WO2011007736A1 - 需要予測装置、プログラム及び記録媒体 - Google Patents

需要予測装置、プログラム及び記録媒体 Download PDF

Info

Publication number
WO2011007736A1
WO2011007736A1 PCT/JP2010/061718 JP2010061718W WO2011007736A1 WO 2011007736 A1 WO2011007736 A1 WO 2011007736A1 JP 2010061718 W JP2010061718 W JP 2010061718W WO 2011007736 A1 WO2011007736 A1 WO 2011007736A1
Authority
WO
WIPO (PCT)
Prior art keywords
demand
prediction
time
forecast
input
Prior art date
Application number
PCT/JP2010/061718
Other languages
English (en)
French (fr)
Inventor
村上 好樹
小林 武則
廣政 勝利
裕仁 藤本
伸一 青木
佐藤 博昭
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP10799794.2A priority Critical patent/EP2469676A4/en
Priority to CN2010800199937A priority patent/CN102422311A/zh
Publication of WO2011007736A1 publication Critical patent/WO2011007736A1/ja
Priority to US13/338,482 priority patent/US20120095608A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/14Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards

Definitions

  • Embodiments of the present invention relate to a demand forecasting apparatus, a program, and a recording medium for forecasting demand for power, gas, heat, water, and the like.
  • Predicting future power demand energy demand such as gas demand, heat demand, water demand and other commodity demands is important in creating a power generation plan, supply plan or sales plan. Especially for power demand, it is very necessary to predict the maximum power demand for the next day in order to determine the generator to be started. For this reason, the maximum power demand is predicted by using regression analysis or the like based on the past power demand record or the predicted value of the maximum temperature on the next day.
  • time-series data that is a change in daily power demand, for example, time-series data consisting of 24 points per hour.
  • Patent Document 1 As such a technology in the field of predicting time-series data, there is a total power demand prediction device disclosed in Patent Document 1, for example.
  • This device predicts future total power demand from temperature and humidity data and past power demand data.
  • This apparatus predicts the total amount of power demand per day and corrects errors using a technique such as a neural network. That is, this apparatus finds and corrects this error using a method such as a neural network when the error has a specific tendency, such as when the temperature varies greatly.
  • Patent Document 2 As another example of the technology in the field of predicting time-series data described above, there is a demand prediction device as disclosed in Patent Document 2, for example.
  • This device predicts hourly power demand for a certain period in the future based on weather information.
  • a prediction model a regression model is used as an example, and the input data is the latest demand record available at that time.
  • this apparatus corrects the predicted value every moment using the latest weather data in order to improve the accuracy of the prediction.
  • a specific prediction model is used for prediction of maximum demand and prediction of hourly demand, and the prediction model for each time and each day is independent.
  • the demand at each time of day is related to each other.
  • the daytime peak power demand tends to increase. For example, if the morning temperature is high in summer, the morning power demand due to air conditioning increases, and even if the temperature falls from noon, a large power demand may continue.
  • the prediction is performed independently for each time, the past history cannot be taken into account, and there is a problem that an error between the power demand as the prediction result and the actual demand becomes large.
  • a typical example is a technique using a neural network as disclosed in Patent Document 3, for example.
  • the demand forecast value at each time is obtained as output data at the same time, so the demand relation at each time is inherent in the prediction model.
  • this apparatus in order to extract only the relationship between a certain time and another specific time and specify the causal relationship of demand at these times, it is necessary to separately create a prediction model for that purpose.
  • the input data for demand forecast at the demand forecast target time and the demand forecast target time An input device that inputs a prediction result of a demand at a previous predetermined time as a part of input data for demand prediction at the demand prediction target time, and a demand at the demand prediction target time using the input result by the input device And a demand prediction calculation processing unit for calculating a predicted value of
  • FIG. 1 is a diagram illustrating an example of a conventional prediction method for power demand based on the maximum demand and the minimum demand for power.
  • FIG. 2 is a diagram illustrating an example of a conventional prediction method of power demand for 24 hours of power demand every hour.
  • FIG. 3 is a diagram illustrating an example of a relationship between a conventional prediction result of power demand and an error.
  • FIG. 4 is a diagram illustrating a conventional prediction result of power demand and a result of demand up to the present day on the prediction target day.
  • FIG. 5 is a diagram illustrating a first example of a conventional power demand prediction method.
  • FIG. 6 is a diagram illustrating a second example of a conventional power demand prediction method.
  • FIG. 1 is a diagram illustrating an example of a conventional prediction method for power demand based on the maximum demand and the minimum demand for power.
  • FIG. 2 is a diagram illustrating an example of a conventional prediction method of power demand for 24 hours of power demand every hour.
  • FIG. 3 is a diagram
  • FIG. 7 is a diagram illustrating a first example of a technique for predicting power demand for 24 hours by the energy demand prediction apparatus according to the embodiment.
  • FIG. 8 is a diagram illustrating a second example of a method for predicting power demand for 24 hours by the energy demand prediction apparatus according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a conventional energy demand prediction apparatus.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the energy demand prediction apparatus according to the embodiment.
  • FIG. 11 is a diagram illustrating a first example of the correlation of power demand between different times.
  • FIG. 12 is a diagram illustrating a second example of the correlation of power demand between different times.
  • FIG. 13 is a block diagram illustrating a configuration example of the energy demand prediction apparatus according to the embodiment.
  • FIG. 14 is a flowchart illustrating an example of a processing operation performed by the energy demand prediction apparatus according to the embodiment.
  • FIG. 15 is a diagram illustrating the relationship between the types of input data and the types of usage models in various modes by the energy demand prediction apparatus according to the embodiment in a table format.
  • the demand prediction of time series data of electric power will be described as an example.
  • the demand prediction of other energy such as gas and heat and the demand prediction other than energy, for example, the sales demand prediction of water and other products are also described. Applicable. How many times of the day the demand value needs to be predicted depends on the purpose of the prediction, but the methodologies, concepts, and labor of calculation differ greatly.
  • an hourly demand forecast value and in some cases, a shorter hourly demand forecast value are required.
  • the forecast is made with two or several points such as the maximum demand value and the minimum demand value, and based on the forecast result, the day with the similar trend of the load curve of the past power demand is selected.
  • a method of estimating the load curve of the power demand for one day on the prediction day of the power demand based on the load curve of the power demand is taken.
  • a method of predicting 24 points per hour on the prediction target day is being studied.
  • FIG. 1 is a diagram illustrating an example of a conventional prediction method for power demand based on the maximum demand and the minimum demand for power.
  • the horizontal axis shown in FIG. 1 is time, and the left end of this horizontal axis is midnight and the right end is 24:00. The same applies to the horizontal axis in the following figures.
  • the demand prediction device first predicts a minimum demand prediction value 101 (D bottom ) and a maximum demand prediction value 102 (D peak ) of the power demand prediction target date.
  • the demand prediction apparatus applies the load curve 103, 104, 105, etc. of the past one day of the power demand to the above-described various demand prediction values, and selects the load curve 103 having the best fit among them.
  • the power demand value for 24 hours a day is predicted.
  • the I-shaped mark of the minimum demand forecast value 101 and the maximum demand forecast value 102 in FIG. 1 indicates the range of error.
  • FIG. 2 is a diagram illustrating an example of a conventional prediction method of power demand for 24 hours of power demand every hour.
  • the demand prediction device predicts the power demand value 201 for each of the 24 points that are each hour of the hour of the power demand prediction date, and finally determines the power demand based on these values.
  • a typical load curve 202 is obtained.
  • the accuracy of the prediction model at each time is good, the above-described load curve can be predicted in detail.
  • input data is required for each time corresponding to the 24 points. There is a complicated calculation.
  • the predicted value at each time naturally includes an error with respect to the actual demand value, and there is a problem that it is difficult to consider the entire error.
  • FIG. 3 is a diagram illustrating an example of a relationship between a conventional prediction result of power demand and an error.
  • the load curve 301 of the power demand prediction target day can be predicted from the prediction result at each time, normally, the load curve 302 and the load curve 303 indicating the actual power demand are It shows that there is a deviation from the predicted load curve 301.
  • the load curve 301 may be considered as an average load curve for the season.
  • the actual power demand in the morning is smaller than the predicted value (average value), as shown in the actual load curve 302 on the first power demand prediction target day in FIG.
  • the value of electricity demand may remain smaller than expected at daytime.
  • the actual load curve 303 on the second power demand prediction target day in FIG. 3 if the actual power demand in the morning is larger than the predicted value, the actual power demand value is also calculated in the daytime. May remain larger than expected.
  • the demand forecast value 304 (D 2 ) at “time 2 ”, the demand forecast value 305 (D 5 ) at “time 5”, and the demand forecast value 306 (D at “time 8” shown in FIG. 8 ) are related to each other. Therefore, it is important to consider these relationships when predicting the power demand at each time.
  • the actual power demand value is smaller than the predicted value in the morning, and from the predicted value in the afternoon. It is also conceivable that becomes larger.
  • the demand forecast value D 2 is larger than the power demand value at the same time on the load curve 307 during the near time
