * 2005-03-31 2006-10-19 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板及びその製造方法
JP2007063624A (ja) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk 挿抜性及び耐熱性に優れる銅合金すずめっき条

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185847A (ja) * 1986-02-12 1987-08-14 Furukawa Electric Co Ltd:The 熱・電気高伝導用高力銅合金とその製造法
JP3510469B2 (ja) * 1998-01-30 2004-03-29 古河電気工業株式会社 導電性ばね用銅合金及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339028A (ja) * 2001-05-17 2002-11-27 Kobe Steel Ltd 電気電子部品用銅合金及び電気電子部品
JP2006152392A (ja) * 2004-11-30 2006-06-15 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板およびその製造方法
JP2006283059A (ja) * 2005-03-31 2006-10-19 Kobe Steel Ltd 曲げ加工性に優れた高強度銅合金板及びその製造方法
JP2007063624A (ja) * 2005-08-31 2007-03-15 Nikko Kinzoku Kk 挿抜性及び耐熱性に優れる銅合金すずめっき条

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211377A (ja) * 2011-03-31 2012-11-01 Jx Nippon Mining & Metals Corp Cu−Co−Si系合金条
JP2014065976A (ja) * 2011-08-05 2014-04-17 Furukawa Electric Co Ltd:The 二次電池負極集電体用圧延銅箔およびその製造方法
JP2014527578A (ja) * 2011-08-13 2014-10-16 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft 銅合金
US9493858B2 (en) 2011-08-13 2016-11-15 Wieland-Werke Ag Copper alloy
JP2014019880A (ja) * 2012-07-12 2014-02-03 Jx Nippon Mining & Metals Corp コルソン合金及びその製造方法
WO2015064357A1 (fr) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 Fil d'alliage de cuivre, fil multibrin d'alliage de cuivre, fil électrique enrobé, faisceau de fils et procédé de fabrication de fil d'alliage de cuivre
WO2015152261A1 (fr) * 2014-03-31 2015-10-08 古河電気工業株式会社 Feuille de cuivre laminée, procédé de production de feuille de cuivre laminée, câble plat flexible, et procédé de production de câble plat flexible
JPWO2015152261A1 (ja) * 2014-03-31 2017-04-13 古河電気工業株式会社 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法
US10522268B2 (en) 2014-03-31 2019-12-31 Furukawa Electric Co., Ltd. Rolled copper foil, method of manufacturing a rolled copper foil, flexible flat cable, and method of manufacturing a flexible flat cable
JP2017014624A (ja) * 2016-09-05 2017-01-19 Jx金属株式会社 コルソン合金及びその製造方法
JP2018070938A (ja) * 2016-10-27 2018-05-10 Dowaメタルテック株式会社 銅合金板材およびその製造方法

Also Published As

Publication number Publication date
JP5144814B2 (ja) 2013-02-13
JPWO2011019042A1 (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
JP4885332B2 (ja) 銅合金板材およびその製造方法
JP5170916B2 (ja) 銅合金板材及びその製造方法
JP4948678B2 (ja) 銅合金板材、これを用いたコネクタ、並びにこれを製造する銅合金板材の製造方法
JP4875768B2 (ja) 銅合金板材およびその製造方法
JP5144814B2 (ja) 電気電子部品用銅合金材料
JP5391169B2 (ja) 電気電子部品用銅合金材およびその製造方法
JP5916964B2 (ja) 銅合金板材、コネクタ、および銅合金板材の製造方法
WO2010047373A1 (fr) Matériau en alliage de cuivre, pièces électriques et électroniques et procédé de fabrication d&#39;un matériau en alliage de cuivre
JP4408275B2 (ja) 強度と曲げ加工性に優れたCu−Ni−Si系合金
JP5972484B2 (ja) 銅合金板材、銅合金板材からなるコネクタ、および銅合金板材の製造方法
JP5503791B2 (ja) 銅合金板材およびその製造方法
JP2011017072A (ja) 銅合金材料
WO2016031654A1 (fr) Matériau conducteur pour parties de connexion qui présente une excellente résistance à l&#39;usure par coulissement instantané
JP5619389B2 (ja) 銅合金材料
JP5916418B2 (ja) 銅合金板材およびその製造方法
JPWO2010016428A1 (ja) 電気・電子部品用銅合金材
JP4439003B2 (ja) 強度と曲げ加工性に優れたチタン銅合金及びその製造方法
JP5339995B2 (ja) Cu−Zn−Sn系合金板及びCu−Zn−Sn系合金Snめっき条
JP5117602B1 (ja) たわみ係数が低く、曲げ加工性に優れる銅合金板材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011526771

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808225

Country of ref document: EP

Kind code of ref document: A1