WO2011016132A1 - Elevator control operation system at earthquake occurrence time - Google Patents

Elevator control operation system at earthquake occurrence time Download PDF

Info

Publication number
WO2011016132A1
WO2011016132A1 PCT/JP2009/064009 JP2009064009W WO2011016132A1 WO 2011016132 A1 WO2011016132 A1 WO 2011016132A1 JP 2009064009 W JP2009064009 W JP 2009064009W WO 2011016132 A1 WO2011016132 A1 WO 2011016132A1
Authority
WO
WIPO (PCT)
Prior art keywords
earthquake
elevator
long
building
car
Prior art date
Application number
PCT/JP2009/064009
Other languages
French (fr)
Japanese (ja)
Inventor
功治 山岸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/064009 priority Critical patent/WO2011016132A1/en
Publication of WO2011016132A1 publication Critical patent/WO2011016132A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/021Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system
    • B66B5/022Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system where the abnormal operating condition is caused by a natural event, e.g. earthquake

Definitions

  • This invention is particularly effective when a long-period earthquake with a long vibration period occurs in the earthquake control operation for quickly removing passengers in an elevator installed in a building from a car when an earthquake occurs.
  • the present invention relates to an elevator operation control system during an earthquake to ensure passenger safety and minimize equipment damage.
  • Conventional elevator control systems for earthquakes are equipped with a P-wave seismic detector that detects initial tremors and an S-wave seismic detector that detects major motions. To stop. Further, when an earthquake with a large seismic intensity is detected by the S-wave earthquake detector, the elevator is suddenly stopped.
  • Patent Document 1 has a problem that a dedicated earthquake detector for detecting a long-period earthquake is expensive and installation cost is high. On the other hand, if the detection level when outputting the “extra low” earthquake detection signal of the S-wave earthquake detector is adjusted, the installation cost can be reduced. However, since the detection signal for a long-period earthquake is one point, the operation of the elevator cannot be appropriately determined and switched according to the influence of the long-period earthquake.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an elevator seismic control operation system capable of reducing the installation cost and determining the influence of a long-period earthquake. It is.
  • the elevator operation control system for an earthquake is provided in a building where the elevator is installed, and detects a long-period earthquake occurring in the building by adjusting the detection level of the main motion of the earthquake.
  • An earthquake detector that outputs a detection signal; and a control device that predicts the magnitude or vibration level of a long-period earthquake occurring in the building based on the output state of the earthquake detection signal by the earthquake detector. It is.
  • the present invention it is possible to suppress the installation cost of the earthquake control operation system and judge the influence of the long-period earthquake.
  • FIG. 1 is a schematic diagram of an elevator in which an elevator seismic control operation system according to Embodiment 1 of the present invention is used. BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic at the time of seeing from the inner side the elevator car in which the elevator operation control system at the time of the earthquake in Embodiment 1 of this invention is utilized.
  • 1 is a block diagram of an elevator seismic control operation system in Embodiment 1 of the present invention.
  • FIG. 1 is a block diagram of a transmission interface of an elevator earthquake control operation system in Embodiment 1 of the present invention.
  • FIG. It is a block diagram of the elevator control means of the elevator operation control system at the time of earthquake in Embodiment 1 of this invention. It is a flowchart for demonstrating operation
  • FIG. 1 is a schematic diagram of an elevator in which an elevator seismic control operation system according to Embodiment 1 of the present invention is used.
  • reference numeral 1 denotes an elevator hoistway.
  • the hoistway 1 is formed so as to penetrate each floor of the building.
  • a machine room 2 is provided above the hoistway 1.
  • a hoisting machine 3 is provided in the machine room 2, a hoisting machine 3 is provided.
  • the main rope 4 is wound around the hoist 3.
  • a car 5 is suspended from one end of the main rope 4.
  • This car 5 carries users and objects to the upper and lower floors.
  • a counterweight 6 is suspended from the other end of the main rope 4. This counterweight 6 maintains the balance with the car 5. Thereby, the load of the hoisting machine 3 is reduced.
  • a landing 7 facing the hoistway 1 is provided on each floor of the building.
  • the halls 7 on the first to seventh floors are shown. Of these halls 7, hall 7 on the 7th floor is not permitted for use by general users.
  • These halls 7 are provided with a hall call registration device 8 and a hall notification device 9.
  • the hall call registration device 8 is provided with an up button and a down button. The user can register a hall call in a desired direction by pressing a button in a desired direction among the ascending or descending buttons.
  • the hall notification device 9 has a function of displaying and notifying information about the elevator to the users at the halls 7.
  • the 4th floor having the platform 7 indicated by the bold line and the dotted line is selected as the evacuation floor.
  • This evacuation floor has the effect of damaging the equipment in the hoistway even if the main rope 4 and the hoistway 1 of the elevator are greatly shaken due to the shaking of the building due to a long period of earthquake. It is determined by simulation or the like as a floor that is difficult to receive.
  • the car 5 descends between the second floor and the first floor. In this case, the nearest floor in the traveling direction of the car 5 is the first floor having the hall 7 indicated by a thick line.
  • FIG. 2 is a schematic view of the elevator car in which the elevator seismic control operation system according to Embodiment 1 of the present invention is viewed from the inside.
  • 10 is a car door. This car door 10 is provided at the car doorway.
  • a car operation panel 11 is provided on one side of the car entrance.
  • the car operation panel 11 is provided with a door opening button 12, a door closing button 13, a display 14, a call button 15, and a car notification device 16.
  • the door opening button 12 is effective only when the car 5 is stopped, and the car door 10 is opened when pressed.
  • the door closing button 13 is pressed, the car door 10 is closed only when the car door 10 is open.
  • the indicator 14 has a function of displaying the traveling direction of the car 5 and the current floor. In FIG. 2, the indicator 14 indicates that the car 5 is rising by displaying an upward arrow. The indicator 14 indicates that the car 5 is traveling near the second floor by displaying “2”.
  • the call button 15 has a function of registering a car call. Specifically, “1” to “6” are displayed on these call buttons 15 corresponding to the first to sixth floors. In FIG. 2, the operated call button 15 on the fifth floor is indicated by a bold line.
  • FIG. 3 is a block diagram of an elevator seismic control operation system according to Embodiment 1 of the present invention.
  • reference numeral 17 denotes a car call registration device.
  • the car call registration device 17 has a function of processing operations of the door open button 12, the door close button 13, and the call button 15.
  • the control panel 18 is an elevator control panel.
  • the control panel 18 is provided in the elevator hoistway 1 or the machine room 2.
  • a control device 19 is accommodated in the control panel 18.
  • the control device 19 includes a transmission interface 20 and an elevator control means 21.
  • the transmission interface 20 has a function of receiving a hall call from the hall call registration device 8.
  • the transmission interface 20 has a function of inputting a car call from the car call registration device 17.
  • the elevator control means 21 has a function of inputting a car call and a hall call from the transmission interface 20.
  • the elevator control means 21 has a function of controlling the operation of the car 5 based on these calls.
  • the earthquake detector 22 is an earthquake detector.
  • the earthquake detector 22 is provided in a building where an elevator is installed.
  • the earthquake sensor 22 has a function of detecting an initial fine movement and a main movement of an earthquake reaching a building when an earthquake occurs.
  • the earthquake detector 22 has a function of detecting the initial fine movement and the main movement based on the detection reference value (Gull value) corresponding to the initial fine movement and the main movement of the earthquake reaching the building.
  • the earthquake detector 22 has a function of outputting a “high” earthquake detection signal when initial tremor is detected, and outputting a “low” earthquake detection signal when main motion is detected.
  • the input / output device 23 is an input / output device.
  • the input / output device 23 has a function of receiving initial high and low motion earthquake detection signals from the earthquake detector 22 and outputting them to the transmission interface 20.
  • the elevator control unit 21 causes the elevator to generate an earthquake according to the “high” or “low” earthquake detection signal. Have time-controlled operation. Thereby, a user's safety is achieved.
  • a detection reference value (gal value) that is a detection level of the main motion of the earthquake is appropriately set so that a long-period earthquake can be detected.