  • the demand forecast value D 5 is also on the load curve 307. It is normal to see a relationship that is greater than the power demand value at the same time. Further, there may be that relationship such if the forecast value D 2 greater power demand value at the same time on the load curve 307 forecast value D 8 smaller than the power demand values for the same time on the load curve 307 is seen. Therefore, it is possible to improve the prediction accuracy by incorporating such a relationship into the prediction model.
  • FIG. 4 is a diagram illustrating a conventional prediction result of power demand and a result of demand up to the present day on the prediction target day.
  • a load curve is shown in the case where a record of demand up to the present day of the power demand prediction target day is obtained.
  • the load curve 401 shown in FIG. 4 is a prediction result obtained before the day before the power demand prediction target day.
  • the load curve 402 changes.
  • day correction it is natural to use the power demand value data immediately before as viewed from the present, but there are the following difficulties in predicting the power demand in the near future based on the data.
  • the demand prediction is carried out independently for each time in the prediction on the day before the prediction target date, data such as the future temperature is required to predict the future demand.
  • the predicted value of the future temperature is not released every hour, and if the future temperature data is not available, the demand predicted value is the same as the result of the prediction performed on the previous day. Therefore, the load curve is simply moved in parallel, or if the morning temperature is 1 ° C. higher, the power demand in the daytime will be increased from the morning.
  • the past data can be organized and statistically processed for each season or time, but the processing is complicated and suitable for fine predictions, for example, every hour. Absent.
  • Another method is to predict the future temperature. It is actually done by electric power companies to predict the temperature of several hours ahead from past temperature data. However, this is a technology related to weather prediction itself, and the accuracy of power demand prediction depends on the accuracy of temperature prediction.
  • FIG. 5 is a diagram illustrating a first example of a conventional power demand prediction method.
  • FIG. 6 is a diagram illustrating a second example of a conventional power demand prediction method.
  • the conventional methods it is common to predict power demand individually for each time, or collectively predict power demand values at all times, and there is no particular restriction on the order of prediction.
  • the input data shown in FIG. 5, for example, the future temperature is predicted.
  • D 1 f 2 (temperature at time 1, humidity at time 1, weather at time 1, );
  • D 2 f 2 (temperature at time 2, humidity at time 2, weather at time 2, ...)
  • D 23 f 23 (temperature at time 23, humidity at time 23, weather at time 23,%)
  • D 24 f 24 (temperature at time 24, humidity at time 24, weather at time 24, etc.)
  • FIG. 7 is a diagram illustrating a first example of a technique for predicting power demand for 24 hours by the energy demand prediction apparatus according to the embodiment.
  • FIG. 8 is a diagram illustrating a second example of a method for predicting power demand for 24 hours by the energy demand prediction apparatus according to the embodiment.
  • This energy demand prediction apparatus basically predicts a power demand value in order for each time.
  • the energy demand prediction apparatus uses 24 prediction models for power demand value prediction for 24 hours.
  • Each prediction model uses, as input data, a prediction result of power demand one hour before the prediction target time by the model.
  • the case where the prediction result of the demand one hour ago is input to the prediction model is expressed as follows.
  • D 1 f 1 (temperature at time 1, humidity at time 1,..., Demand forecast result at time 24 on the previous day)
  • D 2 f 2 (temperature at time 2, humidity at time 2, ..., demand prediction result at time 1)
  • ... f 23 (temperature at time 23, humidity at time 23, ..., demand prediction result at time 22)
  • D 24 f 24 (temperature at time 24, humidity at time 24, ..., demand prediction result at time 23)
  • the prediction model When the prediction result of power demand at a time before the prediction target time is used as input data, the prediction model does not necessarily need to use data one hour before the prediction target time.
  • the prediction model uses the prediction result of the power demand value at 3 o'clock 2 hours earlier than the time 5 o'clock for the prediction of the power demand value at 5 o'clock, and predicts the power demand value at 18:00. Uses the prediction result of the power demand value at 12:00, which is 6 hours earlier than 18:00, as input data.
  • the prediction model does not use the power demand value data before 20:00 as input data for the power demand value prediction at 20:00.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a conventional energy demand prediction apparatus.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the energy demand prediction apparatus according to the embodiment.
  • the conventional energy demand prediction apparatus obtains a demand prediction result by demand prediction processing based on this input data using weather data and other data as input data.
  • the energy demand prediction apparatus can switch the mode for demand prediction between the advance prediction mode and the current day correction mode by the switching unit.
  • the mode is the prior prediction mode
  • the energy demand prediction device uses the demand prediction result data and the weather prediction value at a time before the prediction target time as input data, and the prediction corresponding to the input data and the prediction target time.
  • a demand prediction process is performed based on the model, and the demand prediction result is copied and reused as input data for demand prediction at the next prediction target time.
  • this energy demand prediction device replaces the demand prediction result data at the time before the prediction target time described above, for example, from the morning to the prediction target time before the prediction target time.
  • Demand forecasting processing is performed using demand actual data up to a predetermined time as input data.
  • the same prediction model in the demand prediction at the same prediction target time, the same prediction model can be used while the input data is different between the case where the mode is the advance prediction mode and the day correction mode.
  • the data to be reused the data with the strongest correlation may be used, or the data with the relatively low correlation may be used.
  • FIG. 11 is a diagram illustrating a first example of the correlation of power demand between different times.
  • FIG. 12 is a diagram illustrating a second example of the correlation of power demand between different times.
  • FIG. 11 shows the relationship between the power demand at 9:00 and the power demand at 10:00
  • FIG. 12 shows the relationship between the power demand at 10:00 and the power demand at 15:00.
  • the demand forecast value one hour before the prediction target time is used to predict the power demand at the prediction target time. It is effective to use it as input data.
  • the power demand prediction at a certain prediction target time is usually performed several hours before or before the prediction target time.
  • the energy demand prediction device can also be used as input data for predicting the power demand at the prediction target time as long as the power demand prediction value is one hour before the prediction target time.
  • the prediction may be performed one hour before the prediction target time.
  • the energy demand prediction device can use the power demand actual value one hour before as input data instead of the power demand prediction value one hour before the prediction target time.
  • FIG. 13 is a block diagram illustrating a configuration example of the energy demand prediction apparatus according to the embodiment.
  • the energy demand prediction apparatus includes a control unit 1 that controls processing of the entire apparatus, a storage device 2, an input device 3 such as a keyboard and a mouse, a display device 4 such as a liquid crystal display, and a demand prediction calculation.
  • a processing unit 5, a copy processing unit 6, and a switching processing unit 7 are provided and are connected to each other via a bus 8.
  • the storage device 2 is a storage medium such as a nonvolatile memory.
  • the storage device 2 stores a program for processing operations by the demand prediction calculation processing unit 5, the copy processing unit 6, and the switching processing unit 7, and data of a prediction model corresponding to a predetermined time on a predetermined date.
  • the storage device 2 includes an input data storage unit 21, a demand prediction result storage unit 22, and a demand performance data storage unit 23.
  • This prediction model may be a prediction calculation formula for regression analysis or a neural network.
  • the demand prediction calculation processing unit 5 uses input data such as a temperature prediction value and a humidity prediction value at a prediction target time and a prediction model stored in the storage device 2 and a predetermined prediction model corresponding to the prediction target time.
  • the power demand value at the prediction target time is predicted.
  • the input data storage unit 21 of the storage device 2 stores input data for power demand prediction such as weather prediction values such as temperature and humidity at each time of each date.
  • the demand prediction result storage unit 22 of the storage device 2 stores the power demand prediction result at a predetermined time on each date by the demand prediction calculation processing unit 5.
  • the demand result data storage unit 23 of the storage device 2 stores the actual power demand value at a predetermined time on each date from the past to the present.
  • the copy processing unit 6 has a function of copying a power demand prediction value at a certain prediction target time as input data for prediction of power demand at different prediction target times after the prediction target time.
  • the switching processing unit 7 has a function of switching a mode relating to power demand at a certain prediction target time between the advance prediction mode and the current day correction mode.
  • the advance prediction mode is a mode for performing the demand prediction at the demand prediction target time before the day before the demand prediction target date to which the demand prediction target time belongs.
  • Current day correction mode refers to the demand forecast value for a certain demand forecast target time obtained in advance forecast mode, the latest weather data of the same forecast target time obtained on the day of demand forecast target day to which this demand forecast target time belongs, etc. This is a mode for correcting using. These modes can be arbitrarily changed by the user performing a predetermined operation on the input device 3.
  • This energy demand prediction device can be realized by a hardware configuration or a combination of a hardware configuration and a software configuration. In the latter case, each function as an energy demand prediction device is realized by installing a program obtained from a computer-readable storage medium or network in advance in the software configuration.
  • FIG. 14 is a flowchart illustrating an example of a processing operation performed by the energy demand prediction apparatus according to the embodiment.
  • FIG. 15 is a diagram illustrating the relationship between the types of input data and the types of usage models in various modes by the energy demand prediction apparatus according to the embodiment in a table format.
  • the latest weather prediction data such as temperature and humidity at each time on each date is read from an external device and stored in the input data storage unit 21 of the storage device 2.
  • the user designates the power demand prediction target date and the power demand prediction target time on the prediction target date using the input device 3 (step S1).
  • the next day is designated as the power demand prediction target date
  • a plurality of predetermined times among the 24 hours of this day are designated as the power demand prediction target time.
  • the plurality of times designated as demand prediction target times may be times at predetermined time intervals, or may be times arbitrarily designated by the user.
  • the demand prediction calculation processing unit 5 is the earliest time when the power demand prediction is not performed among the designated power demand prediction target times.
  • the weather forecast data at the selected time is read from the input data storage unit 21 of the storage device 2 and input (step S3).
  • the demand prediction calculation processing unit 5 reads the data of the prediction model of the selected power demand prediction target time from the storage device 2.
  • This prediction model includes demand prediction result necessity information indicating whether or not a power demand prediction result at a predetermined time before the time is necessary for the prediction of the power demand value at the time corresponding to the prediction model. It is.
  • the demand prediction calculation processing unit 5 refers to this information to determine whether or not a power demand prediction result at a predetermined time before the selected power demand prediction target time is necessary (step S4).
  • step S ⁇ b> 4 the demand prediction calculation result at the predetermined time before the selected power demand prediction target time is stored in the demand prediction of the storage device 2. It reads from the result memory
  • the demand prediction calculation processing unit 5 has the weather prediction data input in the process of step S3, the power demand prediction result input in the process of step S5, and the data of the prediction model corresponding to the selected power demand prediction target time.
  • the power demand prediction value at the selected power demand prediction target time is calculated (step S6).
  • step S4 determines “NO” in the process of step S4
  • the process of step S5 described above is omitted, and the weather prediction data input in the process of step S3 and the selected power are selected.
  • the power demand forecast value at the selected power demand forecast target time is calculated (steps S4 ⁇ S6).
  • the demand prediction calculation processing unit 5 After calculating the power demand prediction value in step S6, the demand prediction calculation processing unit 5 has the next power demand prediction target time, that is, the power demand at all the power demand prediction target times specified as described above. If the prediction has not ended (YES in step S7), the next time is selected.
  • the demand prediction calculation process part 5 reads the prediction model corresponding to the said selected time from the memory
  • step S8 the copy processing unit 6 uses the power demand prediction value calculated by the process of step S6 as input data for the power demand prediction at the next time described above.
  • the data is copied to the input data storage unit 21 of the storage device 2 (step S9).
  • step S9 or when “NO” is determined in the process of step S8 the processes after step S1 for the next time described above are performed.
  • the demand prediction calculation processing unit 5 does not perform the current day correction of the power demand prediction value among the power demand prediction target times of the day.
  • the earliest time is selected, and the latest weather forecast data at the selected time is read from the input data storage unit 21 of the storage device 2 and input (step S10).
  • the demand prediction calculation processing unit 5 reads the data of the prediction model of the selected power demand prediction target time from the storage device 2.
  • the demand model data indicating whether or not the power demand record data at a predetermined time before the corresponding time is necessary for the prediction of the power demand value at the time corresponding to the forecast model. Necessity information is included. Whether the demand prediction calculation processing unit 5 stores the power demand actual data at a predetermined time before the selected power demand prediction target time in the demand actual data storage unit 23 of the storage device 2 by referring to this information. It is determined whether or not (step S11). If “NO” is determined in the process of step S ⁇ b> 11, the process ends.
  • step S11 When the demand prediction calculation processing unit 5 determines “YES” in the process of step S11, the power at a predetermined time before the selected power demand prediction target time indicated by the prediction model read out as described above.
  • the demand record data is read from the demand record data storage unit 23 of the storage device 2 and inputted (step S12).
  • the demand prediction calculation process part 5 is the electric power demand performance data in the predetermined time before the selected electric power demand prediction object time inputted by the weather prediction data input by the process of step S10, and the process of step S12, and the said electric power.
  • the power demand forecast value at the selected power demand forecast target time is calculated (steps S12 ⁇ S6).
  • the power demand forecast value already obtained is corrected on the day.
  • “NO” is determined in the process of step S7, that is, when the power demand prediction at all designated power demand prediction target times ends, the process ends.
  • the energy demand prediction apparatus calculates the demand prediction value at the time based on the input data such as the weather forecast value at a certain demand prediction target time and the prediction model corresponding to the time. Then, the energy demand prediction apparatus copies the calculated demand prediction result as input data for calculating a demand prediction value at a demand prediction target time after the time, and the data and the weather at the time after the time. Based on input data such as a forecast value and a forecast model corresponding to the later time, a demand forecast value at the later time is calculated. Therefore, it is possible to perform an appropriate demand prediction considering the correlation between the times.
  • this energy demand forecasting device calculates the demand forecast value at the demand forecast target time of a certain demand forecast target day, and then needs to correct this demand forecast value when the demand forecast target date is reached
  • the demand forecast value can be corrected based on the actual demand data up to a predetermined time before the demand forecast target time related to the power demand value to be corrected, so that the accuracy of demand forecast can be improved.
  • the energy demand prediction apparatus can use a conventional prediction model as it is as a prediction model for calculating the power demand at each time, and therefore does not need to prepare a new prediction model. Moreover, the energy demand prediction apparatus in this embodiment can use the same prediction model as the prediction model for the prediction performed by the previous day for the correction on the day. Therefore, since the degree of increase in calculation time accompanying the increase in time required for demand prediction is remarkably reduced, demand prediction for every 24 hours or any time can be easily performed.
  • the prediction models can be freely combined, and the prediction models at each time may be the same as shown in FIG. 6 or may be different as shown in FIG.
  • the input data before the time used for the prediction of the demand value at a certain prediction target time may be not only the predicted value of the power demand value itself but also the predicted value of the change rate of demand, It may be a function of temperature.
  • the prediction model in the embodiment uses a past predicted value or actual value as input data of a prediction model at a certain time, but the user can arbitrarily select when the time should be used.
  • the time may be determined by some physical model, or a statistically correlated time may be selected.
  • a plurality of times specified as demand forecast target times are times of a predetermined time interval, and for the demand forecast at the second and subsequent times among these times, the time interval described above is earlier than the demand forecast time. If it is clear that the demand prediction result at the time of the current time is used, if this fact is input by the input device 3, the above-described processing of steps S4 and S8 by the demand prediction calculation processing unit 5 at these times is performed. Need not be performed. Therefore, the calculation efficiency can be improved.
  • the method described in the above embodiment is a program that can be executed by a computer as a magnetic disk (floppy (registered trademark) disk, hard disk, etc.), optical disk (CD-ROM, DVD, etc.), magneto-optical disk (MO). ), Stored in a storage medium such as a semiconductor memory, and distributed.
  • a magnetic disk floppy (registered trademark) disk, hard disk, etc.
  • optical disk CD-ROM, DVD, etc.
  • MO magneto-optical disk
  • the storage medium can store a program and can be read by a computer
  • the storage format may be any form.
  • an OS operating system
  • MW middleware
  • database management software network software
  • the storage medium in the embodiment is not limited to a medium independent of the computer, but also includes a storage medium in which a program transmitted via a LAN, the Internet, or the like is downloaded and stored or temporarily stored.
  • the number of storage media is not limited to one, and the case where the processing in the above embodiment is executed from a plurality of media is also included in the storage medium in the embodiment, and the medium configuration may be any configuration.
  • the computer in the embodiment executes each process in the above embodiment based on a program stored in a storage medium, and is a single device such as a personal computer or a system in which a plurality of devices are connected to a network. Any configuration may be used.
  • the computer in the embodiment is not limited to a personal computer, but includes an arithmetic processing device, a microcomputer, and the like included in an information processing device, and is a generic term for devices and devices that can implement the functions of the embodiment by a program. .

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • Game Theory and Decision Science (AREA)
  • Finance (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Data Mining & Analysis (AREA)
  • Educational Administration (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 実施形態によれば、需要の将来の時系列データの予測において1日のうちの複数の時刻の需要を予測する場合に、需要予測対象時刻の需要予測の為の入力データ及び前記需要予測対象時刻以前の所定の時刻の需要の予測結果を前記需要予測対象時刻の需要予測の為の入力データの一部として入力する入力装置(5)と、前記入力装置による入力結果を用いて前記需要予測対象時刻の需要の予測値を計算する需要予測演算処理部(5)とをもつ。

Description

需要予測装置、プログラム及び記録媒体
 本発明の実施形態は、電力、ガス、熱、水などの需要予測を行なう為の需要予測装置、プログラム及び記録媒体に関する。
 将来の電力需要やガス需要、熱需要などのエネルギーの需要、水需要やその他の商品需要を予測する事は、発電計画や供給計画或いは販売計画を作成する上で重要である。 
 特に電力需要については、起動する発電機を決定する為に翌日の最大電力需要を予測する事が非常に必要である。この為、過去の電力需要の実績や翌日の最高気温の予測値などから回帰分析等を用いて最大電力需要を予測している。
 一方、最大電力需要だけでなく、朝方の電力需要の立ち上がりや昼休みの電力需要の低下も発電機の運転計画作成の為に重要である。この為、一日の電力需要量の変化である時系列データ、例えば1時間ごとの24点でなる時系列データを予測する必要がある。
 このような、時系列データを予測する分野の技術としては、例えば特許文献1に開示される電力総需要量予測装置がある。この装置は、気温及び湿度のデータと過去の電力需要データから将来の電力総需要量を予測する。この装置は、一日の電力総需要量を予測し、ニューラルネットなどの手法を用いて誤差を補正している。すなわち、この装置は、気温の変動が大きい場合など、誤差に特定の傾向がある場合に、この誤差をニューラルネットなどの方法で見出して補正する。
 また、前述した、時系列データを予測する分野の技術の別の例として、例えば特許文献2に開示されるような需要予測装置がある。この装置は、気象情報をもとに将来の一定期間の毎時の電力需要を予測する。予測モデルとしては、一例として回帰モデルを用いるとしており、入力データは、その時点で入手可能な最新の需要実績などとしている。また、この装置は、予測の精度を向上させる為に直近の気象データを用いて予測値を刻々と修正する。
 上述のように、従来の技術においては、最大需要の予測においても毎時の需要の予測においても特定の予測モデルを用いており、各時刻、各日の予測モデルは独立である。実際の電力需要では、一日の各時刻の需要が相互に関連している。すなわち、何らかの原因で朝方の電力需要が大きくなれば昼のピークの電力需要も大きくなる傾向が見られる。例えば、夏場に朝の気温が高ければ空調に起因する朝方の電力需要が増加し、仮に昼から気温が下がっても大きな電力需要が継続する場合もある。このような場合、各時刻について単独に予測を行なうと過去の履歴が考慮できない為、予測結果である電力需要と実際の需要との誤差が大きくなるという問題がある。
 一方、一日分の需要カーブをパターンとして予測するという手法もある。代表的なものとして、例えば特許文献3に開示されるような、ニューラルネットワークを用いた技術がある。この技術では、出力データとして各時刻の需要予測値が同時に得られる為、各時刻の需要の関連は予測モデルに内在している。この装置では、ある時刻と別の特定の時刻との関連だけを取り出して、これらの時刻の需要の因果関係を特定する為には、その為の予測モデルを別途作成する必要がある。
 一方、他の手法により各時刻間の関連を考慮した技術としては、例えば特許文献4に開示されるように、単位時間間隔の連続性を考慮して需要予測を行なう為に、過去の気温データを平均化して使用するものがある。これによって室内気温が室外気温よりも時間遅れを持って変化する事による需要変化の時間遅れを考慮している。しかし、この方法は、需要への影響理由の具体的な考察に基づくものであるので、いつでも定式化が行なえるとは限らない。
特開平5-18995号公報 特開2007-47996号公報 特開平10-80062号公報 特開2005-56103号公報
 前述のように、従来の技術においては、電力需要などの時系列データを例えば1時間ごとに24点で予測する場合に、各時刻の相関を考慮する為には特別の定式化を行なうか、24点を出力とするニューラルネットワークを用いる必要があった。
 しかし、前述した特別の定式化については、気温のように物理的な現象の定式化は可能であるが、原因が不明である理由によって需要が変化した場合などに時刻間の相関を考慮する事ができなかった。また、ニューラルネットワークの使用については、当該ニューラルネットワークの入力と出力の関係の解釈が困難であるという問題があった。
 また、24点で予測する場合には、入力データも各時刻について用意する必要があるので、最大需要のみの予測に比べて入力データが大幅に増加するが、現実的にはこれらのデータを用意する事は困難である。このように24点で予測する場合には、1点で予測する場合と比較した計算時間は単純には24倍になるが、もし、各時刻の関連を考えた場合には入力データがさらに増加する事になる。よって、予測の為にニューラルネットワークを用いる場合などは、計算時間は1点で予測する場合と比較して前述した24倍よりもはるかに大きくなる。
 実施形態によれば、需要の将来の時系列データの予測において1日のうちの複数の時刻の需要を予測する場合に、需要予測対象時刻の需要予測の為の入力データ及び前記需要予測対象時刻以前の所定の時刻の需要の予測結果を前記需要予測対象時刻の需要予測の為の入力データの一部として入力する入力装置と、前記入力装置による入力結果を用いて前記需要予測対象時刻の需要の予測値を計算する需要予測演算処理部とをもつ。
図1は、電力の最大需要及び最小需要にもとづいた電力需要の従来の予測手法の一例を示す図である。 図2は、一時間毎の24時間分の電力需要の電力需要の従来の予測手法の一例を示す図である。 図3は、電力需要の従来の予測結果と誤差との関係の一例を示す図である。 図4は、電力需要の従来の予測結果と予測対象日当日の現在までの需要の実績を示す図である。 図5は、従来の電力需要予測の手法の第1の例を示す図である。 図6は、従来の電力需要予測の手法の第2の例を示す図である。 図7は、実施形態におけるエネルギー需要予測装置による24時間分の電力需要予測の手法の第1の例を示す図である。 図8は、実施形態におけるエネルギー需要予測装置による24時間分の電力需要予測の手法の第2の例を示す図である。 図9は、従来のエネルギー需要予測装置の機能構成の一例を示す図である。 図10は、実施形態におけるエネルギー需要予測装置の機能構成の一例を示す図である。 図11は、異なる時刻間の電力需要の相関関係の第1の例を示す図である。 図12は、異なる時刻間の電力需要の相関関係の第2の例を示す図である。 図13は、実施形態におけるエネルギー需要予測装置の構成例を示すブロック図である。 図14は、実施形態におけるエネルギー需要予測装置による処理動作の一例を示すフローチャートである。 図15は、実施形態におけるエネルギー需要予測装置による各種モードにおける入力データの種別と使用モデルの種別の関係を表形式で示す図である。
 以下図面により実施形態について説明する。 
 本実施形態では、電力の時系列データの需要予測を例として説明するが、ガスや熱などの他のエネルギーの需要予測やエネルギー以外の需要予測、例えば水やその他の商品の販売需要予測にも適用可能である。 
 一日のうち何点の時刻における需要値を予測する必要があるかは、予測の目的の違いもあるが、方法論や考え方、計算の手間なども大きく異なる。最終的には1時間ごとの需要予測値、場合によっては、さらに短い時間ごとの需要予測値が必要である。通常は、最大需要値や最小需要値等の2点ないし数点で予測を行ない、この予測結果をもとに過去の電力需要の負荷曲線の傾向が類似する日を選択して、この日の電力需要の負荷曲線をもとに電力需要の予測対象日の一日分の電力需要の負荷曲線を推定する手法が取られている。近年になって細かい時間間隔での予測の必要性が高まってきた為、予測対象日の1時間ごとの24点で予測する方法が検討されつつある。
 図1は、電力の最大需要及び最小需要にもとづいた電力需要の従来の予測手法の一例を示す図である。 
 図1で示される横軸は時間であり、この横軸の左端が午前0時で、右端が24時である。以下の図の横軸も同様である。図1の場合、需要予測装置は、まず、電力需要予測対象日の電力の最小需要予測値101(Dbottom)と最大需要予測値102(Dpeak)を予測する。そして、需要予測装置は、電力需要の過去の一日分の負荷曲線103,104,105などを前述した各種需要予測値に当てはめた上で、これらのうち最も当てはまりの良い負荷曲線103を選択する事により電力需要予測対象日の一日24時間分の電力需要値を予測する。
 この場合、予測すべき需要値は2つであり、これらの予測は容易であるが、電力需要予測対象日の電力需要の負荷曲線の詳細を予測する事はできない。なお、図1における最小需要予測値101及び最大需要予測値102のI字型の印は誤差の範囲を示している。
 図2は、一時間毎の24時間分の電力需要の電力需要の従来の予測手法の一例を示す図である。 
 図2に示した例では、需要予測装置は、電力需要予測対象日の一時間の各時刻である24点の夫々について電力需要値201を夫々予測し、これらの値に基づいて電力需要の最終的な負荷曲線202を得る。この方法では、各時刻の予測モデルの精度が良ければ前述した負荷曲線を詳細に予測できるが、24点で予測をする必要がある為、この24点に対応する各時刻について入力データが必要であり計算も煩雑になる。また、各時刻の予測値には実際の需要値に対する誤差も当然に含まれており、全体の誤差の考慮が困難である問題がある。
 図3は、電力需要の従来の予測結果と誤差との関係の一例を示す図である。 
 図3に示した例では、各時刻の予測結果から電力需要予測対象日の電力需要の負荷曲線301が予測出来たとしても、通常は、実際の電力需要を示す負荷曲線302や負荷曲線303は、予測された負荷曲線301からずれている事を示している。負荷曲線301は、その季節の平均的な負荷曲線と考えてもよい。
 一般的には、図3中の、第1の電力需要予測対象日の実際の負荷曲線302で示されるように、朝方の実際の電力需要が予測値(平均値)よりも小さければ、この実際の電力需要の値は昼にも予測値より小さいままである場合がある。また、図3中の第2の電力需要予測対象日の実際の負荷曲線303で示されるように、朝方の実際の電力需要が予測値よりも大きければ、実際の電力需要の値は昼にも予測値より大きいままである場合がある。
 この場合、例えば、図3に示した「時刻2」における需要予測値304(D)、「時刻5」における需要予測値305(D)、及び「時刻8」における需要予測値306(D)は相互に関係を有する事になる。従って、各時刻の電力需要の予測を行なう場合には、これらの関係を考慮する事が重要となる。
 場合によっては、図3中の第3の電力需要予測対象日の実際の負荷曲線307で示されるように、実際の電力需要値は、朝方は予測値よりも小さくなり、午後になると予測値よりも大きくなる場合も考えられる。
 しかし、この場合も、図3に示すように、近い時刻の間では需要予測値Dが負荷曲線307上の同時刻の電力需要値より大きければ、需要予測値Dも負荷曲線307上の同時刻の電力需要値より大きいといった関係が見られるのが普通である。また、需要予測値Dが負荷曲線307上の同時刻の電力需要値大きければ需要予測値Dが負荷曲線307上の同時刻の電力需要値より小さいといった関係が見られる事もありうる。従って、このような関係を予測モデルに組み込む事で予測精度を向上させる事が可能になる。
 図4は、電力需要の従来の予測結果と予測対象日当日の現在までの需要の実績を示す図である。 
 図4に示した例では、電力需要の予測対象日当日の現在までの需要の実績が得られた場合の負荷曲線を示している。図4に示した負荷曲線401は、電力需要予測対象日の前日以前に得た予測結果であるが、この予測対象日の当日になると実際の電力需要が、予測対象日当日の朝方から現在まで負荷曲線402のように推移したとする。
 この場合、予測対象日当日の現在以降の予測結果を、負荷曲線401で示される予測結果から修正する必要がある。この修正を当日補正と呼ぶ。当日補正では現在からみて直前の電力需要値データを利用する事は当然であるが、それをもとに近未来の電力需要をいかにして予測するかに関しては以下のような困難がある。
 もし、予測対象日前日の予測において、需要予測を各時刻について単独に実施していた場合、将来の需要を予測する為には当該将来の気温などのデータが必要になる。この将来の気温の予測値は毎時公表される訳ではなく、将来の気温データが得られない場合には、需要予測値は前日に実施した予測結果と同じ結果になる。従って、負荷曲線を単純に平行移動したり、朝方の気温が1℃高ければ昼の電力需要が朝からどれだけ大きくなるといった、熟練者の経験に頼った修正を行ったりする事になる。
 さらに予測の精度を上げる為には、季節ごとや時間ごとに過去のデータを整理して統計的に処理する事もできるが、処理が煩雑であり、例えば1時間ごとの細かい予測には適していない。
 また、他の方法としては、将来の気温を予測する事が挙げられる。電力事業者によって過去の気温データから数時間先の気温を予測する事は実際になされている。しかし、これは気象予測自体に関する技術であり、電力需要の予測の精度は、この気温の予測の精度に左右される事になる。
 また、ニューラルネットを用いて24時間分の電力需要の予測を行なっている場合にも同様な困難がある。特にニューラルネットにより24時間分の電力需要を同時に予測している場合、このニューラルネットによる一日の部分的な時刻の電力需要の予測は困難である。
 図5は、従来の電力需要予測の手法の第1の例を示す図である。図6は、従来の電力需要予測の手法の第2の例を示す図である。 
 これまでの手法では各時刻について個別に電力需要を予測する事、又は、全ての時刻の電力需要値を纏めて予測する事が普通であり、予測を行なう順番に関しても特に制約はない。各時刻間の相関を考慮する場合も、図5に示した入力データ、例えば将来の気温を予測するというものであった。
 図5に示した予測モデルを数式で示すと以下のようになる。
  D=f(時刻1の気温、時刻1の湿度、時刻1の天候、…)
  D=f(時刻2の気温、時刻2の湿度、時刻2の天候、…)
  …
  D23=f23(時刻23の気温、時刻23の湿度、時刻23の天候、…)
  D24=f24(時刻24の気温、時刻24の湿度、時刻24の天候、…)
 ここで、D(i=1~24)は時刻iの需要の予測結果であり、f(i=1~24)は、時刻iの電力需要値の予測モデルである。
 図7は、実施形態におけるエネルギー需要予測装置による24時間分の電力需要予測の手法の第1の例を示す図である。 
 図8は、実施形態におけるエネルギー需要予測装置による24時間分の電力需要予測の手法の第2の例を示す図である。 
 このエネルギー需要予測装置は、基本的に、時間ごとに順々に電力需要値の予測を行なう。
 図7に示した例では、エネルギー需要予測装置は、24時間分の電力需要値予測の為に24の予測モデルを用いる。夫々の予測モデルは、当該モデルによる予測対象時刻の1時間前の電力需要の予測結果を入力データとして用いている。例えば、予測モデルに1時間前の需要の予測結果を入力とする場合を式で表すと以下のようになる。
  D=f(時刻1の気温、時刻1の湿度、…、前日の時刻24の需要予測結果)
  D=f(時刻2の気温、時刻2の湿度、…、時刻1の需要予測結果)
  …
  D23=f23(時刻23の気温、時刻23の湿度、…、時刻22の需要予測結果)
  D24=f24(時刻24の気温、時刻24の湿度、…、時刻23の需要予測結果)
 ここで、D(i=1~24)は時刻iの電力需要値の予測結果であり、f(i=1~24)は、時刻iの電力需要値の予測モデルである。
 予測モデルは、予測対象時刻以前の時刻の電力需要の予測結果を入力データとする場合、必ずしも予測対象時刻より1時間前のデータを用いる必要はない。図8に示した例では、予測モデルは、5時の電力需要値の予測には、当該5時より2時間早い3時の電力需要値の予測結果を用い、18時の電力需要値の予測には当該18時より6時間早い12時の電力需要値の予測結果を入力データとして用いている。また、図8に示した例では、予測モデルは、20時の電力需要値予測には、当該20時以前の電力需要値のデータは入力データとして用いていない。
 図9は、従来のエネルギー需要予測装置の機能構成の一例を示す図である。図10は、実施形態におけるエネルギー需要予測装置の機能構成の一例を示す図である。 
 図9に示したように、従来のエネルギー需要予測装置は、気象データやその他のデータを入力データとして、この入力データをもとに、需要予測処理により需要予測結果を得る。
 一方、図10に示したように、実施形態におけるエネルギー需要予測装置は、需要予測の為のモードを切り替え部により事前予測モード及び当日補正モードの間で切り替え可能である。 
 このエネルギー需要予測装置は、モードが事前予測モードである場合には、予測対象時刻以前の時刻の需要予測結果データ及び気象予測値を入力データとし、この入力データ及び当該予測対象時刻に対応する予測モデルをもとに需要予測処理を行い、この需要予測結果を複写して次の予測対象時刻における需要予測の為の入力データとして再利用する。
 また、このエネルギー需要予測装置は、モードが当日補正モードである場合には、前述した予測対象時刻以前の時刻の需要予測結果データに代えて、予測対象日当日の例えば朝方から当該予測対象時刻以前の所定の時刻までの需要実績データを入力データとして用いて需要予測処理を行なう。
 この場合、同じ予測対象時刻における需要予測においては、モードが事前予測モードである場合と当日補正モードである場合では入力データが異なる一方で同じ予測モデルが利用可能である。 
 前述した再利用するデータとしては、最も相関の強い時刻のデータを用いてもよいし、相関が比較的小さい時刻のデータを用いてもよい。
 図11は、異なる時刻間の電力需要の相関関係の第1の例を示す図である。図12は、異なる時刻間の電力需要の相関関係の第2の例を示す図である。 
 図11は、9時の電力需要量と10時の電力需要量の関係を示し、図12は、10時の電力需要量と15時の電力需要量の関係を示している。 
 図11に示すように、ある時刻の電力需要と1時間前の電力需要との相関は非常に強い為、予測対象時刻の1時間前の需要予測値を当該予測対象時刻の電力需要の予測の為の入力データに用いる事は有効である。しかし、発電機の起動準備には数時間かかる事が多い為、予測対象時刻の1時間前の需要予測値をもとに当該予測対象時刻の電力需要の予測を行なったとしても、運用に生かす事が出来ない。よって、ある予測対象時刻の電力需要予測は、通常は当該予測対象時刻の数時間前またはそれ以前に行なわれる。
 このように、予測対象時刻の1時間前の電力需要実績値を当該予測対象時刻の電力需要の予測の為の入力データとする事は困難である。しかし、エネルギー需要予測装置は、同じく予測対象時刻の1時間前における電力需要予測値であれば、当該予測対象時刻の電力需要の予測の為の入力データとして用いる事が可能である。また、発電機の起動性が非常に高く、1時間以内で起動可能である場合には、予測対象時刻の1時間前に予測を行なう場合もありうる。この場合には、エネルギー需要予測装置は、予測対象時刻の1時間前の電力需要予測値の代わりに当該1時間前の電力需要実績値を入力データとして用いる事ができる。
 図13は、実施形態におけるエネルギー需要予測装置の構成例を示すブロック図である。 
 図13に示すように、実施形態におけるエネルギー需要予測装置は、装置全体の処理を司る制御部1、記憶装置2、キーボードやマウスなどの入力装置3、液晶ディスプレイなどの表示装置4、需要予測演算処理部5、複写処理部6及び切り替え処理部7を備え、夫々がバス8を介して相互に接続される。
 記憶装置2は、例えば不揮発性メモリなどの記憶媒体である。記憶装置2は、需要予測演算処理部5、複写処理部6、切り替え処理部7による処理動作の為のプログラムや、所定の日付の所定の時刻に対応する予測モデルのデータを記憶する。また、記憶装置2は、入力データ記憶部21、需要予測結果記憶部22及び需要実績データ記憶部23を有する。この予測モデルは回帰分析の為の予測演算式であってもよいし、ニューラルネットワークであってもよい。
 需要予測演算処理部5は、予測対象時刻の温度予測値や湿度予測値などの入力データ及び記憶装置2に格納される予測モデルである、予測対象時刻に対応する所定の予測モデルを用いて、当該予測対象時刻の電力需要値を予測する。
 記憶装置2の入力データ記憶部21は、各日付の各時刻の気温や湿度などの気象予測値といった、電力需要予測の為の入力データを記憶する。 
 記憶装置2の需要予測結果記憶部22は、需要予測演算処理部5による、各日付の所定の時刻の電力需要予測結果を記憶する。 
 記憶装置2の需要実績データ記憶部23は、過去から現在までの各日付の所定の時刻の実際の電力需要値を記憶する。
 複写処理部6は、ある予測対象時刻の電力需要予測値を、当該予測対象時刻以後の異なる予測対象時刻の電力需要の予測の為の入力データとして複写する機能を有する。 
 切り替え処理部7は、ある予測対象時刻の電力需要にかかるモードを事前予測モード及び当日補正モードの間で切り替える機能を有する。
 事前予測モードとは、需要予測対象時刻が属する需要予測対象日の前日以前に当該需要予測対象時刻の需要予測を行なう為のモードである。当日補正モードとは、事前予測モードにて求めた、ある需要予測対象時刻の需要予測値を、この需要予測対象時刻が属する需要予測対象日当日に得られる同じ予測対象時刻の最新の気象データなどを用いて補正する為のモードである。これらのモードは、ユーザが入力装置3への所定の操作を行なう事で任意に変更可能である。
 このエネルギー需要予測装置は、ハードウェア構成、またはハードウェア構成とソフトウェア構成との組合せにより実現可能である。後者の場合、ソフトウェア構成は、予めコンピュータ読み取り可能な記憶媒体またはネットワークから得られたプログラムがコンピュータにインストールされる事により、エネルギー需要予測装置としての各機能が実現される。
 次に、図13に示した構成のエネルギー需要予測装置の動作について説明する。図14は、実施形態におけるエネルギー需要予測装置による処理動作の一例を示すフローチャートである。図15は、実施形態におけるエネルギー需要予測装置による各種モードにおける入力データの種別と使用モデルの種別の関係を表形式で示す図である。ここで、各日付における各時刻の温度や湿度などの最新の気象予測データは、外部装置から読み込まれて記憶装置2の入力データ記憶部21に記憶されているとする。
 まず、ユーザは、入力装置3を用いて、電力需要予測対象日及び当該予測対象日における電力需要予測対象時刻を指定する(ステップS1)。ここでは、翌日が電力需要予測対象日として指定され、この日の24時間のうち所定の複数の時刻が電力需要予測対象時刻として指定されるとする。また、需要予測対象時刻として指定される複数の時刻は、所定時間間隔の時刻であってもよいし、ユーザが任意に夫々指定した時刻であってもよい。
 すると、需要予測演算処理部5は、現在のモードが事前予測モードである場合には(ステップS2のYES)、指定済みの電力需要予測対象時刻のうち、電力需要予測がなされていない最も早い時刻を選択し、この選択した時刻の気象予測データを記憶装置2の入力データ記憶部21から読み出して入力する(ステップS3)。
 そして、需要予測演算処理部5は、選択済みの電力需要予測対象時刻の予測モデルのデータを記憶装置2から読み出す。この予測モデルには、当該予測モデルに対応する時刻の電力需要値の予測の為に当該時刻以前の所定時刻における電力需要予測結果が必要であるか否かを示す需要予測結果要否情報が含まれる。需要予測演算処理部5は、この情報を参照する事で、選択済みの電力需要予測対象時刻以前の所定の時刻における電力需要予測結果が必要であるか否かを判別する(ステップS4)。
 需要予測演算処理部5は、ステップS4の処理で「YES」と判別した場合には、前述した選択済みの電力需要予測対象時刻以前の所定の時刻における電力需要予測結果を記憶装置2の需要予測結果記憶部22から読み出して入力する(ステップS5)。
 そして、需要予測演算処理部5は、ステップS3の処理で入力した気象予測データ及びステップS5の処理で入力した電力需要予測結果及び選択済みの電力需要予測対象時刻に対応する予測モデルのデータをもとに、選択済みの電力需要予測対象時刻の電力需要予測値を演算する(ステップS6)。
 また、需要予測演算処理部5は、ステップS4の処理で「NO」と判別した場合には、前述したステップS5の処理を省略し、ステップS3の処理で入力した気象予測データ及び選択済みの電力需要予測対象時刻の予測モデルのデータをもとに、選択済みの電力需要予測対象時刻の電力需要予測値を演算する(ステップS4→S6)。
 需要予測演算処理部5は、ステップS6の処理による電力需要予測値の演算後、次の電力需要予測対象時刻がある場合、つまり前述のように指定された全ての電力需要予測対象時刻の電力需要予測が終了していない場合には(ステップS7のYES)、この次の時刻を選択する。
 そして、需要予測演算処理部5は、当該選択した時刻に対応する予測モデルを記憶装置2から読み出して、当該モデルの需要予測結果要否情報を参照することで、この時刻の電力需要値の予測の為に、この時刻以前の所定の時刻である、前回選択された電力需要予測対象時刻における電力需要予測結果が必要であるか否かを判別する(ステップS8)。
 ステップS8の処理で「YES」と判別された際は、複写処理部6は、ステップS6の処理により演算された電力需要予測値を、前述した次の時刻の電力需要予測の為の入力データとして記憶装置2の入力データ記憶部21に複写する(ステップS9)。 
 ステップS9の処理後、もしくはステップS8の処理で「NO」と判別された際は、前述した次の時刻についてのステップS1以降の処理がなされる。
 一方、需要予測演算処理部5は、現在のモードが当日補正モードである場合には(ステップS2のNO)、当日の電力需要予測対象時刻のうち、電力需要予測値の当日補正がなされていない最も早い時刻を選択し、この選択した時刻の最新の気象予測データを記憶装置2の入力データ記憶部21から読み出して入力する(ステップS10)。
 そして、需要予測演算処理部5は、選択済みの電力需要予測対象時刻の予測モデルのデータを記憶装置2から読み出す。この予測モデルのデータには、当該予測モデルに対応する時刻の電力需要値の予測の為に当該対応する時刻以前の所定の時刻における電力需要実績データが必要であるか否かを示す需要実績データ要否情報が含まれる。需要予測演算処理部5は、この情報を参照する事で、選択済みの電力需要予測対象時刻以前の所定の時刻における電力需要実績データが記憶装置2の需要実績データ記憶部23に記憶されているか否かを判別する(ステップS11)。ステップS11の処理で「NO」と判別された場合には、処理が終了する。
 需要予測演算処理部5は、ステップS11の処理で「YES」と判別した場合には、前述のように読み出した予測モデルで示される、選択済みの電力需要予測対象時刻以前の所定の時刻における電力需要実績データを記憶装置2の需要実績データ記憶部23から読み出して入力する(ステップS12)。
 そして、需要予測演算処理部5は、ステップS10の処理で入力した気象予測データ及びステップS12の処理で入力した、選択済みの電力需要予測対象時刻以前の所定の時刻における電力需要実績データ及び当該電力需要予測対象時刻の予測モデルのデータをもとに、選択済みの電力需要予測対象時刻の電力需要予測値を演算する(ステップS12→S6)。これにより、既に求めた電力需要予測値の当日補正がなされる。 
 また、ステップS7の処理で「NO」と判別された場合、つまり、指定された全ての電力需要予測対象時刻の電力需要予測が終了した場合には、処理が終了する。
 以上のように、実施形態におけるエネルギー需要予測装置では、ある需要予測対象時刻における気象予報値などの入力データ及び当該時刻に対応する予測モデルをもとに当該時刻における需要予測値を演算する。そして、このエネルギー需要予測装置は、この演算した需要予測結果を、当該時刻より後の需要予測対象時刻における需要予測値の演算の為の入力データとして複写し、このデータ及び当該後の時刻の気象予報値などの入力データ及び当該後の時刻に対応する予測モデルをもとに当該後の時刻における需要予測値を演算する。よって、各時刻間の相関を考慮した適切な需要予測を行なう事ができる。
 また、このエネルギー需要予測装置は、ある需要予測対象日の需要予測対象時刻の需要予測値を演算した上で、この需要予測値を需要予測対象日当日になった際に補正する必要がある場合には、補正対象の電力需要値にかかる需要予測対象時刻以前の所定の時刻までの需要実績データをもとに需要予測値の補正を行なう事ができるので、需要予測の精度を向上できる。
 この実施形態におけるエネルギー需要予測装置は、各時刻の電力需要の演算の為の予測モデルとしては従来の予測モデルをそのまま利用可能であるので新たな予測モデルを用意する必要はない。また、この実施形態におけるエネルギー需要予測装置は、前日までに行なう予測の為の予測モデルと同じ予測モデルを当日修正に使用可能である。よって、需要の予測にかかる時間の増加に伴う計算時間の増加の程度が著しく小さくなるので、24時間あるいは任意の時刻ごとの需要予測を容易に行なう事ができる。
 以上述べたように、本実施形態では、予測モデルを自由に組み合わせる事が可能であり、さらに各時刻の予測モデルは図6に示すように同一でもよいし図5に示すように別々でもよい。 
 また、ある予測対象時刻における需要値の予測の為に用いる当該時刻以前の入力データは、電力需要値自体の予測値だけでなく、需要の変化率の予測値であってもよいし、需要と気温の関数であってもよい。
 実施形態における予測モデルは、ある時刻の予測モデルの入力データとして、過去の予測値あるいは実績値を用いるが、いつの時刻を用いるべきかは、ユーザが任意に選択する事ができる。この場合、時刻は何らかの物理モデルによって決められてもよいし、統計的に相関のある時刻が選ばれるようにしてもよい。
 また、需要予測対象時刻として指定される複数の時刻が所定時間間隔の時刻であって、これらの時刻のうち2番目以降の時刻の需要予測の為に当該需要予測時刻より前述した時間間隔だけ前の時刻における需要予測結果を用いる事が明らかである場合には、この旨を入力装置3により入力しておけば、これらの時刻における需要予測演算処理部5による前述したステップS4及びステップS8の処理を行なう必要が無くなる。よって、計算の効率を向上させる事ができる。
 これらの各実施形態によれば時刻間の相関を考慮した適切な需要予測を行なう事が可能になる需要予測装置、プログラム及び記録媒体を提供する事ができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 なお、上記実施形態に記載した手法は、コンピュータに実行させる事のできるプログラムとして、磁気ディスク(フロッピー(登録商標)ディスク、ハードディスクなど)、光ディスク(CD-ROM、DVDなど)、光磁気ディスク(MO)、半導体メモリなどの記憶媒体に格納して頒布する事もできる。
 また、この記憶媒体としては、プログラムを記憶でき、かつコンピュータが読み取り可能な記憶媒体であれば、その記憶形式は何れの形態であっても良い。
 また、記憶媒体からコンピュータにインストールされたプログラムの指示に基づきコンピュータ上で稼働しているOS(オペレーティングシステム)や、データベース管理ソフト、ネットワークソフト等のMW(ミドルウェア)等が上記実施形態を実現する為の各処理の一部を実行しても良い。
 さらに、実施形態における記憶媒体は、コンピュータと独立した媒体に限らず、LANやインターネット等により伝送されたプログラムをダウンロードして記憶または一時記憶した記憶媒体も含まれる。
 また、記憶媒体は1つに限らず、複数の媒体から上記実施形態における処理が実行される場合も実施形態における記憶媒体に含まれ、媒体構成は何れの構成であっても良い。
 尚、実施形態におけるコンピュータは、記憶媒体に記憶されたプログラムに基づき、上記実施形態における各処理を実行するものであって、パソコン等の1つからなる装置、複数の装置がネットワーク接続されたシステム等の何れの構成であっても良い。
 また、実施形態におけるコンピュータとは、パーソナルコンピュータに限らず、情報処理機器に含まれる演算処理装置、マイコン等も含み、プログラムによって実施形態機能を実現する事が可能な機器、装置を総称している。
 1…制御部、2…記憶装置、3…入力装置、4…表示装置、5…需要予測演算処理部、6…複写処理部、7…切り替え処理部、8…バス、21…入力データ記憶部、22…需要予測結果記憶部、23…需要実績データ記憶部、101…電力の最低需要の予測値、102…電力最高需要の予測値、103,104,105,202…電力需要の負荷曲線、201…各時刻の電力需要、301…電力需要の負荷曲線の予測結果、302,303,307…電力需要の実際の負荷曲線、304…「時刻2」の電力需要の予測値、305…「時刻5」の電力需要の予測値、306…「時刻8」の電力需要の予測値、401…予測された電力需要負荷曲線、402…実際の電力需要。

Claims (9)

  1.  需要の将来の時系列データの予測において1日のうちの複数の時刻の需要を予測する場合に、需要予測対象時刻の需要予測の為の入力データ及び前記需要予測対象時刻以前の所定の時刻の需要の予測結果を前記需要予測対象時刻の需要予測の為の入力データの一部として入力する入力装置(3)と、
     前記入力装置による入力結果を用いて前記需要予測対象時刻の需要の予測値を演算する需要予測演算処理部(5)と
    を備えた事を特徴とする需要予測装置。
  2.  前記入力装置は、
     所定時間間隔ごとの所定の需要予測対象時刻の需要予測の為の入力データ、及び前記需要予測対象時刻以前の所定の時刻の需要の予測値を入力し、
     前記需要予測演算処理部は、
     前記入力装置による入力結果を用いて前記所定時間間隔ごとの所定の需要予測対象時刻の需要の予測値を計算する
    事を特徴とする請求項1に記載の需要予測装置。
  3.  需要予測のモードを事前予測モード及び当日補正モードのいずれかへ切り替える切り替え処理部(7)をさらに備え、
     前記入力装置は、
     前記切り替え処理部により需要予測のモードが事前予測モードに切り替えられている場合には、前記需要予測対象時刻の需要予測の為の入力データ、及び前記需要予測対象時刻以前の所定の時刻の需要の予測値を入力し、前記切り替え処理部により需要予測のモードが当日補正モードに切り替えられている場合には、前記需要予測対象時刻の需要予測の為の入力データ、及び前記需要予測対象時刻が属する当日の当該需要予測対象時刻以前の所定の時刻の需要の実績値を入力する
    事を特徴とする請求項1に記載の需要予測装置。
  4.  前記予測対象の需要は電力需要であり、前記需要予測の為の入力データは、気象予測データであり、
     前記入力装置は、
     前記切り替え処理部により需要予測のモードが当日補正モードに切り替えられている場合には、前記需要予測対象時刻が属する当日の当該需要予測対象時刻以前の所定の時刻の需要の実績値及び当該時刻の最新の気象予測データを入力する
    事を特徴とする請求項3に記載の需要予測装置。
  5.  前記需要予測演算処理部は、
     前記入力装置による入力結果を用い、回帰分析により前記需要予測対象時刻の需要の予測値を計算する
    事を特徴とする請求項1に記載の需要予測装置。
  6.  前記需要予測演算処理部は、
     前記入力装置による入力結果を用い、ニューラルネットワークにより前記需要予測対象時刻の需要の予測値を計算する
    事を特徴とする請求項1に記載の需要予測装置。
  7.  前記需要予測対象時刻は、エネルギー需要予測対象時刻であり
     前記需要予測の為の入力データは、前記エネルギー需要予測対象時刻の気象予測値である
    事を特徴とする請求項1に記載の需要予測装置。
  8.  コンピュータを、
     需要の将来の時系列データの予測において1日のうちの複数の時刻の需要を予測する場合に、需要予測対象時刻の需要予測の為の入力データ及び前記需要予測対象時刻以前の所定の時刻の需要の予測結果を前記需要予測対象時刻の需要予測の為の入力データの一部として入力する入力装置、及び
     前記入力装置による入力結果を用いて前記需要予測対象時刻の需要の予測値を計算する需要予測演算処理部
    として機能させるようにしたコンピュータ読み取り可能な需要予測プログラム。
  9.  請求項8に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
PCT/JP2010/061718 2009-07-14 2010-07-09 需要予測装置、プログラム及び記録媒体 WO2011007736A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10799794.2A EP2469676A4 (en) 2009-07-14 2010-07-09 Demand-prediction device, program, and recording medium
CN2010800199937A CN102422311A (zh) 2009-07-14 2010-07-09 需求预测装置、程序及记录介质
US13/338,482 US20120095608A1 (en) 2009-07-14 2011-12-28 Demand prediction apparatus, and computer readable, non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-165934 2009-07-14
JP2009165934A JP5618501B2 (ja) 2009-07-14 2009-07-14 需要予測装置、プログラムおよび記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/338,482 Continuation US20120095608A1 (en) 2009-07-14 2011-12-28 Demand prediction apparatus, and computer readable, non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2011007736A1 true WO2011007736A1 (ja) 2011-01-20

Family

ID=43449344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061718 WO2011007736A1 (ja) 2009-07-14 2010-07-09 需要予測装置、プログラム及び記録媒体

Country Status (6)

Country Link
US (1) US20120095608A1 (ja)
EP (1) EP2469676A4 (ja)
JP (1) JP5618501B2 (ja)
CN (1) CN102422311A (ja)
TW (1) TWI592811B (ja)
WO (1) WO2011007736A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4369140A1 (de) 2022-11-11 2024-05-15 Stiebel Eltron GmbH & Co. KG Verfahren zur temperaturprognose und/oder wärmebedarfsprognose eines gebäudes und wärmepumpe

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367685A1 (en) 2002-05-31 2003-12-03 Whirlpool Corporation Electronic system for power consumption management of appliances
ES2538484T3 (es) * 2003-01-21 2015-06-22 Whirlpool Corporation Un proceso para gestionar y reducir la demanda de potencia de electrodomésticos y componentes de los mismos, y sistema que utiliza dicho proceso
JP2011114944A (ja) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd 電力需要予測装置、そのプログラム
JP5596220B2 (ja) 2011-03-07 2014-09-24 株式会社日立製作所 エネルギー消費管理のためのシステム、方法及びコンピュータプログラム
JP5578124B2 (ja) * 2011-03-29 2014-08-27 株式会社デンソー 電力供給システム
US8977405B2 (en) * 2011-12-13 2015-03-10 Patrick Andrew Shiel Continuous optimization energy reduction process in commercial buildings
TW201326876A (zh) * 2011-12-28 2013-07-01 Inst Nuclear Energy Res Atomic Energy Council 系集風能預報平台系統及其運作方法
WO2013136419A1 (ja) * 2012-03-12 2013-09-19 富士通株式会社 運転計画作成方法、運転計画作成プログラムおよび運転計画作成装置
TWI492158B (zh) * 2012-11-15 2015-07-11 Inventec Corp 負載預測方法與電子裝置
TWI547879B (zh) * 2012-11-15 2016-09-01 英業達股份有限公司 負載預測方法與電子裝置
JP6104633B2 (ja) * 2013-02-26 2017-03-29 三菱重工業株式会社 ニーズ判定装置、ニーズ判定方法およびニーズ判定プログラム
JP2014180187A (ja) 2013-03-15 2014-09-25 Toshiba Corp 電力需要予測装置、方法及びプログラム並びに需要抑制計画策定装置
EP2851851A1 (en) 2013-09-20 2015-03-25 Tata Consultancy Services Limited A computer implemented tool and method for automating the forecasting process
JP6104116B2 (ja) * 2013-09-26 2017-03-29 アズビル株式会社 エネルギー削減量予測方法および装置
JPWO2015087470A1 (ja) * 2013-12-10 2017-03-16 パナソニックIpマネジメント株式会社 需要予測装置、プログラム
JP6245030B2 (ja) * 2014-03-27 2017-12-13 富士通株式会社 消費電力予測方法、消費電力予測プログラム及び消費電力予測装置
DE102014010117A1 (de) * 2014-07-08 2016-01-14 Evohaus Gmbh Prognose- und Steuerungssystem für den Strombezug von Haushalten
JP2016059126A (ja) * 2014-09-08 2016-04-21 株式会社東芝 電力負荷推定装置、電力負荷推定方法、及び電力負荷推定プログラム
US9798991B2 (en) * 2014-11-22 2017-10-24 Doojin Technology, Inc. Revenue and productivity optimization system with environmental sensor-connected smart bell
US9869486B2 (en) * 2015-01-27 2018-01-16 Patrick Andrew Shiel Method of reducing heating energy consumption in commercial buildings
US9869481B2 (en) * 2015-01-27 2018-01-16 Patrick Andrew Shiel Method of controlling ventilation and chilling systems to conserve energy in commercial buildings
WO2016132796A1 (ja) * 2015-02-19 2016-08-25 日本電気株式会社 電力消費量推定装置、電力消費量推定方法およびプログラム
US9915965B2 (en) * 2015-03-16 2018-03-13 The Florida International University Board Of Trustees Flexible, secure energy management system
JP6427798B2 (ja) * 2015-12-24 2018-11-28 キヤノンマーケティングジャパン株式会社 情報処理装置、制御方法、及びプログラム
EP3407450A4 (en) * 2016-01-21 2019-01-16 Fujitsu Limited POWER COST CALCULATION SYSTEM, POWER COST CALCULATION PROCESS AND COST OF COST CALCULATION
JP2017220980A (ja) * 2016-06-03 2017-12-14 一般財団法人電力中央研究所 予測装置、予測方法および予測プログラム
JP2018092267A (ja) * 2016-11-30 2018-06-14 パナソニックIpマネジメント株式会社 需要予測システムおよび需要予測方法
JP6735219B2 (ja) * 2016-12-05 2020-08-05 株式会社日立製作所 予測システム及び予測方法
JP6971181B2 (ja) * 2018-03-20 2021-11-24 ヤフー株式会社 予測装置、予測方法、およびプログラム
JP7217074B2 (ja) 2018-06-01 2023-02-02 株式会社日立製作所 電力需給管理システム、電力需給管理方法、および電力需給管理装置
CN109543295B (zh) * 2018-11-21 2023-08-25 国网青海省电力公司 数值天气预报的气象要素数据处理方法及装置
CN110503256B (zh) * 2019-08-14 2022-08-05 北京国网信通埃森哲信息技术有限公司 基于大数据技术的短期负荷预测方法及系统
JP7474623B2 (ja) * 2020-03-27 2024-04-25 本田技研工業株式会社 電力算出装置
JP2024032197A (ja) * 2022-08-29 2024-03-12 株式会社日立製作所 需要予測装置および需要予測方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086896A (ja) * 2002-08-06 2004-03-18 Fuji Electric Holdings Co Ltd 適応的予測モデル構築方法及び適応的予測モデル構築システム
JP2004328907A (ja) * 2003-04-24 2004-11-18 Tm T & D Kk 託送電力の需要予測方法と装置、そのためのプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111935A (ja) * 1994-10-11 1996-04-30 Toshiba Corp 電力系統内の地域負荷予測システム
JP3360520B2 (ja) * 1996-02-08 2002-12-24 富士電機株式会社 日負荷曲線予測方法
JP4448226B2 (ja) * 2000-03-07 2010-04-07 新日本製鐵株式会社 需要予測装置、方法、及びコンピュータ読み取り可能な記憶媒体
US6577962B1 (en) * 2000-09-28 2003-06-10 Silicon Energy, Inc. System and method for forecasting energy usage load
JP3991811B2 (ja) * 2002-08-06 2007-10-17 株式会社日立製作所 在庫制御システムおよび在庫制御方法
JP2007199862A (ja) * 2006-01-24 2007-08-09 Nippon Telegr & Teleph Corp <Ntt> エネルギー需要予測方法、予測装置、プログラム、および記録媒体
US7647137B2 (en) * 2007-03-13 2010-01-12 Honeywell International Inc. Utility demand forecasting using utility demand matrix

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004086896A (ja) * 2002-08-06 2004-03-18 Fuji Electric Holdings Co Ltd 適応的予測モデル構築方法及び適応的予測モデル構築システム
JP2004328907A (ja) * 2003-04-24 2004-11-18 Tm T & D Kk 託送電力の需要予測方法と装置、そのためのプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4369140A1 (de) 2022-11-11 2024-05-15 Stiebel Eltron GmbH & Co. KG Verfahren zur temperaturprognose und/oder wärmebedarfsprognose eines gebäudes und wärmepumpe
DE102022129932A1 (de) 2022-11-11 2024-05-16 Stiebel Eltron Gmbh & Co. Kg Verfahren zur Temperaturprognose und/oder Wärmebedarfsprognose eines Gebäudes und Wärmepumpe

Also Published As

Publication number Publication date
TWI592811B (zh) 2017-07-21
EP2469676A1 (en) 2012-06-27
TW201106175A (en) 2011-02-16
US20120095608A1 (en) 2012-04-19
JP5618501B2 (ja) 2014-11-05
CN102422311A (zh) 2012-04-18
JP2011024314A (ja) 2011-02-03
EP2469676A4 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
WO2011007736A1 (ja) 需要予測装置、プログラム及び記録媒体
JP6009561B2 (ja) 空調管理装置、空調管理方法、および、プログラム
JP4634242B2 (ja) 省エネルギー量推定装置、方法、およびプログラム
JP6006072B2 (ja) エネルギー消費量予測システム
JP5203855B2 (ja) 貯湯式給湯装置、運転計画装置及び運転計画方法
JP2008086147A (ja) エネルギー需要予測方法、予測装置、プログラム及び記録媒体
JP5078128B2 (ja) 動作方法、予測誤差補填装置、気象発電計画装置、およびプログラム
JP6197689B2 (ja) 運転計画支援プログラム、運転計画支援方法および運転計画支援装置
Taccari et al. Short-term planning of cogeneration power plants: a comparison between MINLP and piecewise-linear MILP formulations
JPWO2019008698A1 (ja) 運転制御装置、空気調和システム、運転制御方法および運転制御プログラム
JP2018106431A (ja) 設備機器運転計画生成装置および方法
JP6535173B2 (ja) 分散型エネルギーシステムの構成最適化方法及び装置
JP6582755B2 (ja) 熱源機器ネットワークの運転計画を最適化するための方法及びシステム、及びプログラム
KR101405594B1 (ko) 전기자동차 충전부하 예측 방법 및 시스템
JP2006350920A (ja) エネルギー需要予測システム及び需要予測方法
JP6567302B2 (ja) エネルギー管理装置、エネルギー管理方法およびプログラム
JP2017048959A (ja) 冷却水を用いて動作する熱源機器の冷却水温を予測する装置及び方法、及びプログラム
JP2007220665A (ja) コージェネレーションシステム用運転計画装置および運転計画方法
JP2004257723A (ja) 運転制御システム
JP2017173945A (ja) 契約電力最適化装置
JP2018013934A (ja) 電力価格予測装置
JP2016127622A (ja) 電力需要予測システム
JP4855112B2 (ja) コージェネレーション装置の運転計画装置および運転計画方法、そのプログラム、コージェネレーションシステム
JP6810597B2 (ja) 熱源運転計画算出装置および方法
JP4579137B2 (ja) エネルギー変動費推定装置およびエネルギー変動費推定プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019993.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799794

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10218/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010799794

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE