WO2011013754A1 - Led搭載用ウエハとその製造方法、及びそのウエハを用いたled搭載構造体 - Google Patents

Led搭載用ウエハとその製造方法、及びそのウエハを用いたled搭載構造体 Download PDF

Info

Publication number
WO2011013754A1
WO2011013754A1 PCT/JP2010/062808 JP2010062808W WO2011013754A1 WO 2011013754 A1 WO2011013754 A1 WO 2011013754A1 JP 2010062808 W JP2010062808 W JP 2010062808W WO 2011013754 A1 WO2011013754 A1 WO 2011013754A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
led
ceramic
wafer
Prior art date
Application number
PCT/JP2010/062808
Other languages
English (en)
French (fr)
Inventor
秀樹 広津留
庸介 石原
秀雄 塚本
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201080034961.4A priority Critical patent/CN102484188B/zh
Priority to EP10804500.6A priority patent/EP2461379B1/en
Priority to US13/387,606 priority patent/US8890189B2/en
Priority to JP2011524832A priority patent/JP5789512B2/ja
Priority to KR1020127004793A priority patent/KR101685231B1/ko
Publication of WO2011013754A1 publication Critical patent/WO2011013754A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1094Alloys containing non-metals comprising an after-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing

Definitions

  • the present invention relates to an LED mounting wafer, a method for manufacturing the same, and an LED mounting structure using the wafer.
  • a light emitting diode is an element that emits light when a forward current flows through a pn junction of a semiconductor, and is manufactured using a III-V group semiconductor crystal such as GaAs or GaN.
  • LEDs having excellent conversion efficiency have been developed and widely used in various fields.
  • the LED includes a p-type layer and an n-type layer obtained by epitaxially growing a group III-V semiconductor crystal on a single crystal growth substrate, and a photoactive layer sandwiched between the p-type layer and the n-type layer.
  • a group III-V semiconductor crystal is epitaxially grown on a growth substrate such as single crystal sapphire, and then an electrode is attached (Patent Document 1).
  • the single crystal growth substrate has a problem that the thermal conductivity is not good.
  • the thermal conductivity is about 40 W / mK, and the heat generated in the III-V group semiconductor element cannot be sufficiently dissipated.
  • a method has been proposed in which a group III-V semiconductor crystal is epitaxially grown on a single crystal growth substrate, a high thermal conductivity substrate is bonded through a metal layer, and then the single crystal growth substrate is removed ( Patent Document 3).
  • An object of the present invention is to manufacture an LED mounting wafer having a small difference in linear thermal expansion coefficient from the LED and having excellent thermal conductivity, a method for manufacturing the LED mounting wafer, and the LED mounting wafer. It is to provide an LED mounting structure.
  • the present invention is an LED mounting wafer (hereinafter simply referred to as a “wafer”) 6 comprising a metal-impregnated ceramic composite 61 and a protective layer 62 formed therearound (see FIG. 1). ).
  • the metal-impregnated ceramic composite contains at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite, and has a porosity of 10 to 50% by volume.
  • the powder compact is impregnated with metal
  • the plate thickness is 0.05 to 0.5 mm
  • the surface roughness (Ra) is 0.01 to 0.5 ⁇ m
  • the three-point bending strength is 50 MPa or more
  • the thermal conductivity at 25 ° C is 150 to 500 W / mK
  • the linear thermal expansion coefficient at a temperature of 25 ° C to 150 ° C is 4 to 9 ⁇ 10 -6 / K
  • the volume resistivity is 10 -9 to 10 -5 ⁇ ⁇ m.
  • the protective layer is one or more metals selected from Ni, Co, Pd, Cu, Ag, Au, Pt, Ti, W and Mo, or has a porosity. It consists of one or more ceramics selected from 3% or less of alumina, mullite, aluminum nitride and silicon nitride, the thickness of the protective layer is 3 mm or less (excluding 0), and the volume occupancy of the protective layer is 20% by volume The following is preferable (excluding 0).
  • the metal-impregnated ceramic composite 61 is selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn having a thickness of 0.5 to 10 ⁇ m on the surface. It is preferable to have one or more thin metal layers 63 (see FIG. 4).
  • the thickness of the metal thin layer is preferably 0.5 to 10 ⁇ m, and if it is less than 0.5 ⁇ m, the effect of improving chemical resistance is poor, and if it exceeds 10 ⁇ m, the surface roughness may increase.
  • the metal thin layer is formed by a plating method such as electroless plating or electrolytic plating, a vapor deposition method, or the like.
  • the present invention provides a tubular body made of metal or ceramics, after filling at least one selected from a ceramic porous body, a ceramic powder molded body and a ceramic powder, and then these ceramic porous body and ceramic powder molded body And a method for producing a wafer according to the present invention, wherein the void portion of at least one selected from ceramic powder is impregnated with a metal and then processed.
  • a protective layer is formed on the side surface and then processed, or the protective layer is formed after processing.
  • the present invention provides a metal thin layer 51 (or a metal thin layer 51) on at least one surface of the LED mounting substrate 5 made of at least one piece cut out from the metal-impregnated ceramic composite 61 of the wafer of the present invention. And a reflective metal layer 31), a reflective layer 3, an LED 2, and a transparent conductive layer 4 in order, and an electrode (not shown) is attached to the transparent conductive layer 4.
  • LED mounting structure see FIGS. 3 and 6).
  • the wafer of the present invention a wafer having a small difference in coefficient of linear thermal expansion from the LED is provided.
  • the metal-impregnated ceramic composite constituting the wafer of the present invention at least one piece is cut out from the portion to become an LED mounting substrate.
  • LED is mounted in this board
  • the wafer of the present invention is excellent in chemical resistance against acids and alkalis used in producing the LED mounting structure of the present invention, and has high conductivity, so that formation of electrodes and the like is facilitated.
  • the LED mounting structure of the present invention has a high output with excellent heat dissipation and reliability, and can increase the amount of light emission per unit area. According to the wafer manufacturing method of the present invention, the wafer of the present invention can be easily manufactured.
  • LEDs are epitaxially grown on the surface of a single crystal growth substrate as follows (step A), and the wafer is bonded to the wafer of the present invention to manufacture a bonded body (step A).
  • the intermediate structure is manufactured by removing a portion of the single crystal growth substrate from the joined body (c process), and after forming the transparent conductive layer and the electrode on the intermediate structure, the process is cut (process d). Can be manufactured via.
  • This process is a process of epitaxially growing LEDs on the surface of the single crystal growth substrate. Specifically, the buffer layer 11 of an n-type III-V group semiconductor or the surface coating layer 12 of an inorganic compound is formed on the surface of the single crystal growth substrate 1, and then the LED 2 is epitaxially grown (see FIGS. 2 and 5).
  • the single crystal growth substrate a substrate having a small difference in lattice constant from the LED and having few defects is used.
  • the single crystal growth substrate is either single crystal sapphire, single crystal silicon carbide, single crystal GaAs, or single crystal Si from the viewpoint of ensuring the crystallinity and uniformity of the LED and enhancing the durability against the atmosphere during epitaxial growth.
  • the thickness of the single crystal growth substrate is preferably 0.1 to 1.0 mm.
  • the single crystal growth substrate 1 has a buffer layer 11 made of GaN, GaAs, or GaP on the surface thereof from the viewpoint of reducing the difference in lattice constant with the LED.
  • the buffer thickness is preferably 0.1 to 0.8 ⁇ m.
  • the single crystal growth substrate 1 has a surface coating with at least one inorganic compound selected from AlN, SiC, GaN and GaAs on its surface. It is preferable to have the layer 12.
  • the thickness of the surface coating layer is preferably 0.1 to 0.8 ⁇ m.
  • the LED 2 is usually composed of an n-type group III-V semiconductor layer 21, a light emitting layer 22, and a p-type group III-V semiconductor layer 23, but the present invention is not limited to this.
  • Such an LED can be formed by epitaxial growth using, for example, a metal organic chemical vapor deposition method (MOCVD method), a halide vapor phase epitaxial method (HVPE method), or the like.
  • MOCVD method metal organic chemical vapor deposition method
  • HVPE method halide vapor phase epitaxial method
  • the epitaxially grown LED can be subjected to a treatment such as etching or polishing in order to further improve the light emission characteristics.
  • the thickness of the LED is preferably 0.6 to 15 ⁇ m.
  • the thicknesses of the n-type III-V group semiconductor layer 21, the light emitting layer 22, and the p-type III-V group semiconductor layer 23 are generally 0.3 to 10 ⁇ m, 0.1 to 0.5 ⁇ m, and 0.3, respectively. ⁇ 10 ⁇ m.
  • This step is a step of manufacturing a joined body of the LED 2 epitaxially grown on the single crystal growth substrate as described above and the wafer 6 of the present invention.
  • the reflective layer 3 made of metal is formed on the surface of the p-type III-V group semiconductor layer 23 of the LED (see FIG. 2), or further metal is added to the surface of the reflective layer 3 as necessary.
  • the layer 31 is formed (see FIG. 5), it is bonded to the wafer of the present invention. The wafer of the present invention will be described later.
  • the bonding is performed by forming the reflective layer 3 (or the reflective layer 3 and the metal layer 31) made of metal on the surface of the metal-impregnated ceramic composite 61 of the wafer of the present invention or the thin metal layer 63 formed on the surface. Then, the reflection layer 3 (or the metal layer 31) and the reflection layer 3 or the metal layer 31 are brought into contact with each other and heated. By heating, the two reflective layers 3 (or two metal layers 31) are integrated to form one reflective layer 3 (or one reflective layer 3 and one metal layer 31) (see FIG. 6). . Heating is preferably performed while applying pressure at 20 MPa or less. The heating temperature is selected from the range of 250 to 550 ° C. depending on the type of the reflective layer 3, the reflective metal layer 31, and the metal thin layer 63.
  • the metal layer 31 of the reflective layer is not necessarily required, but when it is made of a dissimilar metal, the surface of the reflective layer 3 is made of metal. It is preferable to have a reflective layer metal layer 31 of the same type as the thin layer 63.
  • a vapor deposition method, a sputtering method, or the like is employed for the formation of the reflective layer 3 and the metal layer 31 of the reflective layer.
  • the metal species of these layers are preferably indium, aluminum, gold, silver and alloys thereof.
  • the reflective layer 3 and the thin metal layer 63 are preferably made of the same kind of metal.
  • the thickness of the reflective layer 3 and the metal layer 31 of the reflective layer is preferably 0.5 to 10 ⁇ m, and preferably 0.5 to 2 ⁇ m. Particularly preferred. Even in these thicknesses, it is preferable that the thickness of the reflective layer 3 is the same as the thickness of the thin metal layer 63 or is thicker or thinner within 10%. The thickness of the thin metal layer 63 has been described above.
  • This step is a step of removing the single crystal growth substrate 1, the buffer layer 11, and the surface coating layer 12 from the joined body.
  • the removal of the single crystal growth substrate is performed by laser irradiation, polishing, etching, or the like from the single crystal growth substrate side.
  • the buffer layer is removed by etching or the like, and the surface coating layer is removed by grinding or the like.
  • the joined body is changed to an intermediate structure composed of reference numerals 2, 3 (or 3 and 31) and 6.
  • Step D In this step, the exposed n-type III-V group semiconductor layer 21 of the intermediate structure was subjected to surface processing, and then an electrode (not shown) was formed on the transparent conductive layer 4 and the transparent conductive layer. Then, it is a process of cutting into a desired shape and manufacturing the LED mounting structure of the present invention (see FIG. 6). By this cutting, the metal-impregnated ceramic composite 61 becomes the LED mounting substrate 5, and the metal thin layer 63 becomes the metal thin layer 51 on the LED mounting substrate surface.
  • the surface processing of the n-type group III-V semiconductor layer 21 is preferably performed by ICP dry etching or the like, and thereby planarized to a surface suitable for forming a transparent conductive layer.
  • the transparent conductive layer is formed for current dispersion, and is formed to a thickness of 0.05 to 0.8 ⁇ m by an electron beam evaporation method, a sputtering method, or the like.
  • the material of the transparent conductive layer is preferably at least one metal selected from indium tin oxide, cadmium tin oxide, indium zinc oxide, aluminum zinc oxide, tin zinc oxide, and tin oxide antimony.
  • An evaporation method, a sputtering method, etc. are employ
  • the electrode material is selected from Au, Ag, Al and the like. Cutting is performed by laser cutting, dicing, or the like.
  • At least one piece that is, the LED mounting substrate 5
  • the LED mounting structure of the present invention can be manufactured.
  • the above process is preferable from the viewpoint of productivity.
  • the wafer 6 of the present invention is composed of a metal-impregnated ceramic composite 61 and a protective layer 62 formed around it.
  • the LED is mounted on at least one piece cut out from the metal-impregnated ceramic composite portion, that is, the LED mounting substrate 5. From this viewpoint, the wafer of the present invention functions as a base material of the LED mounting substrate.
  • the metal-impregnated ceramic composite 61 will be described. Necessary requirements for the LED mounting substrate are: (a) a single crystal growth substrate on which an LED is epitaxially grown and an LED mounting substrate having a strength that can be tolerated; (b) a void or That is, there are no inclusions such as foreign matters and the joining surface becomes flat, (c) good heat dissipation, and (d) have an appropriate thermal conductivity and linear thermal expansion coefficient. (A) sets the three-point bending strength of the metal-impregnated ceramic composite to 50 MPa or more, and (b) sets the surface roughness (Ra) of the metal-impregnated ceramic composite to 0.01 to 0.5 ⁇ m.
  • (C) by setting the plate thickness of the metal-impregnated ceramic composite to 0.05 to 0.5 mm, and (d) from among silicon carbide, aluminum nitride, silicon nitride, diamond and graphite It can be filled by using a ceramic porous body containing one or more kinds selected and having a porosity of 10 to 50% by volume, or a metal-impregnated ceramic composite produced by impregnating a ceramic powder molded body with a metal. .
  • a preferable impregnated metal type of the metal-impregnated ceramic composite is an aluminum alloy mainly composed of aluminum, a particularly preferable three-point bending strength is 200 to 400 MPa, and a particularly preferable surface roughness (Ra) is 0.01 to It is 0.2 ⁇ m, a particularly preferred plate thickness is 0.08 to 0.3 mm, and a particularly preferred porosity of the ceramic porous body is 15 to 35% by volume.
  • the preferred thermal conductivity of the metal-impregnated ceramic composite is 150 to 500 W / mK (temperature 25 ° C.).
  • a preferable linear thermal expansion coefficient is 4 to 9 ⁇ 10 ⁇ 6 / K (temperature 25 ° C.
  • the preferred volume resistivity of the metal-impregnated ceramic composite is less than 10 ⁇ 5 ⁇ ⁇ m.
  • the three-point bending strength of the metal-impregnated ceramic composite is less than 50 MPa, there is a risk that the stress generated in each step of manufacturing the LED mounting structure cannot be endured. If the surface roughness (Ra) is less than 0.01 ⁇ m, processing becomes difficult, leading to an increase in cost, and if it exceeds 0.5 ⁇ m, the adhesion to the LED may be reduced. If the plate thickness is less than 0.05 mm, handling in each step of manufacturing the LED mounting structure becomes difficult, and if it exceeds 0.5 mm, the processing cost to the final shape increases.
  • the thermal conductivity decreases, and when it exceeds 50% by volume (metal is more than 50% by volume), the metal-impregnated ceramic composite
  • the linear thermal expansion coefficient of the body may increase.
  • the linear thermal expansion coefficient (temperature: 25 ° C to 150 ° C) of the metal-impregnated ceramic composite is outside the range of 4 to 9 ⁇ 10 -6 / K, warpage may occur after bonding due to the difference in linear thermal expansion coefficient with the LED
  • the bonding layer may be peeled off or the LED may be broken.
  • the thermal conductivity (temperature 25 ° C.) is less than 150 W / mK, the heat generated by the LED cannot be sufficiently dissipated, and in particular for a high-power LED that needs to pass a large current, the LED temperature As a result, the luminous efficiency may be reduced, and the device life may be reduced accordingly.
  • the wafer Although it may exceed 500 W / mK, the wafer becomes expensive. If the volume resistivity is 10 ⁇ 5 ⁇ ⁇ m or more, the luminous efficiency may be lowered.
  • the lower limit of the volume resistivity is preferably 10 ⁇ 9 ⁇ ⁇ m from the viewpoint of easy material availability.
  • the three-point bending strength of the metal-impregnated ceramic composite can be increased or decreased depending on the particle size and content of silicon carbide, aluminum nitride, silicon nitride, diamond, and graphite.
  • the surface roughness (Ra) and the plate thickness are determined under processing conditions. Can be increased or decreased.
  • the thermal conductivity and the coefficient of linear thermal expansion can be increased or decreased depending on the porosity of the ceramic porous body or the ceramic powder molded body, the type of metal and the content thereof.
  • the volume resistivity can be increased or decreased depending on the type and content of the impregnated metal.
  • the metal-impregnated ceramic composite itself has conductivity, it is easy to form electrodes on the LED.
  • a single crystal growth substrate such as a sapphire substrate
  • the LED mounting substrate (that is, the piece cut out from the metal-impregnated ceramic composite portion of the wafer of the present invention) 5 is preferably excellent in chemical resistance in addition to the above requirements (a) to (d).
  • chemical resistance refers to the amount of mass reduction per unit area when immersed in a 5N HCl aqueous solution at a temperature of 25 ° C or a 10N NaOH aqueous solution at a temperature of 75 ° C for 1 minute. Is 0.2 mg / cm 2 or less, particularly 0.1 mg / cm 2 or less.
  • the metal component of the LED mounting substrate is eluted during the manufacturing process of the LED mounting structure, resulting in a decrease in thermal conductivity, etc. Predetermined by laser cutting, dicing, etc. When cutting into a shape, chipping occurs, which may cause problems such as a decrease in yield of the LED mounting structure.
  • Chemical resistance can be imparted by forming a thin metal layer 51 on the LED mounting substrate 5.
  • the protective layer is selected from Ni, Co, Pd, Cu, Ag, Au, Pt, Ti, W, and Mo, in particular.
  • One or more metals, or one or more ceramics having a porosity of 3% or less selected from alumina, mullite, aluminum nitride and silicon nitride, particularly alumina or mullite having a porosity of 3% or less Has higher chemical resistance.
  • the thickness of the protective layer 62 is preferably 3 mm or less (excluding 0), and the volume occupation ratio of the protective layer is preferably 20% by volume or less (excluding 0).
  • the lower limit of the thickness of the protective layer and the lower limit of the volume occupancy are not particularly limited as long as the thickness can be protected from external factors such as impact when the metal-impregnated ceramic composite is processed.
  • the thickness exceeds 3 mm or the volume occupancy exceeds 20% by volume the metal-impregnated ceramic composite portion of the wafer is reduced, so that the yield of the LED mounting structure of the present invention is reduced. Separation may occur due to the linear thermal expansion coefficient between the impregnated ceramic composite and the protective layer.
  • a particularly preferred protective layer thickness is 0.002 to 2 mm, and a particularly preferred volume occupancy is 0.1 to 15% by volume.
  • the metal-impregnated ceramic composite can be produced by any method such as an impregnation method or a powder metallurgy method. According to the impregnation method, a relatively high thermal conductivity is easily obtained.
  • the impregnation method includes a method performed at normal pressure and a method performed under high pressure (high pressure forging method).
  • the high pressure forging method includes a molten metal forging method and a die casting method. As in the present invention, a molten metal forging method is particularly preferable for forming a protective layer around the metal-impregnated ceramic composite.
  • the molten metal forging method is a method in which ceramic powder, a ceramic powder molded body, or a porous ceramic body is loaded into a high-pressure vessel, and a molten metal such as an aluminum alloy is impregnated in these voids at high temperature and high pressure. .
  • the ceramic is preferably at least one selected from silicon carbide, aluminum nitride, silicon nitride, diamond and graphite from the viewpoints of high thermal conductivity and low coefficient of linear thermal expansion.
  • the thermal conductivity and linear thermal expansion coefficient can be adjusted by the type of ceramic, the type of metal, and their constituent ratio.
  • Ceramics can be compounded with metals even if they are in powder form, but they can be made into ceramic powder compacts using ceramic powder and binders such as methylcellulose and silica sol, or this ceramic powder compact can be sintered.
  • a ceramic porous body having a porosity of 10 to 50% by volume is preferable. These shapes are not particularly limited, such as a plate shape or a columnar shape.
  • a molding method of the ceramic powder molded body a general ceramic powder molding method such as press molding or cast molding can be employed. The porosity of the ceramic porous body can be adjusted according to the particle size of the ceramic powder, the molding pressure, the sintering conditions, and the like.
  • one or more of the fillers are release agents. Fix it with a jig applied.
  • a plurality of such fillers are stacked with a release agent coated, for example, a stainless steel plate, a ceramic plate, or other release plate, and connected by a metal-ceramic or other bolt-nut. Let it be the body.
  • the release agent graphite, boron nitride, alumina or the like is used.
  • the obtained laminate is heated at a temperature of about 600 to 800 ° C., placed in a high-pressure vessel, one or two or more, put a molten metal heated to a melting point or higher, and pressurizes the metal at a pressure of 30 MPa or more.
  • the void portion of at least one selected from powder, a ceramic powder molded body, and a ceramic porous body is impregnated.
  • a metal-impregnated ceramic composite is obtained.
  • the metal-impregnated ceramic composite can be annealed to remove distortion during impregnation. If the heating temperature is less than 600 ° C. or the pressure during impregnation is less than 30 MPa, the thermal conductivity of the metal-impregnated ceramic composite may be lowered. Further, when the temperature exceeds 800 ° C., surface oxidation of the ceramic occurs, and there is a possibility that the thermal conductivity is also characteristic.
  • a particularly preferred impregnation pressure is 50 to 150 MPa.
  • the metal impregnated by the metal-impregnated ceramic composite is preferably an aluminum alloy, a magnesium alloy, a copper alloy, or a silicon alloy. Particularly preferred is an aluminum alloy containing 70% by mass or more of aluminum. When the aluminum content is less than 70% by mass, the thermal conductivity is not greatly improved.
  • the aluminum alloy preferably has a melting point as low as possible in order to sufficiently penetrate into the voids.
  • An example of such an aluminum alloy is an aluminum alloy containing 5 to 25% by mass of silicon. Further, it is preferable to contain magnesium up to 5% by mass because the bond between the ceramic and the metal becomes stronger.
  • the obtained impregnated product is processed into a cylindrical shape in which the tubular body around the metal-impregnated ceramic composite is exposed using a lathe, a cylindrical grinder, or the like, and if necessary, using a diamond grindstone.
  • the structure of the wafer is also adjusted by the inner diameter of the tubular body, etc., but the final diameter of the wafer is adjusted by adjusting the outer diameter of the cylindrical body by the amount of grinding during this processing. That is, the thickness and volume occupancy of the protective layer are determined.
  • the above method uses a tubular body to make it a protective layer.
  • a protective layer is formed on the side surface. It may be a method to do. That is, after heating a ceramic powder molded body or a ceramic porous body at a temperature of 600 to 800 ° C., one or more ceramic powders are placed in a high-pressure vessel, and a molten metal heated to a melting point or higher is placed and pressurized at a pressure of 30 MPa or higher. Is impregnated into the voids of the ceramic powder compact or ceramic porous body.
  • the obtained impregnated product is processed into a cylindrical body using a lathe, a cylindrical grinding machine or the like, and if necessary, using a diamond grindstone. Thereafter, one or more protective layers selected from Ni, Co, Pd, Cu, Ag, Au, Pt, Ti, W and Mo are formed on the periphery (side surface) by plating, vapor deposition, and sputtering.
  • the cylindrical body manufactured by any of the above methods is cut to a thickness of about 0.1 to 0.5 mm thicker than the final shape of the wafer with a multi-wire saw, an inner peripheral cutting machine or the like, and then the surface finish
  • the wafer of the present invention is obtained.
  • the wafer of the present invention may have one or more thin layers 63 of metal selected from Ni, Co, Pd, Cu, Ag, Au, Pt, and Sn.
  • the cutting method is not particularly limited, but a multi-wire saw having a small cutting margin and suitable for mass production is preferable.
  • processing machines such as double-sided grinders, rotary grinders, surface grinders, and lapping machines are used, with a plate thickness of 0.05 to 0.5 mm and a surface roughness (Ra) of 0.01 to 0. It is preferable to surface-treat to 5 ⁇ m.
  • the surface may be processed only on one side (bonded surface).
  • Example 1 ⁇ Manufacture of wafers>
  • silicon carbide (SiC) powder A (average particle size 200 ⁇ m) 1800 g
  • silicon carbide powder B (average particle size 20 ⁇ m) 900 g
  • silicon carbide powder C (average particle size 2 ⁇ m) 300 g
  • molding binder methylcellulose, Shin-Etsu Chemical 150 g of “Metroze” manufactured by the company was mixed for 30 minutes with a stirrer and mixer, then press-molded into a cylindrical shape having a size of 55 mm ⁇ 110 mm at a surface pressure of 10 MPa, and then CIP molded at a molding pressure of 100 MPa to produce a molded body.
  • the laminate was preheated to a temperature of 700 ° C. in an electric furnace, and then stored in a preheated press die (inner diameter ⁇ 400 mm ⁇ 300 mm), and a molten aluminum alloy (alloy composition: Si 12 mass%, Mg 1 mass%, Al 87% by mass, temperature: 800 ° C.) was poured, and the aluminum alloy was impregnated by applying pressure at 100 MPa for 25 minutes. After cooling to room temperature, peel off the release plate along the shape of the release plate with a wet band saw, remove the graphite jig part with a lathe, and then remove the distortion by annealing at 530 ° C for 3 hours. Thus, an impregnated product (a cylindrical body having a diameter of 52 mm ⁇ 100 mm) was manufactured.
  • a specimen for measuring linear thermal expansion coefficient ( ⁇ 3 mm ⁇ 10 mm), a specimen for measuring thermal conductivity (25 mm ⁇ 25 mm ⁇ 1 mm), and a specimen for measuring three-point bending strength (3 mm ⁇ 4 mm ⁇ ) by grinding. 40 mm), a specimen for measuring volume resistivity (40 mm ⁇ 40 mm ⁇ 5 mm) was cut out, and a linear thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. was measured at a temperature of 25 ° C.
  • the impregnated product was subjected to outer periphery processing to a shape of ⁇ 50.8 mm ⁇ 100 mm with a diamond grinder on a cylindrical grinder, and then diamond abrasive grains were used with a multi-wire saw, with a cutting cutting speed of 0.2 mm / min and a plate thickness of 0 Cut into 3 mm disks.
  • ultrasonic cleaning was performed in pure water and then in isopropyl alcohol, followed by drying to manufacture the wafer of the present invention (see FIG. 1).
  • the wafer 6 has a metal impregnated ceramic composite 61 at the center and an alumina protective layer 62 around the center (see FIG. 1).
  • the surface roughness (Ra) measured with a surface roughness meter was 0.08 ⁇ m
  • the thickness of the protective layer of alumina measured with a factory microscope was 0.9 mm
  • the volume occupation ratio of the protective layer was 7.0. %Met.
  • a thin metal layer 63 (Au layer having a thickness of 0.5 ⁇ m) was formed on the upper and lower surfaces of the wafer by vapor deposition (see FIG. 4), and chemical resistance was evaluated.
  • the chemical resistance is measured by immersing in 5N HCl aqueous solution at 25 ° C for 1 minute, washing with distilled water, further immersing in 10N NaOH aqueous solution at 75 ° C for 1 minute, and washing with distilled water.
  • the amount of mass reduction per unit area was calculated. As a result, it was 0.01 mg / cm 2 .
  • LED mounting structure As shown in FIG. 2, ammonia gas and trimethyl gallium are used for a single crystal growth substrate (single crystal sapphire substrate) 1 having a plate thickness of 0.5 mm, and a mixed gas of hydrogen and nitrogen is used as a carrier gas. After forming an n-type III-V group semiconductor buffer layer (n-type GaN buffer layer) 0.3 ⁇ m by MOCVD at 1100 ° C., LED 2 was epitaxially grown 4.1 ⁇ m.
  • n-type III-V group semiconductor buffer layer n-type GaN buffer layer
  • the n-type III-V group semiconductor layer (n-type GaN semiconductor layer) 21 is 2 ⁇ m
  • the light-emitting layer (GaN light-emitting layer) 22 is 0.1 ⁇ m
  • the p-type III-V group semiconductor layer (p-type GaN semiconductor layer) 23) was composed of 2 ⁇ m.
  • a metal of a silver / tin alloy (Ag 3.5 mass%, Sn 96.5 mass%) is formed on each of the surface of the p-type GaN semiconductor layer 23 of the LED 2 and the surface of the wafer 6 of the present invention manufactured above.
  • the reflective layer 3 of the layer was vacuum deposited to a thickness of 2 ⁇ m.
  • the above reflective layers 3 were laminated in contact with each other, and held at a temperature of 400 ° C. under a pressure of 5 MPa for 5 minutes.
  • the two reflection layers were merged into one reflection layer 3.
  • the single crystal sapphire substrate 1 was peeled off by irradiating a nitrogen gas laser with an output of 40 MW / cm 2 from the obtained bonded body from the single crystal growth substrate (single crystal sapphire substrate) side.
  • the single crystal sapphire substrate was peeled off by the nitrogen gas generated by the laser irradiation to decompose the n-type GaN buffer layer 11 into Ga and nitrogen.
  • the joined body was changed to an intermediate structure composed of reference numerals 2, 3, and 6.
  • the exposed n-type GaN buffer layer 11 was removed by etching, and a transparent conductive layer 4 of indium tin oxide (Sn 4.5 mass%) was formed on the surface of the LED 2 to a thickness of 0.4 ⁇ m.
  • Au was vapor-deposited on the transparent conductive layer as an n-type electrode, and then cut into 1 mm ⁇ 1 mm by dicing to manufacture the LED mounting structure of the present invention (see FIG. 3, but the electrode is not shown).
  • Examples 2 to 5 and Comparative Examples 1 to 3 In Examples 2 and 3 and Comparative Examples 1 and 2, wafers were produced in the same manner as in Example 1 except that the cutting width at the time of multi-wire saw processing was changed and the plate thickness was changed variously. In Examples 4 and 5 and Comparative Example 3, wafers were produced in the same manner as in Example 1 except that the grain size of diamond abrasive grains during lapping was changed and the surface roughness was changed. The results are shown in Table 1.
  • Examples 6 to 13 Various metal thin layers 63 were formed on the wafer manufactured in Example 1 by the method shown in Table 2 (see FIG. 4), and the chemical resistance was evaluated. The results are shown in Table 2.
  • Example 14-22 The ceramic porous body (porosity: 20%) manufactured in Example 1 was processed into the outer diameter shown in Table 3 using a diamond grindstone at a machining center. Each of these is inserted into a metal or ceramic tubular body (outer diameter: ⁇ 52.3 mm ⁇ 100 mm, inner diameter: Table 3), and then a boron graphite mold release agent is used to form a cylindrical graphite jig. (Outer dimensions: 70 mm ⁇ 70 mm ⁇ 100 mm, inner diameter: ⁇ 52.5 mm ⁇ 100 mm) to form a structure, and thereafter, the operation up to the annealing treatment was performed in the same manner as in Example 1 to produce a metal-impregnated ceramic composite. did.
  • Example 23 The CIP molded body of Example 1 was degreased at a temperature of 600 ° C. for 2 hours in an air atmosphere, and then fired at 2100 ° C. for 8 hours in an argon atmosphere to produce a ceramic porous body having a porosity of 10%. Except for the above, operations up to the annealing treatment were performed in the same manner as in Example 1 to produce a metal-impregnated ceramic composite. As a result, the coefficient of linear thermal expansion of the metal-impregnated ceramic composite was 4.6 ⁇ 10 ⁇ 6 / K, the thermal conductivity was 270 W / mK, the three-point bending strength was 320 MPa, and the volume resistivity was 1.6 ⁇ 10 ⁇ 6. ⁇ ⁇ m.
  • the surface roughness (Ra) of the wafer was Ra 0.06 ⁇ m
  • the thickness of the protective layer of alumina was 0.9 mm
  • the volume occupation ratio was 7.0%
  • the chemical resistance was 0.01 mg / cm 2 .
  • Example 24 Silicon carbide powder D (commercial product: average particle size 10 ⁇ m) 2000 g and silica sol (Nissan Chemical Co., Ltd .: Snowtex) 300 g mixed powder are press-molded into a cylindrical shape with a size of ⁇ 52 ⁇ 100 mm at a surface pressure of 30 MPa and formed. Manufactured. The obtained molded body was dried at a temperature of 120 ° C. for 1 hour and then fired in a nitrogen atmosphere at a temperature of 1400 ° C. for 2 hours to produce a ceramic porous body having a porosity of 50%. Similarly, operations up to annealing treatment were performed to produce a metal-impregnated ceramic composite.
  • the linear thermal expansion coefficient of the metal-impregnated ceramic composite was 9.5 ⁇ 10 ⁇ 6 / K
  • the thermal conductivity was 180 W / mK
  • the three-point bending strength was 500 MPa
  • the volume resistivity was 3 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • a wafer was manufactured from this metal-impregnated ceramic composite in the same manner as in Example 1.
  • the surface roughness (Ra) was Ra 0.09 ⁇ m
  • the thickness of the protective layer of alumina was 0.9 mm
  • the volume occupation ratio was 7.0% and chemical resistance was 0.02 mg / cm 2 .
  • Example 25 A ceramic powder is formed by filling 138 g of silicon carbide powder D138 g and silicon carbide powder E (commercial product: average particle diameter 150 ⁇ m) 255 g into an alumina tube (outer diameter: ⁇ 52.3 mm ⁇ 100 mm, inner diameter: ⁇ 49 mm ⁇ 100 mm).
  • a metal-impregnated ceramic composite is manufactured by performing the same operations as in Example 1 except that the structure (porosity: 35%) is inserted into a cylindrical graphite jig to obtain a structure. did.
  • the coefficient of linear thermal expansion of the metal-impregnated ceramic composite was 7.5 ⁇ 10 ⁇ 6 / K
  • the thermal conductivity was 210 W / mK
  • the three-point bending strength was 400 MPa
  • the volume resistivity was 5 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • a wafer was manufactured from this metal-impregnated ceramic composite in the same manner as in Example 1.
  • the surface roughness (Ra) was 0.08 ⁇ m
  • the thickness of the protective layer of alumina was 0.9 mm
  • the volume occupation ratio was 7
  • the chemical resistance was 0.01 mg / cm 2 .
  • Example 26 Manufacture of wafers
  • the ceramic porous body manufactured in Example 1 was processed into a shape having an outer dimension of ⁇ 52 mm ⁇ 100 mm using a diamond grindstone at a machining center, and then a boron nitride release agent was applied, and a cylindrical iron jig ( (Outer dimensions: 70 mm ⁇ 70 mm ⁇ 100 mm, inner diameter: ⁇ 52.5 mm ⁇ 100 mm) to obtain a structure.
  • Four such structures are laminated with a release plate (70 mm ⁇ 70 mm ⁇ 0.8 mm stainless steel plate coated with a graphite release agent), and a laminate (140.8 mm ⁇ 140.8 mm ⁇ 100 mm).
  • the obtained metal-impregnated ceramic composite was processed into a cylindrical shape of ⁇ 50.8 mm ⁇ 100 mm using a diamond grindstone with a cylindrical grinder, the surface was washed, and then the surface of the aluminum alloy part was washed with NaOH solution. Was removed by etching, and an electroless plating treatment was performed to form a Ni—P plating layer having a thickness of 10 ⁇ m. Thereafter, the cylindrical metal-impregnated ceramic composite was cut into a disk shape having a plate thickness of 0.3 mm at a cutting cutting speed of 0.2 mm / min using diamond abrasive grains with a multi-wire saw.
  • a disk-shaped metal-impregnated ceramic composite is ground to a thickness of 0.22 mm using a # 600 diamond grindstone with a double-side grinding machine, and then a diamond thickness of 0.2 mm is used with a lapping machine.
  • ultrasonic cleaning is performed in pure water and then in isopropyl alcohol, followed by drying to form a metal-impregnated ceramic composite 61 at the center and a protective layer around the metal layer (Ni).
  • a wafer 6 made of 62 was produced (see FIG. 1).
  • the surface roughness (Ra) of this wafer was Ra 0.09 ⁇ m
  • the thickness of the Ni protective layer was 0.01 mm
  • the volume occupation ratio was 0.04%
  • the chemical resistance was 0.01 mg / cm 2 .
  • a surface coating layer 12 made of SiC is formed by CVD on a single crystal growth substrate (single crystal sapphire substrate) 1 having a thickness of 0.5 mm, and then ammonia gas and gallium chloride are used. Then, a hydrogen gas was used as a carrier gas, and an LED 2 having a thickness of 4.1 ⁇ m was epitaxially grown by a HVPE method at a temperature of 1050 ° C.
  • the LED 2 has an n-type III-V group semiconductor layer (n-type GaN semiconductor layer) 21 of 2 ⁇ m, a light-emitting layer (GaN light-emitting layer) 22 of 0.1 ⁇ m, and a p-type III-V group semiconductor layer (p-type GaN semiconductor layer). 23) was composed of 2 ⁇ m.
  • the reflective layer 3 is formed on the surface of the p-type GaN semiconductor layer 23 of the LED 2 by vacuum evaporation to form a reflective layer 3, and then an Au / tin alloy (Au 80 mass%, Sn20
  • the metal layer 31 was formed by vapor deposition to a thickness of 1.5 ⁇ m.
  • the metal layer 31 was formed by vapor-depositing an Au / tin alloy to a thickness of 1.5 ⁇ m by the same method. Both metal layers 31 were laminated in contact with each other, and the bonded body was manufactured by holding at a temperature of 500 ° C. under a pressure of 5 MPa for 5 minutes. As a result, both metal layers 31 merged into one metal layer 31.
  • the obtained bonded body was acid-treated to remove the single crystal growth substrate (single crystal sapphire substrate) 1 by etching, and then the surface coating layer 12 was completely removed by grinding. Next, the surface of the exposed LED 2 was roughened by etching, and then a transparent conductive layer 4 of indium tin oxide (Sn 4.5 mass%) was formed to a thickness of 0.2 ⁇ m. Then, Au was vapor-deposited as an n-type electrode, and laser processing was performed to manufacture an LED mounting structure (see FIG. 6, but the electrode is not shown).
  • Example 27 An isotropic graphite compact (G458, manufactured by Tokai Carbon Co., Ltd., porosity: 13% by volume, dimensions: 100 mm ⁇ 100 mm ⁇ 100 mm) is used as the porous ceramic body, and stainless steel coated with a graphite release material is used as the release plate. Except for using a plate (100 mm ⁇ 100 mm ⁇ 0.8 mm), a metal-impregnated ceramic composite was manufactured by performing the operations up to annealing according to Example 1.
  • This metal-impregnated ceramic composite has a linear thermal expansion coefficient of 5.5 ⁇ 10 ⁇ 6 / K, a thermal conductivity of 250 W / mK, a three-point bending strength of 60 MPa, and a volume resistivity of 1.5 ⁇ 10 ⁇ 7 ⁇ ⁇ m.
  • the outer periphery was processed into a cylindrical shape with a diameter of 50.8 mm ⁇ 100 mm.
  • a wafer having a metal layer (Ni) protective layer around it was manufactured.
  • the surface roughness (Ra) of the wafer was 0.15 ⁇ m
  • the thickness of the Ni protective layer was 0.01 mm
  • the volume occupation ratio was 0.04
  • the chemical resistance was 0.02 mg / cm 2 .
  • Example 28 A mixed powder of aluminum nitride powder (average particle size 2 ⁇ m) 2880 g, yttria powder (average particle size 1 ⁇ m) 120 g, molding binder (methylcellulose) 150 g, and pure water 150 g was press-molded at a surface pressure of 10 MPa, and further molding pressure 100 MPa. To produce a CIP molded body (diameter 55 mm ⁇ 110 mm). This was degreased at a temperature of 600 ° C. for 2 hours in an air atmosphere, then fired at a temperature of 1780 ° C. for 4 hours in a nitrogen atmosphere to produce a sintered body, and then the porosity was 22 using a diamond grindstone at a machining center.
  • Example 2 % Ceramic porous body (diameter: 52 mm ⁇ 100 mm). Except for using this ceramic porous body and using pure aluminum instead of the aluminum alloy, a metal-impregnated ceramic composite was manufactured by performing the operations up to annealing according to Example 1. This metal-impregnated ceramic composite has a linear thermal expansion coefficient of 5.3 ⁇ 10 ⁇ 6 / K, a thermal conductivity of 180 W / mK, a three-point bending strength of 420 MPa, and a volume resistivity of 7.5 ⁇ 10 ⁇ 7 ⁇ ⁇ m. Thereafter, a wafer was produced from this metal-impregnated ceramic composite in the same manner as in Example 27. The surface roughness (Ra) of the wafer was 0.07 ⁇ m, the thickness of the Ni protective layer was 0.01 mm, the volume occupation ratio was 0.04%, and the chemical resistance was 0.01 mg / cm 2 .
  • Ra surface roughness
  • the body was manufactured. This was fired for 4 hours at a temperature of 1880 ° C. in a nitrogen pressurized atmosphere of 0.9 MPa to produce a sintered body, and then a ceramic porous body having a porosity of 13% (diameter: 52 mm) using a diamond grindstone at a machining center. ⁇ 100 mm) was manufactured.
  • the metal-impregnated ceramic composite has a linear thermal expansion coefficient of 4.0 ⁇ 10 ⁇ 6 / K, a thermal conductivity of 150 W / mK, a three-point bending strength of 450 MPa, and a volume resistivity of 1.1 ⁇ 10 ⁇ 6 ⁇ ⁇ m. Met. Further, the surface roughness (Ra) of the wafer was Ra 0.09 ⁇ m, the thickness of the Ni protective layer was 0.01 mm, the volume occupation ratio was 0.04%, and the chemical resistance was 0.01 mg / cm 2 .
  • Example 30 Diamond powder A (Diamond Innovations, MBG-600, average particle size: 120 ⁇ m) 7 g, Diamond powder B (Diamond Innovations, MBG-600, average particle size: 15 ⁇ m) 3 g in an alumina mortar for 10 minutes Mixed.
  • both main surfaces of the metal-impregnated ceramic composite are ground using a diamond grindstone with a surface grinder, and have a protective layer of a metal layer (Ni) around them.
  • a wafer was manufactured.
  • the surface roughness (Ra) of the wafer was 0.3 ⁇ m
  • the thickness of the Ni protective layer was 0.01 mm
  • the volume occupation ratio was 0.04%
  • the chemical resistance was 0.01 mg / cm 2 .
  • Example 31 The ceramic porous body of Example 1 (external dimensions: diameter 52 mm ⁇ height 100 mm, porosity: 20%) was processed into a disk having an external dimension of 52 mm ⁇ 20 mm using a diamond grindstone at a machining center. This disk and lump silicon were put in a graphite crucible coated with BN powder and set in an electric furnace. The furnace was evacuated and held at 1650 ° C. for 8 hours to impregnate the disc with silicon. After cooling to room temperature, excess silicon was removed with a cylindrical grinder to produce a metal-impregnated ceramic composite.
  • This metal-impregnated ceramic composite has a linear thermal expansion coefficient of 4.3 ⁇ 10 ⁇ 6 / K, a thermal conductivity of 210 W / mK, a three-point bending strength of 250 MPa, and a volume resistivity of 1 ⁇ 10 ⁇ 5 ⁇ ⁇ m. there were. Thereafter, a wafer was manufactured in the same manner as in Example 26. The surface roughness (Ra) of the wafer was 0.15 ⁇ m, the thickness of the Ni protective layer was 0.01 mm, the volume occupation ratio was 0.04%, and the chemical resistance was 0.005 mg / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Inorganic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Fluid Mechanics (AREA)

Abstract

 LEDとの線熱膨張係数差が小さくしかも熱伝導性に優れたLED搭載用ウエハと、このLED搭載用ウエハの製造方法と、このLED搭載用ウエハを用いて製造されたLED搭載構造体を提供する。LED搭載用ウエハ(6)は、金属含浸セラミックス複合体(61)と、その周囲に形成された保護層(62)とからなり、金属含浸セラミックス複合体(61)が表面に金属の薄層(63)を有していることが好ましい。ウエハの製造方法は、金属製又はセラミックス製の管状体の内部に、セラミックス多孔体、セラミックス粉末成形体及びセラミックス粉末から選ばれた少なくとも一方を充填した後、これらのセラミックス多孔体、セラミックス粉末成形体及びセラミックス粉末から選ばれた少なくとも一方が有する空隙部に金属を含浸させた後、加工することを特徴とする。

Description

LED搭載用ウエハとその製造方法、及びそのウエハを用いたLED搭載構造体
本発明は、LED搭載用ウエハとその製造方法、及びそのウエハを用いたLED搭載構造体に関する。
発光ダイオード(LED)は、半導体のpn接合に順方向電流を流すと発光する素子であり、GaAs,GaN等のIII-V族半導体結晶を用いて製造される。近年、半導体のエピタキシャル成長技術と発光素子プロセス技術の進歩により、変換効率の優れるLEDが開発され、様々な分野において幅広く使用されている。
LEDは、単結晶成長基板上にIII-V族半導体結晶をエピタキシャル成長させたp型層とn型層及び両者に挟まれる光活性層から構成される。一般的には、単結晶サファイア等の成長基板上にIII-V族半導体結晶をエピタキシャル成長させた後、電極等を取り付けて形成される(特許文献1)。
単結晶成長基板上に、III-V族半導体結晶をエピタキシャル成長させる場合、単結晶成長基板とIII-V族半導体結晶の格子定数が異なるため、良好なLEDを成長させることが難しい。このため、単結晶成長基板上に低温でGaN等のバッファー層を形成し、その上にGaNをエピタキシャル成長させる方法が提案されている(特許文献2)。
一方、単結晶成長基板は、熱伝導性が良くないという課題がある。単結晶サファイアの場合、熱伝導率が40W/mK程度であり、III-V族半導体素子で発生する熱を十分に放熱することができない。とくに、大電流を流す高出力LEDでは素子の温度が上昇して、発光効率の低下や素子寿命の低下が起きるという課題がある。このため、単結晶成長基板上にIII-V族半導体結晶をエピタキシャル成長させた後に、金属層を介して高熱伝導性基板を接合し、その後、単結晶成長基板を除去する方法が提案されている(特許文献3)。この場合、高熱伝導性基板としては熱伝導性に優れる銅等の材料が検討されているが、III-V族半導体結晶との線熱膨張係数差が大きく、高出力LED用としては十分満足できるものではなかった。
特開2005-117006号公報 特公平5-73252号公報 特開2006-128710号公報
本発明の目的は、LEDとの線熱膨張係数差が小さくしかも熱伝導性に優れたLED搭載用ウエハと、このLED搭載用ウエハの製造方法と、このLED搭載用ウエハを用いて製造されたLED搭載構造体を提供することである。
本発明は、金属含浸セラミックス複合体61と、その周囲に形成された保護層62とからなることを特徴とするLED搭載用ウエハ(以下、単に「ウエハ」という。)6である(図1参照)。
本発明のウエハにあっては、金属含浸セラミックス複合体が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上を含み、気孔率が10~50体積%の多孔体又は粉末成形体に、金属が含浸されてなるものであり、板厚が0.05~0.5mm、表面粗さ(Ra)0.01~0.5μm、3点曲げ強度が50MPa以上、温度25℃の熱伝導率が150~500W/mK、温度25℃~150℃の線熱膨張係数が4~9×10-6/K、体積固有抵抗が10-9~10-5Ω・mであることが好ましい。
また、本発明のウエハにあっては、保護層が、Ni、Co、Pd、Cu、Ag、Au、Pt、Ti、W及びMoの中から選ばれる1種以上の金属か、又は気孔率が3%以下のアルミナ、ムライト、窒化アルミニウム及び窒化珪素の中から選ばれる1種以上のセラミックスからなり、保護層の厚みが3mm以下(0を含まない)、保護層の体積占有率が20体積%以下(0を含まない)であることが好ましい。
さらに、本発明のウエハにあっては、金属含浸セラミックス複合体61が、表面に、厚みが0.5~10μmのNi、Co、Pd、Cu、Ag、Au、Pt及びSnの中から選ばれる1種類以上の金属の薄層63を有していることが好ましい(図4参照)。金属の薄層の厚みは0.5~10μmが好ましく、0.5μm未満であると、耐薬品性の向上効果が乏しく、10μmをこえると、表面粗さが増大する恐れがある。金属の薄層の形成は、無電解めっき、電解めっき等のめっき法、蒸着法等により行われる。
また、本発明は、金属製又はセラミックス製の管状体の内部に、セラミックス多孔体、セラミックス粉末成形体及びセラミックス粉末から選ばれた少なくとも一方を充填した後、これらのセラミックス多孔体、セラミックス粉末成形体及びセラミックス粉末から選ばれた少なくとも一方が有する空隙部に金属を含浸させた後、加工することを特徴とする本発明のウエハの製造方法である。
また、本発明は、セラミックス多孔体又はセラミックス粉末成形体の空隙部に金属を含浸させた後、その側面に保護層を形成してから加工するか、又は加工してから保護層を形成することを特徴とする本発明のウエハの製造方法である。
また、本発明は、本発明のウエハの金属含浸セラミックス複合体61の部分から切り出された、少なくとも一個の片からなるLED搭載用基板5の少なくとも一面に、金属薄層51(又は金属薄層51及び反射層の金属層31)と、反射層3と、LED2と、透明導電層4とを順次有しており、透明導電層4に電極(図示せず)が取り付けられてなることを特徴とするLED搭載構造体である(図3、図6参照)。
本発明のウエハによれば、LEDとの線熱膨張係数差の小さいものが提供される。本発明のウエハを構成する金属含浸セラミックス複合体は、その部分から少なくとも一個の片が切り出されてLED搭載用基板となる。そして、このLED搭載用基板にLEDが搭載されて本発明のLED搭載構造体となる。また、本発明のウエハは、本発明のLED搭載構造体を製造する際に使用される酸及びアルカリに対する耐薬品性に優れ、しかも導電性が大であるので電極の形成等が容易となる。また、本発明のLED搭載構造体は、放熱性、信頼性に優れた高出力のものであり、単位面積当たりの発光量の増加が可能となる。本発明のウエハの製造方法によれば、本発明のウエハを容易に製造することができる。
実施例1で製造された本発明のウエハの説明図 図1のウエハとLEDとを含む接合体の説明図 図2の接合体から製造された本発明のLED搭載構造体の説明図 実施例26で製造された本発明のウエハの説明図 図4のウエハとLEDとを含む接合体の説明図 図5の接合体から製造された本発明のLED搭載構造体の説明図
 1 単結晶成長基板
11 単結晶成長基板1表面のn型III-V族半導体のバッファー層
12 単結晶成長基板1表面の無機化合物の表面コーティング層
 2 LED
21 LED2のn型III-V族半導体層
22 LED2の発光層
23 LED2のp型III-V族半導体層
 3 反射層
31 反射層3表面の金属層
 4 透明導電層
 5 LED搭載用基板
51 LED搭載用基板5表面の金属箔層
 6 ウエハ
61 ウエハ6の金属含浸セラミックス複合体
62 ウエハ6の保護層
63 金属含浸セラミックス複合体61表面の金属の薄層
本発明のLED搭載構造体は、例えば以下のように、単結晶成長基板の表面にLEDをエピタキシャル成長させる(ア工程)、それと本発明のウエハとを接合して接合体を製造する(イ工程)、この接合体から単結晶成長基板の部分を除去して中間構造体を製造する(ウ工程)、この中間構造体に透明導電層と電極等を形成してから切断する(エ工程)、工程を経由して製造することができる。以下、図面を参照しながら説明する。
(ア工程)この工程は、単結晶成長基板の表面にLEDをエピタキシャル成長させる工程である。具体的には、単結晶成長基板1の表面にn型III-V族半導体のバッファー層11又は無機化合物の表面コーティグ層12を形成してからLED2をエピタキシャル成長させる(図2、図5参照)。
単結晶成長基板1は、LEDとの格子定数の差が小さく、かつ欠陥の少ないものが使用される。LEDの結晶性と均一性を確保し、エピタキシャル成長時の雰囲気に対する耐久性を高める点から、単結晶成長基板としては、単結晶サファイア、単結晶炭化珪素、単結晶GaAs、単結晶Siのいずれかであることが好ましい。単結晶成長基板の厚みは0.1~1.0mmが好ましい。また、LEDとの格子定数の差を低減する点から、単結晶成長基板1は、その表面にGaN、GaAs又はGaPのいずれかによるバッファー層11を有していることが好ましい。バッファーの厚みは0.1~0.8μmが好ましい。また、単結晶成長基板の格子定数をLEDのそれに可及的に近づけるため、単結晶成長基板1は、その表面にAlN、SiC、GaN及びGaAsから選ばれた少なくとも1種の無機化合物による表面コーティング層12を有していることが好ましい。表面コーティグ層の厚みは0.1~0.8μmであることが好ましい。
LED2は、通常、n型III-V族半導体層21、発光層22、p型III-V族半導体層23から構成されているが、本発明では何もこれに限定されない。このようなLEDは、例えば有機金属気相成長法(MOCVD法)、ハライド気相エピタキシャル法(HVPE法)等によってエピタキシャル成長させて形成させることができる。MOCVD法によれば、結晶性の良いLEDを成長させることができ、HVPE法によれば、結晶成長速度が速いので、効率よくLEDを成長させることができる。エピタキシャル成長させたLEDは、発光特性を更に向上させるために、その表面をエッチングや研磨等の処理を施すこともできる。LEDの厚みは0.6~15μmが好ましい。n型III-V族半導体層21、発光層22、p型III-V族半導体層23の厚みは、一般的には、それぞれ0.3~10μm、0.1~0.5μm、0.3~10μmである。
(イ工程)この工程は、上記のようにして単結晶成長基板にエピタキシャル成長させたLED2と、本発明のウエハ6との接合体を製造する工程である。具体的には、LEDのp型III-V族半導体層23の表面に金属からなる反射層3を形成させてから(図2参照)、又はこの反射層3の表面に必要に応じて更に金属層31を形成させてから(図5参照)、本発明のウエハと接合する。本発明のウエハについては後述する。接合は、本発明のウエハの金属含浸セラミックス複合体61、又はその表面に形成させた金属の薄層63の表面に、金属からなる反射層3(又は反射層3と金属層31)形成させてから、この反射層3の部分(又は金属層31の部分)と、上記反射層3又は上記金属層31とを接面させ加熱して行う。加熱によって、2つの反射層3同士(又は2つの金属層31同士)が一体化されて、1つの反射層3(又は1つの反射層3と1つの金属層31)となる(図6参照)。加熱は、20MPa以下で加圧しながら行うことが好ましい。加熱温度は反射層3、反射層の金属層31、金属の薄層63の種類によって250~550℃の範囲から選択される。
反射層3と金属の薄層63が同種金属で構成されているときは、反射層の金属層31は必ずしも必要でないが、異種金属で構成されているときは、反射層3の表面には金属の薄層63と同種の反射層の金属層31を有させることが好ましい。反射層3、反射層の金属層31の形成には、蒸着法、スパッタリング法等が採用される。これらの層の金属種は、インジウム、アルミニウム、金、銀及びこれらの合金であることが好ましい。とくに、反射層3と金属の薄層63は同種の金属種で構成されていることが好ましい。反射層3、反射層の金属層31の厚みは、極端に厚いと密着性が低下する恐れがあるので、それぞれ0.5~10μmであることが好ましく、それぞれ0.5~2μmであることが特に好ましい。これらの厚みにあっても、反射層3の厚みは金属の薄層63の厚みと同じであるか、又は10%以内で厚いか薄い方が好ましい。金属の薄層63の厚みは上記した。
(ウ工程)この工程は、上記接合体から、単結晶成長基板1、バッファー層11及び表面コーティグ層12を除去する工程である。単結晶成長基板の除去は、単結晶成長基板側からレーザー照射、研磨、エッチング等によって行われる。バッファー層はエッチング等によって除去され、表面コーティグ層は研削加工等によって除去される。この工程によって接合体は符号2、3(又は3と31)、6からなる中間構造体に変化する。
(エ工程)この工程は、上記中間構造体の露出したn型III-V族半導体層21を表面加工してから、透明導電層4とこの透明導電層に電極(図示せず)を形成した後、所望形状に切断して本発明のLED搭載構造体を製造する工程である(図6参照)。この切断によって、金属含浸セラミックス複合体61はLED搭載用基板5となり、金属の薄層63は、LED搭載用基板表面の金属薄層51となる。
n型III-V族半導体層21の表面加工は、ICPドライエッチング等によって行うことが好ましく、これによって透明導電層の形成に適した表面へと平坦化される。透明導電層は電流分散のために形成するものであり、電子ビーム蒸着法、スパッタ法等によって、0.05~0.8μmの厚みに形成される。透明導電層の材質は、酸化インジウム錫、酸化カドミウム錫、酸化インジウム亜鉛、酸化アルミニウム亜鉛、酸化錫亜鉛、酸化錫アンチモニーから選ばれた少なくとも1種の金属であることが好ましい。電極の形成には蒸着法、スパッタリング法等が採用される。電極材料はAu、Ag、Al等から選択される。切断はレーザーカット、ダイシング等によって行われる。
本発明においては、金属含浸セラミックス複合体の部分から少なくとも一個の片(すなわちLED搭載用基板5)を最初に切り出しておき、それを用いて上記工程に準じた操作を行うことによっても(但し、エ工程の切断操作は不要となる。)、本発明のLED搭載構造体を製造することができる。しかし、生産性の点から上記工程によることが好ましい。
つぎに、本発明のウエハとその製造方法について説明する。
本発明のウエハ6は、金属含浸セラミックス複合体61と、その周囲に形成された保護層62とから構成されている。LEDが搭載されるのは、上記金属含浸セラミックス複合体の部分から切り出された少なくとも1個の片、すなわちLED搭載用基板5である。この観点から、本発明のウエハはLED搭載用基板の母材として機能する。
まず、金属含浸セラミックス複合体61について説明する。LED搭載用基板に必要な要件は、(a)LEDをエピタキシャル成長させた単結晶成長基板と、LED搭載用基板とを接合する際に、耐え得る強度を有すること、(b)接合面にボイドや異物等の介在物がなく接合面が平坦になること、(c)放熱性が良好であること、(d)適度な熱伝導率と線熱膨張係数を有すること、である。(a)は、金属含浸セラミックス複合体の3点曲げ強度を50MPa以上にすることによって、(b)は、金属含浸セラミックス複合体の表面粗さ(Ra)を0.01~0.5μmとすることによって、(c)は、金属含浸セラミックス複合体の板厚を0.05~0.5mmとすることによって、そして(d)は、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上を含み、気孔率が10~50体積%のセラミックス多孔体、又はセラミックス粉末成形体に金属を含浸させて製造された金属含浸セラミックス複合体を用いることによって、満たさせることができる。
金属含浸セラミックス複合体の好ましい含浸金属の種類は、アルミニウムを主成分とするアルミニウム合金であり、特に好ましい3点曲げ強度は200~400MPaであり、特に好ましい表面粗さ(Ra)は0.01~0.2μmであり、特に好ましい板厚は0.08~0.3mmであり、特に好ましい上記セラミックス多孔体の気孔率は15~35体積%である。また、金属含浸セラミックス複合体の好ましい熱伝導率は150~500W/mK(温度25℃)である。また、好ましい線熱膨張係数は4~9×10-6/K(温度25℃~150℃)であり、特に好ましい線熱膨張係数は4.5~8×10-6/K(温度25℃~150℃)である。また、金属含浸セラミックス複合体の好ましい体積固有抵抗は10-5Ω・m未満である。
金属含浸セラミックス複合体の3点曲げ強度が50MPa未満であると、LED搭載構造体を製造する各工程で生じる応力に耐えらなくなる恐れがある。表面粗さ(Ra)が0.01μm未満であると、加工が困難となり、コスト増加に繋がり、0.5μmをこえると、LEDとの密着性が低下する恐れがある。板厚が0.05mm未満であると、LED搭載構造体を製造する各工程での取扱いが困難となり、0.5mmをこえると最終形状への加工代が増加する。上記セラミックス多孔体の気孔率が10体積%未満(金属が10体積%未満)であると、熱伝導率が小さくなり、50体積%をこえると(金属が50体積%超)、金属含浸セラミックス複合体の線熱膨張係数が大きくなる恐れがある。
金属含浸セラミックス複合体の線熱膨張係数(温度25℃~150℃)が4~9×10-6/Kの範囲を外れると、LEDとの線熱膨張係数差により接合後に反りが発生する恐れがあり、またLED搭載構造体として使用する際に接合層に剥離や、更にはLEDが割れる恐れがある。また、熱伝導率(温度25℃)が150W/mK未満であると、LEDで発生する熱を十分に放熱することができず、特に大電流を流す必要のある高出力LEDでは、LEDの温度が上がり発光効率の低下、それに伴う素子寿命の低下が起こる恐れがある。500W/mKをこえてもよいが、ウエハが高価になる。体積固有抵抗が10-5Ω・m以上であると、発光効率の低下等が起こる恐れがある。体積固有抵抗の下限値は、材料入手の容易性の点から10-9Ω・mであることが好ましい。
金属含浸セラミックス複合体の3点曲げ強度は、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の粒度とその含有量によって増減させることができ、表面粗さ(Ra)と板厚は、加工条件によって増減させることができる。熱伝導率と線熱膨張係数は、上記セラミックス多孔体又は上記セラミックス粉末成形体の気孔率、金属の種類とその含有量等によって増減させることができる。体積固有抵抗は含浸金属の種類と含有量によって増減させることができる。
金属含浸セラミックス複合体は、それ自体が導電性を有しているので、LEDに電極を形成することが容易となる。サファイア基板等の単結晶成長基板にあっては、LEDの上部をエッチング等で除去してから、同一面側に電極を形成する必要があるが、金属含浸セラミックス複合体から切り出された片(LED搭載用基板)を用いればこの操作は不要となる。その結果、LEDの単位面積当たりの発光量を増加させることができる。
LED搭載用基板(すなわち本発明のウエハの金属含浸セラミックス複合体の部分から切り出された片)5は、上記要件(a)~(d)のほかに、耐薬品性に優れていることが好ましい。ここで、耐薬品性とは、温度25℃の5規定のHCl水溶液又は温度75℃の10規定のNaOH水溶液に1分間浸漬したとき、単位面積当たりの質量減少量が、いずれの薬品に対しても0.2mg/cm以下、特に0.1mg/cm以下であることをいう。質量減少量が0.2mg/cmをこえると、LED搭載構造体の製造工程中において、LED搭載用基板の金属成分が溶出して熱伝導率等が低下する、レーザーカット、ダイシング等で所定形状に切断する際にチッピングが発生し、LED搭載構造体の歩留まりが低下する、などの不具合が生じる恐れがある。
耐薬品性の付与は、LED搭載用基板5に金属薄層51を形成することによって行うことができる。また、ウエハ6の側面には保護層62を有しているので、その保護層が、特に、Ni、Co、Pd、Cu、Ag、Au、Pt、Ti、W及びMoの中から選ばれる1種以上の金属であるか、又はアルミナ、ムライト、窒化アルミニウム及び窒化珪素の中から選ばれる1種以上の気孔率が3%以下のセラミックス、特に気孔率が3%以下のアルミナ又はムライトであるときは、一段と高い耐薬品性が付与されている。
保護層62の厚みは3mm以下(0を含まない)で、保護層の体積占有率が20体積%以下(0を含まない)であることが好ましい。保護層の厚みの下限と体積占有率の下限については特に制約はなく、金属含浸セラミックス複合体を加工する際の衝撃等の外的要因から保護できる厚みであればよい。一方、厚みが3mmをこえるか、又は体積占有率が20体積%をこえると、ウエハの金属含浸セラミックス複合体の部分が少なくなるので本発明のLED搭載構造体の歩留まりが低下し、更には金属含浸セラミックス複合体と保護層の線熱膨張係数により剥離が生じる恐れがある。特に好ましい保護層の厚みは0.002~2mmであり、特に好ましい体積占有率は0.1~15体積%である。
金属含浸セラミックス複合体は、含浸法、粉末冶金法等のいずれの方法によっても製造することができる。含浸法によれば比較的高い熱伝導率が得られやすい。含浸法にも常圧で行う方法と、高圧下で行う方法(高圧鍛造法)があり、その高圧鍛造法には溶湯鍛造法とダイキャスト法がある。本発明のように、金属含浸セラミックス複合体の周囲に保護層を形成するには溶湯鍛造法が特に好ましい。なお、溶湯鍛造法は、高圧容器内に、セラミックス粉末、セラミックス粉末成形体、又はセラミックス多孔体を装填し、これらの空隙部にアルミニウム合金等の金属溶湯を高温、高圧下で含浸させる方法である。
以下、溶湯鍛造法([0040]~[0044])について更に詳しく説明する。
セラミックスとしては、熱伝導率が高く、線熱膨張係数が小さいという点から、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上であることが好ましい。セラミックスの種類、金属の種類、それらの構成比率によって熱伝導率及び線熱膨張係数を調整することができる。
セラミックスは、粉末のままでも金属と複合化可能であるが、セラミックス粉末と例えばメチルセルロース、シリカゾル等のバインダーとを用いてセラミックス粉末成形体としたものであるか、更にこのセラミックス粉末成形体を焼結して気孔率が10~50体積%のセラミックス多孔体としたものが好ましい。これらの形状は、板状、円柱状など特に制約はない。セラミックス粉末成形体の成形方法は、プレス成形、鋳込み成形等の一般的なセラミックス粉末の成形方法を採用することができる。セラミックス多孔体の気孔率の調整は、セラミックス粉末の粒度、成形圧力、焼結条件等によって行うことができる。
ついで、セラミックス粉末、セラミックス粉末成形体、及びセラミックス多孔体から選ばれた少なくとも一種を、金属製又はセラミックス製の管状体の内部に充填した後、その充填物の一個又は二個以上を離型剤の塗布された治具等で固定する。たとえば、それらの充填物の複数個を、離型剤を塗布した例えばステンレス板、セラミックス板等の離型板を挟んで積層し、金属製、セラミックス製等のボルト-ナットなどで連結して積層体とする。離型剤には黒鉛、窒化ホウ素、アルミナ等が使用される。
得られた積層体は、温度600~800℃程度で加熱後、高圧容器内に一個又は二個以上配置し、融点以上に加熱された金属溶湯を入れ30MPa以上の圧力で加圧し、金属をセラミックス粉末、セラミックス粉末成形体、及びセラミックス多孔体から選ばれた少なくとも一方が有する空隙部に含浸させる。これによって金属含浸セラミックス複合体となる。金属含浸セラミックス複合体はアニール処理を行って含浸時の歪みを除去することもできる。加熱温度が温度600℃未満であるか、又は含浸時の圧力が30MPa未満であると、金属含浸セラミックス複合体の熱伝導率が低下する恐れがある。また、温度が800℃をこえると、セラミックスの表面酸化が起こり、これまた熱伝導率が特性する恐れがある。特に好ましい含浸圧力は50~150MPaである。
金属含浸セラミックス複合体が含浸する金属としては、アルミニウム合金、マグネシウム合金、銅合金、シリコン合金が好ましい。特に好ましくは、アルミニウムを70質量%以上含有するアルミニウム合金である。アルミニウムの含有量が70質量%未満であると、熱伝導率が大きく向上しない。また、アルミニウム合金は空隙内に十分に浸透させるために融点がなるべく低いことが好ましい。このようなアルミニウム合金として、例えばシリコンを5~25質量%含有したアルミニウム合金である。また、マグネシウムを5質量%以下まで含有させることによって、セラミックスと金属との結合がより強固になり好ましい。
得られた含浸品を、旋盤、円筒研削盤等を用いて、また必要に応じてダイヤモンド砥石を用いて、金属含浸セラミックス複合体の周囲にある管状体が露出した円柱形状に加工する。ウエハの構造は、管状体の内径寸法等によっても調整するが、この加工時の研削量で円柱体の外径寸法などを調整し、最終的なウエハの形状が調整される。すなわち、保護層の厚み、体積占有率が決まる。
上記方法は管状体を用いそれを保護層にするものであるが、これとは別に、先ずセラミックス多孔体又はセラミックス粉末成形体の空隙部に金属を含浸させた後、その側面に保護層を形成する方法であってもよい。すなわち、セラミックス粉末成形体又はセラミックス多孔体を温度600~800℃で加熱後、高圧容器に一個又は二個以上配置し、融点以上に加熱された金属溶湯を入れ30MPa以上の圧力で加圧し、金属をセラミックス粉末成形体又はセラミックス多孔体の空隙部に含浸させる。得られた含浸品を、旋盤、円筒研削盤等を用いて、また必要に応じてダイヤモンド砥石を用いて円柱体に加工する。その後、その周囲(側面)に、めっき、蒸着、スパッタリングにより、Ni、Co、Pd、Cu、Ag、Au、Pt、Ti、W及びMoの中から選ばれる1種以上の保護層を形成する。
その後、上記いずれかの方法で製造された円柱体を、マルチワイヤソー、内周刃切断機等により、ウエハの最終形状よりも0.1~0.5mm程度厚い板厚に切断した後、表面仕上げされて本発明のウエハとなる。本発明のウエハは、Ni、Co,Pd、Cu、Ag、Au、Pt及びSnの中から選ばれる1種以上の金属の薄層63を有していてもよいことは上記した。切断方法には、特に限定はないが、切断代が少なく量産性に適したマルチワイヤソーが好適である。表面仕上げには、両面研削盤、ロータリー研削盤、平面研削盤、ラップ盤等の加工機が用いられ、板厚が0.05~0.5mm、表面粗さ(Ra)が0.01~0.5μmに面加工することが好ましい。LED搭載構造体の製造工程で、本発明のウエハをLEDと接合した後に研磨加工する場合は、片面(接合面)のみに面加工されることもある。
実施例1
<ウエハの製造>
市販の炭化珪素(SiC)粉末A(平均粒子径200μm)1800g、炭化珪素粉末B(平均粒子径20μm)900g、炭化珪素粉末C(平均粒子径2μm)300g、及び成形バインダー(メチルセルロース、信越化学工業社製、「メトローズ」)150gを攪拌混合機で30分間混合した後、Φ55mm×110mmの寸法の円柱状に面圧10MPaでプレス成形した後、成形圧力100MPaでCIP成形して成形体を製造した。これを、大気雰囲気中、温度600℃で2時間脱脂後、アルゴン雰囲気下、温度2100℃で2時間焼成した後、マシニングセンターでダイヤモンド製の砥石により、外形寸法がΦ48.8mm×100mmの形状に加工してセラミックス多孔体(気孔率20%)を製造した。
このセラミックス多孔体をアルミナ管(外径寸法:Φ52.3mm×100mm、内径寸法:Φ49mm×100mm)に挿入後、窒化硼素製離型剤の塗布された筒状黒鉛治具(外形寸法:70mm×70mm×100mm、内径寸法:Φ52.5mm×100mm)に挿入して構造体とした。この構造体4個を離型板(70mm×100mm×0.8mmのステンレス板に黒鉛製離型剤が塗布されたもの)を挟んで積層し、両側に12mm厚みの鉄板を配置してボルト8本で連結して一つの積層体(140.8mm×140.8mm×100mm)とした。
この積層体を電気炉で温度700℃に予備加熱した後、あらかじめ加熱しておいたプレス型(内径Φ400mm×300mm)に収納し、アルミニウム合金の溶湯(合金組成:Si12質量%、Mg1質量%、Al87質量%、温度:800℃)を注ぎ、100MPaの圧力で25分間加圧してアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って離型板を剥がし、旋盤で黒鉛治具部分を除去してから、530℃の温度で3時間アニール処理して歪みを除去して含浸品(Φ52mm×100mmの円柱体)を製造した。
この含浸品から、研削加工により線熱膨張係数測定用試験体(Φ3mm×10mm)、熱伝導率測定用試験体(25mm×25mm×1mm)、3点曲げ強度測定用試験体(3mm×4mm×40mm)、体積固有抵抗測定用試験体(40mm×40mm×5mm)を切り出し、温度25℃~150℃の線熱膨張係数を熱膨張計(セイコー電子工業社製;TMA300)により、温度25℃での熱伝導率をレーザーフラッシュ法(アルバック社製;TC3000)により、3点曲げ強度を曲げ強度試験機により、体積固有抵抗を4端子法(JIS R1637に準拠)により測定した。その結果、線熱膨張係数は5.1×10-6/K、熱伝導率は250W/mK、3点曲げ強度は350MPa、体積固有抵抗は8×10-7Ω・mであった(表1)。
上記含浸品を、円筒研削盤でダイヤモンドの砥石によりΦ50.8mm×100mmの形状に外周加工を行った後、マルチワイヤソーでダイヤモンド砥粒を用い、切断切り込み速度0.2mm/minで、板厚0.3mmの円盤に切断した。この円盤を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.22mmに研削加工した後、ラップ盤でダイヤモンドの砥粒を用いて板厚0.2mmでまで研磨加工を行った後、純水中、次にイソプロピルアルコール中で超音波洗浄を行い、乾燥して本発明のウエハを製造した(図1参照)。
<ウエハの特性>
このウエハ6は、中心部分が金属含浸セラミックス複合体61で、その周囲がアルミナの保護層62からなるものである(図1参照)。表面粗さ計で測定された表面粗さ(Ra)は0.08μmであり、工場顕微鏡にて測定されたアルミナの保護層の厚みは0.9mmで、保護層の体積占有率は7.0%であった。
また、ウエハの上下面に、金属の薄層63(厚みが0.5μmのAu層)を蒸着法により形成し(図4参照)、耐薬品性を評価した。耐薬品性は、温度25℃の5規定のHCl水溶液に1分間浸漬した後蒸留水で水洗後、更に温度75℃の10NのNaOH水溶液に1分間浸漬した後蒸留水で水洗して質量を測定し、単位面積当たりの質量減少量を算出して行った。その結果、0.01mg/cmであった。
<LED搭載構造体の製造>
図2に示すように、板厚が0.5mmの単結晶成長基板(単結晶サファイア基板)1に、アンモニアガスとトリメチルガリウムを使用し、キャリアガスとして水素と窒素の混合ガスを用いて、温度1100℃でMOCVD法により、n型III-V族半導体のバッファー層(n型GaNバッファー層)11を0.3μm形成させた後、LED2を4.1μmエピタキシャル成長させた。LEDは、n型III-V族半導体層(n型GaN半導体層)21が2μm、発光層(GaN発光層)22が0.1μm、及びp型III-V族半導体層(p型GaN半導体層)23が2μmで構成されていた。
ついで、LED2のp型GaN半導体層23の表面と、上記で製造された本発明のウエハ6の表面とのそれぞれに、銀/錫合金(Ag3.5質量%、Sn96.5質量%)の金属層の反射層3を2μmの厚さに真空蒸着した。
上記の反射層3同士を接面させて積層し、温度400℃で、5MPaの加圧下で5分間保持した。2つの反射層は融合されて1つの反射層3となった。得られた接合体から、単結晶成長基板(単結晶サファイア基板)側より、出力40MW/cm2の窒素ガスレーザーを照射し単結晶サファイア基板1を剥離した。また、このレーザー照射により、n型GaNバッファー層11がGaと窒素に分解されて発生した窒素ガスにより単結晶サファイア基板が剥離された。この工程によって接合体は、符号2、3、6からなる中間構造体に変化した。
その後、露出したn型GaNバッファー層11をエッチングにより除去した後、LED2の表面に酸化インジウム錫(Sn4.5質量%)の透明導電層4を0.4μmの厚みに形成した。その後、この透明導電層にn型電極としてAuを蒸着してから、ダイシングにより1mm×1mmに切断して本発明のLED搭載構造体を製造した(図3参照、但し電極は図示せず)。
実施例2~5、比較例1~3
実施例2、3及び比較例1、2は、マルチワイヤソー加工時の切断幅をかえ、板厚を種々かえたこと以外は、実施例1と同様にしてウエハを製造した。また、実施例4、5及び比較例3は、ラップ盤加工時のダイヤモンドの砥粒の粒度をかえ、表面粗さをかえたこと以外は、実施例1と同様にしてウエハを製造した。それらの結果を表1に示す。
実施例6~13
実施例1で製造したウエハに、表2に示す方法にて種々の金属の薄層63を形成し(図4参照)、耐薬品性を評価した。それらの結果を表2に示す。
実施例14~22
実施例1で製造したセラミックス多孔体(気孔率:20%)を、マシニングセンターでダイヤモンド製の砥石を用い、表3に示される外径寸法に加工した。これらのそれぞれを金属製又はセラミックス製の管状体(外径寸法:Φ52.3mm×100mm、内径寸法:表3)に挿入してから、窒化硼素製離型剤を用い、筒状の黒鉛治具(外形寸法:70mm×70mm×100mm、内径寸法:Φ52.5mm×100mm)に入れて構造体とし、以後、実施例1と同様にしてアニール処理までの操作を行って金属含浸セラミックス複合体を製造した。その後、この金属含浸セラミックス複合体から、実施例1と同様にして、Φ50.8mm×0.2mmの形状で、その周囲に、金属製又はセラミックス製の管状体に対応した材質の保護層を有するウエハを製造した。それらの結果を表3に示す。
実施例23
実施例1のCIP成形体を、大気雰囲気中、温度600℃で2時間脱脂処理後、アルゴン雰囲気下、温度2100℃で8時間焼成して、気孔率が10%のセラミックス多孔体を製造したこと以外は、実施例1と同様にしてアニール処理までの操作を行って金属含浸セラミックス複合体を製造した。その結果、金属含浸セラミックス複合体の線熱膨張係数は4.6×10-6/K、熱伝導率は270W/mK、3点曲げ強度は320MPa、体積固有抵抗は1.6×10-6Ω・mであった。その後、この金属含浸セラミックス複合体から、実施例1と同様にしてウエハを製造したところ、ウエハの表面粗さ(Ra)はRa0.06μm、アルミナの保護層の厚みは0.9mm、体積占有率は7.0%、耐薬品性は0.01mg/cmであった。
実施例24
炭化珪素粉末D(市販品:平均粒子径10μm)2000g、シリカゾル(日産化学社製:スノーテックス)300gの混合粉末を、Φ52×100mmの寸法の円柱状に面圧30MPaでプレス成形して成形体を製造した。得られた成形体を、温度120℃で1時間乾燥後、窒素雰囲気下、温度1400℃で2時間焼成して、気孔率が50%のセラミックス多孔体を製造したこと以外は、実施例1と同様にしてアニール処理までの操作を行って金属含浸セラミックス複合体を製造した。その結果、金属含浸セラミックス複合体の線熱膨張係数は9.5×10-6/K、熱伝導率は180W/mK、3点曲げ強度は500MPa、体積固有抵抗は3×10-7Ω・mであった。その後、この金属含浸セラミックス複合体から、実施例1と同様にしてウエハを製造したところ、表面粗さ(Ra)はRa0.09μm、アルミナの保護層の厚みは0.9mmで、体積占有率は7.0%、耐薬品性は0.02mg/cmであった。
実施例25
炭化珪素粉末D138g、炭化珪素粉末E(市販品:平均粒子径150μm)255gの混合粉末をアルミナ管(外径寸法:Φ52.3mm×100mm、内径寸法:Φ49mm×100mm)に充填してセラミックス粉末成形体(気孔率:35%)としてから、筒状黒鉛治具に挿入して構造体としたこと以外は、実施例1と同様にしてアニール処理までの操作を行って金属含浸セラミックス複合体を製造した。その結果、金属含浸セラミックス複合体の線熱膨張係数は7.5×10-6/K、熱伝導率は210W/mK、3点曲げ強度は400MPa、体積固有抵抗は5×10-7Ω・mであった。その後、この金属含浸セラミックス複合体から、実施例1と同様にしてウエハを製造したところ、表面粗さ(Ra)は0.08μm、アルミナの保護層の厚みは0.9mm、体積占有率は7.0%、耐薬品性は、0.01mg/cmであった。
実施例26
(ウエハの製造)
実施例1で製造されたセラミックス多孔体を、マシニングセンターでダイヤモンド砥石を用いて、外形寸法が、Φ52mm×100mmの形状に加工した後、窒化硼素の離型剤を塗布し、筒状鉄製治具(外形寸法:70mm×70mm×100mm、内径寸法:Φ52.5mm×100mm)に挿入して構造体とした。この構造体4個を離型板(70mm×70mm×0.8mmのステンレス板に黒鉛離型剤が塗布されたもの)を挟んで積層して積層体(140.8mm×140.8mm×100mm)となし、この両側にセラミックスボード(厚み10mm)を挟んで鉄板(厚み12mm)を配置し、ボルトで連結した。以後、実施例1と同様にしてアニール処理までの操作を行って金属含浸セラミックス複合体を製造した。
得られた金属含浸セラミックス複合体を、円筒研削盤でダイヤモンドの砥石を用いて、Φ50.8mm×100mmの円柱形状に外周加工を行った後、表面を洗浄後、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解めっき処理を行い、厚みが10μmのNi-Pめっき層を形成した。その後、円柱形状の金属含浸セラミックス複合体を、マルチワイヤソーでダイヤモンド砥粒を用い、切断切り込み速度0.2mm/minで、板厚0.3mmの円板状に切断加工を行った。円板状の金属含浸セラミックス複合体を、両面研削盤で#600のダイヤモンド砥石を用いて板厚0.22mmに研削加工した後、ラップ盤でダイヤモンドの砥粒を用いて、板厚0.2mmでまで研磨加工を行った後、純水中、次にイソプロピルアルコール中で超音波洗浄を行い、乾燥して中心部分が金属含浸セラミックス複合体61で、その周囲が金属層(Ni)の保護層62からなるウエハ6を作製した(図1参照)。このウエハの表面粗さ(Ra)はRa0.09μm、Niの保護層の厚みは0.01mm、体積占有率は0.04%、耐薬品性は0.01mg/cmであった。
(LED搭載構造体の製造)
図5に示すように、板厚が0.5mmの単結晶成長基板(単結晶サファイア基板)1に、CVD法でSiCからなる表面コーティング層12を2μm形成した後、アンモニアガスと塩化ガリウムを使用し、キャリアガスとして水素ガスを用い、温度1050℃でHVPE法により、厚みが4.1μmのLED2をエピタキシャル成長させた。LED2は、n型III-V族半導体層(n型GaN半導体層)21が2μm、発光層(GaN発光層)22が0.1μm、及びp型III-V族半導体層(p型GaN半導体層)23が2μmで構成されていた。
つぎに、LED2のp型GaN半導体層23の表面に、真空蒸着法で、銀を0.5μmの厚さに蒸着して反射層3を形成した後、Au/錫合金(Au80質量%、Sn20質量%)を1.5μmの厚さに蒸着して金属層31を形成した。上記で製造されたウエハ6の表面にも、金属層31を同様の方法でAu/錫合金を1.5μmの厚さに蒸着して金属層31を形成した。双方の金属層31を接面させて積層し、温度500℃で、5MPaの加圧下で5分間保持し接合体を製造した。これによって、双方の金属層31は融合して1つの金属層31となった。
得られた接合体を、酸処理して単結晶成長基板(単結晶サファイア基板)1をエッチング除去した後、研削加工により表面コーティング層12を完全に除去した。ついで、露出したLED2の表面をエッチングにより表面粗化した後、酸化インジウム錫(Sn4.5質量%)の透明導電層4を0.2μmの厚みに形成した。その後、n型電極としてAuを蒸着しレーザー加工してLED搭載構造体を製造した(図6参照、但し電極は図示せず)。
実施例27
セラミックス多孔体として、等方性黒鉛成形体(東海カーボン社製:G458、気孔率:13体積%、寸法:100mm×100mm×100mm)を用い、また離型板として黒鉛離型材の塗布されたステンレス板(100mm×100mm×0.8mm)を用いたこと以外は、実施例1に準じてアニール処理までの操作を行って金属含浸セラミックス複合体を製造した。この金属含浸セラミックス複合体の線熱膨張係数は5.5×10-6/K、熱伝導率は250W/mK、3点曲げ強度は60MPa、体積固有抵抗は1.5×10-7Ω・mであった。
この金属含浸セラミックス複合体をダイヤモンドソーで切断加工した後、円筒研削盤でダイヤモンドの砥石を用いて、直径50.8mm×100mmの円柱形状に外周加工を行い、実施例26と同様にして、その周囲に金属層(Ni)の保護層を有するウエハを製造した。このウエハの表面粗さ(Ra)は0.15μm、Niの保護層の厚みは0.01mm、体積占有率は0.04、耐薬品性0.02mg/cmであった。
実施例28
窒化アルミニウム粉末(平均粒子径2μm)2880g、イットリア粉末(平均粒子径1μm)120g、成形バインダー(メチルセルロース)150g、及び純水150gの混合粉末を、面圧10MPaでプレス成形した後、更に成形圧力100MPaでCIP成形してCIP成形体(直径55mm×110mm)を製造した。これを、大気雰囲気中、温度600℃で2時間脱脂処理後、窒素雰囲気下、温度1780℃で4時間焼成して焼結体を製造した後、マシニングセンターでダイヤモンド砥石を用いて、気孔率が22%のセラミックス多孔体(直径52mm×100mm)を製造した。このセラミックス多孔体を用いたこと、及びアルミニウム合金のかわりに純アルミニウムを用いたこと以外は、実施例1に準じてアニール処理までの操作を行って金属含浸セラミックス複合体を製造した。この金属含浸セラミックス複合体の線熱膨張係数は5.3×10-6/K、熱伝導率は180W/mK、3点曲げ強度は420MPa、体積固有抵抗は7.5×10-7Ω・mであった。その後、この金属含浸セラミックス複合体から、実施例27と同様にしてウエハを製造した。ウエハの表面粗さ(Ra)は0.07μm、Niの保護層の厚みは0.01mm、体積占有率は0.04%、耐薬品性は0.01mg/cmであった。
実施例29
窒化珪素粉末(平均粒子径1μm)2790g、イットリア粉末(平均粒子径1μm)150g、及び酸化マグネシウム粉末(平均粒子径1μm)60gの混合物を用いたこと以外は、実施例28と同様にしてCIP成形体を製造した。これを、0.9MPaの窒素加圧雰囲気下、温度1880℃で4時間焼成して焼結体を製造した後、マシニングセンターでダイヤモンド砥石を用いて、気孔率が13%のセラミックス多孔体(直径52mm×100mm)を製造した。以下、実施例28と同様にして金属含浸セラミックス複合体及びウエハを製造した。金属含浸セラミックス複合体の線熱膨張係数は4.0×10-6/K、熱伝導率は150W/mK、3点曲げ強度は450MPa、体積固有抵抗は1.1×10-6Ω・mであった。また、ウエハの表面粗さ(Ra)はRa0.09μm、Niの保護層の厚みは0.01mm、体積占有率は0.04%、耐薬品性は0.01mg/cmであった。
実施例30
ダイヤモンド粉末A(Diamond Innovations社製、MBG-600、平均粒子径:120μm)7g、ダイヤモンド粉末B(Diamond Innovations社製、MBG-600、平均粒子径:15μm)3gを、アルミナ製の乳鉢で10分間混合した。黒鉛治具X(外形寸法:70mm×70mm×20mm、内径寸法:直径52.5mm×20mm)に、筒状黒鉛治具Y(外形寸法:直径52.4mm×9mmを挿入した後、上記ダイヤモンド混合粉末10gを充填し、更にダイヤモンドの混合粉末の上面に黒鉛治具Yを挿入して、気孔率が35%のセラミックス粉末成形体とした。このセラミックス粉末成形体を実施例1に準じて積層体となし含浸処理を施して、筒状黒鉛治具で囲まれた金属含浸セラミックス複合体(70mm×70mm×20mm)を製造した。この金属含浸セラミックス複合体の線熱膨張係数は7.5×10-6/K、熱伝導率は500W/mK、3点曲げ強度は320MPa、体積固有抵抗は5×10-7Ω・mであった。
ついで、金属含浸セラミックス複合体が露出するまで、両主面側(70mm×70mm)より、ダイヤモンド砥石を用い平面研削盤にて研削加工を行い、板状体(70mm×70mm×3mm)に加工した。その後、ウォータージェット加工機で、円板(直径50.8mm×3mm)形状に外周加工を行い、表面を洗浄後、NaOH溶液により表面のアルミニウム合金部をエッチング除去し、無電解めっき処理を行い、厚みが10μmのNi-Pめっき層を形成した後、金属含浸セラミックス複合体の両主面を平面研削盤でダイヤモンド砥石を用いて研削加工を行い、周囲に金属層(Ni)の保護層を有するウエハを製造した。ウエハの表面粗さ(Ra)は0.3μm、Niの保護層の厚みは0.01mm、体積占有率は0.04%、耐薬品性は0.01mg/cmであった。
実施例31
実施例1のセラミックス多孔体(外形寸法:直径52mm×高さ100mm、気孔率:20%)を、マシニングセンターでダイヤモンド砥石を用い、外形寸法が直径52mm×20mmの円盤に加工した。この円盤と塊状のシリコンを、BN粉を塗布した黒鉛坩堝に入れ、電気炉内にセットした。炉内を真空引きし、1650℃で8時間保持して円盤にシリコンを含浸させた。室温まで冷却した後、円筒研削盤で余分なシリコンを除去して金属含浸セラミックス複合体を製造した。この金属含浸セラミックス複合体の線熱膨張係数は4.3×10-6/K、熱伝導率は210W/mK、3点曲げ強度は250MPa、体積固有抵抗は1×10-5Ω・mであった。その後、実施例26と同様にしてウエハを製造した。ウエハの表面粗さ(Ra)は0.15μm、Niの保護層の厚みは0.01mm、体積占有率は0.04%、耐薬品性は0.005mg/cmであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1. 金属含浸セラミックス複合体(61)と、その周囲に形成された保護層(62)とからなることを特徴とするLED搭載用ウエハ(6)。
  2. 金属含浸セラミックス複合体が、炭化珪素、窒化アルミニウム、窒化珪素、ダイヤモンド及び黒鉛の中から選ばれる1種類以上を含み、気孔率が10~50体積%の多孔体又は粉末成形体に、金属が含浸されてなるものであり、板厚が0.05~0.5mm、表面粗さ(Ra)0.01~0.5μm、3点曲げ強度が50MPa以上、温度25℃の熱伝導率が150~500W/mK、温度25℃~150℃の線熱膨張係数が4~9×10-6/K、体積固有抵抗が10-9~10-5Ω・mであることを特徴とする請求項1記載のLED搭載用ウエハ。
  3. 保護層が、Ni、Co、Pd、Cu、Ag、Au、Pt、Ti、W及びMoの中から選ばれる1種以上の金属か、又は気孔率が3%以下のアルミナ、ムライト、窒化アルミニウム及び窒化珪素の中から選ばれる1種以上のセラミックスからなり、保護層の厚みが3mm以下(0を含まない)、保護層の体積占有率が20体積%以下(0を含まない)であることを特徴とする請求項1又は2記載のLED搭載用ウエハ。
  4. 金属含浸セラミックス複合体(61)が、表面に、厚みが0.5~10μmのNi、Co、Pd、Cu、Ag、Au、Pt及びSnの中から選ばれる1種類以上の金属の薄層(63)を有してなることを特徴とする請求項1~3のいずれかに記載のLED搭載用ウエハ。
  5. 金属製又はセラミックス製の管状体の内部に、セラミックス多孔体、セラミックス粉末成形体及びセラミックス粉末から選ばれた少なくとも一方を充填した後、これらのセラミックス多孔体、セラミックス粉末成形体及びセラミックス粉末から選ばれた少なくとも一方が有する空隙部に金属を含浸させた後、加工することを特徴とする請求項1~4のいずれかに記載のLED搭載用ウエハの製造方法。
  6. セラミックス多孔体、セラミックス粉末成形体が有する空隙部に金属を含浸させた金属含浸セラミックス複合体を円柱形状に加工した後、側面部にめっき、蒸着、スパッタリングにより金属層を形成して、加工することを特徴とする請求項5に記載のLED搭載用ウエハの製造方法。
  7. 請求項1~4のいずれかに記載のLED搭載用ウエハ(6)の金属含浸セラミックス複合体(61)の部分から切り出された、少なくとも一個の片からなるLED搭載用基板5の少なくとも一面に、金属薄層(51)又は金属薄層(51)及び反射層(3)の金属層(31)と、反射層(3)と、LED(2)と、透明導電層(4)とを順次有しており、透明導電層(4)に電極(図示せず)が取り付けられてなることを特徴とするLED搭載構造体。
PCT/JP2010/062808 2009-07-31 2010-07-29 Led搭載用ウエハとその製造方法、及びそのウエハを用いたled搭載構造体 WO2011013754A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080034961.4A CN102484188B (zh) 2009-07-31 2010-07-29 Led搭载用晶片及其制造方法、以及使用该晶片的led搭载结构体
EP10804500.6A EP2461379B1 (en) 2009-07-31 2010-07-29 Wafer for led mounting, method for manufacturing the same, and led-mounted structure using the wafer
US13/387,606 US8890189B2 (en) 2009-07-31 2010-07-29 Wafer for LED mounting, method for manufacturing same, and LED-mounted structure using the wafer
JP2011524832A JP5789512B2 (ja) 2009-07-31 2010-07-29 Led搭載用ウエハとその製造方法、及びそのウエハを用いたled搭載構造体
KR1020127004793A KR101685231B1 (ko) 2009-07-31 2010-07-29 Led 탑재용 웨이퍼와 그 제조 방법, 및 그 웨이퍼를 이용한 led 탑재 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009179275 2009-07-31
JP2009-179275 2009-07-31

Publications (1)

Publication Number Publication Date
WO2011013754A1 true WO2011013754A1 (ja) 2011-02-03

Family

ID=43529406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062808 WO2011013754A1 (ja) 2009-07-31 2010-07-29 Led搭載用ウエハとその製造方法、及びそのウエハを用いたled搭載構造体

Country Status (7)

Country Link
US (1) US8890189B2 (ja)
EP (1) EP2461379B1 (ja)
JP (1) JP5789512B2 (ja)
KR (1) KR101685231B1 (ja)
CN (1) CN102484188B (ja)
TW (1) TWI524548B (ja)
WO (1) WO2011013754A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506429A (zh) * 2011-11-07 2012-06-20 西安交通大学 浸入式燃气陶瓷内加热器套管及其制备方法
JP2013012623A (ja) * 2011-06-30 2013-01-17 Denki Kagaku Kogyo Kk Led発光素子用保持基板、その製造方法及びled発光素子

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222172B2 (en) * 2008-08-20 2015-12-29 Applied Materials, Inc. Surface treated aluminum nitride baffle
US9178105B2 (en) * 2010-09-21 2015-11-03 Amberwave Inc. Flexible monocrystalline thin silicon cell
US9962770B2 (en) * 2012-04-02 2018-05-08 Hitachi Metals, Ltd. Method for producing ceramic honeycomb body
CN103474522B (zh) * 2012-06-07 2016-04-13 清华大学 发光二极管的制备方法
RU2521129C1 (ru) * 2012-12-27 2014-06-27 Виталий Алексеевич САВЕНКОВ Способ обработки цилиндрических поверхностей сапфировых деталей, сапфировая плунжерная пара и насос-дозатор на ее основе
WO2014129304A1 (ja) * 2013-02-19 2014-08-28 株式会社Sumco 半導体ウェーハの加工方法
WO2017171872A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Layered substrate for microelectronic devices
US11130191B2 (en) * 2016-07-22 2021-09-28 Hamilton Sundstrand Corporation Method of manufacturing metal articles
CN108666233B (zh) * 2017-03-31 2021-02-05 上海新昇半导体科技有限公司 一种可用作挡片或控片的晶片制备方法及晶片
JP6839314B2 (ja) * 2019-03-19 2021-03-03 日本碍子株式会社 ウエハ載置装置及びその製法
CN111269030B (zh) * 2020-01-21 2022-03-22 徐州凹凸光电科技有限公司 一种一体式金属/陶瓷复合材料的制备方法及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573252B2 (ja) 1987-01-31 1993-10-14 Toyoda Gosei Kk
JPH06155253A (ja) * 1992-11-27 1994-06-03 Sumitomo Metal Ind Ltd ウエハの製造方法
JPH06295848A (ja) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp 半導体装置の製造方法
JP2001105124A (ja) * 1999-10-04 2001-04-17 Kubota Corp 半導体素子用放熱基板
JP2005117006A (ja) 2003-10-08 2005-04-28 Shogen Koden Kofun Yugenkoshi 窒化物の発光装置
JP2006128710A (ja) 2004-10-28 2006-05-18 Lumileds Lighting Us Llc パッケージ統合された薄膜led
JP2007005709A (ja) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd Led照明装置用の低熱抵抗配線基板およびled照明装置
JP2007142479A (ja) * 2003-03-14 2007-06-07 Sumitomo Electric Ind Ltd 半導体装置
JP2007150076A (ja) * 2005-11-29 2007-06-14 Rohm Co Ltd 窒化物半導体発光素子
JP2007250979A (ja) * 2006-03-17 2007-09-27 Zeniya Sangyo Kk 半導体パッケージ
JP2008010809A (ja) * 2006-06-26 2008-01-17 Tekcore Co Ltd 光抽出スポットの配列を組み込む発光ダイオード及び発光ダイオードの形成方法
JP2008294482A (ja) * 2002-01-28 2008-12-04 Nichia Corp 窒化物半導体素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512250B2 (ja) 1991-09-13 1996-07-03 松下電器産業株式会社 動画表示ワ―クステ―ション
JPH11130568A (ja) 1997-10-24 1999-05-18 Denki Kagaku Kogyo Kk 複合体とそれを用いたヒートシンク
JP3468358B2 (ja) * 1998-11-12 2003-11-17 電気化学工業株式会社 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
WO2004082034A1 (ja) 2003-03-14 2004-09-23 Sumitomo Electric Industries Ltd. 半導体装置
JP4110524B2 (ja) * 2003-03-20 2008-07-02 信越半導体株式会社 発光素子及び発光素子の製造方法
JP5400290B2 (ja) 2007-11-13 2014-01-29 電気化学工業株式会社 発光装置
US7846751B2 (en) * 2007-11-19 2010-12-07 Wang Nang Wang LED chip thermal management and fabrication methods
WO2010092923A1 (ja) 2009-02-12 2010-08-19 電気化学工業株式会社 アルミニウム-黒鉛複合体からなる基板、それを用いた放熱部品及びled発光部材
US9387532B2 (en) 2009-02-13 2016-07-12 Denka Company Limited Composite substrate for LED light emitting element, method of production of same, and LED light emitting element
WO2011049479A1 (en) * 2009-10-21 2011-04-28 Andrey Mikhailovich Abyzov Composite material having high thermal conductivity and process of fabricating same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573252B2 (ja) 1987-01-31 1993-10-14 Toyoda Gosei Kk
JPH06155253A (ja) * 1992-11-27 1994-06-03 Sumitomo Metal Ind Ltd ウエハの製造方法
JPH06295848A (ja) * 1993-04-08 1994-10-21 Mitsubishi Electric Corp 半導体装置の製造方法
JP2001105124A (ja) * 1999-10-04 2001-04-17 Kubota Corp 半導体素子用放熱基板
JP2008294482A (ja) * 2002-01-28 2008-12-04 Nichia Corp 窒化物半導体素子
JP2007142479A (ja) * 2003-03-14 2007-06-07 Sumitomo Electric Ind Ltd 半導体装置
JP2005117006A (ja) 2003-10-08 2005-04-28 Shogen Koden Kofun Yugenkoshi 窒化物の発光装置
JP2006128710A (ja) 2004-10-28 2006-05-18 Lumileds Lighting Us Llc パッケージ統合された薄膜led
JP2007005709A (ja) * 2005-06-27 2007-01-11 Asahi Glass Co Ltd Led照明装置用の低熱抵抗配線基板およびled照明装置
JP2007150076A (ja) * 2005-11-29 2007-06-14 Rohm Co Ltd 窒化物半導体発光素子
JP2007250979A (ja) * 2006-03-17 2007-09-27 Zeniya Sangyo Kk 半導体パッケージ
JP2008010809A (ja) * 2006-06-26 2008-01-17 Tekcore Co Ltd 光抽出スポットの配列を組み込む発光ダイオード及び発光ダイオードの形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2461379A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012623A (ja) * 2011-06-30 2013-01-17 Denki Kagaku Kogyo Kk Led発光素子用保持基板、その製造方法及びled発光素子
CN102506429A (zh) * 2011-11-07 2012-06-20 西安交通大学 浸入式燃气陶瓷内加热器套管及其制备方法

Also Published As

Publication number Publication date
EP2461379A1 (en) 2012-06-06
JP5789512B2 (ja) 2015-10-07
US20120168802A1 (en) 2012-07-05
EP2461379A4 (en) 2012-12-26
EP2461379B1 (en) 2017-03-01
TW201117415A (en) 2011-05-16
KR101685231B1 (ko) 2016-12-09
CN102484188B (zh) 2015-02-18
KR20120082865A (ko) 2012-07-24
JPWO2011013754A1 (ja) 2013-01-10
CN102484188A (zh) 2012-05-30
US8890189B2 (en) 2014-11-18
TWI524548B (zh) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5789512B2 (ja) Led搭載用ウエハとその製造方法、及びそのウエハを用いたled搭載構造体
JP5713684B2 (ja) Led発光素子用複合材料基板、その製造方法及びled発光素子
US8546842B2 (en) LED chip assembly, LED package, and manufacturing method of LED package
JP5988977B2 (ja) 半導体素子用放熱部品
WO2003040420A1 (en) Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
JP2012124473A (ja) 複合基板及び複合基板の製造方法
JP2011139000A (ja) パワーモジュール構造体及びその製造方法
TW201544588A (zh) 鋁-金剛石系複合體及使用其之放熱零件
JP5296638B2 (ja) Led搭載構造体、その製造方法、及びled搭載用基板
JP6105262B2 (ja) アルミニウム−ダイヤモンド系複合体放熱部品
JP2012038948A (ja) Led発光素子用金属基複合材料基板、その製造方法及びled発光素子。
JP2010109081A (ja) Led発光素子用金属基複合材料基板及びそれを用いたled発光素子
JP5881280B2 (ja) Led発光素子用保持基板の製造方法及びled発光素子の製造方法
JP5759376B2 (ja) Ledチップ接合体の製造方法
JP2013012623A (ja) Led発光素子用保持基板、その製造方法及びled発光素子
JP2010267892A (ja) Led搭載構造体、その製造方法、及びled搭載用基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034961.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524832

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010804500

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010804500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127004793

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13387606

Country of ref document: US