  • the earthquake detector 22 outputs a “special low” earthquake detection signal to the input / output device 23 when a long-period earthquake is detected.
  • control device 19 includes long-period earthquake scale prediction means 24.
  • the long period earthquake magnitude predicting means 24 determines the long period earthquake magnitude prediction unit 24 based on the duration of the “extra low” earthquake detection signal input. A function to predict the magnitude or vibration level of an earthquake is provided.
  • the long-period earthquake magnitude prediction means 24 determines the magnitude of the long-period earthquake that has occurred in the building depending on whether or not the duration value of the “extra low” earthquake detection signal input is greater than a preset threshold value. Or it has a function to predict the vibration level. Further, the long-period earthquake magnitude prediction means 24 has a function of outputting prediction information on the magnitude or vibration level of the long-period earthquake to the elevator control means 21.
  • the elevator control means 21 to which the prediction information is input controls the operation of the elevator car 5 based on the prediction information.
  • FIG. 4 is a block diagram of a transmission interface of the elevator seismic control operation system according to Embodiment 1 of the present invention.
  • 25 is a ROM.
  • the ROM 25 stores communication program code.
  • Reference numeral 26 denotes a RAM.
  • the RAM 26 stores data such as communication parameters.
  • the microcomputer 27 is a microcomputer.
  • the microcomputer 27 has a function of reading a communication program code from the ROM 25, taking out data from the RAM 26, and processing data transmission.
  • Reference numeral 28 denotes a 2-port RAM.
  • the 2-port RAM 28 has a function of exchanging data between the elevator control means 21 and the hall call registration device 8, the car 5, and the input / output device 23.
  • This receiver 29 is a receiver. This receiver 29 is connected to the hall call registration device 8. A landing call is input to the receiver 29. This hall call is transmitted to the elevator control means 21 via the serial interface 30 and the 2-port RAM 28.
  • This receiver 31 is a receiver. This receiver 31 is connected to the car 5. A car call is input to the receiver 31. This car call is transmitted to the elevator control means 21 via the serial interface 32 and the 2-port RAM 28.
  • the receiver 33 is a receiver.
  • the receiver 33 is connected to the input / output device 23.
  • the receiver 33 receives an earthquake detection signal. This earthquake detection signal is transmitted to the elevator control means 21 via the serial interface 34 and the 2-port RAM 28.
  • control signal transmitted from the elevator control means 21 is temporarily stored in the 2-port RAM 28 and sequentially taken out.
  • the control signals are converted into data by the serial interfaces 30, 30, and 32, and transmitted to the hall call registration device 8, the car 5, and the input / output device 23 by the drivers 35 to 37.
  • FIG. 5 is a block diagram of the elevator control means of the elevator earthquake control operation system according to Embodiment 1 of the present invention.
  • Reference numeral 38 denotes a ROM.
  • the ROM 38 stores software codes that serve as means for controlling the elevator.
  • Reference numeral 39 denotes a RAM.
  • the RAM 39 stores parameters for performing control.
  • Reference numeral 40 denotes a microcomputer.
  • the microcomputer 40 generates control data and transmits a control signal via the transmission interface 20.
  • the input port 41 is an input port.
  • the input port 41 has a function of inputting the expected magnitude of a long-period earthquake transmitted from the long-period earthquake magnitude prediction means 24.
  • the expected scale and the like are stored in the RAM 39. Based on this expected scale and the like, the control operation of the elevator is determined.
  • FIG. 6 is a flow chart for explaining the operation of the elevator seismic control operation system according to Embodiment 1 of the present invention.
  • step S1 the elevator is operating normally.
  • the process proceeds to step S ⁇ b> 2, and the control device 19 always determines whether or not the earthquake detector 22 outputs an “extra low” earthquake detection signal. If the “special low” earthquake detection signal is not output, the process proceeds to step S3. In step S3, the current elevator operation is continued, and the process returns to step S2. On the other hand, if the “special low” earthquake detection signal is output in step S2, the process proceeds to step S4.
  • step S4 it is determined whether or not the earthquake detector 22 is outputting a “low” or “high” earthquake detection signal.
  • the process proceeds to step S5.
  • step S5 the elevator control means 21 detects a "low” or “high” earthquake detection signal, the car 5 stops at the nearest floor, and the process proceeds to step S6.
  • step S6 the operation of the elevator is suspended and the operation ends.
  • step S4 “low” or “high” earthquake detection signal is not output, the process proceeds to step S7.
  • step S7 a long-period earthquake is detected by the elevator control means 21, and the process proceeds to step S8.
  • step S8 the car 5 stops after traveling to the nearest floor, and proceeds to step S9.
  • step S9 the car 5 continues the closest floor stop state, and proceeds to step S10.
  • step S10 it is detected whether or not the door opening button 12 in the car 5 has been operated. If the door open button 12 is operated, the process proceeds to step S11.
  • step S11 a door opening operation is performed, and after a predetermined time, the door closing operation is performed. When the car door 10 and the landing door are completely closed, the process returns to step S9.
  • step S12 the long-period earthquake scale predicting means 24 counts the output duration time of the “special low” earthquake detection signal by the earthquake detector 22, and determines whether or not it continues for a certain period of time.
  • the process proceeds to step S13.
  • step S13 the long-period earthquake magnitude prediction means 24 determines that the long-period earthquake magnitude is large, and the process proceeds to step S14.
  • step S14 the operation of the elevator is suspended and the operation ends. At this time, the hall and car notifying devices 9 and 16 notify that the elevator has been put into a resting state.
  • step S15 the long-period earthquake magnitude prediction means 24 determines that the long-period earthquake magnitude is small, and the process proceeds to step S16.
  • step S16 after the landing and car notifying devices 9 and 16 notify that the vehicle will travel to the evacuation floor, the car 5 travels to the evacuation floor that is less affected by the long-period earthquake, and proceeds to step S17.
  • step S17 the operation of the elevator is suspended and the operation ends.
  • the control device 19 predicts the magnitude or vibration level of a long-period earthquake occurring in the building based on the output state of the “special low” earthquake detection signal from the earthquake detector 22. To do. Specifically, the control device 19 predicts the magnitude or vibration level of a long-period earthquake occurring in the building based on the output duration of the “extra low” earthquake detection signal from the earthquake detector 22. For this reason, the installation cost of the earthquake control operation system can be suppressed, and the influence of a long-period earthquake can be determined.
  • control device 19 predicts that the magnitude or vibration level of a long-period earthquake occurring in the building is larger than a preset threshold value, the control device 19 stops the elevator car 5 at the nearest floor and stops the elevator. Put it in a state.
  • the control device 19 predicts that the magnitude or vibration level of the long-period earthquake occurring in the building is smaller than a preset threshold, the elevator car 5 is stopped at the nearest floor, and then the long-period earthquake is stopped. Drive to an evacuation floor that is pre-determined as a floor that is less affected by the earthquake.
  • the landing and car notification devices 9 and 16 put the elevators in a dormant state when the control device 19 predicts that the magnitude or vibration level of a long-period earthquake occurring in the building is greater than a preset threshold value. Inform the effect. Also, the landing and car notifying devices 9 and 16 are located near the elevator car 5 when the control device 19 predicts that the magnitude or vibration level of a long-period earthquake occurring in the building is smaller than a preset threshold value. After stopping at the floor, it is notified that the vehicle will travel to the evacuation floor.
  • the user can confirm the operation of the elevator during a long-period earthquake. Thereby, a user's anxiety is reduced.
  • the control device 19 predicts the magnitude or vibration level of a long-period earthquake that has occurred in a building based on the output duration of the “extra low” earthquake detection signal from the earthquake detector 22. Met.
  • the control device 19 stores in advance the vibration characteristic information determined by the structure of the building, and based on the vibration characteristic information and the output duration of the “extra low” earthquake detection signal, the magnitude of the long-period earthquake occurring in the building or It is good also as a structure which estimates a vibration level. In this case, it is possible to appropriately determine the influence of the long-period earthquake for each building.
  • the installation cost can be suppressed and the elevator can be used for judging the influence of a long-period earthquake.

Abstract

Provided is an elevator control operation system at the occurrence of earthquake, wherein the elevator control operation system is configured to suppress setting costs and can judge the influence of long periodic earthquake.  Thus, an elevator control operation system is comprised of an earthquake detector that is set at a building equipped with an elevator, adjusts a detection level of a main swing of the earthquake to detect a long periodic earthquake occurred at the building and outputs an earthquake detection signal; and a control device that predicts the magnitude of the long periodic earthquake or vibration level occurred at the building in accordance with an output condition of the earthquake detector.  Hence, no earthquake detectors exclusively used for the detection of long periodic earthquake are required, so that a less expensive system can judge the influence of a long period earthquake.

Description

エレベータの地震時管制運転システムElevator seismic control operation system
 この発明は、地震が発生した際、ある建物に設置されたエレベータ内の乗客を早期にかごから降ろすための地震管制運転の中でも、特に地震動の振動周期が長い長周期地震が発生した際に、乗客の安全を確保し機器の損傷を最小限に抑えるための、エレベータの地震時管制運転システムに関するものである。 This invention is particularly effective when a long-period earthquake with a long vibration period occurs in the earthquake control operation for quickly removing passengers in an elevator installed in a building from a car when an earthquake occurs. The present invention relates to an elevator operation control system during an earthquake to ensure passenger safety and minimize equipment damage.
 従来のエレベータの地震時管制運転システムは、初期微動を検知するP波地震感知器や主要動を検知するS波地震感知器を設置し、地震感知器が動作すると、エレベータのかごを最寄階に停止させる。また、S波地震感知器により、震度の大きな地震を検知した場合は、エレベータを急停止させる。 Conventional elevator control systems for earthquakes are equipped with a P-wave seismic detector that detects initial tremors and an S-wave seismic detector that detects major motions. To stop. Further, when an earthquake with a large seismic intensity is detected by the S-wave earthquake detector, the elevator is suddenly stopped.
 しかし、従来と同様のS波地震感知器の設定では、振動周期の長い長周期地震を検知することができない。そこで、長周期地震を検知する専用の長周期地震感知器を設置することで、長周期地震発生時のエレベータ管制運転を行うシステムが提案されている(例えば、特許文献1参照)。 However, long-period earthquakes with long oscillation periods cannot be detected with the same S-wave seismic detector settings as before. Thus, a system has been proposed that performs an elevator control operation when a long-period earthquake occurs by installing a dedicated long-period earthquake detector that detects long-period earthquakes (see, for example, Patent Document 1).
 また、S波地震感知器の「特低」地震検知信号を出力する際の検知レベルを調整することで、長周期地震を検知することも検討されている。 Also, it is considered to detect long-period earthquakes by adjusting the detection level when outputting the “extra low” earthquake detection signal of the S-wave earthquake detector.
日本特開2007-320719号公報Japanese Unexamined Patent Publication No. 2007-320719
 しかし、特許文献1記載のものは、長周期地震を検知するための専用の地震感知器が高価であり、設置コストが多くかかるという問題があった。これに対し、S波地震感知器の「特低」地震検知信号を出力する際の検知レベルを調整すれば、設置コストを抑えることができる。しかし、長周期地震の検知信号が1点となるため、長周期地震の影響に応じて、エレベータの動作を適切に判断して切替えることができなかった。 However, the one described in Patent Document 1 has a problem that a dedicated earthquake detector for detecting a long-period earthquake is expensive and installation cost is high. On the other hand, if the detection level when outputting the “extra low” earthquake detection signal of the S-wave earthquake detector is adjusted, the installation cost can be reduced. However, since the detection signal for a long-period earthquake is one point, the operation of the elevator cannot be appropriately determined and switched according to the influence of the long-period earthquake.
 この発明は、上述のような課題を解決するためになされたもので、その目的は、設置コストを抑え、長周期地震の影響を判断することができるエレベータの地震時管制運転システムを提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an elevator seismic control operation system capable of reducing the installation cost and determining the influence of a long-period earthquake. It is.
 この発明に係るエレベータの地震時管制運転システムは、エレベータが設置された建物に設けられ、地震の主要動の検知レベルを調整することにより、前記建物に発生する長周期地震を検知して、地震検知信号を出力する地震感知器と、前記地震感知器による前記地震検知信号の出力状態に基づいて、前記建物に発生した長周期地震の規模又は振動レベルを予想する制御装置と、を備えたものである。 The elevator operation control system for an earthquake according to the present invention is provided in a building where the elevator is installed, and detects a long-period earthquake occurring in the building by adjusting the detection level of the main motion of the earthquake. An earthquake detector that outputs a detection signal; and a control device that predicts the magnitude or vibration level of a long-period earthquake occurring in the building based on the output state of the earthquake detection signal by the earthquake detector. It is.
 この発明によれば、地震時管制運転システムの設置コストを抑え、長周期地震の影響を判断することができる。 According to the present invention, it is possible to suppress the installation cost of the earthquake control operation system and judge the influence of the long-period earthquake.
この発明の実施の形態1におけるエレベータの地震時管制運転システムが利用されるエレベータの概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an elevator in which an elevator seismic control operation system according to Embodiment 1 of the present invention is used. この発明の実施の形態1におけるエレベータの地震時管制運転システムが利用されるエレベータのかごを内側から見た場合の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic at the time of seeing from the inner side the elevator car in which the elevator operation control system at the time of the earthquake in Embodiment 1 of this invention is utilized. この発明の実施の形態1におけるエレベータの地震時管制運転システムのブロック図である。1 is a block diagram of an elevator seismic control operation system in Embodiment 1 of the present invention. FIG. この発明の実施の形態1におけるエレベータの地震時管制運転システムの伝送インターフェイスのブロック図である。1 is a block diagram of a transmission interface of an elevator earthquake control operation system in Embodiment 1 of the present invention. FIG. この発明の実施の形態1におけるエレベータの地震時管制運転システムのエレベータ制御手段のブロック図である。It is a block diagram of the elevator control means of the elevator operation control system at the time of earthquake in Embodiment 1 of this invention. この発明の実施の形態1におけるエレベータの地震時管制運転システムの動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the operation control system at the time of the earthquake of the elevator in Embodiment 1 of this invention.
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。 DETAILED DESCRIPTION Embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.
実施の形態1.
 図1はこの発明の実施の形態1におけるエレベータの地震時管制運転システムが利用されるエレベータの概略図である。
 図1において、1はエレベータの昇降路である。この昇降路1は、建物の各階を貫くように形成される。この昇降路1の上方には、機械室2が設けられる。この機械室2には、巻上機3が設けられる。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram of an elevator in which an elevator seismic control operation system according to Embodiment 1 of the present invention is used.
In FIG. 1, reference numeral 1 denotes an elevator hoistway. The hoistway 1 is formed so as to penetrate each floor of the building. A machine room 2 is provided above the hoistway 1. In the machine room 2, a hoisting machine 3 is provided.
 この巻上機3には、メインロープ4が巻き掛けられる。このメインロープ4の一端には、かご5が吊持される。このかご5は、利用者や物を上下階へ運搬するものである。一方、メインロープ4の他端には、カウンタウエイト6が吊持される。このカウンタウエイト6により、かご5とのバランスが維持される。これにより、巻上機3の負荷が軽減される。 The main rope 4 is wound around the hoist 3. A car 5 is suspended from one end of the main rope 4. This car 5 carries users and objects to the upper and lower floors. On the other hand, a counterweight 6 is suspended from the other end of the main rope 4. This counterweight 6 maintains the balance with the car 5. Thereby, the load of the hoisting machine 3 is reduced.
