WO2011007495A1 - 高圧放電ランプ、ランプユニット及び画像表示装置 - Google Patents

高圧放電ランプ、ランプユニット及び画像表示装置 Download PDF

Info

Publication number
WO2011007495A1
WO2011007495A1 PCT/JP2010/003678 JP2010003678W WO2011007495A1 WO 2011007495 A1 WO2011007495 A1 WO 2011007495A1 JP 2010003678 W JP2010003678 W JP 2010003678W WO 2011007495 A1 WO2011007495 A1 WO 2011007495A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
pressure discharge
discharge lamp
arc tube
center
Prior art date
Application number
PCT/JP2010/003678
Other languages
English (en)
French (fr)
Inventor
太田和紀
蒲田幸平
水津将幸
田丸修治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2010800025511A priority Critical patent/CN102150232B/zh
Priority to US12/997,916 priority patent/US8247974B2/en
Publication of WO2011007495A1 publication Critical patent/WO2011007495A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2026Gas discharge type light sources, e.g. arcs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2086Security or safety means in lamp houses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection

Definitions

  • the present invention relates to a high-pressure discharge lamp, a lamp unit, and an image display device.
  • Patent Document 1 discloses a shape of an arc tube that can efficiently capture a light flux emitted from a high-pressure discharge lamp by a reflecting mirror. .
  • the radius of curvature of the outer surface of the portion near the sealing portion in the light emitting portion is smaller than the radius of curvature of the outer surface of the center portion of the light emitting portion, the luminous flux transmitted through the portion near the sealing portion is transmitted to the arc tube.
  • the light emitting unit can emit light at an angle closer to the tube axis. Therefore, the high pressure discharge lamp has an excellent light distribution characteristic with a high luminous flux level in a direction perpendicular to the tube axis of the arc tube, and can collect more luminous flux on the reflecting surface of the reflecting mirror.
  • the screen light flux of the unit can be increased.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a high-pressure discharge lamp that is small and highly efficient, has excellent light distribution characteristics, and does not easily cause damage to the arc tube. Another object of the present invention is to provide a lamp unit and an image display device that are small in size, have a high screen light flux, and are unlikely to fail.
  • a high-pressure discharge lamp includes a substantially spherical light emitting portion in which mercury is enclosed and tip ends of a pair of electrodes are opposed to each other, and extends on both sides of the light emitting portion.
  • a high-pressure discharge lamp having an arc tube having a sealing portion in which a base end of an electrode is sealed, wherein an amount of mercury enclosed is 0.2 to 0.4 [mg / mm 3 ],
  • the length W from the contact point S between the tube axis Z of the arc tube and the inner surface of the arc tube to the center O of the light emitting portion is 3.0 to 5.0 [mm], passes through the center O, and the tube
  • the length C O from the contact T O to the center O between the vertical axis Y O perpendicular to the axis Z and the inner surface of the arc tube is 1.5 to 3.0 [mm]
  • the center O and the contact From the contact point T M between the vertical axis Y M passing through the intermediate point M with S and perpendicular to the tube axis Z and the inner surface of the arc tube, the intermediate point M
  • the length C M and the length C O satisfy the relationship C M / C O ⁇ 0.8, and the minimum thickness X [mm] of the
  • the lamp unit according to the present invention includes the high-pressure discharge lamp, a neck portion to which one sealing portion of the high-pressure discharge lamp is attached, and a spheroidal curved surface that reflects a light beam emitted from the high-pressure discharge lamp. And a reflecting mirror.
  • An image display apparatus includes the lamp unit.
  • the high-pressure discharge lamp according to the present invention has an enclosed amount of mercury of 0.2 to 0.4 [mg / mm 3 ], a length W of 3.0 to 5.0 [mm], and a length C Since O is 1.5 to 3.0 [mm], it is small and highly efficient.
  • the length C M and the length C O satisfy the relationship C M / C O ⁇ 0.8, the light distribution characteristics are excellent.
  • the minimum thickness X [mm] and the maximum outer diameter D [mm] satisfy the relationship of X / D ⁇ 0.2, the arc tube is difficult to break.
  • the lamp unit and the image display device according to the present invention include the high-pressure discharge lamp as described above, which is small and highly efficient, has excellent light distribution characteristics, and does not easily break the arc tube. .
  • Sectional drawing which shows the light emission part periphery of the lamp unit which concerns on a 1st modification
  • Sectional drawing which shows the light emission part periphery of the lamp unit which concerns on a 1st modification
  • Sectional drawing which shows the lamp unit which concerns on a 2nd modification
  • FIG. 1 is a view showing a lamp unit according to the present embodiment, in which (a) is a perspective view and (b) is a side view.
  • the lamp unit 100 includes a high-pressure discharge lamp 101 according to the present embodiment, a reflecting mirror 102, and a housing 103.
  • FIG. 2 is a cross-sectional view showing the lamp unit according to the present embodiment, in which the housing is omitted.
  • the high-pressure discharge lamp 101 is a so-called double-end high-pressure mercury lamp, and includes a substantially spherical light-emitting portion 111 and a pair of sealing portions 112 provided on both sides of the light-emitting portion 111. And a pair of electrode assemblies 120, for example, with a rated power of 200 [W] and a rated voltage of 70 [V].
  • FIG. 3 is a cross-sectional view showing the periphery of the light emitting portion in the arc tube, and the electrode assembly is omitted.
  • the light emitting portion 111 of the arc tube 110 has, for example, a maximum outer diameter D of about 9.0 [mm] and an outer surface with a radius of curvature of about 5.45 [mm].
  • a discharge space 113 of approximately 60 [mm 3 ] is formed.
  • the light emitting portion 111 has a length W from the contact S between the tube axis Z of the light emitting tube 110 and the inner surface of the light emitting tube 110 to the center (center of the discharge space 113) O of the light emitting portion 111 of about 4 mm. And a length C O from the contact T O between the vertical axis Y O passing through the center O and orthogonal to the tube axis Z and the inner surface of the arc tube 110 to the center O (part corresponding to the center O) Of the vertical axis Y M passing through the intermediate point M between the center O and the contact S and perpendicular to the tube axis Z, and the inner surface of the arc tube 110.
  • the length from the contact point T M to the intermediate point M (inner diameter radius of the portion corresponding to the intermediate point M) CM is about 1.7 [mm], and the minimum of the sealing portion vicinity portion 114 in the arc tube 110
  • the wall thickness X is about 1.95 [mm].
  • the center O of the light emitting portion 111, a on the tube axis Z, the inner surface of the arc tube Further, in the present application, part of the sealing portion 112 side from the vertical axis Y M of the light emitting section 111 was defined as a sealing portion adjacent portion 114, the center O side is defined as a central portion 115 than the vertical axis Y M of the light emitting section 111.
  • the minimum thickness X is defined as the shortest length from the boundary U between the light emitting portion 111 and the sealing portion 112 on the outer surface of the arc tube 110 to the inner surface of the arc tube 110.
  • the center O of the light emitting unit 111 is on the tube axis Z of the light emitting tube 110 and is divided by the inner surface of the light emitting tube 110.
  • the dimensions relating to the light emitting unit 111 are not limited to the above, and the high pressure discharge lamp It can be changed appropriately according to the specifications of 101.
  • the length W is 3.0 to 5.0 [mm]
  • the length CO is 1.5 to 3.0 [mm].
  • the length C M and the length C O satisfy the relationship of C M / C O ⁇ 0.8.
  • the minimum thickness X and the maximum outer diameter D satisfy the relationship X / D ⁇ 0.2 so that the arc tube 110 is not easily damaged. Details of these reasons will be described later.
  • mercury (Hg) as a luminescent substance is about 0.2 to 0.4 [mg / mm 3 ]
  • a start-up rare gas is about 30 [kPa]
  • bromine as a halogen substance is used.
  • (Br) is sealed at about 10 ⁇ 7 to 10 ⁇ 2 [ ⁇ mol / mm 3 ]
  • the mercury vapor pressure during lamp operation is about 20 to 30 [kPa].
  • the high-pressure discharge lamp 101 has high efficiency because mercury is sealed in about 0.2 to 0.4 [mg / mm 3 ].
  • the luminescent material is not limited to mercury, and may be an alkali metal atom or the like.
  • the rare gas include argon (Ar), krypton (Kr), xenon (Xe), or a mixed gas of at least two of them.
  • the halogen substance include iodine (I), bromine (Br), chlorine (Cl), or a mixture of at least two of them.
  • the mercury vapor pressure during lamp operation is not limited to about 20 to 30 [kPa], and may be lower or higher.
  • the pair of sealing portions 112 are, for example, substantially cylindrical, have an outer diameter of about 5.2 [mm], and a length from the center O to the tip of each sealing portion 112. 22.5 [mm], and the electrode assembly 120 is sealed in each. Only one sealing portion 112 is fixed to the neck portion 161 of the reflecting mirror 102 with, for example, cement 162 or the like.
  • each dimension regarding the sealing part 112 is not limited to the above, and can be appropriately changed according to the specification of the high-pressure discharge lamp 101, but the outer diameter is preferably 5.0 to 6.0 [mm].
  • Each electrode assembly 120 includes an electrode 130, a metal foil 140, and an external lead wire 150.
  • the electrode 130, the metal foil 140, and the external lead wire 150 are joined in this order, for example, by welding.
  • the metal foil 140 is sealed with the sealing portion 112.
  • Each electrode 130 has, for example, a tungsten electrode pin 131 and a tungsten coil 132 wound around and fused to the tip of the electrode pin 131.
  • the electrodes 130 are arranged in a substantially straight line with their distal ends facing each other at an interval of about 0.95 [mm] in the discharge space 113 and their proximal ends sealed with the sealing portion 112. It is installed.
  • the distance between the tips of the pair of electrodes 130, that is, the arc length is preferably in the range of 0.5 to 2.0 [mm] in order to bring the high-pressure discharge lamp closer to the point light source.
  • the diameter of the tip of the electrode 130 is increased by winding the coil 132, which increases the heat capacity, thereby reducing the deterioration of the electrode 130. Further, the surface of the electrode 130 has a large surface area when the coil 132 is wound, and the heat dissipation is thereby improved, so that the electrode 130 does not reach an unnecessarily high temperature.
  • the tip of the electrode 130 is preferably tapered.
  • Each metal foil 140 has, for example, a substantially strip shape made of molybdenum, and has a longitudinal width of about 14 mm [mm], a short side width of about 1.5 [mm], and a wall thickness of about 20 [ ⁇ m]. ].
  • the dimensions of the metal foil 140 are not limited to the above, but the width in the longitudinal direction is 10 to 20 [mm], the width in the short direction is 1.0 to 2.0 [mm], and the thickness is 10 to 30. A range of [ ⁇ m] is preferable.
  • the electrode 130 is joined to one end of the metal foil 140 in the longitudinal direction, and the external lead wire 150 is joined to the other end.
  • the entire metal foil 140 is embedded in the sealing portion 112.
  • the metal foil 140 is interposed between the electrode 130 and the external lead wire 150, and the electrode assembly 120 is sealed mainly in the portion of the metal foil 140, thereby ensuring the airtightness of the discharge space 113. ing.
  • the external lead wire 150 is made of, for example, molybdenum, and an end portion on the metal foil 140 side is embedded in the sealing portion 112, and an end portion on the side opposite to the metal foil 140 is external to the sealing portion 112. Has been derived.
  • the reflecting mirror 102 includes a neck portion 161 to which one sealing portion 112 of the high-pressure discharge lamp 101 is attached, and a spheroidal curved surface 163 that reflects the light beam emitted from the high-pressure discharge lamp 101 to the housing 103 side.
  • a funnel-shaped dichroic reflector having press-molding a material having excellent heat resistance such as borosilicate glass, aluminosilicate glass, or crystallized glass.
  • the spheroidal curved surface 163 is composed of an optical multilayer film formed by vacuum deposition, sputtering, ion assist method, or the like. By transmitting or reflecting light according to wavelength by the multilayer film, the reflection mirror temperature is reduced. It suppresses the rise and increases the reflection efficiency.
  • the angle of OF 2 Q referred to as the center O, and the second focal point F 2
  • the outer surface of the light emitting portion and the contact point Q between the vertical axis Y O but the angle formed OF 2 Q .
  • the major axis radius A and the minor axis radius B of the spheroidal curved surface 163 satisfy the relationship of 0.4 ⁇ (AB) /A ⁇ 0.6. Therefore, the high-pressure discharge lamp 101 is excellent in light distribution characteristics. Details of these reasons will be described later.
  • the housing 103 has a box-shaped main body 171, and a parallelizing lens 172 is bonded to the opposite side of the main body 171 from the reflecting mirror 102 by, for example, a silicone-based adhesive (not shown). Or is held by a clasp (not shown).
  • a pair of side walls 173 facing each other of the main body 171 are provided with cooling windows 174 for taking outside air into the main body 171, so that the high-pressure discharge lamp 101 surrounded by the reflecting mirror 102 and the housing 103 can be efficiently used. It can be cooled down. Therefore, the temperature of the light emitting part 111 and the sealing part 112 of the high-pressure discharge lamp 101 can be suitably maintained, and the light emitting part 111 is hardly deteriorated or damaged by heat.
  • Each cooling window 174 is provided with a filter 175 for dust prevention.
  • FIG. 4 is a diagram showing the relationship between X / D and breakage of the arc tube, wherein (a) shows the relationship when the mercury density is 0.3 [mg / mm 3 ], and (b) It is a figure which shows the relationship in case a mercury density is 0.4 [mg / mm ⁇ 3 >]. The value in the figure is the number of breakage / the number of evaluation samples.
  • Each high-pressure discharge lamp was turned on with an electric power of 200 [W]. At that time, the high pressure discharge lamp was not cooled so that the temperature of the light emitting portion and the sealing portion was as high as possible, and the degree of influence of heat shock was increased. The lighting cycle was repeated for 1 hour ON / 30 minutes OFF, and the total lighting was 30 hours.
  • the wall thickness was obtained by processing an image of the arc tube 110 captured by an X-ray apparatus. In addition, since the sealing part vicinity part exists in the both sides of a light emission part, the thickness of both sealing part vicinity parts was measured, and the thinner thickness was made into the minimum thickness X.
  • the maximum outer diameter D is determined by the size of the discharge space 113 and the thickness of the glass of the light emitting unit 111.
  • the discharge space needs to have a certain size, it is the maximum for miniaturizing the high-pressure discharge lamp.
  • the outer diameter D must be reduced, and as a result, the thickness of the glass in the vicinity of the sealing portion must be reduced.
  • the reason why the discharge space needs to have a certain size is that if the distance between the light emission center and the inner surface of the arc tube is too close, tungsten will adhere to the inner surface and the arc tube will be blackened or subjected to halogen cycles. This is because an abnormality occurs and the electrode deteriorates. In addition, if the discharge space is small, the temperature of the inner surface of the arc tube becomes high, and the quartz glass constituting the arc tube becomes clouded and the luminous flux decreases.
  • the light emitting portion 111 is likely to be at a high temperature, so that stress is prominent and cracks are easily generated, and the high pressure discharge lamp 101 Helps crack growth that occurred during the sealing process.
  • the light emitting portion 111 of the high-pressure discharge lamp 101 satisfies the relationship X / D ⁇ 0.2, the minimum thickness X [mm] and the maximum outer diameter D [mm]
  • the glass in the vicinity of the sealing portion 114 is thick. Therefore, the heat generated in the discharge space 113 and propagated to the light emitting part 111 is easily conducted to the sealing part 112 through the glass in the vicinity of the sealing part 114, and the heat of the light emitting part 111 is transmitted to the sealing part. It is easy to escape efficiently to the reflecting mirror 102 side via 112.
  • the light emitting portion 111 is unlikely to become high temperature, and as a result, the vicinity of the light emitting portion 116 of the sealing portion 112 where the electrode 130 is sealed is also unlikely to become high temperature, so that cracks occur in the glass around the electrode 130. It is difficult to damage the arc tube 110.
  • the maximum outer diameter D is preferably as small as possible in order to suppress the light beam vignetting caused by the light beam reflected by the spheroid surface 163 being blocked by the light emitting unit 111.
  • FIG. 5 is a diagram illustrating a relationship between C M / C 2 O and light distribution characteristics.
  • FIG. 6 is a diagram showing ideal light distribution characteristics.
  • C M / C O when C M / C O is 0.73, a heart-shaped light distribution characteristic in which the luminous flux level in the vicinity of the sealing portion is higher than the luminous flux level in the central portion is shown.
  • C M / C O When C M / C O is 0.80, the luminous flux level in the vicinity of the sealing portion and the luminous flux level in the central portion are substantially the same.
  • the sealing portion is sealed. In the vicinity of the part, the luminous flux level decreased, and in the central part, the luminous flux level increased.
  • C M / C O is 0.85, the light flux level in the center portion is higher than the light flux level in the vicinity of the sealing portion, and the light distribution characteristic that approximates the ideal light distribution characteristic as shown in FIG. Indicated.
  • the light distribution characteristics become better as C M / C O becomes larger.
  • C M / C O ⁇ 0.80, the light flux level in the central portion is equal to or higher than the light flux level in the vicinity of the sealing portion.
  • FIG. 7 is a diagram for explaining the influence of C M / C O on the optical path of the light beam emitted from the light emitting unit.
  • C M / C O when C M / C O is 0.80, the light beam passing through the central portion 115 of the light emitting unit 111 passes through the optical path L1.
  • C M / C O when C M / C O is 0.73, the inner surface of the arc tube 110 has a shape indicated by an imaginary line, so that the light beam transmitted through the central portion 115 of the light emitting unit 111 passes through the optical path L2.
  • C M / C O is larger, the light beam transmitted through the central portion 115 is emitted from the light emitting unit 111 at an angle closer to the tube axis Z of the arc tube 110.
  • the larger C M / C O is, the smaller the angle formed between the light beam passing through the central portion 115 and the vertical axis Y O is. Therefore, the luminous flux level in the direction perpendicular to the tube axis Z is increased, and the light distribution characteristics are improved.
  • FIGS. 8A and 8B are diagrams for explaining the specification of the reflecting mirror, in which FIG. 8A is a cross-sectional view showing a lamp unit including a ⁇ 50 mm reflecting mirror, and FIG. 8B is a lamp unit including a ⁇ 35 mm reflecting mirror. It is sectional drawing shown.
  • a ⁇ 50 mm reflecting mirror as an example of a conventional reflecting mirror has, for example, a first focal length f1 of 6.5 [mm], a second focal length f2 of 150 [mm],
  • the elliptical oblateness ratio (AB) / A is 0.59
  • the effective reflection area for the light beam emitted from the arc tube is 48.31 [°] from the center O to the neck portion side, and 39. It has a width of 59 [°].
  • the portion near the sealing portion on the opening side is not affected even if the C M / C O of the high pressure discharge lamp is 0.73, 0.80, or 0.85. Since the transmitted light beam enters the effective reflection region of the reflecting mirror, there is no significant problem in collecting the light beam. On the neck portion side, the effective reflection region has a margin of about 8 [°] with respect to the light distribution, so that the possibility of becoming a problem is low.
  • a ⁇ 35 mm reflector as an example of a small reflector that has been demanded in the market in recent years has an aperture diameter and a first focal length f1 as compared with a ⁇ 50 mm reflector.
  • the first focal length f1 is 4.8 [mm]
  • the second focal length f2 is 60 [mm]
  • the elliptical flatness ratio (AB) / A is 0.48.
  • the effective reflection area of the luminous flux emitted from the arc tube 110 is 30.43 [°] on the neck side and 39.46 [°] on the opening side.
  • the effective reflection area on the neck side is narrower by 17.88 [°] than the ⁇ 50 mm reflector.
  • the ⁇ 35 mm reflector having a narrow effective reflection area tends to reduce the light beam focused on the second focal point F 2 , and when combined with a high pressure discharge lamp having a C M / C O of 0.73 c, not utilized luminous flux of about 10 [°] of the portion near the light flux focused on that much second focus F 2 can be reduced.
  • the light distribution characteristics of these high pressure discharge lamps are at least the light flux level in the central portion and the light flux level in the vicinity of the sealing portion. Therefore, the ratio of the loss of light flux to the total light flux is low, the light flux in the vicinity of the sealing portion is only slightly lost, and the screen light flux is not significantly reduced.
  • the high pressure discharge lamp with C M / C O of 0.85c has an excellent light distribution characteristic with a high luminous flux level in the central portion, so that the luminous flux is sufficiently obtained even when combined with a small reflector having a narrow effective reflection area. Can be used.
  • the spheroidal curved surface tends to have poor surface accuracy in the vicinity of the neck side edge, whereas the film thickness tends to be thinner in the vicinity of the opening side edge than in other locations. Thus, there is little such tendency near the center. Moreover, near the center, the reflection efficiency is highly weighted and the influence on the screen light flux is high. Also from such a situation, the high pressure discharge lamp having a C M / C O of 0.85c is suitable for combination with a reflecting mirror.
  • C M / C O exceeds 0.9, for example, when C M / C O is 0.93, the central portion of the irradiation surface for the light beam condensed on the irradiation surface corresponding to the second focal position f2 A large luminance difference is generated between the peripheral portion and the peripheral portion of the light beam projected on the screen through a lens array that produces uniform light with a large number of small lenses. Therefore, in order to reduce the luminance difference between the central portion and the peripheral portion on the screen, C M / C O is preferably 0.9 or less.
  • ⁇ About length CO and length W> As shown in FIG. 3, when the length CO is 1.5 to 3.0 [mm] and the length W is 3.0 to 5.0 [mm], the inner surface of the light emitting unit 111 is gentle. Since the a circular arc shape, a light beam incident on the glass of the light-emitting portion 111 from the discharge space 113, the angle between the vertical axis Y O decreases. As a result, the light distribution characteristic has a distribution having a peak in the central portion. For this reason, even when combined with a small reflector having a small effective reflection area, the absolute amount of the light beam hardly decreases, which is effective for a small and thin image display device.
  • the length CO when the length CO is less than 1.5 [mm], the distance between the light emission center and the inner surface of the light emitting portion 111 becomes too close, and the problem of devitrification and blackening is likely to occur. Further, when the length CO exceeds 3.0 [mm], the thickness of the light emitting unit 111 becomes too thin, and the arc tube 110 may be damaged due to insufficient pressure resistance.
  • the length W is less than 3.0 [mm]
  • the distance between the light emission center and the light emitting portion vicinity portion 116 of the sealing portion 112 is too close, and the temperature of the light emitting portion vicinity portion 116 of the sealing portion 112 is Since it becomes too high, the arc tube 110 may be damaged.
  • the tungsten of the electrode is sputtered at the start and easily attaches to the inner surface.
  • the length W exceeds 5.0 [mm]
  • the temperature near the sealing portion 114 of the light emitting portion 111 is too far from the light emission center, so that the temperature becomes low, and all the mercury is not vaporized. To do.
  • a quartz tube having an outer diameter of 6 [mm], an inner diameter of 2 [mm], and a length of 1200 [mm] is equally divided into four to obtain a 300 [mm] cut tube.
  • Both ends of the cut tube are held by a rotary chuck, and the central portion of the cut tube is heated and softened by a gas burner while rotating the cut tube.
  • an inert gas such as argon or nitrogen is blown into the cut tube from both ends of the cut tube to form the inner surface shape of the light emitting portion.
  • a die jig is provided on the outer periphery of the central portion of the cut tube, and the portion swelled by heating is sandwiched to form the outer surface shape of the light emitting portion.
  • the light emitting portion of the arc tube is formed by adjusting conditions such as the burner heating power, the pressure of the inert gas, and the force and speed for pushing from both ends of the cut tube to the central portion.
  • the extended line connecting the second focal point F 2 and the contact Q is a point of intersection with the spheroidal curved surface 163 is N
  • the light flux reflected by the region G ⁇ N is a loss because it is blocked by the light emitting portion 111 End up.
  • the point where the extension line connecting the second focal point F 2 and the outer peripheral edge R intersects the spheroid surface 163 is N ′
  • the angle OF 2 R is larger than the angle OF 2 Q.
  • the light flux reflected in the areas N to N ′ is also lost because it is blocked by the sealing portion 112.
  • the angle OF 2 R is preferably equal to or smaller than the angle OF 2 Q. That way, the light beam vignetting by the sealing portion 112 is eliminated, it is possible to the second focal point F 2 can be efficiently focus the light beam, to increase the screen light flux of the lamp unit 100.
  • the angle OF 2 R can be made equal to or smaller than the angle OF 2 Q. That is, when the diameter of the tip of the sealing portion 112 is constant as indicated by a virtual line in FIG. 2 and the angle OF 2 R ′ is larger than the angle OF 2 Q, the sealing portion 112 If the diameter of the tip of the portion 112 is reduced, the angle OF 2 R can be made smaller than the angle OF 2 Q.
  • the angle OF 2 R can be made equal to or smaller than the angle OF 2 Q.
  • the rated power P is high, it is necessary to lengthen the sealing portion 112 in order to lower the temperature of the arc tube 110. In such a case, a configuration in which the diameter of the tip of the sealing portion 112 is reduced is effective. Note that the tip of the sealing portion 112 can be processed to be small by heating with a burner or a laser.
  • the spheroidal curved surface 163 preferably has a major axis radius A and a minor axis radius B satisfying a relationship of 0.4 ⁇ (AB) /A ⁇ 0.5.
  • the major axis radius A is 32.4 [mm]
  • the minor axis radius B is 16.971 [mm]
  • the first focal length f1 is 4.8 [mm]
  • the second focal length If f2 is set to 60 [mm], it is possible to obtain a reflecting mirror that is small and has a high screen light flux.
  • (AB) / A is about 0.48
  • the incident angle to the collimating lens 172 is about 19 [°].
  • the first focal length f1 is 4.5 [mm] or less in the above-mentioned ⁇ 35 mm reflector, so that the light emitting portion 111 of the arc tube 110 and the reflector 102 are The distance from the spheroid surface 163 becomes too close. If it does so, since the temperature of the light emission part 111 and the sealing part 112 will rise easily and the arc tube 110 will be easy to be damaged, it is unpreferable.
  • the incident angle to the second focal point F 2 collimating lens is placed in 172 of the rotary elliptic surface 163 (see FIG. 1) increases, collimated Useless reflection occurs on the surface of the lens 172, and the light flux is lost.
  • the incident angle must be 26.6 [°] or less in order to suppress the loss of light flux.
  • a high-pressure discharge lamp having a conventional arc tube (maximum outer diameter D is 10.2 [mm], radius of curvature of the outer surface of the arc tube is 5.1 [mm], and a length CO is 2 .2 [mm], C M / C O is 0.72, length W is 4.0 [mm], and mercury density is 0.3 [mg / mm 3 ]) 50 mm reflector (first focal length) f1 is 6.5 [mm] and the second focal length f2 is 150 [mm]) to produce a lamp unit, and the illuminance of the produced lamp unit under the same conditions as the high-pressure discharge lamp of the present invention is reduced. It was measured.
  • An aperture diameter of 5 ⁇ is provided at the second focal position of each reflecting mirror, and allows outgoing light to pass therethrough.
  • the illuminance of the lamp unit according to the present invention is improved by about 8% compared to the illuminance of the lamp unit according to the conventional product. Therefore, it was found that the lamp unit of the present invention is a lamp that is sufficiently small in efficiency while being small in size as compared with the conventional product.
  • the high-pressure discharge lamp equipped with the conventional arc tube was incorporated into the ⁇ 35 mm reflector compared with the conventional product incorporating the conventional high-pressure discharge lamp equipped with the arc tube used in Experiment 1 into the ⁇ 50 mm reflector. It was found that the illuminance of the lamp unit was reduced by about 3 [%].
  • FIG. 9 is a partially broken perspective view showing an example of the image display device according to the present embodiment, in which the top plate of the housing is removed so that the inside can be seen.
  • the first image display apparatus 200 according to the present embodiment is a projection-type front projector that projects an image toward a screen (not shown) installed in the front, and is a DLP (registered) (Trademark) system.
  • the image display device 200 includes a lamp unit 100 serving as a light source, an optical unit 202 having a DMD (registered trademark), a color wheel (not shown) including three color filters, and the like in a housing 201, the DMD.
  • DMD registered trademark
  • color wheel not shown
  • a control unit 203 that controls the driving of the projector, a projection lens 204, a cooling fan unit 205, a power supply unit 206 that converts power supplied from a commercial power source into power suitable for the control unit 203 and the lamp unit 100, and the like. Is stored.
  • FIG. 10 is a perspective view showing another example of the image display apparatus according to the present embodiment.
  • the second image display apparatus 300 according to the present embodiment is a projection-type rear projector, and includes a lamp unit 100 as a light source, an optical unit (not shown), and a projection lens (not shown). ) And a mirror (not shown) are housed in a housing 301, and an image projected from the projection lens and reflected by the mirror is projected from the back side of the transmissive screen 302 to display an image. .
  • the image display devices 200 and 300 according to the second and third embodiments use the high-pressure discharge lamp 101 that is small and highly efficient, has excellent light distribution characteristics, and does not easily break the arc tube 110, the conventional image display is performed. Compared to the device, it is small and has a high screen luminous flux, which is difficult to break down.
  • FIGS. 11 and 12 are cross-sectional views showing the periphery of the light emitting part of the lamp unit according to the first modification. Note that the reference numerals “G”, “N”, and “N ′” in FIGS. 11 and 12 have the same meanings as the reference signs “G”, “N”, and “N ′” in FIG.
  • the reflecting mirror 102 of the lamp unit according to the first modification further has a spherical reflecting surface 164 on the neck portion side (left side in FIG. 11) of the spheroid surface 163.
  • the spheroidal curved surface 163 is also formed in the regions G to N as indicated by phantom lines in FIG. 11, but the light flux reflected in the regions G to N is emitted from the light emitting portion of the arc tube 110. blocked by the 111 not focused on the second focal point F 2.
  • the spherical reflecting surface 164 centered on the first focal point F 1 of the spheroid surface 163 is formed so as to cover at least the region corresponding to the regions G to N, the regions G to N of the spheroid surface 163 are formed.
  • the light beam that should have been reflected and blocked by the light emitting unit 111 can be reflected by the spherical reflecting surface 164 and focused on the center O.
  • the light beam focused on the center O then passes through the center O, passing through the light emitting portion 111 is reflected by the spheroidal curved surface 163 to be focused at the second focal point F 2.
  • the focusing efficiency of the lamp unit is improved and the screen light beam is increased.
  • the increase in the distance between the arc tube 110 and the reflecting mirror 102 suppresses a local temperature increase of the arc tube 110. In other words, the life of the high-pressure discharge lamp can be extended.
  • the spherical reflecting surface 164 may be formed so as to cover at least the regions corresponding to the regions G to N ′, as shown in FIG. .
  • the amount of light lost due to vignetting caused by the sealing portion 112 can also be effectively utilized.
  • the temperature of the electrode 130 on the neck portion 161 side may rise due to the light beam reflected by the spherical reflecting surface 164 and focused on the center O, and the electrode 130 may be deteriorated. Therefore, it is conceivable to suppress the deterioration of the electrode 130 on the neck portion 161 side by making the heat capacity of the electrode 130 on the neck portion 161 side larger than the heat capacity of the electrode 130 on the other side.
  • the heat capacity of the electrode 130 can be increased by adjusting the diameter of the electrode pin 131, the diameter of the coil 132, the number of turns, or the like. Note that when the heat capacity of the electrode 130 is increased by these methods, it is preferable that the light beam is not blocked by the electrode 130.
  • FIG. 13 is a cross-sectional view showing a lamp unit according to a second modification. As shown in FIG. 13, in the lamp unit according to the second modification, a high-pressure discharge lamp 101 and a reflecting mirror 102 are joined by a base 104.
  • the base 104 has a cap shape and has an insertion hole 181 through which the sealing portion 112 is inserted at the top, and a pair of ventilation windows 182 for taking outside air into the base 104 at the side.
  • the base 104 and the reflecting mirror 102 are fixed with an adhesive or the like in a state where the base 104 is externally fitted to the neck portion 161 of the reflecting mirror 102.
  • the base 104 and the high-pressure discharge lamp 101 are fixed by an adhesive or the like in a state where the sealing portion 112 of the high-pressure discharge lamp 101 is inserted through the insertion hole 181. Since the high-pressure discharge lamp 101 and the reflecting mirror 102 are joined by the base 104, the gap between the neck portion 161 and the sealing portion 112 is not filled with cement, so that air passes through the gap. It has become.
  • the outside air flowing into the reflecting mirror 102 from the cooling window (see FIG. 1) of the housing is allowed to escape from the ventilation window 182 to the outside of the base 104 through the gap between the neck portion 161 and the sealing portion 112. Can do.
  • the light emission part 111 of the high pressure discharge lamp 101 can be cooled efficiently.
  • the flow rate of a cooling fan (not shown) can be reduced, and the noise of the image display device can be reduced.
  • the high-pressure discharge lamp, lamp unit, and image display device according to the present invention can be widely used in projectors such as liquid crystal projectors and DMD projectors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

 小型且つ高効率で配光特性に優れ発光管の破損が生じ難い高圧放電ランプを提供することを目的とし、内部に水銀が封入され且つ一対の電極(130)の先端が対向配置された略球状の発光部(111)と、当該発光部(111)の両側に延設され前記電極(130)の基端が封止された封止部(112)とを有する発光管(110)を備えた高圧放電ランプ(101)であって、前記水銀の封入量が0.2~0.4[mg/mm]であり、接点Sから中心Oまでの長さWが3.0~5.0[mm]であり、接点Tから中心Oまでの長さCが1.5~3.0[mm]であり、長さCと長さCとが、C/C≧0.8の関係を満たし、最小肉厚X[mm]と最大外径D[mm]とが、X/D≧0.2の関係を満たす構成とする。

Description

高圧放電ランプ、ランプユニット及び画像表示装置
 本発明は、高圧放電ランプ、ランプユニット及び画像表示装置に関する。
 一般に、プロジェクタなどの画像表示装置には、凹面反射鏡に高圧放電ランプを組み込んだランプユニットが光源として使用されている。このようなランプユニットについて、スクリーン光束を大きくする技術として、特許文献1には、高圧放電ランプから出射された光束を効率良く反射鏡に捕捉させることが可能な発光管の形状が開示されている。当該発光管は、発光部における封止部近傍部分の外面の曲率半径が、前記発光部における中央部分の外面の曲率半径よりも小さいため、前記封止部近傍部分を透過する光束を発光管の管軸に対してより垂直に近い角度で前記発光部から出射させることができる。したがって、高圧放電ランプは、発光管の管軸に対して垂直な方向における光束レベルが高い優れた配光特性を有し、より多くの光束を反射鏡の反射面に集めることができるため、ランプユニットのスクリーン光束を大きくすることができる。
特開2005-285417号公報
 しかしながら、近年市場で要望されている小型且つ高効率の高圧放電ランプに特許文献1に係る発光管形状を採用しようと試みたところ、熱による発光管の破損が生じた。この破損は、封止部近傍部分の外面の曲率半径を小さくしたために、当該封止部近傍部分のガラスの肉厚が薄くなって発光部から封止部への熱伝導効率が低下し、ランプ点灯中の発光部の熱が封止部を経由して反射鏡側へ逃げ難くなったことが原因であると推測される。すなわち、発光部に熱が溜まって高温になるため、封止部における前記発光部に隣接する部分も高温になり、その部分に封止された電極周辺のガラスにクラックが発生して発光管が破損したものと考えられる。
 本発明は、上記の課題に鑑み、小型且つ高効率で配光特性に優れ発光管の破損が生じ難い高圧放電ランプを提供することを目的とする。本発明の他の目的は、小型でスクリーン光束が高く故障し難いランプユニット及び画像表示装置を提供することにある。
 上記目的を達成するため、本発明に係る高圧放電ランプは、内部に水銀が封入され且つ一対の電極の先端が対向配置された略球状の発光部と、当該発光部の両側に延設され前記電極の基端が封止された封止部とを有する発光管を備えた高圧放電ランプであって、前記水銀の封入量が0.2~0.4[mg/mm]であり、前記発光管の管軸Zと前記発光管の内面との接点Sから前記発光部の中心Oまでの長さWが3.0~5.0[mm]であり、前記中心Oを通り且つ前記管軸Zに直交する垂直軸Yと前記発光管の内面との接点Tから前記中心Oまでの長さCが1.5~3.0[mm]であり、前記中心Oと前記接点Sとの中間点Mを通り且つ前記管軸Zに直交する垂直軸Yと前記発光管の内面との接点Tから前記中間点Mまでの長さCと、前記長さCとが、C/C≧0.8の関係を満たし、前記発光管における封止部近傍部分の最小肉厚X[mm]と、前記発光部の最大外径D[mm]とが、X/D≧0.2の関係を満たすことを特徴とする。
 本発明に係るランプユニットは、前記高圧放電ランプと、当該高圧放電ランプの一方の封止部が取着されるネック部と前記高圧放電ランプから出射された光束を反射する回転楕円曲面とを有する反射鏡とを備えることを特徴とする。
 本発明に係る画像表示装置は、前記ランプユニットを備えることを特徴とする。
 本発明に係る高圧放電ランプは、水銀の封入量が0.2~0.4[mg/mm]であり、長さWが3.0~5.0[mm]であり、長さCが1.5~3.0[mm]であるため、小型且つ高効率である。また、長さCと長さCとが、C/C≧0.8の関係を満たすため、配光特性に優れる。さらに、最小肉厚X[mm]と最大外径D[mm]とが、X/D≧0.2の関係を満たすため、発光管が破損し難い。
 本発明に係るランプユニット及び画像表示装置は、上記のような小型且つ高効率で配光特性に優れ発光管が破損し難い高圧放電ランプを備えているため、小型でスクリーン光束が高く故障し難い。
本実施形態に係るランプユニットを示す図であって、(a)は斜視図、(b)は側面図 本実施の形態に係るランプユニットを示す断面図 発光管における発光部周辺を示す断面図 X/Dと発光管の破損との関係を示す図であって、(a)は水銀密度が0.3[mg/mm]の場合の関係を示す図、(b)は水銀密度が0.4[mg/mm]の場合の関係を示す図 /Cと配光特性との関係を示す図 理想の配光特性を示す図 /Cが発光部から出射される光束の光路に与える影響を説明するための図 反射鏡の仕様を説明するための図であって、(a)は□50mm反射鏡を備えたランプユニットを示す断面図、(b)は□35mm反射鏡を備えたランプユニットを示す断面図 本実施の形態に係る画像表示装置の一例を示す一部破断斜視図 本実施の形態に係る画像表示装置の他の一例を示す斜視図 第1の変形例に係るランプユニットの発光部周辺を示す断面図 第1の変形例に係るランプユニットの発光部周辺を示す断面図 第2の変形例に係るランプユニットを示す断面図
 以下、本実施の形態に係る高圧放電ランプ、ランプユニット及び画像表示装置について、図面を参照しながら説明する。なお、各図面における部材の縮尺は実際のものとは異なる。また、本発明において、数値範囲を示す符号「~」は、その両端の数値を含む。
 [高圧放電ランプ及びランプユニットの概略構成]
 図1は、本実施形態に係るランプユニットを示す図であって、(a)は斜視図、(b)は側面図である。図1に示すように、ランプユニット100は、本実施の形態に係る高圧放電ランプ101と、反射鏡102と、ハウジング103とを備える。
 図2は、本実施の形態に係るランプユニットを示す断面図であって、ハウジングを省略している。図2に示すように、高圧放電ランプ101は、所謂ダブルエンド型の高圧水銀ランプであって、略球状の発光部111と当該発光部111の両側に連設された一対の封止部112とを有する石英ガラス製の発光管110と、一対の電極組立体120とを備え、例えば、定格電力が200[W]、定格電圧が70[V]である。
 図3は、発光管における発光部周辺を示す断面図であり、電極組立体を省略している。図3に示すように、発光管110の発光部111は、例えば、最大外径Dが約9.0[mm]、外面の曲率半径が約5.45[mm]であり、内部には容積が約60[mm]の放電空間113が形成されている。
 また、発光部111は、発光管110の管軸Zと前記発光管110の内面との接点Sから前記発光部111の中心(放電空間113の中心)Oまでの長さWが約4[mm]であり、前記中心Oを通り且つ前記管軸Zに直交する垂直軸Yと前記発光管110の内面との接点Tから前記中心Oまでの長さC(中心Oに相当する部分の内径半径)が約2.0[mm]であり、前記中心Oと前記接点Sとの中間点Mを通り且つ前記管軸Zに直交する垂直軸Yと前記発光管110の内面との接点Tから前記中間点Mまでの長さ(中間点Mに相当する部分の内径半径)Cが約1.7[mm]であり、前記発光管110における封止部近傍部分114の最小肉厚Xが約1.95[mm]である。
 なお、本実施の形態において、発光部111の中心Oは、管軸Z上であって、発光管の内面また、本願では、発光部111における垂直軸Yよりも封止部112側の部分を封止部近傍部分114と定義し、発光部111における垂直軸Yよりも中心O側を中央部分115と定義する。また、最小肉厚Xは、発光管110の外面における発光部111と封止部112との境界Uから発光管110の内面までの最短長さと定義する。また、発光部111の中心Oは、発光管110の管軸Z上にあり、且つ、当該発光管110の内面によって区切られる
 なお、発光部111に関する各寸法は上記に限定されず、高圧放電ランプ101の仕様により適宜変更可能である。但し、高圧放電ランプ101を小型にするために、長さWは3.0~5.0[mm]、長さCは1.5~3.0[mm]である。また、配光特性に優れた高圧放電ランプ101とするために、長さCと長さCとは、C/C≧0.8の関係を満たす。さらに、発光管110が破損し難いように、最小肉厚Xと最大外径Dとは、X/D≧0.2の関係を満たす。それらの理由についての詳細は後述する。
 放電空間113には、例えば、発光物質としての水銀(Hg)が約0.2~0.4[mg/mm]、始動補助用の希ガスが約30[kPa]、ハロゲン物質としての臭素(Br)が約10-7~10-2[μmol/mm]封入されており、ランプ点灯中の水銀蒸気圧は20~30[kPa]程度である。高圧放電ランプ101は、水銀が約0.2~0.4[mg/mm]封入されているため高効率である。
 なお、発光物質は水銀に限定されず、アルカリ金属原子などであっても良い。希ガスとしては、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)のいずれか又はそれらの少なくとも2種の混合ガスなどが挙げられる。ハロゲン物質としては、ヨウ素(I)、臭素(Br)、塩素(Cl)のいずれか又はそれらの少なくとも2種の混合物質などが挙げられる。また、ランプ点灯中の水銀蒸気圧は20~30[kPa]程度に限定されず、それよりも低くても高くても構わない。
 図2に戻って、一対の封止部112は、例えば、略円柱状であって、外径が約5.2[mm]、中心Oからそれぞれの封止部112の先端までの長さが22.5[mm]であって、それぞれに電極組立体120が封止されている。そして、片方の封止部112だけが、反射鏡102のネック部161に例えばセメント162などにより固定されている。なお、封止部112に関する各寸法は上記に限定されず、高圧放電ランプ101の仕様により適宜変更可能であるが、外径は5.0~6.0[mm]であることが好ましい。
 各電極組立体120は、電極130、金属箔140および外部リード線150を備え、それら電極130、金属箔140及び外部リード線150がこの順で例えば溶接などにより接合されたものであって、主として金属箔140の部分において封止部112に封止されている。
 各電極130は、例えば、タングステン製の電極ピン131と、当該電極ピン131の先端に巻装され融着されたタングステン製のコイル132とを有する。それら電極130は、先端が放電空間113で約0.95[mm]の間隔をあけて互いに対向し、且つ、基端が封止部112に封止された状態で、略一直線上に並べて配設されている。なお、一対の電極130の先端間の間隔すなわちアーク長は、高圧放電ランプを点光源に近づけるために、0.5~2.0[mm]の範囲であることが好ましい。
 電極130の先端は、コイル132を巻装することにより径が大きくなっており、これにより熱容量が大きくなっているため、前記電極130の劣化が軽減される。さらに、電極130の先端は、コイル132を巻装することにより表面積も大きくなっており、これにより放熱性が向上しているため、前記電極130が必要以上に高温にならない。なお、電極130による光束ケラレを軽減するために、前記電極130の先端は先細り形状であることが好ましい。
 各金属箔140は、例えば、モリブデン製の略短冊状であって、長手方向の幅が約14 [mm]、短手方向の幅が約1.5[mm]、肉厚が約20[μm]である。なお、金属箔140に関する各寸法は上記に限定されないが、長手方向の幅は10~20[mm]、短手方向の幅は1.0~2.0[mm]、肉厚は10~30[μm]の範囲であることが好ましい。
 金属箔140の長尺方向の一端部には電極130が接合され、他端部には外部リード線150が接合されている。そして、金属箔140の全体が封止部112内に埋め込まれている。このように、電極130と外部リード線150との間に金属箔140を介在させ、主に金属箔140の部分において電極組立体120を封止することで、放電空間113の気密性が確保されている。
 外部リード線150は、例えば、モリブデン製であって、金属箔140側の端部が封止部112内に埋め込まれており、金属箔140とは反対側の端部が封止部112から外部に導出されている。
 反射鏡102は、高圧放電ランプ101の一方の封止部112が取着されるネック部161と、前記高圧放電ランプ101から出射された光束をハウジング103側に反射する回転楕円曲面163と、を有する漏斗形状のダイクロイック反射鏡であって、ホウケイ酸ガラス、アルミノシリケートガラス、又は結晶化ガラスなどの耐熱性に優れた材料をプレス成形したものである。
 回転楕円曲面163は、真空蒸着、スパッタリング、イオンアシスト法などによって形成した光学的な多層膜で構成されており、多層膜により光を波長別に透過させたり反射させたりすることで、反射鏡温度の上昇を抑制するとともに反射効率を高めている。
 また、回転楕円曲面163は、OFRの角度がOFQの角度以下である(図2に示す例では、角OFRと角OFQとは同じ角度である)。ここで、OFRの角度とは、中心Oを前記回転楕円曲面163の第1焦点Fに合わせた場合に、前記中心Oと、前記回転楕円曲面163の第2焦点Fと、前記一対の封止部のうちのネック部161に取着されていない方の封止部112の端面外周縁Rと、がなす角OFRの角度をいう。また、OFQの角度とは、前記中心Oと、前記第2焦点Fと、前記発光部の外面と前記垂直軸Yとの接点Qと、がなす角OFQの角度をいう。また、回転楕円曲面163の長軸半径Aと短軸半径Bとが、0.4≦(A-B)/A≦0.6の関係を満たす。したがって、高圧放電ランプ101は配光特性に優れている。それらの理由についての詳細は後述する。
 図1に戻って、ハウジング103は、箱状の本体171を有し、当該本体171の反射鏡102とは反対側に平行化レンズ172が例えばシリコーン系の接着剤(不図示)などにより接着されたり、留め金(不図示)により保持されている。
 本体171の互いに対向する一対の側壁173には、外気をそれぞれ本体171内に取り込むための冷却窓174が設けられており、反射鏡102とハウジング103とに囲まれた高圧放電ランプ101を効率的に冷却できるようになっている。したがって、高圧放電ランプ101の発光部111及び封止部112の温度を好適に維持することができ、熱による前記発光部111の劣化・破損が起こり難い。なお、各冷却窓174には、防塵のためのフィルター175が取り付けられている。
 [発光部の形状の詳細]
 次に、発光部111に関する各寸法の好適範囲を説明すると共に、その臨界的意義について説明する。
 <X/D≧0.2について>
 図4は、X/Dと発光管の破損との関係を示す図であって、(a)は水銀密度が0.3[mg/mm]の場合の関係を示す図、(b)は水銀密度が0.4[mg/mm]の場合の関係を示す図である。図中における値は、破損数/評価サンプル数である。
 X/Dの値が熱による発光管の破損に与える影響を調べるために、X/Dの値が異なる高圧放電ランプを種々作製して、それらの破損の頻度を評価した。具体的には、最大外径D[mm]が8.0[mm]、9.0[mm]及び10.0[mm]の3種の仕様の高圧放電ランプについて、それぞれ発光部の外面の曲率半径を一定にし、最小肉厚Xを調整することによりX/Dの値を異ならしめて評価した。
 各高圧放電ランプは、電力200[W]で点灯させた。その際、発光部及び封止部の温度がなるべく高くなるように高圧放電ランプの冷却は行わず、ヒートショックの影響度合を高めた。点灯サイクルは1時間ON/30分OFFの繰り返し、累計点灯は30時間とした。肉厚は、X線装置で取り込んだ発光管110の画像を処理することにより求めた。なお、封止部近傍部分は発光部の両側にあるため、両方の封止部近傍部分の肉厚を計測し、より薄い方の肉厚を最小肉厚Xとした。
 図4(a)に示すように、水銀密度が0.4[mg/mm]の場合は、X/D≧0.20の関係を満たせば発光管の破損は生じなかった。また、図4(b)に示すように、水銀密度が0.4[mg/mm]の場合も、X/D≧0.20の関係を満たせば発光管の破損は生じなかった。
 なお、水銀密度が0.4[mg/mm]の場合は、水銀密度が0.3[mg/mm]の場合と比べて、X/D<0.20未満の場合に、発光管の破損数が若干増大した。これは水銀密度が高くなったために水銀蒸気圧が高くなったことが影響していると推察できる。
 次に、X/D≦0.20の関係を満たす場合に発光管の破損が生じない理由について説明する。
 まず、最大外径Dは、放電空間113の大きさと発光部111のガラスの厚みによって決まるが、放電空間には一定の大きさが必要であるため、高圧放電ランプを小型化するためには最大外径Dを小さくせざるを得ず、その結果、封止部近傍部分のガラスの肉厚は薄くならざるを得ない。
 なお、放電空間に一定の大きさが必要である理由は、発光中心と発光管の内面との距離が近過ぎると、内面にタングステンが付着して、前記発光管が黒化したり、ハロゲンサイクルに異常が生じて電極が劣化したりするからである。また、放電空間が小さいと、発光管の内面の温度が高くなって当該発光管を構成する石英ガラスに白濁が生じ、光束が低下するからである。
 次に、封止部近傍部分のガラスの肉厚が薄くなると、封止部の発光部近傍部分の温度が上昇するため、クラックが発生するおそれがある。なぜなら、タングステンからなる電極ピンの熱膨張係数が38×10-7[/℃]であるのに対して、石英ガラスからなる封止部の熱膨張係数は5×10-7[/℃]であり、両者の熱膨張係数は大きく異なるため、封止部の発光部近傍部分が高温になると、熱膨張係数の差により応力が発生して、電極ピンの周りのガラスにクラックが発生したり、そのクラックが成長したりするからである。
 特に、定格電力Pが100~300[W]であり、最大外径Dと前記定格電力Pとが、D≦0.02×P+6の関係を満たす場合は(一例として、定格電力Pが200[W]で最大外径Dが10.0[mm]以下の場合は)、発光部111が高温になり易いため、応力の発生が顕著で新規にクラックが発生し易く、また高圧放電ランプ101の封止プロセス時に発生していたクラックの成長を助長させる。
 本実施の形態に係る高圧放電ランプ101の発光部111は、最小肉厚X[mm]と最大外径D[mm]とが、X/D≧0.2の関係を満たしているために、封止部近傍部分114のガラスの肉厚が厚い。したがって、放電空間113内で発生し発光部111に伝播する熱が、前記封止部近傍部分114のガラスを介して封止部112に伝導し易く、前記発光部111の熱が前記封止部112を経由して反射鏡102側に効率良く逃げ易い。そのため、発光部111が高温になり難く、その結果、電極130が封止されている封止部112の発光部近傍部分116も高温になり難いため、前記電極130の周辺のガラスにクラックが発生し難く、発光管110に破損が生じ難い。
 なお、回転楕円曲面163で反射した光束が発光部111に遮られることによって生じる光束ケラレを抑えるためには、最大外径Dはなるべく小さいことが好ましい。
 <C/C≧0.80について>
 C/Cが配光特性に与える影響を調べるために、C/Cが異なる3種の仕様の高圧放電ランプを作製して、それらの配光特性を評価した。各高圧放電ランプは、いずれも、最大外径Dが9.0[mm]、長さCが2.0[mm]、発光部の外面の曲率半径が5.45mm[mm]である。配光特性は、中心Oを中心に発光管を360°回転させながら、中心Oから約30cm離れた位置に設けた照度計によりランプ点灯時の照度を測定して評価した。
 図5は、C/Cと配光特性との関係を示す図である。図6は、理想の配光特性を示す図である。図5に示すように、C/Cが0.73の場合、封止部近傍部分の光束レベルが中央部分の光束レベルよりも高いハート型の配光特性を示した。C/Cが0.80の場合、封止部近傍部分の光束レベルと中央部分の光束レベルとは略同じであり、C/Cが0.73の場合と比べると、封止部近傍部分では光束レベルが下がり、中央部分では光束レベルが上がった。C/Cが0.85の場合、封止部近傍部分の光束レベルよりも中央部分の光束レベルの方が高く、図6に示すような理想の配光特性に近似する配光特性を示した。
 以上のように、C/Cが大きくなるほど配光特性が良好になり、C/C≧0.80の場合、中央部分の光束レベルが封止部近傍部分の光束レベルと同等以上になることがわかった。C/Cが大きくなるほど配光特性が向上する理由は、C/Cが大きくなると、中間部分を透過する光束が発光管の管軸に対してより垂直に近い角度で発光部から出射される(垂直軸Yに対してより平行に近い角度で発光部から出射される)ようになるからであると考えられる。
 図7は、C/Cが発光部から出射される光束の光路に与える影響を説明するための図である。図7に示すように、C/Cが0.80の場合、発光部111の中央部分115を透過する光束は光路L1を通る。一方、C/Cが0.73の場合、発光管110の内面は仮想線で示すような形状になるため、発光部111の中央部分115を透過する光束は光路L2を通る。このように、C/Cが大きい程、中央部分115を透過する光束は発光管110の管軸Zに対してより垂直に近い角度で発光部111から出射される。言い換えれば、C/Cが大きい程、中央部分115を透過する光束と垂直軸Yとのなす角度は小さくなる。したがって、管軸Zに対して垂直な方向における光束レベルが高くなり、配光特性が向上する。
 図8は、反射鏡の仕様を説明するための図であって、(a)は□50mm反射鏡を備えたランプユニットを示す断面図、(b)は□35mm反射鏡を備えたランプユニットを示す断面図である。
 図8(a)に示すように、従来の反射鏡の一例としての□50mm反射鏡は、例えば、第1焦点距離f1が6.5[mm]、第2焦点距離f2が150[mm]、楕円扁平率(A-B)/Aが0.59であって、発光管から放射された光束に対する有効反射領域は、中心Oからネック部側に48.31[°]、開口側に39.59[°]の幅を有する。
 □50mm反射鏡を使用する場合は、高圧放電ランプのC/Cが、0.73、0.80、0.85のいずれの場合であっても、開口側において封止部近傍部分を透過した光束は反射鏡の有効反射領域に入るため、光束の集光に大きな問題点は生じない。また、ネック部側においても、配光に対して有効反射領域は8[°]程度の裕度があるので、やはり問題になる可能性は低い。
 一方、図8(b)に示すように、近年市場で要望されている小型の反射鏡の一例としての□35mm反射鏡は、□50mm反射鏡と比べて開口径及び第1焦点距離f1がそれぞれ2~3割程度小さく、例えば、第1焦点距離f1が4.8[mm]、第2焦点距離f2が60[mm]、楕円扁平率(A-B)/Aが0.48であって、発光管110から放射された光束の有効反射領域は、ネック部側で30.43[°]、開口側で39.46[°]である。そして、□50mm反射鏡と比べると、ネック部側の有効反射領域が17.88[°]狭い。
 このように有効反射領域が狭い□35mm反射鏡は、第2焦点Fに集束する光束が低減する傾向にあり、C/Cが0.73cの高圧放電ランプと組み合わせると、封止部近傍部分の10[°]程度の光束が活かされず、その分だけ第2焦点Fに集束する光束が低減する。一方、C/Cが0.80又は0.85の高圧放電ランプとの組み合わせにおいては、それらの高圧放電ランプの配光特性は少なくとも中央部分の光束レベルと封止部近傍部分の光束レベルとが同等以上であるため、全光束に占めるロスとなる光束の割合が低く、若干、封止部近傍部分の光束がロスするだけで済み、スクリーン光束が著しく低下することはない。
 なお、C/Cが0.85cの高圧放電ランプは、中央部分の光束レベルが高い優れた配光特性を有するため、有効反射領域が狭い小型の反射鏡と組み合わせても光束を十分に活用することができる。
 また、一般に、回転楕円曲面は、ネック部側端縁付近においては面精度が悪くなる傾向にあり、開口側端縁付近においては膜厚が他の箇所に比べて薄くなる傾向にあるのに対して、中央付近においてはそのような傾向が少ない。しかも、前記中央付近は、反射効率に対する重み付けが高く、スクリーン光束に対する影響度が高い。このような事情からも、C/Cが0.85cの高圧放電ランプは、反射鏡と組み合わせるのに好適である。
 但し、C/Cが0.9を超える場合、例えばC/Cが0.93の場合、第2焦点位置f2に相当する照射面に集光する光束については照射面の中央部と周辺部とに大きな輝度差が生じ、多数の小レンズにて均一な光を作るレンズアレイを通して投影させたスクリーン上の光束についてもスクリーン上の中央部と周辺部とに著しい輝度差が生じる。したがって、スクリーン上の中央部と周辺部とにおける輝度差を小さくするために、C/Cは0.9以下であることが好ましい。
 <長さC及び長さWについて>
 図3に示すように、長さCが1.5~3.0[mm]、且つ、長さWが3.0~5.0[mm]の場合は、発光部111の内面がなだらかな円弧形状となるため、放電空間113から発光部111のガラスに入射する光束は、垂直軸Yとのなす角度が小さくなる。これにより、配光特性は中央部分にピークを持つ分布になる。そのため、有効反射領域の小さい小型の反射鏡と組み合わせても光束の絶対量が低下し難く、小型・薄型の画像表示装置に有効である。
 ところが、長さCが1.5[mm]未満の場合は、発光中心と発光部111の内面との距離が近くなり過ぎて、失透や黒化の問題を生じ易い。また、長さCが3.0[mm]を超える場合は、発光部111の肉厚が薄くなり過ぎて耐圧性能の不足で発光管110が破損するおそれがある。
 一方、長さWが3.0[mm]未満の場合は、発光中心と封止部112の発光部近傍部分116との距離が近づき過ぎ、封止部112の発光部近傍部分116の温度が高くなり過ぎるため、発光管110に破損が生じるおそれがある。また、始動時に電極のタングステンがスパッタして内面に付き易いなどの不具合を生じる。また、長さWが5.0[mm]を超える場合は、発光部111の封止部近傍部分114が発光中心から離れすぎるために温度が低くなり、水銀が全て気化しなくなるため光束が低下する。
 <発光部の成形方法>
 所望の形状の発光部を得るための発光管の製造方法について説明する。例えば、外径6[mm]、内径2[mm]、長さ1200[mm]の石英管を4等分して、300[mm]のカット管を得る。このカット管の両端を回転式のチャックで保持し、前記カット管を回転させながら前記カット管の中央部分をガスバーナーで過熱して軟化させる。その際、カット管の両端からアルゴンや窒素などの不活性ガスをカット管内に吹き込み、発光部の内面形状を形成する。また、同時に、カット管の中央部分の外周に金型治具を設けて加熱により膨らんだ部分を挟み込んで、発光部の外面形状を形成する。発光管の発光部については、このようにバーナー火力や不活性ガスの圧力、カット管の両端から中央部に押し込む力や速度などの条件を調整して加工形成する。
 [反射鏡の形状についての詳細]
 <角OFRと角OFQの角度について>
 図2に示すように、高圧放電ランプ101と反射鏡102とは、中心Oと回転楕円曲面163の第1焦点Fとが一致するように位置合わせされている。そして、発光管110から発せられた光束は回転楕円曲面163における領域G~Hの範囲で反射する。当該領域G~Hの範囲で反射する光束は、その全てが回転楕円曲面163の第2焦点Fに集束するのが理想である。
 しかしながら、第2焦点Fと接点Qとを結ぶ延長線が回転楕円曲面163と交わる点をNとしたとき、領域G~Nで反射する光束は、発光部111に遮られるためロスとなってしまう。さらに、第2焦点Fと端面外周縁Rとを結ぶ延長線が回転楕円曲面163と交わる点をN’としたとき、角OFRの角度が角OFQの角度よりも大きい場合には、領域N~N’で反射する光束も、封止部112に遮られるためロスになってしまう。
 したがって、領域N~N’で反射する光束をロスしないためにも、角OFRの角度が角OFQの角度以下であることが好ましい。そうすれば、封止部112による光束ケラレがなくなるため、第2焦点Fに効率良く光束を集束することができ、ランプユニット100のスクリーン光束を大きくすることができる。
 具体的には、例えば、封止部112の先端の径を小さくすることで、角OFRの角度を角OFQの角度以下にすることができる。すなわち、図2において仮想線で示すように封止部112の先端の径が一定であり、角OFR’の角度が角OFQの角度よりも大きくなってしまう場合において、前記封止部112の先端の径を小さくすれば、角OFRの角度を角OFQの角度以下にすることが可能である。
 なお、封止部112の長さを短くしても角OFRの角度を角OFQの角度以下にすることができる。しかしながら、定格電力Pが高い場合においては、発光管110の温度を下げるために封止部112を長くしておく必要がある。このような場合は、封止部112の先端の径を小さくする構成が有効である。なお、封止部112の先端は、バーナーやレーザーなどで加熱して小さく加工することができる。
 <楕円扁平率(A-B)/Aについて>
 図2に示すように、回転楕円曲面163は、長軸半径Aと短軸半径Bとが、0.4≦(A-B)/A≦0.5の関係を満たすことが好ましい。例えば、□35mm反射鏡の場合、長軸半径Aを32.4[mm]、短軸半径Bを16.971[mm]、第1焦点距離f1を4.8[mm]、第2焦点距離f2を60[mm]とすれば、小型でスクリーン光束が高い反射鏡を得ることができる。この場合、(A-B)/Aは約0.48となり、平行化レンズ172への入射角は約19[°]となる。
 (A-B)/A>0.5の場合、上記□35mm反射鏡では、第1焦点距離f1が4.5[mm]以下となるため、発光管110の発光部111と反射鏡102の回転楕円曲面163との距離が近づき過ぎてしまう。そうすると、発光部111及び封止部112の温度が上昇し易くなり、発光管110が破損し易くなるため好ましくない。
 一方、(A-B)/A<0.4の場合、回転楕円曲面163の第2焦点Fに設置される平行化レンズ172(図1参照)への入射角が大きくなるため、平行化レンズ172の表面において無駄な反射が生じ光束がロスする。なお、例えば、第1焦点距離f1が約1[mm]の両凹レンズを平行化レンズ172として用いる場合、光束のロスを抑えるためには入射角を26.6[°]以下にしなければならない。
 以上のような理由から、□35mm反射鏡のような小型反射鏡の場合は、0.4≦(A-B)/A≦0.5の関係を満たすことが好ましい。なお、□50mm反射鏡の場合は、長軸半径A及び短軸半径Bがより大きくなるため、0.4≦(A-B)/A≦0.6の関係を満たせば良い。
 [高効率の確認実験]
 高効率化に対する本発明の効果を確認するため、以下の実験を行なった。
 <実験1>
 本発明の発光管を備えた高圧放電ランプ(最大外径Dが9.0[mm]、発光管外面の曲率半径が5.45[mm]、長さCが2.0[mm]、C/Cが0.8、長さWが4.0[mm]、水銀密度が0.3[mg/mm])を□35mm反射鏡(第1焦点距離f1が4.8[mm]、第2焦点距離f2が60[mm])に組み込んでランプユニットを作製した。そして、この作製したランプユニットを電力200[W]にて点灯させ、アパーチャー径5φを通過させた出射光を積分球に集めてその照度[lx]を測定した。また、比較のために、従来の発光管を備えた高圧放電ランプ(最大外径Dが10.2[mm]、発光管外面の曲率半径が5.1[mm]、長さCが2.2[mm]、C/Cが0.72、長さWが4.0[mm]、水銀密度が0.3[mg/mm])を□50mm反射鏡(第1焦点距離f1が6.5[mm]、第2焦点距離f2が150[mm])に組み込んでランプユニットを作製し、作製したランプユニットに対して本発明の高圧放電ランプと同じ条件にてその照度を測定した。なお、アパーチャー径5φは各々の反射鏡の第2焦点位置に設け、出射光を通過させている。
 評価の結果、本発明に係るランプユニットの照度は、従来品に係るランプユニットの照度に比べて約8[%]向上することがわかった。したがって、本発明のランプユニットは従来品に比べて、小型でありながら十分に高効率化が図れたランプであることがわかった。
 <実験2>
 次に、実験1で用いた従来の発光管を備えた高圧放電ランプを□35mm反射鏡に同様に組み込んでランプユニットを作製し、実験1と同条件でアパーチャーφ5を通過させた出射光による照度を測定した。
 その結果、実験1で用いた従来の発光管を備えた高圧放電ランプを□50mm反射鏡に組み込んだ従来品に比べて、従来の発光管を備えた高圧放電ランプを□35mm反射鏡に組み込んだランプユニットの照度は約3[%]低下することがわかった。
 実験2より、単純に反射鏡を小型化すると反射鏡の有効反射領域が狭くなり、また図8に基づく説明で述べたように、発光管の配光特性に寄与するC/Cが0.8未満であると封止部近傍の光束が照度に活かされなかったことが照度低下の要因であると推定できる。
 なお、実験1において、本発明の発光管を備えた高圧放電ランプを□35mm反射鏡に組み込んで照度向上ができた要因には、C/Cを0.8にすることで配光特性が改善し、封止部近傍の光束ロスを抑制できたことに加え、発光管の発光部を小さくしたことによる光束ケラレを抑えられたことよる影響と考えられる。
 [画像表示装置]
 図9は、本実施の形態に係る画像表示装置の一例を示す一部破断斜視図であって、内部の様子がわかるように筐体の天板を取り除いている。図9に示すように、本実施の形態に係る第1の画像表示装置200は、前方に設置したスクリーン(図示しない)に向けて画像を投影する投射型のフロントプロジェクタであって、DLP(登録商標)方式を採用している。当該画像表示装置200は、筐体201内に、光源としてのランプユニット100、DMD(登録商標)や3色のカラーフィルタからなるカラーホイール(いずれも図示しない)などを有する光学ユニット202、前記DMDなどを駆動制御する制御ユニット203、投射レンズ204、冷却ファンユニット205、及び、商用電源から供給される電力を前記制御ユニット203やランプユニット100に適した電力に変換して供給する電源ユニット206などが収納された構成を有する。
 図10は、本実施の形態に係る画像表示装置の他の一例を示す斜視図である。図10に示すように、本実施の形態に係る第2の画像表示装置300は、投射型のリアプロジェクタであって、光源としてのランプユニット100、光学ユニット(図示しない)、投射レンズ(図示しない)及びミラー(図示しない)などが筐体301内に収納された構成であり、前記投射レンズから投射され前記ミラーで反射された画像が、透過式スクリーン302の裏側から投影されて画像を表示する。
 第2及び第3の実施形態に係る画像表示装置200,300は、小型且つ高効率で配光特性に優れ発光管110が破損し難い高圧放電ランプ101を使用しているため、従来の画像表示装置に比べて、小型でスクリーン光束が高く故障し難い。
 [変形例]
 以上、本発明に係る高圧放電ランプ、ランプユニット及び画像表示装置を実施の形態に基づいて具体的に説明してきたが、本発明の内容は、上記の実施の形態に限定されず、例えば以下のような変形例が考えられる。
 <第1の変形例>
 図11及び図12は、第1の変形例に係るランプユニットの発光部周辺を示す断面図である。なお、図11及び図12における符号「G」、「N」及び「N’」は、図2における符号「G」、「N」及び「N’」と同じ意味をなす。
 図11に示すように、第1の変形例に係るランプユニットの反射鏡102には、回転楕円曲面163のネック部側(図11における左側)に、さらに球面反射面164が形成されている。
 球面反射面164を形成しない場合、回転楕円曲面163は図11に仮想線で示すように領域G~Nにも形成されるが、当該領域G~Nで反射した光束は発光管110の発光部111に遮られて第2焦点Fに集束しない。
 しかしながら、回転楕円曲面163の第1焦点Fを中心とする球面反射面164を、少なくとも領域G~Nに相当する領域をカバーするように形成すれば、回転楕円曲面163の領域G~Nで反射され発光部111に遮られるはずだった光束を、前記球面反射面164で反射させ中心Oに集束させることができる。中心Oに集束した光束は、その後、中心Oを通過し、発光部111を通り抜け、回転楕円曲面163で反射されて、第2焦点Fに集束する。このように、発光部111による光束ケラレでロスするはずであった光束を有効に活用することができるため、ランプユニットの集束効率が向上し、スクリーン光束が大きくなる。
 また、球面反射面164を形成することによって得られる効果としては、上記以外に、発光管110と反射鏡102との距離が長くなることで、前記発光管110の局所的な温度上昇が抑えられ、高圧放電ランプが長寿命化することが挙げられる。
 角OFRの角度が角OFQの角度よりも大きい場合は、図12に示すように、少なくとも領域G~N’に相当する領域をカバーするように球面反射面164を形成すれば良い。これにより、封止部112による光束ケラレでロスする分の光束も有効に活用することができる。
 なお、球面反射面164を形成する場合は、当該球面反射面164で反射し中心Oに集束する光束によってネック部161側の電極130の温度が上昇し、当該電極130が劣化するおそれがある。そこで、ネック部161側の電極130の熱容量を他方側の電極130の熱容量よりも大きくして、ネック部161側の電極130の劣化を抑制することが考えられる。電極130の熱容量は、電極ピン131の径や、コイル132の径もしくはターン数などを調整することにより大きくすることができる。なお、それらの方法により電極130の熱容量を大きくする場合は、前記電極130によって光束が遮られないようにすることが好ましい。
 <第2の変形例>
 図13は、第2の変形例に係るランプユニットを示す断面図である。図13に示すように、第2の変形例に係るランプユニットは、高圧放電ランプ101と反射鏡102とがベース104により接合されている。
 ベース104は、キャップ状であって、封止部112が挿通される挿通孔181を頂部に有し、外気を前記ベース104内に取り込むための一対の通風窓182を側部に有する。ベース104と反射鏡102とは、前記ベース104を前記反射鏡102のネック部161に外嵌させた状態で接着剤などにより固着されている。また、ベース104と高圧放電ランプ101とは、高圧放電ランプ101の封止部112を挿通孔181に挿通させた状態で接着剤などにより固着されている。高圧放電ランプ101と反射鏡102とをベース104によって接合する構成であるため、ネック部161と封止部112との隙間にはセメントが充填されておらず、前記隙間には空気が通るようになっている。
 上記構成とすることで、ハウジングの冷却窓(図1参照)から反射鏡102内に流れ込む外気を、ネック部161と封止部112との隙間を通して、通風窓182からベース104外へ抜けさせることができる。これにより、高圧放電ランプ101の発光部111を効率的に冷却することができる。また、発光部111を効率的に冷却することによって、冷却用ファン(不図示)の流量を落とすことができ、画像表示装置の静音化を図ることができる。
 本発明に係る高圧放電ランプ、ランプユニット及び画像表示装置は、液晶プロジェクタやDMDプロジェクタなどのプロジェクタに広く利用できる。
 100 ランプユニット
 101 高圧放電ランプ
 102 反射鏡
 103 ハウジング
 110 発光管
 111 発光部
 112 封止部
 161 ネック部
 163 回転楕円曲面
 164 球面反射面
 130 電極
 174 冷却窓
 200,300 画像表示装置

Claims (8)

  1.  内部に水銀が封入され且つ一対の電極の先端が対向配置された略球状の発光部と、当該発光部の両側に延設され前記電極の基端が封止された封止部とを有する発光管を備えた高圧放電ランプであって、
     前記水銀の封入量が0.2~0.4[mg/mm]であり、
     前記発光管の管軸Zと前記発光管の内面との接点Sから前記発光部の中心Oまでの長さWが3.0~5.0[mm]であり、
     前記中心Oを通り且つ前記管軸Zに直交する垂直軸Yと前記発光管の内面との接点Tから前記中心Oまでの長さCが1.5~3.0[mm]であり、
     前記中心Oと前記接点Sとの中間点Mを通り且つ前記管軸Zに直交する垂直軸Yと前記発光管の内面との接点Tから前記中間点Mまでの長さCと、前記長さCとが、C/C≧0.8の関係を満たし、
     前記発光管における封止部近傍部分の最小肉厚X[mm]と、前記発光部の最大外径D[mm]とが、X/D≧0.2の関係を満たす
    ことを特徴とする高圧放電ランプ。
  2.  定格電力Pが100~300[W]であり、
     前記最大外径D[mm]と前記定格電力Pとが、D≦0.02×P+6の関係を満たすことを特徴とする請求項1記載の高圧放電ランプ。
  3.  請求項1又は2に記載の高圧放電ランプと、
     当該高圧放電ランプの一方の封止部が取着されるネック部と前記高圧放電ランプから出射された光束を反射する回転楕円曲面とを有する反射鏡と
    を備えることを特徴とするランプユニット。
  4.  前記反射鏡の前記ネック部側とは反対側に取り付けられたハウジングをさらに備え、当該ハウジングに冷却窓が設けられていることを特徴とする請求項3に記載のランプユニット。
  5.  前記中心Oを前記回転楕円曲面の第1焦点Fに合わせた場合に、
     前記中心Oと、前記回転楕円曲面の第2焦点Fと、前記一対の封止部のうちの前記ネック部に取着されていない方の封止部の端面外周縁Rと、がなす角OFRの角度が、
     前記中心Oと、前記第2焦点Fと、前記発光部の外面と前記垂直軸Yとの接点Qと、がなす角OFQの角度以下であることを特徴とする請求項3に記載のランプユニット。
  6.  前記回転楕円曲面の長軸半径Aと短軸半径Bとが、0.4≦(A-B)/A≦0.6の関係を満たすことを特徴とする請求項3に記載のランプユニット。
  7.  前記反射鏡は、前記回転楕円曲面の前記ネック部側に、前記回転楕円曲面の第1焦点Fを中心とする球面反射面をさらに有することを特徴とする請求項3に記載のランプユニット。
  8.  請求項3から7のいずれかに記載のランプユニットを備えることを特徴とする画像表示装置。
PCT/JP2010/003678 2009-07-14 2010-06-02 高圧放電ランプ、ランプユニット及び画像表示装置 WO2011007495A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800025511A CN102150232B (zh) 2009-07-14 2010-06-02 高压放电灯、灯单元和图像显示设备
US12/997,916 US8247974B2 (en) 2009-07-14 2010-06-02 High-pressure discharge lamp, lamp unit, and image display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-165319 2009-07-14
JP2009165319A JP4806460B2 (ja) 2009-07-14 2009-07-14 高圧放電ランプ、ランプユニット及び画像表示装置

Publications (1)

Publication Number Publication Date
WO2011007495A1 true WO2011007495A1 (ja) 2011-01-20

Family

ID=43449107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003678 WO2011007495A1 (ja) 2009-07-14 2010-06-02 高圧放電ランプ、ランプユニット及び画像表示装置

Country Status (4)

Country Link
US (1) US8247974B2 (ja)
JP (1) JP4806460B2 (ja)
CN (1) CN102150232B (ja)
WO (1) WO2011007495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204035A (ja) * 2011-03-24 2012-10-22 Ushio Inc ショートアーク型放電ランプ
CN103606512A (zh) * 2013-11-25 2014-02-26 辽宁爱华照明科技股份有限公司 一种175w金属卤化物灯

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888607B2 (ja) * 2012-09-10 2016-03-22 東芝ライテック株式会社 メタルハライドランプ
US9552976B2 (en) 2013-05-10 2017-01-24 General Electric Company Optimized HID arc tube geometry
CN111427226B (zh) * 2019-01-10 2023-01-31 青岛海信激光显示股份有限公司 一种匀光棒固定调节结构及投影机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070655A (ja) * 1983-09-26 1985-04-22 Matsushita Electronics Corp 小形高圧放電灯装置
JPH05205698A (ja) * 1991-08-29 1993-08-13 General Electric Co <Ge> 発光室にレンズを形成した電灯
JP2000311657A (ja) * 1999-04-26 2000-11-07 Matsushita Electric Ind Co Ltd 高圧放電ランプおよびその駆動方法
JP2005285417A (ja) * 2004-03-29 2005-10-13 Ushio Inc ショートアーク型高圧水銀ランプ及び光源ユニット
JP2008052964A (ja) * 2006-08-23 2008-03-06 Harison Toshiba Lighting Corp メタルハライドランプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070655A (ja) * 1983-09-26 1985-04-22 Matsushita Electronics Corp 小形高圧放電灯装置
JPH05205698A (ja) * 1991-08-29 1993-08-13 General Electric Co <Ge> 発光室にレンズを形成した電灯
JP2000311657A (ja) * 1999-04-26 2000-11-07 Matsushita Electric Ind Co Ltd 高圧放電ランプおよびその駆動方法
JP2005285417A (ja) * 2004-03-29 2005-10-13 Ushio Inc ショートアーク型高圧水銀ランプ及び光源ユニット
JP2008052964A (ja) * 2006-08-23 2008-03-06 Harison Toshiba Lighting Corp メタルハライドランプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204035A (ja) * 2011-03-24 2012-10-22 Ushio Inc ショートアーク型放電ランプ
CN103606512A (zh) * 2013-11-25 2014-02-26 辽宁爱华照明科技股份有限公司 一种175w金属卤化物灯

Also Published As

Publication number Publication date
JP4806460B2 (ja) 2011-11-02
US20110193466A1 (en) 2011-08-11
CN102150232B (zh) 2013-01-16
CN102150232A (zh) 2011-08-10
JP2011023149A (ja) 2011-02-03
US8247974B2 (en) 2012-08-21

Similar Documents

Publication Publication Date Title
JP3184404B2 (ja) 反射鏡付きメタルハライドランプ
JP4715916B2 (ja) 照明装置及びこれを備えたプロジェクタ
JP4806460B2 (ja) 高圧放電ランプ、ランプユニット及び画像表示装置
JP2010212115A (ja) 光源装置およびプロジェクター
JP2000231903A (ja) 放電ランプと光源装置と投写型表示装置
US20070279916A1 (en) Light source device
JP2008010384A (ja) 光源装置
US7744249B2 (en) High-pressure discharge lamp, lamp unit and image display device
JP4289409B2 (ja) 発光管及びプロジェクタ
JP4996146B2 (ja) 高圧放電ランプ及びリアプロジェクタ装置
JP3235357B2 (ja) 反射鏡付管球
JP4508936B2 (ja) 光源装置及び該光源装置を用いた投影型表示装置
JP5186613B1 (ja) 高圧放電ランプおよび当該高圧放電ランプを用いたプロジェクタ
JP2003187604A (ja) 光学装置
JP2011209382A (ja) 光源装置およびプロジェクター
JP2007073276A (ja) ランプユニット
JP2001143658A (ja) 高圧放電ランプ、投光装置およびプロジェクタ装置
JP2005228711A (ja) 光学装置
JP2002231184A (ja) 光源装置およびこれを用いたプロジェクタ
JP4797931B2 (ja) 高圧放電ランプとこれを用いた反射鏡付きランプ
JP2008251391A (ja) 高圧放電ランプ
JP5353930B2 (ja) 光学装置
JP2009104865A (ja) 放電ランプ、光源装置、投射型表示装置
JP2007214069A (ja) 高圧放電ランプ、ランプユニット、画像表示装置および高圧放電ランプの製造方法
JP2002184233A (ja) 光源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002551.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12997916

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799559

Country of ref document: EP

Kind code of ref document: A1