WO2011016452A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2011016452A1
WO2011016452A1 PCT/JP2010/063105 JP2010063105W WO2011016452A1 WO 2011016452 A1 WO2011016452 A1 WO 2011016452A1 JP 2010063105 W JP2010063105 W JP 2010063105W WO 2011016452 A1 WO2011016452 A1 WO 2011016452A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft portion
compression chamber
eccentric shaft
eccentric
axial direction
Prior art date
Application number
PCT/JP2010/063105
Other languages
English (en)
French (fr)
Inventor
展平 関口
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201080027297.0A priority Critical patent/CN102472280B/zh
Publication of WO2011016452A1 publication Critical patent/WO2011016452A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers

Definitions

  • the present invention relates to a compressor used in home appliances and the like.
  • a rotary compressor in which a transmission element part is housed in the upper part of a sealed container and a compression element part is housed in the lower part, and the rotational force of the transmission element part is transmitted to the compression element part by a rotating shaft and driven (For example, refer to Patent Document 1).
  • the rotating shaft is composed of a front shaft, a pin shaft (eccentric part), and a rear shaft. Since the piston is fitted on the pin shaft, the outer diameter of the rear shaft is set smaller than the outer diameter of the front shaft. For this reason, in order to prevent a reduction in the reliability of the rear shaft, in the rotary compressor of Patent Document 1, a reinforcing ring is inserted and fixed to the rear shaft.
  • the conventional rotary compressor described above requires a reinforcing ring as a separate part in order to improve the reliability of the rear shaft. For this reason, there has been a problem that the structure of the rotary compressor is complicated, the number of assembling steps is increased, and the manufacturing cost is increased.
  • An object of the present invention is to provide a compressor capable of improving the reliability of the rear shaft without using separate parts such as a reinforcing ring.
  • a compressor according to a first invention includes a cylinder body having a compression chamber, an eccentric shaft portion accommodated in the compression chamber, and a first shaft portion and a second shaft portion disposed so as to sandwich the eccentric shaft portion.
  • an annular member externally fitted to the eccentric shaft portion inside the compression chamber, and in a side view, the central position in the axial direction of the eccentric shaft portion arranged inside the compression chamber is the axis of the compression chamber It arrange
  • the central position in the axial direction of the eccentric shaft portion is arranged closer to the second shaft portion side than the central position in the axial direction of the compression chamber, so that the annular member is inclined and the eccentric shaft is inclined.
  • the load load on the first shaft portion side can be increased and the load load on the second shaft portion side can be increased by allowing the load action point on the upper end of the portion to come into contact with each other. Can be reduced. Therefore, since the reliability of the second shaft portion can be improved without using a separate part such as a reinforcing ring, the manufacturing cost of the compressor can be reduced as compared with the conventional case.
  • the compressor according to the second invention is arranged so as to sandwich a plurality of cylinder main bodies each having a compression chamber, a plurality of eccentric shaft portions accommodated in each of the compression chambers, and a plurality of eccentric shaft portions.
  • a crankshaft having a first shaft portion and a second shaft portion, and a connecting shaft portion that connects the plurality of eccentric shaft portions, and a first head that is disposed outside the plurality of cylinder bodies and can support the first shaft portion
  • the second axial portion when viewed from the side, the second axial portion is positioned at a central position in the axial direction of the eccentric shaft portion disposed in at least one of the plurality of compression chambers, rather than the central position in the axial direction of the compression chamber.
  • the distributed load is applied to the annular member by inclining the annular member inside at least one of the plurality of compression chambers and allowing it to contact the load application point at the upper end of the eccentric shaft portion, While being able to increase the load burden to the 1 axial part side, the load burden to the 2nd axial part side can be decreased. Therefore, since the reliability of the second shaft portion can be improved without using a separate part such as a reinforcing ring, the manufacturing cost of the compressor can be reduced as compared with the conventional case.
  • the compressor according to the third invention is the compressor according to the first or second invention, wherein the diameter of the first shaft portion is larger than the diameter of the second shaft portion.
  • the diameter of the first shaft portion is larger than the diameter of the second shaft portion, and the load on the second shaft portion side is alleviated even under a disadvantageous condition for maintaining the reliability of the second shaft portion. It is more meaningful because it is possible.
  • a compressor according to a fourth invention is the compressor according to the first or second invention, wherein the diameter ratio between the eccentric shaft portion and the second shaft portion is 2.0 or less.
  • the center position in the axial direction of the eccentric shaft portion is disposed closer to the second shaft portion side than the center position in the axial direction of the compression chamber, whereby the annular member is inclined to be eccentric.
  • the central position in the axial direction of the eccentric shaft portion disposed in at least one of the plurality of compression chambers is more than the central position in the axial direction of the compression chamber in a side view.
  • the load on the second shaft portion side even under the condition that the diameter of the first shaft portion is larger than the diameter of the second shaft portion and is unfavorable for maintaining the reliability of the second shaft portion. It is more meaningful because the burden can be eased.
  • the diameter ratio between the eccentric shaft portion and the second shaft portion is 2.0 or less, and the second shaft portion side even under conditions that are disadvantageous for maintaining the reliability of the second shaft portion. This is more meaningful because it can alleviate the load burden.
  • FIG. 2 is a sectional view taken along line 2-2 in FIG.
  • FIG. 3 is a sectional view taken along line 3-3 in FIG. It is the figure which expanded the part enclosed with the dashed-dotted line of FIG. It is explanatory drawing which showed the comparative example of the present Example. It is a first explanatory diagram for explaining the influence of ⁇ E / ⁇ R. It is a second explanatory diagram for explaining the influence of ⁇ E / ⁇ R. It is a third explanatory diagram for explaining the influence of ⁇ E / ⁇ R. It is an elevation view sectional view of the rotary compressor concerning a 2nd embodiment of the present invention.
  • FIG. 1 is an elevational sectional view of a rotary compressor according to a first embodiment of the present invention.
  • a rotary compressor 1 shown in FIG. 1 is used as a part of a refrigeration system such as an air conditioner. That is, the air conditioner includes a condenser, an expansion mechanism, an evaporator (not shown), and the rotary compressor 1 described above as main components.
  • the rotary compressor 1 is configured as a one-cylinder refrigerant rotary compressor, and sucks CO 2 refrigerant (hereinafter abbreviated as refrigerant) in the air conditioner and discharges it at a predetermined pressure.
  • the rotary compressor 1 includes a sealed container 2, and a motor unit 3 and a compression unit 4 accommodated in the sealed container 2 as main components.
  • the motor unit 3 drives the compression unit 4 via the crankshaft 5, and the compression unit 4 sucks, compresses and discharges low-pressure refrigerant from the accumulator 6 shown schematically.
  • the high-pressure refrigerant in the sealed container 2 is discharged to the outside of the rotary compressor 1 through the discharge pipe 7.
  • the compression unit 4 includes a crankshaft 5, a cylinder body 8 having a circular hole 8a, a front head 9 (first head member) and a rear head 10 (second head member) disposed at one end and the other end of the cylinder body 8, respectively. ) And a roller 15 (annular member), and the compression chamber 11 is formed by dividing the circular hole 8a by the front head 9 and the rear head 10.
  • the crankshaft 5 includes an eccentric shaft portion 14 accommodated in the compression chamber 11, and a front shaft portion 5f (first shaft portion) and a rear shaft portion 5r (first shaft portion) disposed so as to sandwich the eccentric shaft portion 14. 2 axis part).
  • the front shaft portion 5f and the rear shaft portion 5r are integrally formed, and the eccentric shaft portion 14 is supported so as to be rotatable along the inner peripheral surface 8b of the circular hole 8a.
  • reference numerals 40 and 50 in the drawing respectively denote a front side thrust part 40 and a rear side thrust part 50 arranged so as to sandwich the eccentric shaft part 14.
  • the diameter ⁇ F shown in this figure is the diameter [mm] of the front shaft portion 5f
  • the diameter ⁇ E is the diameter [mm] of the eccentric shaft portion 14
  • the diameter ⁇ R is the diameter [mm] of the rear shaft portion 5r. and respectively, in the present embodiment is designed so that the diameter phi F is larger than the diameter phi R.
  • the front head 9 and the rear head 10 are provided so as to support the front shaft portion 5f and the rear shaft portion 5r, respectively.
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG.
  • a cylindrical roller 15 is fitted on the eccentric shaft portion 14 of the crankshaft 5 inside the compression chamber 11.
  • the inner diameter of the roller 15 is slightly larger than the outer diameter of the eccentric shaft portion 14 (not shown in FIGS. 1 and 2).
  • the vertical length of the roller 15 is slightly smaller than the vertical length of the compression chamber 11 (the distance between the lower end surface of the plate portion 9b of the front head 9 and the upper end surface of the plate portion 10b of the rear head 10). (Not shown in FIG. 1).
  • a blade 16 extends from the outer peripheral surface of the roller 15 in a direction perpendicular to the axial direction of the crankshaft 5.
  • the blade 16 is accommodated via a pair of bushes 18 in a blade accommodating portion 17 that is recessed in the inner peripheral surface 8 b of the cylinder body 8.
  • a supply port 19 for receiving the supply of refrigerant from the accumulator 6 is formed in the vicinity of the blade housing portion 17.
  • a supply pipe 20 (see also FIG. 1) connected to the accumulator 6 is inserted into the supply port 19, and the supply port 19 has a supply port 21 on the inner peripheral surface 8 b of the cylinder body 8.
  • FIG. 1 and FIG. 3 is a cross-sectional view taken along line 3-3 in FIG.
  • the front head 9 is formed in a plate shape, closes the circular hole 8a of the cylinder body 8, and penetrates the front shaft portion 5f.
  • the plate portion 9b is provided with a discharge hole 23 for discharging the refrigerant compressed in the compression chamber 11, and a discharge control mechanism for appropriately controlling the discharge of the refrigerant through the discharge hole 23. 24 is attached.
  • the front head 9 is covered with a muffler 25 for reducing noise caused by the pulsation of the refrigerant.
  • the muffler 25 has a muffler discharge hole 26 for discharging the refrigerant discharged from the discharge hole 23 to the outside of the muffler 25.
  • the discharge hole 23 is located on the opposite side of the supply port 21 and the blade 16.
  • the front head 9 is rotationally positioned with respect to the cylinder body 8 so that the supply port 21 and the discharge hole 23 sandwich the blade 16 in a plan view of the cylinder body 8 as shown in FIG. .
  • the thick line arrow in this figure shows the turning direction (rotation direction of the crankshaft 5) of the roller 15.
  • the shape of the rear head 10 described above is similar to the main shape of the front head 9. That is, the rear head 10 is formed in a plate shape, and has a plate portion 10b in which a circular hole 8a of the cylinder body 8 is closed and a through hole 10a for penetrating the rear shaft portion 5r is formed. Further, lubricating oil (not shown) is stored between the rear head 10 and the sealed container 2.
  • the high-pressure refrigerant discharged into the muffler 25 is silenced in the muffler 25 and then discharged from the compression unit 4 through the muffler discharge hole 26.
  • the high-pressure refrigerant compressed in the compression unit 4 passes through the motor unit 3 and is eventually discharged to the outside of the rotary compressor 1 via the discharge pipe 7 provided in the sealed container 2.
  • FIG. 4 is an enlarged view of a portion surrounded by a one-dot chain line in FIG. FIG. 5 shows a comparative example of this embodiment.
  • illustration of the discharge holes 23 and the discharge control mechanism 24 is omitted.
  • the difference between the inner diameter of the roller 15 and the outer diameter of the eccentric shaft portion 14 and the difference between the vertical length of the roller 15 and the vertical length of the compression chamber 11 are exaggerated.
  • an arrow L shown in FIG. 4 indicates a distributed load (compressed gas reaction force) acting on the roller 15, and a central position P1 shown in FIG. 4 is lower than the upper end surface of the eccentric shaft portion 14 in the side view.
  • the positions are equidistant from any of the end faces. 4 indicates a position that is equidistant from both the lower end surface of the plate portion 9b of the front head 9 and the upper end surface of the plate portion 10b of the rear head 10 in a side view.
  • the central position P1 in the axial direction of the eccentric shaft portion 14 disposed inside the compression chamber 11 is more axial than the central position P2 in the axial direction of the compression chamber 11. Is disposed at a position shifted to the rear shaft portion 5r side by a distance ⁇ P.
  • ⁇ P a distance shifted to the rear shaft portion 5r side by a distance ⁇ P.
  • the state in which the roller 15 is inclined is exaggerated from the actual state.
  • the load application point A1 is disposed at a position closer to the front shaft portion 5f than the rear shaft portion 5r when viewed from the center position P1 in a side view. This means that the load application point A1 has moved to the front shaft portion 5f side with respect to a load application point A2 of a comparative example described later. Therefore, in the rotary compressor 1 of the present embodiment, it is possible to increase the load on the front shaft portion 5f side and to the rear shaft portion 5r side as compared with the conventional rotary compressor (see FIG. 5). The load of the load can be reduced.
  • the central position P3 in the axial direction of the eccentric shaft portion arranged inside the compression chamber in the side view is the axial direction of the compression chamber. Is coincident with the central position P4.
  • the load application point A2 when the distributed load L is applied to the roller is disposed at the same position as the central position P3 in a side view, and the front shaft portion and the load shaft when viewed from the central position P3. It is arranged at the same position from any of the rear shaft portions. Therefore, in the conventional rotary compressor, the load burden distributed to the front shaft portion side is equal to the load burden distributed to the rear shaft portion side.
  • ⁇ E Diameter of eccentric shaft portion 14 [mm]
  • ⁇ R Diameter of rear shaft portion 5r [mm]
  • FIG. 6 is a first explanatory diagram for explaining the influence of ⁇ E / ⁇ R.
  • FIG. 7 is a second explanatory diagram for explaining the influence of ⁇ E / ⁇ R.
  • FIG. 8 is a third explanatory diagram for explaining the influence of ⁇ E / ⁇ R.
  • the damage pattern of the front head 9 and the rear head 10 of the rotary compressor 1 is, for example, as follows.
  • the shaft bends due to the operational differential pressure, causing the bearing and the shaft to tilt.
  • the oil film between the shaft and the bearing becomes thin, and metal contact is likely to occur.
  • Ease of metal contact is determined by the load generated by the amount of tilt and the operating differential pressure.
  • metal contact occurs, the coefficient of friction increases, and the amount of heat generated at the bearing increases.
  • the amount of heat generation increases as the rotational speed increases.
  • There is a PV value (surface pressure ⁇ speed) as a guide for knowing the magnitude of the calorific value.
  • the relationship between the PV value and the cooling by the oil around the bearing portion determines whether or not the bearing is damaged. If the PV value is large and the amount of cooling by oil is small, the probability of bearing damage increases.
  • the central position P1 in the axial direction of the eccentric shaft portion 14 is closer to the rear shaft portion 5r side than the central position P2 in the axial direction of the compression chamber 11 in side view.
  • the roller 15 is inclined and allowed to come into contact with each other at the load application point A1 at the upper end of the eccentric shaft portion 14, thereby reducing the load burden on the rear shaft portion 5r side. Therefore, since the reliability of the rear shaft portion 5r can be improved without using another component such as a reinforcing ring, the manufacturing cost of the rotary compressor 1 can be reduced as compared with the conventional case.
  • the load on the rear shaft portion 5r side is maintained even under a condition that is unfavorable for maintaining the reliability of the rear shaft portion 5r as in the case where the above formula (1) is satisfied. It is more meaningful because the burden can be eased.
  • FIG. 9 is an elevational sectional view of a rotary compressor according to the second embodiment of the present invention.
  • it demonstrates centering on the point which is different from the said 1st Embodiment, and the description is abbreviate
  • Members common to the rotary compressor 1 according to the first embodiment and the rotary compressor 101 according to the second embodiment are denoted by the same reference numerals.
  • the rotary compressor 1 according to the first embodiment is configured as a one-cylinder refrigerant rotary compressor
  • the rotary compressor 101 according to the second embodiment is a two-cylinder refrigerant rotary compressor. It is configured.
  • only one cylinder body 8 is provided, but in this embodiment, two cylinder bodies 8 are arranged in parallel in the axial direction of the crankshaft 5.
  • a middle plate 28 (plate member) is interposed between the two cylinder bodies 8 arranged side by side.
  • the front shaft portion 5f and the rear shaft portion 5r are configured integrally, and these front shaft portions A cylindrical roller 15 (annular member) is fitted on the eccentric portion 30 and the rear eccentric portion 31 inside each compression chamber 11. Further, reference numerals 40 and 50 in the drawing denote the front thrust portion 40 and the rear thrust portion 50, respectively.
  • the diameter ⁇ F shown in the figure is the diameter [mm] of the front shaft portion 5f
  • the diameter ⁇ E is the diameter [mm] of the front eccentric shaft portion 30 and the rear eccentric shaft portion 31
  • the diameter ⁇ R is the rear shaft. It indicates diameter parts 5r [mm], respectively, in the present embodiment is designed so that the diameter phi F is larger than the diameter phi R.
  • the muffler 25 is attached only to the front head 9 (first head member).
  • the muffler 25 is further attached to the rear head 10 (second head member).
  • the middle shaft portion 29 as a portion of the crankshaft 5 between the two eccentric shaft portions 14 arranged side by side is in a relationship of being loosely inserted into the middle plate 28.
  • FIG. 10 is an enlarged view of a portion surrounded by a one-dot chain line in FIG.
  • each central position P1 in the axial direction of the front eccentric portion 30 and the rear eccentric portion 31 disposed inside each compression chamber 11 in a side view. Is arranged at a position shifted from the central position P2 in the axial direction of each compression chamber 11 by a distance ⁇ P toward the rear shaft portion 5r in the axial direction.
  • the roller 15 can be inclined and can be allowed to hit at the load acting point A ⁇ b> 1 at the upper end of the eccentric shaft portion 14 similarly to FIG. 4. Therefore, also in the present embodiment, it is possible to reduce the load burden on the rear shaft portion 5r side as compared with the conventional case.
  • the reliability of the rear shaft portion 5r can be improved without using separate parts such as a reinforcing ring, as in the rotary compressor 1 of the first embodiment. In comparison, the manufacturing cost of the rotary compressor 101 can be reduced.
  • the diameter ⁇ F of the front shaft portion 5f is designed to be larger than the diameter ⁇ R of the rear shaft portion 5r.
  • the rotary compressor 101 of the second embodiment similarly to the rotary compressor 1 of the first embodiment, a condition that is disadvantageous for maintaining the reliability of the rear shaft portion 5r as in the case of satisfying the above expression (1). Even lower, it is more meaningful because the load on the rear shaft 5r side can be reduced.
  • the compressor using the CO 2 refrigerant has been described.
  • the present invention is not limited to this and can be applied to a compressor using a refrigerant other than the CO 2 refrigerant. is there.
  • a refrigerant used at a pressure lower than R410A low GWP refrigerant
  • the load on the eccentric shaft portion can be reduced because the refrigerant is at a low pressure, and the sliding length of the eccentric shaft portion can be shortened. It is effective in.
  • the present invention is not limited thereto, and the front shaft portion 5f and the rear shaft portion 5r are configured. May be configured separately.
  • the blade 16 is formed integrally with the roller 15.
  • the blade 16 may be formed separately from the roller 15. In such a case, it is considered that the blade 16 is pressed against the outer peripheral surface of the roller 15 by appropriate biasing means such as a compression coil spring.
  • the central position P1 in the axial direction of the front eccentric portion 30 and the rear eccentric portion 31 is set to the rear axial portion by a distance ⁇ P from the central position P2 in the axial direction of each compression chamber 11.
  • a distance ⁇ P from the central position P2 in the axial direction of each compression chamber 11.
  • the central position P1 in the axial direction of the eccentric shaft portion 14 is more axial than the central position P2 in the axial direction of the compression chamber 11 in a side view.
  • the present invention is not limited to such an embodiment.
  • the diameter ⁇ R [mm] of the rear shaft portion 5r (first shaft portion) is made larger than the diameter ⁇ F [mm] of the front shaft portion 5f (second shaft portion).
  • the center position P1 in the axial direction of the eccentric shaft portion 14 is shifted to the front shaft portion 5f side in the axial direction by a distance ⁇ P from the center position P2 in the axial direction of the compression chamber 11 in a side view.
  • the load burden on the shaft portion 5f side can be reduced. Therefore, the reliability of the front shaft portion 5f can be improved without using separate parts such as a reinforcing ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 補強リング等の別部品を用いることなくリア軸の信頼性を向上させる。 圧縮機1は、圧縮室11を有するシリンダ本体8と、圧縮室11の内部に収容された偏心軸部14と、偏心軸部14を挟むように配置された第1軸部5f及び第2軸部5rとを有するクランク軸5と、シリンダ本体8の一端に配置され、第1軸部5fを支持可能な第1ヘッド部材9と、シリンダ本体8の他端に配置され、第2軸部5rを支持可能な第2ヘッド部材10と、圧縮室11の内部において、偏心軸部14に外嵌された環状部材15とを備え、側面視において、圧縮室11の内部に配置された偏心軸部14の軸方向についての中央位置P1は、圧縮室11の軸方向についての中央位置P2よりも第2軸部5r側に配置される。

Description

圧縮機
 本発明は、家電用機器等で使用される圧縮機に関する。
 この種の技術としては、密閉容器内の上部に伝動要素部、下部に圧縮要素部を収納し、伝動要素部の回転力を回転軸にて圧縮要素部に伝達し駆動するロータリ圧縮機が開示されている(例えば、特許文献1参照)。この回転軸は、フロント軸と、ピン軸(偏心部)と、リア軸とで構成されている。このピン軸にはピストンが外嵌されるため、リア軸の外径は、フロント軸の外径より小さく設定されている。このため、リア軸の信頼性の低下を防ぐために、特許文献1のロータリ圧縮機では、リア軸に対して補強リングが挿入及び固定されている。
特開2006-132414号公報
 しかしながら、上述した従来のロータリ圧縮機では、リア軸の信頼性を向上させるために別部品としての補強リングが必要となる。このため、ロータリ圧縮機の構造が複雑化すると共に、その組立工数が増加し、製造コストが増大するという問題があった。
 本発明の目的は、補強リング等の別部品を用いることなくリア軸の信頼性を向上可能な圧縮機を提供することである。
 第1の発明に係る圧縮機は、圧縮室を有するシリンダ本体と、圧縮室の内部に収容された偏心軸部と、偏心軸部を挟むように配置された第1軸部及び第2軸部とを有するクランク軸と、シリンダ本体の一端に配置され、第1軸部を支持可能な第1ヘッド部材と、シリンダ本体の他端に配置され、第2軸部を支持可能な第2ヘッド部材と、圧縮室の内部において、偏心軸部に外嵌された環状部材とを備え、側面視において、圧縮室の内部に配置された偏心軸部の軸方向についての中央位置は、圧縮室の軸方向についての中央位置よりも第2軸部側に配置される。
 この圧縮機では、側面視において、偏心軸部の軸方向についての中央位置を圧縮室の軸方向についての中央位置よりも第2軸部側に配置することにより、環状部材を傾斜させて偏心軸部上端の荷重作用点に片当りさせることで、環状部材に分布荷重が作用した際に、第1軸部側への荷重負担を増加させることができると共に、第2軸部側への荷重負担を減少させることができる。したがって、補強リング等の別部品を用いることなく第2軸部の信頼性を向上できるので、従来と比べて圧縮機の製造コストを低減できる。
 第2の発明に係る圧縮機は、圧縮室をそれぞれ有する複数のシリンダ本体と、圧縮室のそれぞれの内部に収容された複数の偏心軸部と、複数の偏心軸部を挟むように配置された第1軸部及び第2軸部と、複数の偏心軸部を接続する接続軸部とを有するクランク軸と、複数のシリンダ本体の外側に配置され、第1軸部を支持可能な第1ヘッド部材と、複数のシリンダ本体の外側に配置され、第2軸部を支持可能な第2ヘッド部材と、複数のシリンダ本体の間に配置された板状部材と、複数の圧縮室の内部において、偏心軸部に外嵌された環状部材とを備え、側面視において、複数の圧縮室の少なくとも1つの内部に配置された偏心軸部の軸方向についての中央位置は、当該圧縮室の軸方向についての中央位置よりも第2軸部側に配置される。
 この圧縮機では、側面視において、複数の圧縮室の少なくとも1つの内部に配置された偏心軸部の軸方向についての中央位置を、当該圧縮室の軸方向についての中央位置よりも第2軸部側に配置することにより、複数の圧縮室の少なくとも1つの内部で環状部材を傾斜させて偏心軸部上端の荷重作用点に片当たりさせることで、環状部材に分布荷重が作用した際に、第1軸部側への荷重負担を増加させることができると共に、第2軸部側への荷重負担を減少させることができる。したがって、補強リング等の別部品を用いることなく第2軸部の信頼性を向上できるので、従来と比べて圧縮機の製造コストを低減できる。
 第3の発明に係る圧縮機は、第1または第2の発明に係る圧縮機において、第1軸部の直径は、第2軸部の直径よりも大きい。
 この圧縮機では、第1軸部の直径が第2軸部の直径よりも大きく第2軸部の信頼性の維持に不利な条件下であっても第2軸部側への荷重負担を緩和できるので一層有意義である。
 第4の発明に係る圧縮機は、第1または第2の発明に係る圧縮機において、偏心軸部と第2軸部の直径比率が2.0以下である。
 この圧縮機では、偏心軸部と第2軸部の直径比率が2.0以下であって第2軸部の信頼性の維持に不利な条件下であっても第2軸部側への荷重負担を緩和できるので一層有意義である。
 以上の説明に述べたように、本発明によれば、以下の効果が得られる。
 第1の発明では、側面視において、偏心軸部の軸方向についての中央位置を圧縮室の軸方向についての中央位置よりも第2軸部側に配置することにより、環状部材を傾斜させて偏心軸部上端の荷重作用点に片当りさせることで、環状部材に分布荷重が作用した際に、第1軸部側への荷重負担を増加させることができると共に、第2軸部側への荷重負担を減少させることができる。したがって、補強リング等の別部品を用いることなく第2軸部の信頼性を向上できるので、従来と比べて圧縮機の製造コストを低減できる。
 また、第2の発明では、側面視において、複数の圧縮室の少なくとも1つの内部に配置された偏心軸部の軸方向についての中央位置を、当該圧縮室の軸方向についての中央位置よりも第2軸部側に配置することにより、複数の圧縮室の少なくとも1つの内部で環状部材を傾斜させて偏心軸部上端の荷重作用点に片当たりさせることで、環状部材に分布荷重が作用した際に、第1軸部側への荷重負担を増加させることができると共に、第2軸部側への荷重負担を減少させることができる。したがって、補強リング等の別部品を用いることなく第2軸部の信頼性を向上できるので、従来と比べて圧縮機の製造コストを低減できる。
 また、第3の発明では、第1軸部の直径が第2軸部の直径よりも大きく第2軸部の信頼性の維持に不利な条件下であっても第2軸部側への荷重負担を緩和できるので一層有意義である。
 また、第4の発明では、偏心軸部と第2軸部の直径比率が2.0以下であって第2軸部の信頼性の維持に不利な条件下であっても第2軸部側への荷重負担を緩和できるので一層有意義である。
本発明の第1実施形態に係るロータリ圧縮機の立面視断面図である。 図1の2-2線矢視断面図である。 図1の3-3線矢視断面図である。 図1の一点鎖線で取り囲んだ部分を拡大した図である。 本実施例の比較例を示した説明図である。 φE/φRの影響を説明するための第1説明図である。 φE/φRの影響を説明するための第2説明図である。 φE/φRの影響を説明するための第3説明図である。 本発明の第2実施形態に係るロータリ圧縮機の立面視断面図である。 図9の一点鎖線で取り囲んだ部分を拡大した図である。 本発明の変形例に係る圧縮機を示した説明図である。 本発明の変形例に係る圧縮機を示した説明図である。 本発明の変形例に係る圧縮機を示した説明図である。
(第1実施形態)
 以下では、本発明の第1実施形態に係るロータリ圧縮機の構成を概説する。図1は、本発明の第1実施形態に係るロータリ圧縮機の立面視断面図である。図1に示すロータリ圧縮機1は、例えば空気調和機などの冷凍システムの一部を構成するものとして利用される。すなわち、空気調和機は、図示しない凝縮器や膨張機構、蒸発器と、上記のロータリ圧縮機1を主たる構成として備える。
 このロータリ圧縮機1は、1シリンダ型の冷媒用ロータリ圧縮機として構成されており、上記空気調和機内のCO2冷媒(以下では、冷媒と略記する)を吸入し、所定の圧力で吐出する。このロータリ圧縮機1は、本図に示されるように、密閉容器2と、この密閉容器2内に収容されるモータ部3及び圧縮部4と、を主たる構成として備える。モータ部3はクランク軸5を介して圧縮部4を駆動し、圧縮部4は略示のアキュームレータ6から低圧の冷媒を吸引して圧縮し、吐出する。密閉容器2内の高圧の冷媒は、吐出管7を介してロータリ圧縮機1の外部へ排出される。
 圧縮部4は、クランク軸5と、円形孔8aを有するシリンダ本体8と、シリンダ本体8の一端及び他端にそれぞれ配置されたフロントヘッド9(第1ヘッド部材)及びリアヘッド10(第2ヘッド部材)と、ローラ15(環状部材)とを有しており、フロントヘッド9及びリアヘッド10によって円形孔8aが区画されることにより圧縮室11が形成されている。クランク軸5は、この圧縮室11の内部に収容された偏心軸部14と、この偏心軸部14を挟むように配置されたフロント軸部5f(第1軸部)及びリア軸部5r(第2軸部)とを有している。なお、フロント軸部5f及びリア軸部5rは、一体で構成されており、偏心軸部14は、円形孔8aの内周面8bに沿って旋回可能に支持されている。また、図中の符号40、50は、偏心軸部14を挟むように配置されたフロント側スラスト部40及びリア側スラスト部50をそれぞれ示している。
 また、本図に示す直径φFはフロント軸部5fの直径[mm]を、直径φEは偏心軸部14の直径[mm]を、直径φRはリア軸部5rの直径[mm]をそれぞれ示しており、本実施形態では、直径φFが直径φRと比べて大きくなるように設計されている。また、フロントヘッド9及びリアヘッド10は、フロント軸部5f及びリア軸部5rをそれぞれ支持可能に設けられている。
 次に、図2を参照されたい。図2は、図1の2-2線矢視断面図である。本図に示されるように、クランク軸5の偏心軸部14には、圧縮室11の内部において、円筒状のローラ15が外嵌されている。ローラ15の内径は、偏心軸部14の外径より僅かに大きい(図1、図2では図示省略)。また、ローラ15の上下方向長さは、圧縮室11の上下方向長さ(フロントヘッド9の板部9bの下端面とリアヘッド10の板部10bの上端面との離間距離)よりも僅かに小さい(図1では図示省略)。このローラ15の外周面からは、クランク軸5の軸方向に対して垂直な方向へブレード16が延出している。このブレード16は、シリンダ本体8の内周面8bに凹設されるブレード収容部17内へ一対のブッシュ18を介して収容される。そして、上記のブレード収容部17の近傍には、前記のアキュームレータ6から冷媒の供給を受けるための供給ポート19が形成されている。この供給ポート19には、アキュームレータ6に接続される供給管20(図1併せて参照)が挿嵌されると共に、供給ポート19はシリンダ本体8の内周面8bに供給口21を有する。
 次に、図1と図3を併せて参照されたい。図3は、図1の3-3線矢視断面図である。図1及び図3に示されるように、上記のフロントヘッド9は、板状に形成されており、シリンダ本体8の円形孔8aを閉塞すると共に、フロント軸部5fを貫通させるための貫通孔9aが形成された板部9bを有している。この板部9bには、圧縮室11内で圧縮された冷媒を吐出するための吐出孔23が穿孔されると共に、この吐出孔23を介した冷媒の吐出を適宜に制御するための吐出制御機構24が付設されている。更に、フロントヘッド9には、冷媒の脈動に起因する騒音を低減するマフラ25が覆設されている。このマフラ25は、吐出孔23から吐出された冷媒をマフラ25の外部へ放出するためのマフラ吐出孔26を有する。
 ここで、図2を参照されたい。本図において二点鎖線で略示するように、上記の吐出孔23は、供給口21とブレード16を挟んで反対側に位置する。換言すれば、図2のようなシリンダ本体8の平面視において、供給口21と吐出孔23とがブレード16を挟む関係となるように、フロントヘッド9はシリンダ本体8に対して回転位置決めされる。この構成で、本図に示されるように、ローラ15がシリンダ本体8の内周面8bに対する当接状態を維持したまま旋回すると、ブレード16がブレード収容部17に対して進退移動すると共に、シリンダ本体8内に供給された冷媒の圧縮が行われる。なお、本図における太線矢印は、ローラ15の旋回方向(クランク軸5の回転方向)を示す。
 なお、図1に示されるように、前述したリアヘッド10の形状は、フロントヘッド9の主たる形状と類似する。すなわち、リアヘッド10は板状に形成されており、シリンダ本体8の円形孔8aを閉塞すると共に、リア軸部5rを貫通させるための貫通孔10aが形成された板部10bを有している。また、このリアヘッド10と密閉容器2との間には図示しない潤滑油が貯留されている。
 次に、本実施形態に係るロータリ圧縮機1の作動を概説する。図2の状態では、圧縮室11内には低圧の冷媒が供給ポート19から供給口21を介して供給されている。この状態で、偏心軸部14(クランク軸5)が本図において時計回りに旋回し、偏心軸部14が供給口21を周方向に通り過ぎると、上記の冷媒の圧力が上昇し始め、この冷媒の圧力が図1に示される吐出制御機構24を用いて設定された設定圧を超えた時点で、吐出制御機構24が開弁し、高圧の冷媒が吐出孔23を介してマフラ25内へ吐出される。マフラ25内へ吐出された高圧の冷媒は、マフラ25内で消音された後、マフラ吐出孔26を介して圧縮部4から排出される。圧縮部4において圧縮された高圧の冷媒は、モータ部3内を通過し、やがて、密閉容器2に設けられる吐出管7を介してロータリ圧縮機1の外部へ排出される。
 次に、図4を参照されたい。図4は、図1の一点鎖線で取り囲んだ部分を拡大した図である。図5は、本実施例の比較例を示している。なお、図4では、吐出孔23や吐出制御機構24についての図示を省略する。また、図4では、ローラ15の内径と偏心軸部14の外径との差、および、ローラ15の上下方向長さと圧縮室11の上下方向長さの差を誇張して表示している。また、図4に示す矢印Lは、ローラ15に作用する分布荷重(圧縮ガス反力)を示しており、図4に示す中央位置P1は、側面視において、偏心軸部14の上端面と下端面のいずれからも等距離にある位置を示している。また、図4に示す中央位置P2は、側面視において、フロントヘッド9の板部9bの下端面と、リアヘッド10の板部10bの上端面のいずれからも等距離にある位置を示している。
 図4に示すように、側面視において、圧縮室11の内部に配置された偏心軸部14の軸方向についての中央位置P1は、圧縮室11の軸方向についての中央位置P2よりも、軸方向に距離ΔPだけリア軸部5r側にずれた位置に配置されている。このような構成によれば、ローラ15に分布荷重Lが作用した際に、ローラ15に対して回転モーメントが発生し、ローラ15が偏心軸部14に対して傾く。そして、傾斜した状態にあるローラ15が偏心軸部14上端の荷重作用点A1で片当りし、この荷重作用点A1でローラ15と偏心軸部14とが局所的な金属接触を行う。なお、偏心軸部14の中央位置P1が明確でない場合は、偏心軸部14とローラとが実際に接触し且つ摺動する部分の中心位置を、圧縮室11の軸方向についての中央位置P2よりも、リア軸部5r側にずらした位置に配置することにより、同様の効果を得ることができる。
 なお、図4では、ローラ15が傾斜した状態を実際より誇張して描いている。また、この荷重作用点A1は、図4に示すように、側面視において、中央位置P1から見てリア軸部5rよりもフロント軸部5fに近い位置に配置されている。このことは、荷重作用点A1が、後述する比較例の荷重作用点A2よりもフロント軸部5f側に移動したことを意味している。したがって、本実施形態のロータリ圧縮機1では、従来のロータリ圧縮機(図5参照)と比べて、フロント軸部5f側への荷重の負担を増加させることができると共に、リア軸部5r側への荷重の負担を減少させることができる。
 これに対して、図5に示す比較例に係る従来のロータリ圧縮機では、側面視において、圧縮室の内部に配置された偏心軸部の軸方向についての中央位置P3は、圧縮室の軸方向についての中央位置P4と一致している。このような構成によれば、ローラに分布荷重Lが作用する際の荷重作用点A2は、側面視において、中央位置P3と同じ位置に配置されており、中央位置P3から見てフロント軸部及びリア軸部のいずれからも等しい位置に配置されている。したがって、従来のロータリ圧縮機では、フロント軸部側に分配される荷重負担と、リア軸部側に分配される荷重負担とは等しい。
次に、リア軸部5rの信頼性維持に不利な条件下で、本発明が特に有効となる点について説明する。より具体的には、下記式(1)を満足してリア軸部5rの信頼性に不利な条件となったとき、リア軸部5rへの荷重の負担を緩和する効果は一層有意義となる。
Figure JPOXMLDOC01-appb-M000001
φE:偏心軸部14の直径[mm]、φR:リア軸部5rの直径[mm]
 以下、上記式(1)を満足すると、リア軸部5rの信頼性に不利な条件となることを説明する。図6~図8を参照されたい。図6は、φE/φRの影響を説明するための第1説明図である。図7は、φE/φRの影響を説明するための第2説明図である。図8は、φE/φRの影響を説明するための第3説明図である。
 すなわち、ロータリ圧縮機1のフロントヘッド9及びリアヘッド10の損傷パターンは、例えば以下の通りである。高差圧運転時において、軸が運転差圧によりたわむことで、軸受と軸に傾きが生じる。傾きが生じると、軸と軸受間の油膜が薄くなり、金属接触が発生し易くなる。金属接触のし易さは、傾き量と運転差圧により発生する荷重によって決まる。金属接触が生じると摩擦係数が増加し、軸受部での発熱量が増加する。発熱量は回転速度が増すことで、増加する。発熱量の大小を知る目安として、PV値(面圧×速度)がある。PV値と軸受部周辺のオイルによる冷却の関係において、軸受に損傷が発生するかが決まる。PV値が大きく、オイルによる冷却量が少ない場合、軸受損傷が発生する確率が増加する。
 すなわち、(1)荷重値が高い領域、(2)PV値が高い領域、である。本願の技術は、荷重値及びPV値を低減することで、軸受信頼性を向上させる。下記に示すパラメータ(図6を併せて参照)において、ロータリ圧縮機のフロントヘッド9及びリアヘッド10の荷重とPV値を算出した。結果をまとめると、図7(荷重)、図8(PV値)の領域となる。図7と図8より、φE/φRが2以下の領域において、荷重及びPV値が増加することがわかる。すなわち、φE/φRが2以下の領域において、リア軸部5rの信頼性に不利な条件となる。
・リア軸部5rの直径d[mm]=8.0~28.0
・ローラ15の肉厚t[mm]=2.0~8.0
・段差β[mm]=0.0~0.4
・シリンダ本体8の厚みHc[mm]=6.0~16.0
・リアヘッド10の軸受有効長さL[mm]=6.0~25.0
・運転差圧ΔP[MPa]=3.0
・運転回転数N[Hz]=90.0
[第1実施形態のロータリ圧縮機の特徴]
 以上、第1実施形態のロータリ圧縮機1では、側面視において、偏心軸部14の軸方向についての中央位置P1を、圧縮室11の軸方向についての中央位置P2よりもリア軸部5r側に配置することにより、ローラ15を傾斜させて偏心軸部14上端の荷重作用点A1で片当りさせることで、リア軸部5r側への荷重負担を減少させることができる。したがって、補強リング等の別部品を用いることなくリア軸部5rの信頼性を向上できるので、従来と比べてロータリ圧縮機1の製造コストを低減できる。
 また、第1実施形態のロータリ圧縮機1では、フロント軸部5fの直径φFをリア軸部5rの直径φRよりも大きく設計した場合のようにリア軸部5rの信頼性維持に不利な条件下であってもリア軸部5r側への荷重負担を緩和できるので一層有意義である。
 また、第1実施形態のロータリ圧縮機1では、上記式(1)を満足する場合のようにリア軸部5rの信頼性維持に不利な条件下であってもリア軸部5r側への荷重負担を緩和できるので一層有意義である。
(第2実施形態)
 次に、本発明の第2実施形態を説明する。図9は、本発明の第2実施形態に係るロータリ圧縮機の立面視断面図である。ここでは、上記第1実施形態と相違する点を中心に説明し、重複する点についてはその説明を省略する。第1実施形態に係るロータリ圧縮機1と、第2実施形態に係るロータリ圧縮機101とで共通する部材については同じ符号を付すものとする。
 まず、第1実施形態に係るロータリ圧縮機1は1シリンダ型の冷媒用ロータリ圧縮機として構成されていたが、第2実施形態に係るロータリ圧縮機101は2シリンダ型の冷媒用ロータリ圧縮機として構成されている。また、第1実施形態ではシリンダ本体8は一つのみ設けられているが、本実施形態ではシリンダ本体8はクランク軸5の軸方向に二つ並設されている。そして、並設された二つのシリンダ本体8の間には、ミドルプレート28(板状部材)が介装されている。
 前記の偏心軸部14は、並設される二つのシリンダ本体8の夫々に収容される。すなわち、クランク軸5は、二つの偏心軸部14を含む。この実施形態では、これら二つの偏心軸部14を区別するため、二つの偏心軸部14のうちモータ部3に近い方には符号30を付し、モータ部3から遠い方には符号31を付した。すなわち、クランク軸5は、フロント偏心軸部30と、リア偏心軸部31と、フロント偏心軸部30とリア偏心軸部31とを挟むように配置されたフロント軸部5f(第1軸部)及びリア軸部5r(第2軸部)と、ミドル軸部29(接続軸部)とを有しており、フロント軸部5f及びリア軸部5rは、一体で構成されると共に、これらのフロント偏心部30とリア偏心部31には、各圧縮室11の内部において、円筒状のローラ15(環状部材)がそれぞれ外嵌されている。また、図中の符号40、50は、フロント側スラスト部40及びリア側スラスト部50をそれぞれ示している。
 また、本図に示す直径φFはフロント軸部5fの直径[mm]を、直径φEはフロント偏心軸部30とリア偏心軸部31の各直径[mm]を、直径φRはリア軸部5rの直径[mm]をそれぞれ示しており、本実施形態では、直径φFが直径φRと比べて大きくなるように設計されている。また、上記第1実施形態では、マフラ25はフロントヘッド9(第1ヘッド部材)にのみ付設されているが、本実施形態では、更にリアヘッド10(第2ヘッド部材)にも付設されている。また、並設された二つの偏心軸部14の間におけるクランク軸5の部分としてのミドル軸部29は、ミドルプレート28に対して遊挿される関係にある。
 次に、図10を参照されたい。図10は、図9の一点鎖線で取り囲んだ部分を拡大した図である。図10に示すように、本実施形態に係るロータリ圧縮機101では、側面視において、各圧縮室11の内部に配置されたフロント偏心部30及びリア偏心部31の軸方向についての各中央位置P1は、各圧縮室11の軸方向についての中央位置P2よりも、軸方向に距離ΔPだけリア軸部5r側にずれた位置に配置されている。このような構成によれば、各ローラ15に分布荷重Lが作用した際、図4と同様に、ローラ15を傾斜させて偏心軸部14上端の荷重作用点A1で片当りさせることができる。したがって、本実施形態においても、従来と比べてリア軸部5r側への荷重の負担を減少させることができる。
 以上、第2実施形態のロータリ圧縮機101では、第1実施形態のロータリ圧縮機1と同様に、補強リング等の別部品を用いることなくリア軸部5rの信頼性を向上できるので、従来と比べてロータリ圧縮機101の製造コストを低減できる。
 また、第2実施形態のロータリ圧縮機101では、第1実施形態のロータリ圧縮機1と同様に、フロント軸部5fの直径φFをリア軸部5rの直径φRよりも大きく設計した場合のようにリア軸部5rの信頼性維持に不利な条件下であってもリア軸部5r側への荷重負担を緩和できるので一層有意義である。
 また、第2実施形態のロータリ圧縮機101では、第1実施形態のロータリ圧縮機1と同様に、上記式(1)を満足する場合のようにリア軸部5rの信頼性維持に不利な条件下であってもリア軸部5r側への荷重負担を緩和できるので一層有意義である。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
 なお、上述した第1及び第2実施形態では、CO2冷媒を利用する圧縮機について述べたが、本発明はこれに限らず、CO2冷媒以外の冷媒を利用する圧縮機にも適用可能である。特に、R410Aよりも低い圧力で使用される冷媒(低GWP冷媒)を利用した場合では、冷媒が低圧であるため偏心軸部への負荷を小さくでき、偏心軸部の摺動長を短くできる点で有効である。
 なお、上述した第1及び第2実施形態では、フロント軸部5f及びリア軸部5rを一体で構成する例について述べたが、本発明はこれに限らず、フロント軸部5f及びリア軸部5rをそれぞれ別体で構成してもよい。
 なお、上述した第1実施形態では、ブレード16はローラ15と一体的に形成されるとしたが、これに代えて、ブレード16はローラ15と別体で形成される構成が考えられる。かかる場合、ブレード16は、例えば、圧縮コイルバネなどの適宜の付勢手段によってローラ15の外周面に対して押圧されると考えられる。
 なお、上述した第2実施形態では、本発明を2シリンダ型のCO2冷媒用ロータリ圧縮機に適用する例について述べたが、本発明はかかる実施形態に限定されるものではなく、3シリンダ以上の圧縮機にも適用可能である。
 なお、上述した第2実施形態では、フロント偏心部30とリア偏心部31の軸方向についての各中央位置P1を、各圧縮室11の軸方向についての中央位置P2よりも距離ΔPだけリア軸部5r側にずれた位置に配置する例について述べたが、本発明はこれに限定されるものではない。図11に示すように、フロント偏心部30の軸方向についての中央位置P1のみを、各圧縮室11の軸方向についての中央位置P2よりも距離ΔPだけリア軸部5r側にずれた位置に配置してもよい。
 さらに、図12に示すように、リア偏心部31の軸方向についての中央位置P1のみを、各圧縮室11の軸方向についての中央位置P2よりも距離ΔPだけリア軸部5r側にずれた位置に配置してもよい。これらの構成によっても、側面視において、ローラ15を傾斜させてフロント偏心部30またはリア偏心部31上端の荷重作用点A1で片当りさせることで、リア軸部5r側への荷重負担を減少させることができる。
 なお、上述した第1実施形態では、図4に示すように、側面視において、偏心軸部14の軸方向についての中央位置P1を、圧縮室11の軸方向についての中央位置P2よりも、軸方向に距離ΔPだけリア軸部5r側にずれた位置に配置する例について述べたが、本発明はかかる実施形態に限定されるものではない。図13に示すように、リア軸部5r(第1軸部)の直径φR[mm]を、フロント軸部5f(第2軸部)の直径φF[mm]と比べて大きくなるように設計した場合、側面視において、偏心軸部14の軸方向についての中央位置P1を、圧縮室11の軸方向についての中央位置P2よりも、軸方向に距離ΔPだけフロント軸部5f側にずれた位置に配置してもよい。このような配置によれば、ローラ15を傾斜させて偏心軸部14下端の荷重作用点A1で片当りさせることで、リア軸部5r側への荷重の負担を増加させることができると共に、フロント軸部5f側への荷重負担を減少させることができる。したがって、補強リング等の別部品を用いることなくフロント軸部5fの信頼性を向上できる。
1、101 ロータリ圧縮機(圧縮機)
5 クランク軸
5f フロント軸部(第1軸部)
5r リア軸部(第2軸部)
8 シリンダ本体
9 フロントヘッド(第1ヘッド部材)
10 リアヘッド(第2ヘッド部材)
11 圧縮室
14、30、31 偏心軸部
15 ローラ(環状部材)
28 ミドルプレート(板状部材)
29 ミドル軸部(接続軸部)
40 フロント側スラスト部
50 リア側スラスト部

Claims (4)

  1.  圧縮室を有するシリンダ本体と、
     前記圧縮室の内部に収容された偏心軸部と、前記偏心軸部を挟むように配置された第1軸部及び第2軸部とを有するクランク軸と、
     前記シリンダ本体の一端に配置され、前記第1軸部を支持可能な第1ヘッド部材と、
     前記シリンダ本体の他端に配置され、前記第2軸部を支持可能な第2ヘッド部材と、
     前記圧縮室の内部において、前記偏心軸部に外嵌された環状部材とを備え、
     側面視において、前記圧縮室の内部に配置された前記偏心軸部の軸方向についての中央位置は、前記圧縮室の軸方向についての中央位置よりも前記第2軸部側に配置されることを特徴とする圧縮機。
  2.  圧縮室をそれぞれ有する複数のシリンダ本体と、
     前記圧縮室のそれぞれの内部に収容された複数の偏心軸部と、前記複数の偏心軸部を挟むように配置された第1軸部及び第2軸部と、前記複数の偏心軸部を接続する接続軸部と
    を有するクランク軸と、
     前記複数のシリンダ本体の外側に配置され、前記第1軸部を支持可能な第1ヘッド部材と、
     前記複数のシリンダ本体の外側に配置され、前記第2軸部を支持可能な第2ヘッド部材と、
     前記複数のシリンダ本体の間に配置された板状部材と、
     前記複数の圧縮室の内部において、前記偏心軸部に外嵌された環状部材とを備え、
     側面視において、前記複数の圧縮室の少なくとも1つの内部に配置された偏心軸部の軸方向についての中央位置は、当該圧縮室の軸方向についての中央位置よりも前記第2軸部側に配置されることを特徴とする圧縮機。
  3.  前記第1軸部の直径は、前記第2軸部の直径よりも大きいことを特徴とする請求項1または2に記載の圧縮機。
  4.  前記偏心軸部と前記第2軸部の直径比率が2.0以下であることを特徴とする請求項1または2に記載の圧縮機。
PCT/JP2010/063105 2009-08-06 2010-08-03 圧縮機 WO2011016452A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080027297.0A CN102472280B (zh) 2009-08-06 2010-08-03 压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-183222 2009-08-06
JP2009183222 2009-08-06

Publications (1)

Publication Number Publication Date
WO2011016452A1 true WO2011016452A1 (ja) 2011-02-10

Family

ID=43544347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063105 WO2011016452A1 (ja) 2009-08-06 2010-08-03 圧縮機

Country Status (3)

Country Link
JP (1) JP4655166B2 (ja)
CN (1) CN102472280B (ja)
WO (1) WO2011016452A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068092A1 (en) * 2013-11-06 2015-05-14 BSH Hausgeräte GmbH Heat pump for a household appliance
CN107131128A (zh) * 2016-02-26 2017-09-05 松下知识产权经营株式会社 双气缸型密闭压缩机
CN108194356A (zh) * 2017-12-18 2018-06-22 珠海格力电器股份有限公司 泵体及压缩机
WO2021214907A1 (ja) * 2020-04-22 2021-10-28 三菱電機株式会社 圧縮機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984333B2 (ja) * 2011-01-17 2016-09-06 三菱重工業株式会社 ロータリー式圧縮機
KR20130083998A (ko) * 2012-01-16 2013-07-24 삼성전자주식회사 로타리 압축기
EP2985466A1 (en) * 2014-08-14 2016-02-17 BSH Electrodomésticos España, S.A. Rotary compressor, heat pump, and household appliance
JP6441119B2 (ja) * 2015-02-27 2018-12-19 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置
JP7002033B2 (ja) * 2016-02-26 2022-01-20 パナソニックIpマネジメント株式会社 2シリンダ型密閉圧縮機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265979A (ja) * 1999-03-12 2000-09-26 Mitsubishi Electric Corp ロータリ圧縮機
JP2006152839A (ja) * 2004-11-26 2006-06-15 Hitachi Home & Life Solutions Inc ロータリ2段圧縮機及びその圧縮機を用いた空気調和機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328972A (ja) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc 密閉形2シリンダロータリ圧縮機及びその製造方法
CN101012831A (zh) * 2007-01-29 2007-08-08 西安庆安制冷设备股份有限公司 一种经中隔板吸气的转子式双缸压缩机
JP2008240667A (ja) * 2007-03-28 2008-10-09 Fujitsu General Ltd ロータリ圧縮機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265979A (ja) * 1999-03-12 2000-09-26 Mitsubishi Electric Corp ロータリ圧縮機
JP2006152839A (ja) * 2004-11-26 2006-06-15 Hitachi Home & Life Solutions Inc ロータリ2段圧縮機及びその圧縮機を用いた空気調和機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068092A1 (en) * 2013-11-06 2015-05-14 BSH Hausgeräte GmbH Heat pump for a household appliance
CN107131128A (zh) * 2016-02-26 2017-09-05 松下知识产权经营株式会社 双气缸型密闭压缩机
EP3214312A1 (en) * 2016-02-26 2017-09-06 Panasonic Intellectual Property Management Co., Ltd. Two-cylinder hermetic compressor
US10233928B2 (en) 2016-02-26 2019-03-19 Panasonic Intellectual Property Management Co., Ltd. Two-cylinder hermetic compressor
CN108194356A (zh) * 2017-12-18 2018-06-22 珠海格力电器股份有限公司 泵体及压缩机
CN108194356B (zh) * 2017-12-18 2023-10-03 珠海格力电器股份有限公司 泵体及压缩机
WO2021214907A1 (ja) * 2020-04-22 2021-10-28 三菱電機株式会社 圧縮機

Also Published As

Publication number Publication date
CN102472280A (zh) 2012-05-23
JP4655166B2 (ja) 2011-03-23
JP2011052685A (ja) 2011-03-17
CN102472280B (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
JP4655166B2 (ja) 圧縮機
US20090104060A1 (en) Compressor
EP1555437B1 (en) Compressor
EP2455627B1 (en) Anti-abrasion apparatus and reciprocating compressor adopting the same
JP2009264370A (ja) スクロール式流体機械
KR102538446B1 (ko) 스크롤 압축기
KR20140142046A (ko) 스크롤 압축기
CN103089630B (zh) 旋转压缩机
JP4953974B2 (ja) ロータリ圧縮機
US7556485B2 (en) Rotary compressor with reduced refrigeration gas leaks during compression while preventing seizure
US8714950B2 (en) Scroll compressor having tip seals of different lengths having different thickness or widths
US20120237374A1 (en) Scroll-Type Fluid Machiner
JP4382852B2 (ja) ベーン形圧縮機
JP2009287537A (ja) 圧縮機
JP2010144680A (ja) 圧縮機
JP5247333B2 (ja) スクロール型圧縮機
JP5430208B2 (ja) 密閉型流体機械
JP2008095566A (ja) 気体圧縮機
WO2024142500A1 (ja) 両回転式スクロール型圧縮機
JP2005016379A (ja) スクロール型流体機械
US6419470B2 (en) Scroll compressor
JP2018096251A (ja) 圧縮機
JP2012107546A (ja) ロータリー圧縮機
WO2019138502A1 (ja) スクロール圧縮機
JP2007218162A (ja) 往復動型流体機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027297.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806451

Country of ref document: EP

Kind code of ref document: A1