 また、建物の各階には、昇降路1に面して乗場7が設けられる。具体的には、1階~7階の乗場7が示される。これらの乗場7のうち、7階の乗場7は、一般利用者に利用が許可されていないものである。これらの乗場7には、乗場呼び登録装置8と乗場報知装置9とが設けられる。この乗場呼び登録装置8には、上昇ボタンと下降ボタンが設けられる。利用者は、上昇又は下降ボタンのうち、行きたい方向のボタンを押すことにより、行きたい方向の乗場呼びを登録することができる。乗場報知装置9は、各乗場7にいる利用者に対して、エレベータに関する情報を表示・報知する機能を備える。 Also, on each floor of the building, a landing 7 facing the hoistway 1 is provided. Specifically, the halls 7 on the first to seventh floors are shown. Of these halls 7, hall 7 on the 7th floor is not permitted for use by general users. These halls 7 are provided with a hall call registration device 8 and a hall notification device 9. The hall call registration device 8 is provided with an up button and a down button. The user can register a hall call in a desired direction by pressing a button in a desired direction among the ascending or descending buttons. The hall notification device 9 has a function of displaying and notifying information about the elevator to the users at the halls 7.
 ここで、図1においては、太線かつ点線で示された乗場7を有する4階が避難階として選定されている。この避難階は、長周期地震が発生した場合に、長周期による建物の揺れによってエレベータのメインロープ4や昇降路1が大きく振れた場合であっても、昇降路内機器が損傷する等の影響を受けにくい階床として、シミュレーション等により決定される。なお、図1では、かご5は、2階と1階との間を下降している。この場合のかご5の進行方向の最寄階は、太線で示された乗場7を有する1階となる。 Here, in FIG. 1, the 4th floor having the platform 7 indicated by the bold line and the dotted line is selected as the evacuation floor. This evacuation floor has the effect of damaging the equipment in the hoistway even if the main rope 4 and the hoistway 1 of the elevator are greatly shaken due to the shaking of the building due to a long period of earthquake. It is determined by simulation or the like as a floor that is difficult to receive. In FIG. 1, the car 5 descends between the second floor and the first floor. In this case, the nearest floor in the traveling direction of the car 5 is the first floor having the hall 7 indicated by a thick line.
 図2はこの発明の実施の形態1におけるエレベータの地震時管制運転システムが利用されるエレベータのかごを内側から見た場合の概略図である。
 図2において、10はかごの戸である。このかごの戸10は、かご出入口に設けられる。このかご出入口の一側には、かご操作盤11が設けられる。このかご操作盤11には、戸開釦12、戸閉釦13、表示器14、呼び釦15、かご報知装置16が設けられる。
FIG. 2 is a schematic view of the elevator car in which the elevator seismic control operation system according to Embodiment 1 of the present invention is viewed from the inside.
In FIG. 2, 10 is a car door. This car door 10 is provided at the car doorway. A car operation panel 11 is provided on one side of the car entrance. The car operation panel 11 is provided with a door opening button 12, a door closing button 13, a display 14, a call button 15, and a car notification device 16.
 戸開釦12は、かご5が停止しているときのみ有効となり、押圧されると、かごの戸10が開くようになっている。一方、戸閉釦13が押圧されると、かごの戸10が開いているときのみ、かごの戸10が閉じるようになっている。 The door opening button 12 is effective only when the car 5 is stopped, and the car door 10 is opened when pressed. On the other hand, when the door closing button 13 is pressed, the car door 10 is closed only when the car door 10 is open.
 表示器14は、かご5の走行方向と現在階床とを表示する機能を備える。図2においては、表示器14は、上向きの矢印を表示することにより、かご5が上昇していることを示している。また、表示器14は、「2」を表示することにより、かご5が2階近傍を走行していることを示している。 The indicator 14 has a function of displaying the traveling direction of the car 5 and the current floor. In FIG. 2, the indicator 14 indicates that the car 5 is rising by displaying an upward arrow. The indicator 14 indicates that the car 5 is traveling near the second floor by displaying “2”.
 呼び釦15は、かご呼びを登録する機能を備える。具体的には、これらの呼び釦15には、1階~6階に対応して、「1」~「6」が表示される。図2においては、操作された5階の呼び釦15が太線で示されている。 The call button 15 has a function of registering a car call. Specifically, “1” to “6” are displayed on these call buttons 15 corresponding to the first to sixth floors. In FIG. 2, the operated call button 15 on the fifth floor is indicated by a bold line.
 図3はこの発明の実施の形態1におけるエレベータの地震時管制運転システムのブロック図である。
 図3において、17はかご呼び登録装置である。このかご呼び登録装置17は、戸開釦12、戸閉釦13、呼び釦15の操作を処理する機能を備える。
FIG. 3 is a block diagram of an elevator seismic control operation system according to Embodiment 1 of the present invention.
In FIG. 3, reference numeral 17 denotes a car call registration device. The car call registration device 17 has a function of processing operations of the door open button 12, the door close button 13, and the call button 15.
 18はエレベータの制御盤である。この制御盤18は、エレベータの昇降路1又は機械室2に設けられる。この制御盤18には、制御装置19が収納される。制御装置19は、伝送インターフェイス20、エレベータ制御手段21を備える。 18 is an elevator control panel. The control panel 18 is provided in the elevator hoistway 1 or the machine room 2. A control device 19 is accommodated in the control panel 18. The control device 19 includes a transmission interface 20 and an elevator control means 21.
 伝送インターフェイス20は、乗場呼び登録装置8から乗場呼びが入力される機能を備える。また、伝送インターフェイス20は、かご呼び登録装置17からかご呼びが入力される機能を備える。エレベータ制御手段21は、伝送インターフェイス20からかご呼び、乗場呼びが入力される機能を備える。そして、エレベータ制御手段21は、これらの呼びに基づいて、かご5の動作を制御する機能を備える。 The transmission interface 20 has a function of receiving a hall call from the hall call registration device 8. The transmission interface 20 has a function of inputting a car call from the car call registration device 17. The elevator control means 21 has a function of inputting a car call and a hall call from the transmission interface 20. The elevator control means 21 has a function of controlling the operation of the car 5 based on these calls.
 22は地震感知器である。この地震感知器22は、エレベータが設置された建物に設けられる。この地震感知器22は、地震が発生した場合に、建物に到達する地震の初期微動及び主要動を検知する機能を備える。具体的には、地震感知器22は、建物に到達する地震の初期微動及び主要動にそれぞれ応じた検出基準値(ガル値)に基づいて、初期微動及び主要動を検知する機能を備える。そして、地震感知器22は、初期微動を検知した場合は「高」地震検知信号を出力し、主要動を検出した場合は「低」地震検知信号を出力する機能を備える。 22 is an earthquake detector. The earthquake detector 22 is provided in a building where an elevator is installed. The earthquake sensor 22 has a function of detecting an initial fine movement and a main movement of an earthquake reaching a building when an earthquake occurs. Specifically, the earthquake detector 22 has a function of detecting the initial fine movement and the main movement based on the detection reference value (Gull value) corresponding to the initial fine movement and the main movement of the earthquake reaching the building. The earthquake detector 22 has a function of outputting a “high” earthquake detection signal when initial tremor is detected, and outputting a “low” earthquake detection signal when main motion is detected.
 23は入出力装置である。この入出力装置23は、地震感知器22から初期微動及び主要動を「高」及び「低」地震検知信号が入力され、伝送インターフェイス20に出力する機能を備える。 23 is an input / output device. The input / output device 23 has a function of receiving initial high and low motion earthquake detection signals from the earthquake detector 22 and outputting them to the transmission interface 20.
 かかる構成のエレベータにおいては、エレベータ制御手段21は、伝送インターフェイス20から「高」又は「低」地震検知信号が入力されると、「高」又は「低」地震検知信号に応じて、エレベータに地震時管制運転を行わせる。これにより、利用者の安全が図られる。 In the elevator configured as described above, when the “high” or “low” earthquake detection signal is input from the transmission interface 20, the elevator control unit 21 causes the elevator to generate an earthquake according to the “high” or “low” earthquake detection signal. Have time-controlled operation. Thereby, a user's safety is achieved.
 さらに、本実施の形態の地震感知器22においては、長周期地震も検知できるように、地震の主要動の検知レベルとなる検出基準値(ガル値)が適切に設定されている。そして、地震感知器22は、長周期地震を検知した場合は「特低」地震検知信号を入出力装置23に出力するようになっている。 Furthermore, in the earthquake detector 22 of the present embodiment, a detection reference value (gal value) that is a detection level of the main motion of the earthquake is appropriately set so that a long-period earthquake can be detected. The earthquake detector 22 outputs a “special low” earthquake detection signal to the input / output device 23 when a long-period earthquake is detected.
 これに対し、制御装置19は、長周期地震規模予想手段24を備える。この長周期地震規模予想手段24は、伝送インターフェイス20に、入出力装置23から「特低」地震検知信号が入力されると、「特低」地震検知信号入力の継続時間に基づいて、長周期地震の規模又は振動レベルを予想する機能を備える。 On the other hand, the control device 19 includes long-period earthquake scale prediction means 24. When the “extra low” earthquake detection signal is input from the input / output device 23 to the transmission interface 20, the long period earthquake magnitude predicting means 24 determines the long period earthquake magnitude prediction unit 24 based on the duration of the “extra low” earthquake detection signal input. A function to predict the magnitude or vibration level of an earthquake is provided.
 具体的には、長周期地震規模予想手段24は、「特低」地震検知信号入力の継続時間の値が予め設定された閾値よりも大きいか否かにより、建物に発生した長周期地震の規模又は振動レベルを予想する機能を備える。また、長周期地震規模予想手段24は、長周期地震の規模又は振動レベルの予想情報をエレベータ制御手段21に出力する機能を備える。そして、予想情報が入力されたエレベータ制御手段21は、この予想情報に基づいて、エレベータのかご5の動作を制御するようになっている。 Specifically, the long-period earthquake magnitude prediction means 24 determines the magnitude of the long-period earthquake that has occurred in the building depending on whether or not the duration value of the “extra low” earthquake detection signal input is greater than a preset threshold value. Or it has a function to predict the vibration level. Further, the long-period earthquake magnitude prediction means 24 has a function of outputting prediction information on the magnitude or vibration level of the long-period earthquake to the elevator control means 21. The elevator control means 21 to which the prediction information is input controls the operation of the elevator car 5 based on the prediction information.
 図4はこの発明の実施の形態1におけるエレベータの地震時管制運転システムの伝送インターフェイスのブロック図である。
 図4において、25はROMである。このROM25は、通信用プログラムコードを記憶している。26はRAMである。このRAM26は、通信用パラメータ等のデータを記憶している。
FIG. 4 is a block diagram of a transmission interface of the elevator seismic control operation system according to Embodiment 1 of the present invention.
In FIG. 4, 25 is a ROM. The ROM 25 stores communication program code. Reference numeral 26 denotes a RAM. The RAM 26 stores data such as communication parameters.
 27はマイクロコンピュータである。このマイクロコンピュータ27は、ROM25から通信用プログラムコードを読み出し、RAM26からデータを取り出して、データ伝送を処理する機能を備える。28は2ポートRAMである。この2ポートRAM28は、エレベータ制御手段21と、乗場呼び登録装置8、かご5、入出力装置23との間のデータのやり取りを行う機能を備える。 27 is a microcomputer. The microcomputer 27 has a function of reading a communication program code from the ROM 25, taking out data from the RAM 26, and processing data transmission. Reference numeral 28 denotes a 2-port RAM. The 2-port RAM 28 has a function of exchanging data between the elevator control means 21 and the hall call registration device 8, the car 5, and the input / output device 23.
 29はレシーバである。このレシーバ29は、乗場呼び登録装置8に接続される。このレシーバ29には、乗場呼びが入力される。この乗場呼びは、シリアルインターフェイス30、2ポートRAM28を介して、エレベータ制御手段21に伝送される。 29 is a receiver. This receiver 29 is connected to the hall call registration device 8. A landing call is input to the receiver 29. This hall call is transmitted to the elevator control means 21 via the serial interface 30 and the 2-port RAM 28.
 31はレシーバである。このレシーバ31は、かご5に接続される。このレシーバ31には、かご呼びが入力される。このかご呼びは、シリアルインターフェイス32、2ポートRAM28を介して、エレベータ制御手段21に伝送される。 31 is a receiver. This receiver 31 is connected to the car 5. A car call is input to the receiver 31. This car call is transmitted to the elevator control means 21 via the serial interface 32 and the 2-port RAM 28.
 33はレシーバである。このレシーバ33は、入出力装置23に接続される。このレシーバ33には、地震検知信号が入力される。この地震検知信号は、シリアルインターフェイス34、2ポートRAM28を介して、エレベータ制御手段21に伝送される。 33 is a receiver. The receiver 33 is connected to the input / output device 23. The receiver 33 receives an earthquake detection signal. This earthquake detection signal is transmitted to the elevator control means 21 via the serial interface 34 and the 2-port RAM 28.
 これに対し、エレベータ制御手段21から伝送される制御信号は、一旦、2ポートRAM28に格納され、順に取り出される。そして、制御信号は、シリアルインターフェイス30、30、32でデータ変換を行い、ドライバ35~37によって、乗場呼び登録装置8、かご5、入出力装置23へ送信される。 On the other hand, the control signal transmitted from the elevator control means 21 is temporarily stored in the 2-port RAM 28 and sequentially taken out. The control signals are converted into data by the serial interfaces 30, 30, and 32, and transmitted to the hall call registration device 8, the car 5, and the input / output device 23 by the drivers 35 to 37.
 図5はこの発明の実施の形態1におけるエレベータの地震時管制運転システムのエレベータ制御手段のブロック図である。
 38はROMである。このROM38は、エレベータを制御する手段となるソフトウエアコードを格納している。39はRAMである。このRAM39は、制御を行うためのパラメータを格納している。40はマイクロコンピュータである。このマイクロコンピュータ40は、制御データを生成し、伝送インターフェイス20を介して、制御信号を伝送する。
FIG. 5 is a block diagram of the elevator control means of the elevator earthquake control operation system according to Embodiment 1 of the present invention.
Reference numeral 38 denotes a ROM. The ROM 38 stores software codes that serve as means for controlling the elevator. Reference numeral 39 denotes a RAM. The RAM 39 stores parameters for performing control. Reference numeral 40 denotes a microcomputer. The microcomputer 40 generates control data and transmits a control signal via the transmission interface 20.
 41は入力ポートである。この入力ポート41は、長周期地震規模予想手段24から伝送された長周期地震の予想規模等が入力される機能を備える。この予想規模等は、RAM39に格納される。この予想規模等に基づいて、エレベータの管制運転動作が決定される。 41 is an input port. The input port 41 has a function of inputting the expected magnitude of a long-period earthquake transmitted from the long-period earthquake magnitude prediction means 24. The expected scale and the like are stored in the RAM 39. Based on this expected scale and the like, the control operation of the elevator is determined.
 次に、図6を用いて、地震時間管制運転時のエレベータの動作を説明する。
 図6はこの発明の実施の形態1におけるエレベータの地震時管制運転システムの動作を説明するためのフローチャートである。
Next, the operation of the elevator during the seismic time control operation will be described with reference to FIG.
FIG. 6 is a flow chart for explaining the operation of the elevator seismic control operation system according to Embodiment 1 of the present invention.
 まず、ステップS1では、エレベータが平常運転を行っている。この場合、ステップS2に進み、制御装置19により、地震感知器22が「特低」地震検知信号を出力しているか否かが常時判断される。「特低」地震検知信号が出力されない場合は、ステップS3に進む。ステップS3では、現在のエレベータ動作が継続され、ステップS2に戻る。これに対し、ステップS2で「特低」地震検知信号が出力されている場合は、ステップS4に進む。 First, in step S1, the elevator is operating normally. In this case, the process proceeds to step S <b> 2, and the control device 19 always determines whether or not the earthquake detector 22 outputs an “extra low” earthquake detection signal. If the “special low” earthquake detection signal is not output, the process proceeds to step S3. In step S3, the current elevator operation is continued, and the process returns to step S2. On the other hand, if the “special low” earthquake detection signal is output in step S2, the process proceeds to step S4.
 ステップS4では、地震感知器22が「低」又は「高」地震検知信号を出力しているか否かが判断される。「低」又は「高」地震検知信号が出力されている場合は、ステップS5に進む。ステップS5では、エレベータ制御手段21に「低」又は「高」地震検知信号が検知され、かご5が最寄階に停止し、ステップS6に進む。ステップS6では、エレベータの運転が休止状態となり、動作が終了する。 In step S4, it is determined whether or not the earthquake detector 22 is outputting a “low” or “high” earthquake detection signal. When the “low” or “high” earthquake detection signal is output, the process proceeds to step S5. In step S5, the elevator control means 21 detects a "low" or "high" earthquake detection signal, the car 5 stops at the nearest floor, and the process proceeds to step S6. In step S6, the operation of the elevator is suspended and the operation ends.
 これに対し、ステップS4「低」又は「高」地震検知信号が出力されていない場合は、ステップS7に進む。ステップS7では、エレベータ制御手段21により、長周期地震が検知され、ステップS8に進む。ステップS8では、かご5が最寄階に走行した後停止し、ステップS9に進む。 On the other hand, if step S4 “low” or “high” earthquake detection signal is not output, the process proceeds to step S7. In step S7, a long-period earthquake is detected by the elevator control means 21, and the process proceeds to step S8. In step S8, the car 5 stops after traveling to the nearest floor, and proceeds to step S9.
 ステップS9では、かご5が最寄階停止状態を継続し、ステップS10に進む。ステップS10では、かご5内の戸開釦12が操作されたか否かが検知される。戸開釦12が操作された場合は、ステップS11に進む。ステップS11では、戸開動作が実施され、一定時間後、戸閉動作が実施される。そして、かごの戸10、乗場の戸が完全に閉まると、ステップS9に戻る。 In step S9, the car 5 continues the closest floor stop state, and proceeds to step S10. In step S10, it is detected whether or not the door opening button 12 in the car 5 has been operated. If the door open button 12 is operated, the process proceeds to step S11. In step S11, a door opening operation is performed, and after a predetermined time, the door closing operation is performed. When the car door 10 and the landing door are completely closed, the process returns to step S9.
 これに対し、ステップS10で戸開釦12が操作されなかった場合は、ステップS12に進む。ステップS12では、長周期地震規模予想手段24により、地震感知器22による「特低」地震検知信号の出力継続時間がカウントされ、一定時間継続しているか否かが判断される。「特低」地震検知信号の出力状態が一定時間継続している場合は、ステップS13に進む。 On the other hand, if the door opening button 12 is not operated in step S10, the process proceeds to step S12. In step S12, the long-period earthquake scale predicting means 24 counts the output duration time of the “special low” earthquake detection signal by the earthquake detector 22, and determines whether or not it continues for a certain period of time. When the output state of the “special low” earthquake detection signal continues for a certain period of time, the process proceeds to step S13.
 ステップS13では、長周期地震規模予想手段24により、長周期地震規模が大きいと判断され、ステップS14に進む。ステップS14では、エレベータの運転が休止状態となり、動作が終了する。このとき、乗場及びかご報知装置9、16は、エレベータを休止状態にした旨を報知する。 In step S13, the long-period earthquake magnitude prediction means 24 determines that the long-period earthquake magnitude is large, and the process proceeds to step S14. In step S14, the operation of the elevator is suspended and the operation ends. At this time, the hall and car notifying devices 9 and 16 notify that the elevator has been put into a resting state.
 これに対し、ステップS12で「特低」地震検知信号の出力状態が一定時間継続していない場合は、ステップS15に進む。ステップS15では、長周期地震規模予想手段24により、長周期地震規模が小さいと判断され、ステップS16に進む。ステップS16では、乗場及びかご報知装置9、16により、避難階まで走行させる旨が報知された後、かご5が長周期地震の影響が少ない避難階へ走行し、ステップS17に進む。ステップS17では、エレベータの運転が休止状態となり、動作が終了する。 On the other hand, if the output state of the “special low” earthquake detection signal does not continue for a certain time in step S12, the process proceeds to step S15. In step S15, the long-period earthquake magnitude prediction means 24 determines that the long-period earthquake magnitude is small, and the process proceeds to step S16. In step S16, after the landing and car notifying devices 9 and 16 notify that the vehicle will travel to the evacuation floor, the car 5 travels to the evacuation floor that is less affected by the long-period earthquake, and proceeds to step S17. In step S17, the operation of the elevator is suspended and the operation ends.
 以上で説明した実施の形態1によれば、制御装置19は、地震感知器22による「特低」地震検知信号の出力状態に基づいて、建物に発生した長周期地震の規模又は振動レベルを予想する。具体的には、制御装置19は、地震感知器22による「特低」地震検知信号の出力継続時間に基づいて、建物に発生した長周期地震の規模又は振動レベルを予想する。このため、地震時管制運転システムの設置コストを抑え、長周期地震の影響を判断することができる。 According to the first embodiment described above, the control device 19 predicts the magnitude or vibration level of a long-period earthquake occurring in the building based on the output state of the “special low” earthquake detection signal from the earthquake detector 22. To do. Specifically, the control device 19 predicts the magnitude or vibration level of a long-period earthquake occurring in the building based on the output duration of the “extra low” earthquake detection signal from the earthquake detector 22. For this reason, the installation cost of the earthquake control operation system can be suppressed, and the influence of a long-period earthquake can be determined.
 また、制御装置19は、建物に発生した長周期地震の規模又は振動レベルが予め設定された閾値よりも大きいと予想した場合は、エレベータのかご5を最寄階に停止させて、エレベータを休止状態にする。また、制御装置19は、建物に発生した長周期地震の規模又は振動レベルが予め設定された閾値よりも小さいと予想した場合は、エレベータのかご5を最寄階に停止させた後、長周期地震の影響が小さい階床として予め決められている避難階まで走行させる。 If the control device 19 predicts that the magnitude or vibration level of a long-period earthquake occurring in the building is larger than a preset threshold value, the control device 19 stops the elevator car 5 at the nearest floor and stops the elevator. Put it in a state. When the control device 19 predicts that the magnitude or vibration level of the long-period earthquake occurring in the building is smaller than a preset threshold, the elevator car 5 is stopped at the nearest floor, and then the long-period earthquake is stopped. Drive to an evacuation floor that is pre-determined as a floor that is less affected by the earthquake.
 このため、長周期地震の規模に応じたエレベータの運転を行うことができる。これにより、長周期地震の規模等を考慮して、利用者を安全に降車させることができる。また、エレベータロープの引っ掛かりや振れによる昇降路内機器の損傷を防止することができる。 Therefore, it is possible to operate the elevator according to the scale of the long-period earthquake. Accordingly, it is possible to safely get off the user in consideration of the scale of the long-period earthquake and the like. In addition, it is possible to prevent damage to the equipment in the hoistway due to the elevator rope being caught or swung.
 加えて、乗場及びかご報知装置9、16は、制御装置19が建物に発生した長周期地震の規模又は振動レベルが予め設定された閾値よりも大きいと予想した場合は、エレベータを休止状態にした旨を報知する。また、乗場及びかご報知装置9、16は、制御装置19が建物に発生した長周期地震の規模又は振動レベルが予め設定された閾値よりも小さいと予想した場合は、エレベータのかご5を最寄階に停止させた後、避難階まで走行させる旨を報知する。 In addition, the landing and car notification devices 9 and 16 put the elevators in a dormant state when the control device 19 predicts that the magnitude or vibration level of a long-period earthquake occurring in the building is greater than a preset threshold value. Inform the effect. Also, the landing and car notifying devices 9 and 16 are located near the elevator car 5 when the control device 19 predicts that the magnitude or vibration level of a long-period earthquake occurring in the building is smaller than a preset threshold value. After stopping at the floor, it is notified that the vehicle will travel to the evacuation floor.
 このため、利用者は、長周期地震時のエレベータの運転動作を確認することができる。これにより、利用者の不安が軽減される。 For this reason, the user can confirm the operation of the elevator during a long-period earthquake. Thereby, a user's anxiety is reduced.
 なお、実施の形態1においては、制御装置19は、地震感知器22による「特低」地震検知信号の出力継続時間に基づいて、建物に発生した長周期地震の規模又は振動レベルを予想する構成であった。しかし、制御装置19は、建物の構造によって定まる振動特性情報を予め記憶し、振動特性情報と「特低」地震検知信号の出力継続時間とに基づいて、建物に発生した長周期地震の規模又は振動レベルを予想する構成としてもよい。この場合、建物毎に適切に長周期地震の影響を判断することができる。 In the first embodiment, the control device 19 predicts the magnitude or vibration level of a long-period earthquake that has occurred in a building based on the output duration of the “extra low” earthquake detection signal from the earthquake detector 22. Met. However, the control device 19 stores in advance the vibration characteristic information determined by the structure of the building, and based on the vibration characteristic information and the output duration of the “extra low” earthquake detection signal, the magnitude of the long-period earthquake occurring in the building or It is good also as a structure which estimates a vibration level. In this case, it is possible to appropriately determine the influence of the long-period earthquake for each building.
 以上のように、この発明に係るエレベータの地震時管制運転システムによれば、設置コストを抑え、長周期地震の影響を判断するエレベータに利用できる。 As described above, according to the elevator operation control system for an earthquake according to the present invention, the installation cost can be suppressed and the elevator can be used for judging the influence of a long-period earthquake.
 1 昇降路、 2 機械室、 3 巻上機、 4 メインロープ、 5 かご、
 6 カウンタウエイト、 7 乗場、 8 乗場呼び登録装置、 9 乗場報知装置、
10 かごの戸、 11 かご操作盤、 12 戸開釦、 13 戸閉釦、 
14 表示器、 15 呼び釦、 16 かご報知装置、 17 かご呼び登録装置、 18 制御盤、 19 制御装置、 20 伝送インターフェイス、
21 エレベータ制御手段、 22 地震感知器、 23 入出力装置、
24 長周期地震規模予想手段、 25 ROM、 26 RAM、
27 マイクロコンピュータ、 28 2ポートRAM、 29 レシーバ、
30 シリアルインターフェイス、 31 レシーバ、
32 シリアルインターフェイス、 33 レシーバ、
34 シリアルインターフェイス、 35~37 ドライバ、 38 ROM、
39 RAM、 40 マイクロコンピュータ、 41 入力ポート
1 hoistway, 2 machine room, 3 hoisting machine, 4 main rope, 5 cage,
6 counterweight, 7 hall, 8 hall call registration device, 9 hall notification device,
10 car door, 11 car operation panel, 12 door open button, 13 door close button,
14 Display, 15 Call button, 16 Car notification device, 17 Car call registration device, 18 Control panel, 19 Control device, 20 Transmission interface,
21 elevator control means, 22 earthquake detector, 23 input / output device,
24 Long-period earthquake scale prediction means, 25 ROM, 26 RAM,
27 microcomputer, 28 2-port RAM, 29 receiver,
30 serial interface, 31 receiver,
32 serial interface, 33 receiver,
34 Serial interface, 35-37 driver, 38 ROM,
39 RAM, 40 microcomputer, 41 input port

Claims (5)

  1.  エレベータが設置された建物に設けられ、地震の主要動の検知レベルを調整することにより、前記建物に発生する長周期地震を検知して、地震検知信号を出力する地震感知器と、
     前記地震感知器による前記地震検知信号の出力状態に基づいて、前記建物に発生した長周期地震の規模又は振動レベルを予想する制御装置と、
    を備えたことを特徴とするエレベータの地震時管制運転システム。
    An earthquake detector that is provided in a building where an elevator is installed, detects a long-period earthquake occurring in the building by adjusting the detection level of the main motion of the earthquake, and outputs an earthquake detection signal;
    A control device for predicting the magnitude or vibration level of a long-period earthquake occurring in the building based on the output state of the earthquake detection signal by the earthquake detector;
    Elevator earthquake control operation system characterized by comprising
  2.  前記制御装置は、前記地震感知器による前記地震検知信号の出力継続時間に基づいて、前記建物に発生した長周期地震の規模又は振動レベルを予想することを特徴とする請求項1記載のエレベータの地震時管制運転システム。 2. The elevator according to claim 1, wherein the controller predicts a magnitude or vibration level of a long-period earthquake that has occurred in the building based on an output duration of the earthquake detection signal from the earthquake detector. Control operation system during an earthquake.
  3.  前記制御装置は、前記建物の振動特性情報を予め記憶し、前記振動特性情報と前記出力継続時間とに基づいて、前記建物に発生した長周期地震の規模又は振動レベルを予想することを特徴とする請求項2記載のエレベータの地震時管制運転システム。 The control device stores vibration characteristic information of the building in advance, and predicts the magnitude or vibration level of a long-period earthquake that has occurred in the building based on the vibration characteristic information and the output duration time. The elevator operation control system for earthquakes according to claim 2.
  4.  前記制御装置は、前記建物に発生した長周期地震の規模又は振動レベルが予め設定された閾値よりも大きいと予想した場合は、前記エレベータのかごを最寄階に停止させて、前記エレベータを休止状態にし、
     前記建物に発生した長周期地震の規模又は振動レベルが前記閾値よりも小さいと予想した場合は、前記かごを最寄階に停止させた後、前記長周期地震の影響が小さい階床として予め決められている避難階まで走行させることを特徴とする請求項1~請求項3のいずれかに記載のエレベータの地震時管制運転システム。
    When the control device predicts that the magnitude or vibration level of a long-period earthquake occurring in the building is larger than a preset threshold value, the control device stops the elevator car at the nearest floor and stops the elevator. State
    When it is predicted that the magnitude or vibration level of a long-period earthquake occurring in the building is smaller than the threshold value, after the car is stopped at the nearest floor, it is determined in advance as a floor where the influence of the long-period earthquake is small. The elevator operation control system for an earthquake according to any one of claims 1 to 3, wherein the elevator is operated to an evacuated floor.
  5.  前記かご及び乗場の少なくとも一方に設けられ、前記制御装置が前記建物に発生した長周期地震の規模が又は振動レベルが前記閾値よりも大きいと予想した場合は、前記エレベータを休止状態にした旨を報知し、前記建物に発生した長周期地震の規模又は振動レベルが前記閾値よりも小さいと予想した場合は、前記かごを最寄階に停止させた後、前記避難階まで走行させる旨を報知する報知装置、
    を備えたことを特徴とする請求項4記載のエレベータの地震時管制運転システム。
    When the control device is provided in at least one of the car and the landing and the control device expects the magnitude of a long-period earthquake occurring in the building or the vibration level to be greater than the threshold, it indicates that the elevator has been put into a dormant state. If it is predicted that the magnitude or vibration level of a long-period earthquake occurring in the building is smaller than the threshold, the car is stopped at the nearest floor and then notified that the car will travel to the evacuation floor. Notification device,
    The elevator operation control system for an earthquake according to claim 4, further comprising:
PCT/JP2009/064009 2009-08-07 2009-08-07 Elevator control operation system at earthquake occurrence time WO2011016132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064009 WO2011016132A1 (en) 2009-08-07 2009-08-07 Elevator control operation system at earthquake occurrence time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064009 WO2011016132A1 (en) 2009-08-07 2009-08-07 Elevator control operation system at earthquake occurrence time

Publications (1)

Publication Number Publication Date
WO2011016132A1 true WO2011016132A1 (en) 2011-02-10

Family

ID=43544051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064009 WO2011016132A1 (en) 2009-08-07 2009-08-07 Elevator control operation system at earthquake occurrence time

Country Status (1)

Country Link
WO (1) WO2011016132A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141366A1 (en) * 2013-03-11 2014-09-18 三菱電機株式会社 Elevator device
JP2022055527A (en) * 2020-09-29 2022-04-08 株式会社Kokusai Electric Substrate processing apparatus, method for manufacturing semiconductor device and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204223A (en) * 2006-02-02 2007-08-16 Hitachi Ltd Control operation device and control operation method of elevator
JP2008081290A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Rope rolling detector for elevator
JP2008105845A (en) * 2006-10-27 2008-05-08 Mitsubishi Electric Building Techno Service Co Ltd Earthquake emergency operation system of elevator
JP2008285335A (en) * 2008-09-03 2008-11-27 Mitsubishi Electric Corp Control device and control method for elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204223A (en) * 2006-02-02 2007-08-16 Hitachi Ltd Control operation device and control operation method of elevator
JP2008081290A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Rope rolling detector for elevator
JP2008105845A (en) * 2006-10-27 2008-05-08 Mitsubishi Electric Building Techno Service Co Ltd Earthquake emergency operation system of elevator
JP2008285335A (en) * 2008-09-03 2008-11-27 Mitsubishi Electric Corp Control device and control method for elevator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141366A1 (en) * 2013-03-11 2014-09-18 三菱電機株式会社 Elevator device
JP5939354B2 (en) * 2013-03-11 2016-06-22 三菱電機株式会社 Elevator equipment
JP2022055527A (en) * 2020-09-29 2022-04-08 株式会社Kokusai Electric Substrate processing apparatus, method for manufacturing semiconductor device and program

Similar Documents

Publication Publication Date Title
JP5008983B2 (en) Elevator control system
JP5014623B2 (en) Seismic control operation system for elevator and earthquake control operation method for elevator
JP5246636B2 (en) Elevator seismic control system
JP2006290509A (en) Control device for elevator
JP4973014B2 (en) Seismic control system for elevators
JP5489303B2 (en) Elevator control device
JP6997680B2 (en) Elevator abnormality monitoring system and elevator abnormality monitoring method
JP5173244B2 (en) Elevator earthquake monitoring and control system
JP4992387B2 (en) Seismic control system for elevators
JP2009113937A (en) Emergency operation device of elevator
WO2011016132A1 (en) Elevator control operation system at earthquake occurrence time
JP2009298546A (en) Control system for elevator
JP4867813B2 (en) Elevator seismic control operation system
JP6450265B2 (en) Elevator seismic control operation control system and method
JP2014114157A (en) Elevator control device
JP4681032B2 (en) Elevator control device and control method
JP4748194B2 (en) Elevator control device and control method
JP2009091100A (en) Earthquake emergency operation control system of elevator
JP5979971B2 (en) Elevator control device
JP2007331902A (en) Control device of elevator
JP2004359405A (en) Remote rescue method for elevator in case of earthquake
JP2009173388A (en) Elevator operation control device
CN110785366B (en) Elevator control device, elevator, and elevator control method
JP2007254036A (en) Operation control device for elevator
JP5007583B2 (en) Elevator seismic control operation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP