WO2011006453A1 - 基于季戊四醇的复合脂质、其中间体、制备方法和用途 - Google Patents

基于季戊四醇的复合脂质、其中间体、制备方法和用途 Download PDF

Info

Publication number
WO2011006453A1
WO2011006453A1 PCT/CN2010/075269 CN2010075269W WO2011006453A1 WO 2011006453 A1 WO2011006453 A1 WO 2011006453A1 CN 2010075269 W CN2010075269 W CN 2010075269W WO 2011006453 A1 WO2011006453 A1 WO 2011006453A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
conh
molar ratio
lipid
organic solvent
Prior art date
Application number
PCT/CN2010/075269
Other languages
English (en)
French (fr)
Inventor
戴志飞
梁晓龙
岳秀丽
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009100725382A external-priority patent/CN101613365B/zh
Priority claimed from CN 200910073423 external-priority patent/CN102093403B/zh
Priority claimed from CN 201010222232 external-priority patent/CN102311478B/zh
Priority claimed from CN201010222238.0A external-priority patent/CN102311454B/zh
Priority claimed from CN201010224640.2A external-priority patent/CN102329335B/zh
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US13/384,032 priority Critical patent/US8729257B2/en
Publication of WO2011006453A1 publication Critical patent/WO2011006453A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Definitions

  • the invention belongs to the field of material science biomedical materials, and particularly relates to a composite lipid containing pentaerythritol as a skeleton, containing a fatty chain and a siloxane group, an intermediate thereof, a preparation method and use thereof.
  • Background technique a composite lipid containing pentaerythritol as a skeleton, containing a fatty chain and a siloxane group, an intermediate thereof, a preparation method and use thereof.
  • Liposomes are artificial membranes. When amphiphilic molecules such as phospholipids and sphingolipids are dispersed in the aqueous phase, the hydrophobic tails of the molecules tend to aggregate together, avoiding the aqueous phase, while the hydrophilic head is exposed to the aqueous phase. A molecularly ordered assembly of phospholipids spontaneously formed in water by hydrophobic association to form a closed vesicle having a bilayer structure.
  • the liposome is composed of a continuous double-layer or multi-layered composite lipid, each layer is a lipid bimolecular membrane, the interlamellar and liposome core is an aqueous phase, and the bilayer membrane is an oil phase. Liposomes can be used as experimental models of biofilms to study drugs or enzymes or other preparations in research or therapy, allowing them to be transported more efficiently to target cells and released by fusion with cells.
  • liposomes are simple to prepare, non-toxic, non-immunogenic, degradable in vivo, and easy to achieve targeting, improve and prolong drug efficacy, alleviate toxicity, avoid drug resistance and change the route of administration.
  • Advantages At the same time, it is also hydrophilic and hydrophobic, can encapsulate both water-soluble drugs and fat-soluble drugs, water-soluble drugs wrapped in the aqueous structure of liposomes, and fat-soluble drugs or amphiphilic drugs It is encapsulated in a lipid-based lipid moiety or a lipid bilayer, and has wide applicability. Since the 1970s, the application of liposomes as drug carriers has attracted much attention.
  • liposomes are limited by their stability. Specifically, during the storage process of liposomes, it is destroyed due to drug leakage, particle aggregation, and oxidative hydrolysis of phospholipids; after entering the body, due to various substances such as albumin, opsonin, and antibodies in the blood. As a result, liposomes may rupture, causing rapid leakage of encapsulated drugs, which are quickly degraded by some enzymes and phagocytized by macrophages, unable to reach targeted tissues and effectively exert drug effects. Therefore, the development of stable liposomes is a prerequisite for its practical use as a drug carrier, which is of great significance.
  • the light-sensitive liposome has its unique advantage. After the liposome of the material is embedded in the drug and introduced into a specific position of the body, the photosensitive group can be simply structurally irradiated by the external light source. The change is made to achieve controlled release of the drug. At present, more light-control materials are reported as derivatives of azobenzene. Although the introduction of azobenzene derivatives may achieve the effects of fixed-point, timed, and quantitative release, there are still some problems.
  • phase separation and fusion of the liposome are easily caused (Cfe/M. Ze «. (1981) 1001-1004);
  • the phospholipid of the phenyl group acts as a light-controlled release material, which reduces the stability of the liposome and causes the drug to be suddenly released, making it difficult to carry out practical application.
  • Cholesterol is one of the important components of cell membranes. The most important function of cholesterol is to regulate the physicochemical properties of cell membranes (Yeagle PL. Biochim Biophys Acta 1985, 822(3-4), 267-87; Yeagle PL. In: Yeagle PL , editor. Biology of cholesterol. Boca Raton (FL, USA): CRC Press, 1988. p. 121 - 146).
  • cholesterol interacts with membrane phospholipids and sphingolipids to affect their properties. Increasing the amount of cholesterol in the lipid bilayer will increase and ultimately eliminate the coordination of the gel liquid crystal phase transition of the lipid bilayer (Lewis RNAH, McElhaney RN. In: Yegle PL, editor.
  • a relatively ordered state in the membrane will make the membrane denser, resulting in increased mechanical properties and reduced permeability (Lund-Katz S, Laboda HM, McLean LR, Phillips MC. Biochemistry 1988, 27(9), 3416 - 3423).
  • cholesterol in organisms and traditional liposomes is generally free.
  • free cholesterol tends to be rapidly transferred from biofilms or liposomes (Kan, C. C; Yan, J.; Bittman, . Biochemistry 1992, 31, 1866 - 1874; Hamilton, JA Curr. Opin. Lipidol. 2003, 14, 263 - 271), thereby reducing the stability of liposomes, making liposomes useful as drugs
  • the application of the carrier is greatly limited.
  • Porphyrin and its derivatives are conjugated macrocyclic molecules containing four pyrrole ring structures. Due to their unique and easy to modify properties, they are widely used in medicine, biochemistry, analytical chemistry, synthetic chemistry, materials science and other fields. Applications, in particular derivatives with porphyrin rings, have unique electronic structures and optoelectronic properties, and in recent years in medicine, optical storage, molecular devices, simulation design and synthetic artificial systems for simulating charge separation, electronics Transfer, and signal transduction have become hot topics for researchers at home and abroad.
  • porphyrin ring derivatives are generally rigid molecules, which are difficult to process and have poor water solubility, which limits its practical application to a certain extent. Photochem. Photobiol., B imi, 66, 89-106), The direct application of porphyrin derivatives, including metal complexes, to organisms poses a number of problems in terms of safety and efficacy.
  • the porphyrin molecule is embedded in various carriers such as micelles, liposomes, low-density lipid proteins, polymer micelles or hydrophilic polymer to improve water solubility and biocompatibility.
  • carriers of micellar systems tend to cause allergic reactions in organisms (ft U. 1980, 280, 1353-1353), and lipid carriers are easily captured by immunization systems of organisms (J 1995, ⁇ , 166-173).
  • the high molecular polymer tends to aggregate in the normal tissues of the living body, and the aggregation in the diseased tissues is less (J. Pharm. Pharmacol. 2001, 53, 155-166).
  • the silica-based embedded nanoparticles can overcome the shortcomings of the above other carriers, have high stability, good biocompatibility and dispersibility in water, can be modified to be easy to functionalize, and are not easily attacked by microorganisms ( ⁇ 7.. ⁇ . Chem. Soc. 2003, 125, 7860-7865).
  • liposomes containing a benzene ring structure can be intermolecularly conjugated with some drugs with similar groups, such as camptothecin, thereby effectively enhancing the embedding of drugs (Journal of Controlled Release, 2008) , 127, 231-238).
  • the liposome containing a carboxylic acid group has a rich free carboxylic acid group on the surface, and on the one hand, it facilitates the chemical cooperation with a drug containing a hydroxyl group or an amino group such as doxorubicin, and on the other hand, the liposome is specified. Under the condition of pH, it has a rich negative charge, so that some positively charged drugs can be effectively embedded by electrostatic attraction, which greatly increases the encapsulation efficiency and drug loading. At the same time, the surface-rich carboxylic acid group also facilitates the modification of various target molecules by liposome and enhances its targeting effect.
  • liposomes are prepared by using phospholipids.
  • Destabilization usually causes the liposome to be quickly cleared by the circulatory system before reaching the target, so that the encapsulated drug can be released quickly before reaching the targeted tissue, which not only fails to effectively exert the drug effect, but also may cause serious side effects. .
  • a certain drug with phospholipids of liposomes for example, anthracycline exhibits a surfactant or detergent-like effect on the phospholipid bilayer
  • it can cause leakage of the drug during storage.
  • liposomes are made more unstable. Due to the shortcomings of liposomes in vivo and storage instability, the clinical application and industrial production of liposome preparations are limited. Although related studies on liposomes have been carried out for several decades, the development of liposome pharmaceutical preparations is still rare, and poor stability is an urgent problem to be solved in the commercialization of liposomes. Therefore, the development of stable liposomes is a prerequisite for its practical use as a drug carrier, which is of great significance.
  • the present inventors designed and synthesized a novel type of composite lipid containing a Si(0Et) 3 or Si(0C3 ⁇ 4) 3 group in a molecular structure, which can self-assemble to form a lipid double in an aqueous solution.
  • the layer vesicle structure and has a stable Si-0-Si network structure on the surface of the formed vesicle, covalently bonds to the surface of the liposome, thereby greatly enhancing its stability and water solubility.
  • the inventors have also conducted a series of related studies: for example, introducing an azobenzene group into the molecular structure of the novel composite lipid, and simply changing the lipid bilayer by a light control method. Permeability, thereby achieving controlled release of the drug; covalently linking the cholesterol group in the molecular structure of the novel composite lipid, further regulating the fluidity and permeability of the lipid bilayer, while preventing the loss of cholesterol, It is used as a model to study the structure and function of cell membranes; the introduction of benzene rings or carboxylic acid groups in the molecular structure of novel composite lipids can be hydrophobic or hydrophilic to be encapsulated by electron conjugation or electrostatic attraction.
  • the drug acts to increase the encapsulation efficiency of the drug; in the molecular structure of the novel composite lipid, the porphyrin ring functional group is covalently bonded, which allows the porphyrin ring to be arranged in an orderly manner in the formed vesicle double In the layer structure, a series of functionalized nanomaterials can then be developed by coordinating different metals.
  • the primary object of the present invention is to provide a pentaerythritol-based complex lipid, an intermediate thereof, a preparation method and an application thereof, in view of the above problems, the lipid of the present invention can be obtained by hydrolysis and condensation to obtain a corresponding lipid having a silicate network structure on the surface.
  • Body called porcelain body
  • the obtained liposome has the advantages of high stability, good biocompatibility, low toxicity or even no toxicity, and the drug is not easy to leak.
  • an aspect of the present invention provides a compound lipid based on pentaerythritol, which has the following structural formula:
  • R 1 is C 6 -C 1S alkyl
  • R 2 is C 6 -C 1S alkyl
  • R 5 is -CO(CH 2 ) 5 N(CH 2 ) 2 (CH 2 ) 3 Si(X) 3 Y, -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 , -CO(CH 2 ) 3 CONH(CH 2 ) 3 Si(X) 3 or -CONH(C3 ⁇ 4) 3 Si(X) 3 , wherein X is ethoxy or methoxy,
  • Y is a halo group; a is equal to 2 or 3.
  • the present invention provides a compound lipid based on pentaerythritol, which has the following structural formula:
  • R 1 is a C 6 ⁇ C 1S fluorenyl group
  • R 2 is a C 6 ⁇ C 18 fluorenyl group
  • R 3 is —CO(CH 2 ) 2 CONH(C 3 ⁇ 4) 3 Si(X) 3 , —CO(CH 2 ) 3 CONH(CH 2 ) 3 Si(X) 3 or -CONH(CH 2 ) 3 Si(X) 3 , wherein X is ethoxy or methoxy; a is 2 or 3;
  • X 1 is -H, -CH 3 , CH 3 0-, halo or -N0 2;
  • Y 1 is -H, -C3 ⁇ 4, C3 ⁇ 40- or halo.
  • ⁇ 1 when Y 1 is in the ortho position of the azo group, ⁇ 1 is - ⁇ or a halogen group; when ⁇ 1 is in the meta position of the azo group, ⁇ 1 is - ⁇ , -CH 3 or C3 ⁇ 40-.
  • Another aspect of the present invention provides a composite lipid based on pentaerythritol, which has the following structural formula:
  • R 1 is a C 6 -C 18 fluorenyl group
  • R 2 is a C 6 -C 18 fluorenyl group
  • R 3 3 ⁇ 4 -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3
  • the present invention provides a compound lipid based on pentaerythritol, which has the following structural formula:
  • R 1 is C 6 -C 18 fluorenyl
  • R 2 is C 6 -C 18 alkyl
  • R 3 is -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 , -CO(CH 2 ) 3 CONH(CH 2 ) 3 Si(X) 3 or -CONH(CH 2 ) 3 Si(X) 3 , wherein X is ethoxy or methoxy; a is 2 or 3;
  • X 2 is -H , -CH 3 , CH 3 O-, halo;
  • M is a metal ion coordinated to the porphyrin ring.
  • the metal ion is iron ion, zinc ion, magnesium ion, manganese ion, cobalt ion, copper ion, molybdenum ion, chromium ion, ion, nickel ion, vanadium ion, aluminum ion, ion or strontium ion One.
  • Another aspect of the present invention provides a composite lipid based on pentaerythritol, which has the following structural formula:
  • R 4 is a C 6 -C 18 fluorenyl group
  • R 5 is -CO(C3 ⁇ 4) 5 N(CH 2 ) 2 (CH 2 ) 3 Si(X) 3 Y, -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 , -CO(CH 2 ) 3 CONH(CH 2 ) 3 Si(X) 3 or -CONH(CH 2 ) 3 Si(X) 3
  • X is ethoxy or methoxy Base
  • Y is a halogen group.
  • Another aspect of the present invention provides a composite lipid based on pentaerythritol, which has the following structural formula:
  • R 1 is C 6 ⁇ C 1S alkyl
  • R 2 is C 5 C 1S fluorenyl
  • R 8 is —CC CH ⁇ CONI ⁇ CH ⁇ SWX ⁇ , -CO(C3 ⁇ 4) 3 CONH(CH 2 ) 3 Si (X) 3 or -CO H(CH 2 ) 3 Si(X) wherein X is ethoxy or methoxy
  • R 9 is -CO(CH 2 ) 2 COOH or -CO(CH 2 ) 3 COOH; Equal to 2 or 3.
  • halo group is -F, -Cl, -Br, -1.
  • the R 1 is n-hexyl, n-octyl, eleven, dialkyl, thirteen, tetradecyl, fifteen, hexadecanyl, heptyl or decyl An octadecyl group;
  • the R 2 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, fifteen-decylhexadecyl, heptadecanyl or Eighteen bases.
  • the preparation method of the pentaerythritol-based composite lipid comprises the following steps:
  • R 52 is -CO(CH 2 ) 5 N(CH 2 ) 2 (CH 2 ) 3 Si(X) 3 Y, X is ethoxy or methoxy, and Y is halo;
  • the hydrazine is subjected to a condensation reaction and dehydrated to obtain a complex lipid having a structural formula, and R 53 is
  • X is an ethoxy group or a methoxy group.
  • halo group is -F, -Cl, -Br, -1.
  • R 1 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecanyl or Octadecyl;
  • the R 2 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, decyl, hexadecanyl, heptyl Base or eighteen base.
  • the heating and refluxing time in step 1) is 5 days; and the nucleation reaction in step 3) is 2-3 days.
  • the preparation method of the pentaerythritol-based composite lipid comprises the following steps:
  • Compound 5 reacts at 50-80 ° C 12-36 6, wherein the molar ratio of the compound 2, dicyclohexylcarbodiimide, 4-dimethylaminopyridine, and the compound 5 is 1: 1-3: 0.8-1.2: 3-6, 6 is -H, phenyl Or - CH 3 , R 7 is -H, phenyl or -CH 3;
  • the molar ratio of 4-dimethylaminopyridine, acid binding agent, and compound 4 is 1:0.4-1: 1-6:2-5, a is 2 or 3:
  • the hydrogen pressure is 1.0-L2 MPa
  • the volume ratio of tetrahydrofuran to methanol or ethanol in the mixed solvent is 3-4: 1
  • the catalyst is palladium.
  • Compound 9 is reacted at 25-45 ° C for 24-60 hours.
  • the compound ⁇ 1100 wherein the ratio of the molar ratio of the neutralized compound 88, the dibicyclocyclohexylcarbacarbodiimide, and the compound 9 is 1:1. 2-1.5: 1.1-2
  • X is ethoxy or methoxy, compound 12.
  • the molar ratio of dicyclohexylcarbodiimide to compound 13 is 1: 1-2: 1.5-2+0.
  • Y 1 when Y 1 is in the ortho position ⁇ of the azo group, Y 1 is -H, or a halogen group; when Y 1 is in the meta position of the azo group, Y 1 is -H, -CH 3 or CH 3 0
  • R 6 when R 6 is phenyl, R 7 is -H; or when R 6 is -(: 3 ⁇ 4 , R 7 is -CH 3 .
  • said halo group is -F, -Cl, -Br, -1 ; said R ] is n-hexyl, n-octyl, eleventhyl, dodecyl, tridecyl, tetradecene An anthracenyl group, a decyl group, a hexadecyl group, a heptadecyl group or an octadecyl group; the R 2 is an n-hexyl group, an n-octyl group, an undecyl group, a decyl group, a thirteenth fluorenyl group, Tetradecyl, decyl, hexadecyl, heptyl or octadecyl.
  • the polar organic solvent described in the step 1) is selected from tetrahydrofuran, acetone, dimethylformamide or acetonitrile; the molar ratio of the compound 1 to the compound 4 is 1: 2-2.5;
  • the polar organic solvent described in the step 2] is one selected from the group consisting of tetrahydrofuran, acetone, dimethylformamide or acetonitrile; the compound 2, dicyclohexylcarbodiimide, 4-dimethylaminopyridine, The molar ratio of compound 5 is 1: 1.5-2: 0.9-1.1: 4-5;
  • the molar ratio of the compound 6, 4-dimethylaminopyridine, acid binding agent, and compound 4 in the step 3) is 1: 0.4-0.6: 3-5: 3-4;
  • the molar ratio of the compound 10, the compound 11, and the dibutyltin dilaurate in the step 6) is 1:2-2.5:0.3-0.5; the compound 10, 4-dimethylaminopyridine, the acid binding agent and the compound 4
  • the molar ratio is 1: 1-1.5: 5-6: 6-7.
  • the acid binding agent is triethylamine or pyridine.
  • the polar organic solvent is one of tetrahydrofuran, acetone, dimethylformamide or acetonitrile:
  • the aprotic organic solvent is selected from the group consisting of benzene, toluene, dichloromethane, chloroform, DMSO or DMF.
  • Another aspect of the present invention provides a The preparation method of the pentaerythritol-based composite lipid comprises the following steps:
  • Compound 15 wherein the molar ratio of compound 6, dicyclohexylcarbodiimide, 4-dimethylaminopyridine and compound 14 is 1: 1-3: 0.8-1.2: 1-3, a is 2 or 3 , R 6 is phenyl or - CH 3, R 7 is -H or -C3 ⁇ 4;.
  • the compound 16, 4-dimethylaminopyridine, acid binding agent and compound 4 are reacted at 25-70 ° C for 24-48 hours. Then, it is pickled, washed with water, and subjected to column chromatography to obtain a compound 17 having a structural formula of 1 u "", wherein the molar ratio of the compound 16, 4-dimethylaminopyridine, acid binding agent and compound 4 is 1: 0.8-2: 3-8: 4-8, a is 2 or 3 :
  • X is ethoxy or methoxy, molar ratio of compound 17, dicyclohexylcarbodiimide, compound 13 1: 1-2 : 2.0-2+5.
  • R 1 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, fifteen, hexadecanyl, heptadecyl or ten Octaalkyl;
  • the R 2 is n-hexyl, n-octyl, undecyl, dodecyl, thirteenthyl, tetradecyl, decakidecyl, hexadecanyl, heptadecyl Or octadecyl.
  • the polar organic solvent described in the step 1) is one of tetrahydrofuran, acetone, dimethylformamide or acetonitrile; the compound 6, dicyclohexylcarbodiimide, 4-dimethylamino group
  • the molar ratio of pyridine to compound 14 is 1: 1.5-2: 0.9-1.1: 1.2-2.5; the molar ratio of compound 16, compound 11 and dibutyltin dilaurate in step 3) is 1: 2-2.5: 0.3-
  • the acid binding agent described in 0.5 step 4) is triethylamine or pyridine; the molar ratio of the compound 16, 4-dimethylaminopyridine, acid binding agent and compound 4 is 1: 1-1.5: 5-6 : 6-7.
  • the polar organic solvent is one of tetrahydrofuran, acetone, dimethylformamide or acetonitrile; and the aprotic organic solvent is selected from the group consisting of benzene, toluene, dichloromethane, chloroform, DMSO or DMF.
  • the polar organic solvent is one of tetrahydrofuran, acetone, dimethylformamide or acetonitrile; and the aprotic organic solvent is selected from the group consisting of benzene, toluene, dichloromethane, chloroform, DMSO or DMF.
  • the preparation method of the pentaerythritol-based composite lipid comprises the following steps:
  • X is ethoxy or methoxy; compound 19, the molar ratio of compound 11 and dibutyltin dilaurate is 1: 2-5: 0.2-1.0;
  • compound 20 is reacted with a compound of the formula MY ⁇ metal salt 23 at 25-180 ° C for 2 to 48 hours, then the reaction solvent is removed under reduced pressure and then washed with water, and the crude product is separated into a column structure to obtain a structure of
  • the compound lipid wherein the molar ratio of the compound 20 to the compound 23 is 1: 5-25, R 31 is -CONH(CH 2 ) 3 Si(X) 3 , and X is an ethoxy group or a methoxy group;
  • the compound 22 is reacted with a metal salt compound 23 of the formula MY ⁇ at 25-180 Torr for 2 to 48 hours, and then the reaction solvent is removed under reduced pressure. After washing with water, the crude product is subjected to column chromatography to obtain a ruthenium complex ruthenium of the formula: wherein the molar ratio of compound 22 to compound 23 is 1: 5-25, wherein R 32 is -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 -CO(CH 2 ) 3 CONH(CH 2 ) 3 Si(X , X is ethoxy or methoxy; wherein X 2 is - ⁇ , -CH 3 , CH 3 0-, halogen Substituent; M is a metal ion coordinated to a porphyrin ring, and Y 2 is an anion forming a metal salt with M.
  • the halogen group is -F-Cl-Br-I
  • R 1 is n-hexyl, n-octyl, eleventhyl, dodecyl, tridecyl, tetradecyl, ten Pentaalkyl, hexadecanyl, heptadecyl or octadecyl
  • said R 2 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl , pentadecyl, hexadecanyl, heptadecyl or octadecyl
  • the metal ion is iron ion, zinc ion, magnesium ion, manganese ion, cobalt ion, copper ion, molybdenum ion, chromium ion
  • the aprotic organic solvent is one selected from the group consisting of benzene, toluene, dichloromethane, chloroform, DMSO or DMF.
  • the molar ratio of the compound 19, the compound 11 and the dibutyltin dilaurate described in the step 2) is 1: 2-3 0.3-0.6; the compound 21 described in the step 3), wherein the compound 19 4-dimethyl
  • the molar ratio of the aminopyrazole to the compound 4 is 1: 1-1.5: 5-6: 5-8 ; the organic solvent described in the step 5) is dimethyl sulfoxide, dimethylformamide, Methanol, ethanol, dichloromethane or chloroform; the molar ratio of compound 20 to compound 23 in step 5) is 1:10-15; the molar ratio of compound 22 to compound 23 is 1: 10-15
  • the structural formula is the steps comprising the following sequence:
  • compound 25, compound 11 and dibutyltin dilaurate are reacted at 40-70 ° C for 48-72 hours to obtain
  • the structural formula is a compound lipid, wherein R 31 X is ethoxy or methoxy; molar ratio of compound 25, compound 11 and dibutyltin dilaurate 1: 1-2: 0.2-0.8;
  • the structural formula is Compound lipid, wherein R 32 is -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 ,
  • the molar ratio of the compound 1 to the compound 4 in the step 1) is 1:2-2.5; the compound 2, dicyclohexylcarbodiimide, 4-dimethylaminopyridine in the step 2),
  • the molar ratio of the compound 24 is 1: 1.5-2: 0.9-1.1: 4-5;
  • the molar ratio of the compound 25, the compound 11 and the dibutyltin dilaurate in the step 3) is 1: 1-L25: 0.3-0.5.
  • the molar ratio of the compound 25, 4-dimethylaminopyridine, acid binding agent and compound 4 in the step 4) is 1: 0.4-0.6: 3-5: 3-4.
  • the polar organic solvent is one selected from the group consisting of tetrahydrofuran, acetone, dimethylformamide or acetonitrile; and the aprotic organic solvent is selected from the group consisting of benzene, toluene, dichloromethane, chloroform, DMSO or DMF.
  • One of the acid binding agents is triethylamine or pyridine;
  • the preparation method of the pentaerythritol-based composite lipid comprises the following steps:
  • the structural formula is Compound lipid, of which Wherein X is an ethoxy group or a methoxy group, and Y is a halogen group;
  • the hydrazine is subjected to a condensation reaction and dehydrated to obtain a structural formula.
  • a complex lipid wherein R 53 is -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 or -CO(CH 2 ) 3 CONH(C3 ⁇ 4) 3 Si(X) 3 , wherein X is B Oxy or methoxy.
  • said halo group is -F, -Cl, -Br, -I; said R 4 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecene ⁇ , fifteen, hexadecan, hexadecanyl or octadecyl.
  • the preparation method of the pentaerythritol-based composite lipid comprises the following steps:
  • the structural formula is Compound 28, wherein, compound 8, the molar ratio of dicyclohexylcarbodiimide to compound 13 is 1:1-2: 1.1-1.5, wherein X is ethoxy or methoxy:
  • R 9 is -CO(CH 2 ) 2 COOH or -CO(CH 2 ) 3 COOH; 8 is -CO(C3 ⁇ 4) 2 CONH(CH 2 ) 3 3 ⁇ 4 (X) 3 , -CO( CH 2 ) 3 CONH(CH 2 ) 3 Si(X) 3 , wherein X is ethoxy or methoxy; a is equal to 2 or 3, the compound 28, 4-dimethylaminopyridine, acid binding agent and The molar ratio of the compound 4 is 1: 0.4-1: 1-6: 4-8.
  • the molar ratio of the compound 28, 4-dimethylaminopyridine, acid binding agent and compound 4 in the step 3) is 1: 0.4-0.6: 3-5: 5-7.
  • the polar organic solvent is one selected from the group consisting of tetrahydrofuran, acetone, dimethylformamide or acetonitrile; and the aprotic organic solvent is selected from the group consisting of benzene, toluene, dichloromethane, chloroform, DMSO or DMF.
  • the acid binding agent is triethylamine or pyridine.
  • R 1 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, fifteen, hexadecanyl, heptyl or decyl An octadecyl group; the R 2 is n-hexyl, n-octyl, eleventhyl, dodecyl, tridecyl, tetradecyl, fifteen, hexamethylene, hexadecanyl Or eighteen bases.
  • a pentaerythritol-based complex lipid can be self-assembled into an adipose body in an aqueous solution after a sol-gel process.
  • the surface of any one of the pentaerythritol-based composite lipids has a silicate network structure.
  • R 1 is a C 6 ⁇ C 1 S alkyl group
  • R 2 is a C 6 ⁇ C 18 fluorenyl group
  • R 3 is a —CO (CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 , -CO(CH 2 ) 3 CONH(CH 2 ) 3 Si(X) 3 or -CONH(C3 ⁇ 4) 3 Si(X) 3 , where X Is ethoxy or methoxy: a is 2 or 3;
  • X 1 is -H, -CH 3 , CH 3 0-, halo or -N0 2;
  • Y 1 is -H, -CH 3 , CH 3 0- or halo group.
  • a composite lipid based on pentaerythritol to prepare a corresponding liposome as a medicament and a pharmaceutical carrier for the treatment of inflammatory diseases, neurological diseases, arteriosclerosis, tumors, and the composite lipid
  • the structure is as follows:
  • R 1 is C 6 -C 18 alkyl
  • R 2 is C 6 -C 18 alkyl
  • R 3 is -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 , -CO(CH 2 3 CONH(CH 2 ) 3 Si(X) 3 or -CONH(C3 ⁇ 4) 3 Si(X) 3 , wherein X is ethoxy or methoxy; a is 2 or 3; X 2 is -H, - CH 3 , CH 3 0-, halo; M is a metal ion coordinated to the porphyrin ring.
  • a composite lipid based on pentaerythritol is prepared as a functional material for use as a functional material for optical storage and fractionation.
  • R 2 is C 6 ⁇ C 18 fluorenyl:
  • R 3 is -CO(CH 2 ) 2 CONH(C3 ⁇ 4) 3 Si(X) 3 , -CO(CH 2 ) 3 CONH(CH 2 ) 3 Si(X) 3 or -CONH(CH 2 ) 3 Si(X) 3 , wherein X is ethoxy or methoxy; a is 2 or 3;
  • X 2 is -H, -CH 3 , C3 ⁇ 40-, halogen Substituent;
  • M is a metal ion coordinated to the porphyrin ring.
  • a composite lipid based on pentaerythritol is prepared as a functional material for use in a simulation design and
  • R 1 Is C 6 -C 1S alkyl
  • R 2 is C 6 -C 1S alkyl
  • R 3 is -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 , -CO(CH 2 ) 3 CONH (C3 ⁇ 4) 3 Si(X) 3 or -CONH(CH 2 ) 3 Si(X) 3 , wherein X is ethoxy or methoxy; a is 2 or 3;
  • X 2 is -H, -CH 3 , C3 ⁇ 40-, halo;
  • M is a metal ion coordinated to the porphyrin ring.
  • Another aspect of the present invention provides a composite lipid based on pentaerythritol for preparing a nanocomposite film material.
  • Yet another aspect of the present invention provides a composite lipid based on pentaerythritol for use in removing POPs from the environment.
  • Still another aspect of the present invention provides a composite lipid based on pentaerythritol: , among them
  • R 1 is 0; ⁇ C 18 fluorenyl, R 2 is C 6 ⁇ C 1 S fluorenyl, and R 3 represents CO(CH 2 ) m CONH(CH 2 ) 3 Si(X) 3 , CO(CH 2 ) 5 N(CH 2 ) 2 (CH 2 ) 3 Si(X) 3 Y or CONH(CH 2 ) 3 Si(X) 3 , m is equal to 2 or 3, X is ethoxy or methoxy, Y Indicates a halo group; the preparation method is as follows
  • the reaction is carried out: the mercaptoamine and the bromohydrazine are heated under reflux for 5 days to obtain the second, and the nucleophilic reaction of R2 with succinic anhydride or glutaric anhydride is carried out.
  • R 3 bis( 0 ⁇ 3 ⁇ 4 ( ⁇ 3 ⁇ 4 ) ⁇ 00 3 of a pentaerythritol-based complex lipid, or 6 _Bromohexanoyl chloride for esterification, then nucleophilic reaction with dimethylamine gas in saturated tetrahydrofuran solution followed by nucleophilic reaction with bromopropyltriethoxysilane or bromopropyltrimethoxysilane
  • the pentaerythritol-based complex lipid of the present invention has another structural formula: or4 OR4 , wherein R 4 represents a C 6 -C 1 S alkyl group, and R 5 represents CONH(CH 2 ) 3 Si(X) 3 , CO(CH 2 ) m CONH(CH 2 ) 3 Si(X) 3 or CO(C3 ⁇ 4) 5 N(CH 2 ) 2 (CH 2 ) 3 Si(X) 3 Y, where m is equal to 2 or 3, X is Ethoxy or methoxy, Y represents a halogen group; the preparation method is carried out according to the following steps: 1. Under alkaline conditions, pentaerythritol and 3
  • the structure of the pentaerythritol-based azobenzene group-containing composite lipid according to the present invention is as follows:
  • the preparation route of the present invention is as follows:
  • compound 1 is reacted with compound 2 at 25-70'C for 24-48 hours, then acid washed, washed with water, and recrystallized to obtain compound 3.
  • the molar ratio of compound 1 to compound 2 is 1: 1.5-4, and the recommended molar ratio is 1: 2-2.5.
  • the polar organic solvent may be tetrahydrofuran, acetone, acetonitrile, dimethylformamide or the like.
  • the polar organic solvent may be tetrahydrofuran, acetone, acetonitrile, dimethylformamide or the like.
  • compound 5 DMAP, acid binding agent and compound 2 are reacted at 25-7 CTC for 24-48 hours, then pickled, washed with water, and subjected to column chromatography to obtain compound 6.
  • the molar ratio of the compound 5, DMAP, acid binding agent and compound 2 is 1: 0.4-1: 1-6: 2-5, and the recommended molar ratio is 1:0.4-0.6: 3-5: 3-4.
  • the aprotic organic solvent may be benzene, toluene, dioxane, chloroform or the like, and the acid binding agent may be triethylamine or pyridine.
  • Compound 7 can be obtained by reacting compound 6, hydrogen with a catalyst at 25-80 ° C for 12-48 hours in a mixed solvent of tetrahydrofuran and methanol or ethanol.
  • the mass ratio of the compound 6 to the catalyst is 1:0.4-0.6
  • the hydrogen pressure is 1.0-1.2 MPa
  • the volume ratio of the tetrahydrofuran to methanol or ethanol is 3-4:1
  • the catalyst is palladium/carbon or hydroxide. palladium.
  • compound 7, DCC and compound 8 are reacted at 25-45 Torr for 24-60 hours to obtain compound 9.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like.
  • compound 9, compound 10 and dibutyltin dilaurate are reacted at 40-70 ° C for 48-72 hours to obtain compound 11.
  • the molar ratio of the compound 9, the compound 10 and the dibutyltin dilaurate 1: 2-4: 0.2-0.8, and the recommended molar ratio is 1: 2-2.5: 0.3-0.5.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like.
  • compound 9, DMAP, acid binding agent and compound 2 are reacted at 25 to 70 ° C for 24 to 48 hours, followed by pickling, washing with water, and column chromatography to obtain compound 12.
  • the molar ratio of the compound 9, DMAP, acid binding agent and compound 2 is 1: 0.8-2: 3-8: 4-8, and the recommended molar ratio is 1: 1-1.5: 5-6: 6-7.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like, and the acid binding agent may be triethylamine or pyridine.
  • compound 12 DCC and compound 13 are reacted at 25-40'C for 24-36 hours to obtain compound 14.
  • the molar ratio of compound 12, DCC and compound 13 is 1:1-2: 1.5-2.0.
  • the aprotic organic solvent may be benzene, toluene, methylene chloride, chloroform or the like.
  • the structure of the porphyrin ring functional group-containing complex lipid of the present invention is as follows:
  • the preparation route of the present invention is as follows:
  • the method of the present invention is specifically described as follows: (1) In a polar organic solvent, compound 1, dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine (DMAP) and compound 2 are reacted at 50-80 ° C for 12-36 hours. Compound 3 is available. Compound 1, dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyridine
  • the polar organic solvent may be tetrahydrofuran, acetone, acetonitrile, dimethylformamide or the like.
  • Compound 4 can be obtained by reacting compound 3, hydrogen with a catalyst at 25-80 ° C for 12-48 hours in a mixed solvent of tetrahydrofuran and methanol or ethanol.
  • the mass ratio of the compound 3 to the catalyst is 1: 0.4-0.6
  • the hydrogen pressure is 1.0-1.2 MPa
  • the mixed solvent ratio of tetrahydrofuran to methanol or ethanol is 3-4: 1
  • the catalyst is palladium/carbon or hydroxide. Palladium.
  • Compound 4 Compound 5, and dibutyltin dilaurate are reacted at 40 to 70 ° C for 48 to 72 hours in an aprotic organic solvent to obtain Compound 6.
  • the aprotic organic solvent may be benzene , toluene, methylene chloride, chloroform, etc.
  • compound 4 DMAP, acid binding agent and compound 7 are reacted at 25-7 CTC for 24-48 hours, then acid washed, washed with water, and subjected to column chromatography to obtain compound 8.
  • the molar ratio of the compound 4, DMAP, acid binding agent and compound 7 is 1: 0.8-2: 3-8: 4-8, and the recommended molar ratio is 1: 1-1.5: 5-6: 6-7.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like, and the acid binding agent may be triethylamine or pyridine.
  • compound 8 DCC and compound 9 are reacted at 25 to 40 ° C for 24-36 hours to obtain a compound 10.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform.
  • the structure of the porphyrin ring functional group-containing complex lipid of the present invention is as follows:
  • R 3 OEt or OCH 3 ;
  • a 2 or 3;
  • X H, CH 3 , CH 3 0, halogen;
  • M represents two H or all metals that can coordinate with the porphyrin ring, such as iron ( Fe), zinc (Zn), magnesium (Mg), manganese (Mn), cobalt (Co), copper (Cu), molybdenum (Mo), chromium (Cr), IL (Gd), iridium (Ir), and the like.
  • the preparation route of the present invention is as follows:
  • R 3 OEt or OCH 3;
  • a 2 or 3
  • b 2 or 3
  • X H, CH 3 , CH 3 0, halogen;
  • M stands for two H or all metals that can coordinate with the porphyrin ring, such as iron (Fe), Zinc (Zn), magnesium (Mg), manganese (Mn), cobalt (Co), copper (Cu), molybdenum (Mo), complex (Cr), yttrium (Gd), yttrium (Ir), etc.
  • Y represents M forms an anion of a metal salt such as a halogen anion, an acetate ion or the like.
  • compound 1 DCC and compound 2 are reacted at 25-45 Torr for 24-72 hours to obtain compound 3.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform, DMSO, DMF or the like.
  • Compound 3 Compound 4 and dibutyltin dilaurate are reacted at 40-8 CTC for 36-72 hours to obtain Compound 5.
  • the molar ratio of the compound 3, the compound 4 and the dibutyltin dilaurate is 1: 2-5: 0.2-1.0, and the recommended molar ratio is 1: 2-3: 0.3-0.6.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like.
  • compound 3 DMAP (4-dimethylaminopyridine acid compound and compound 6 are reacted at 25-75 Torr for 24-48 hours, then pickled, washed again, column chromatography Compound 7 can be obtained.
  • the molar ratio of compound 3, DMAP, acid binding agent and compound 6 is 1: 0.8-2: 3-9: 3-10, and the recommended molar ratio is 1: 1-1.5: 5-6: 5 -8.
  • the aprotic organic solvent may be benzene, toluene, methylene chloride, chloroform or the like, and the acid binding agent may be triethylamine or pyridine.
  • compound 7, DCC and compound 8 are reacted at 25-45 Torr for 24-48 hours to obtain compound 9.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like.
  • the compound 5 or 9 is reacted with the compound 10 at 25 to 180 ° C for 2 to 48 hours, and then the reaction solvent is removed under reduced pressure, followed by water washing, and the crude product is obtained by column chromatography.
  • the molar ratio of the compound 5 or 9 to the compound 10 is 1: 5-25, and the recommended molar ratio is 1:10-15.
  • the recommended reaction temperature is such that the respective organic solvents reach a reflux state.
  • the organic solvent may be DMSO, DMF, methanol, ethanol, dichloromethane, chloroform or the like.
  • the structure of the pentaerythritol-based complex lipid of the present invention is as follows:
  • Another structural formula of the pentaerythritol-based complex lipid of the present invention is:
  • R 1 R R 2 may be the same or different;
  • R 3 OEt or OCH 3; a 2 or 3;
  • b 2 or 3
  • d 2 or 3
  • the specific preparation route is as follows:
  • the preparation method of the compound 1 is referred to the literature ⁇ Am. Chem. Soc. 118, 8524-8530, 1996); the preparation method of the compound 4 is referred to the literature, organic chemistry. 2005, 9, 1049-1052)
  • compound 1 is reacted with compound 2 at 25-7 CTC for 24-48 hours, then acid washed, washed with water, and recrystallized to obtain compound 3.
  • the molar ratio of compound 1 to compound 2 is 1 : 1.5-4, and the recommended molar ratio is 1 : 2 - 2.5.
  • the polar organic solvent may be tetrahydrofuran, acetone, acetonitrile, dimethylformamide or the like.
  • the polar organic solvent may be tetrahydrofuran, acetone, acetonitrile, dimethylformamide or the like.
  • Compound 5 Compound 6, and dibutyltin dilaurate are reacted at 40 to 70 ° C for 48 to 72 hours in an aprotic organic solvent to obtain Compound 7.
  • the molar ratio of the compound 5, the compound 6 and the dibutyltin dilaurate is 1:1-2: 0.2-0.8, and the recommended molar ratio is 1: 1-1.25: 0.3-0.5
  • the aprotic organic solvent may be benzene. , toluene, dichloromethane, chloroform, etc.
  • compound 5 DMAP, acid binding agent and compound 8 are reacted at 25-70'C for 24-48 hours, then acid washed, washed with water, and subjected to column chromatography to obtain compound 9.
  • the molar ratio of the compound 5, DMAP, acid binding agent and compound 8 is 1 : 0.4-1 : 1-6: 2-5 , and the recommended molar ratio is 1 : 0.4-0.6: 3-5: 3-4.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like, and the acid binding agent may be triethylamine or pyridine.
  • compound 9 DCC and compound 10 are reacted at 25-40 Torr for 24-36 hours to obtain compound 11.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like.
  • Compound 12 can be obtained by reacting compound 9, hydrogen with a catalyst at 25-80 ° C for 12-48 hours in a mixed solvent of tetrahydrofuran and methanol or ethanol.
  • the mass ratio of the compound 9 to the catalyst is 1: 0.4-0.6
  • the hydrogen pressure is 1.0-1.2 MPa
  • the mixed solvent ratio of tetrahydrofuran to methanol or ethanol is 3-4: 1
  • the catalyst is palladium or palladium hydroxide. /carbon.
  • compound 12 DCC and compound 10 are reacted at 25-40'C for 24-36 hours to obtain compound 13.
  • the aprotic organic solvent may be benzene, toluene, methylene chloride, chloroform or the like.
  • compound 13 DMAP, acid binding agent and compound 14 are reacted at 25-7 CTC for 24-48 hours, then acid washed, washed with water, and subjected to column chromatography to obtain compound 15.
  • the molar ratio of the compound 13, DMAP, acid binding agent and compound 14 is 1: 0.4-1: 1-6: 4-8, and the recommended molar ratio is 1: 0.4-0, 6: 3-5: 5-7.
  • the aprotic organic solvent may be benzene, toluene, dichloromethane, chloroform or the like, and the acid binding agent may be triethylamine or pyridine.
  • the liposome (also called porcelain body) prepared by the hydrolysis and condensation reaction of the composite lipid of the invention has uniform size, and has a silicate network structure on the surface, and has high stability.
  • the surfactant T ri ton X-100 (TX-100) was added to the liposome solution to test the change of the particle size of the liposome, and the particle size under the same conditions as the traditional liposome prepared by phospholipid (DSPC). The change of the change was used to investigate the stability of the porcelain body. After adding to the 30-fold amount of the TX-100 aqueous solution, the size of the liposome (porcelain body) prepared by the lipid of the present invention remained substantially unchanged, and the DSPC method was used.
  • the traditional liposome has a significantly reduced particle size after adding a 5-fold amount of the TX-100 aqueous solution, indicating that the vesicle structure has been destroyed, thereby demonstrating that the liposome prepared by the lipid of the present invention has a higher specific gravity than the conventional liposome. Better stability.
  • the liposome also referred to as a porcelain body obtained by the hydrolysis and condensation reaction of the composite lipid of the present invention, and the liposome formed by the composite lipid can be encapsulated by electron conjugation attraction or electrostatic attraction.
  • the hydrophobic or hydrophilic drug acts to increase the encapsulation efficiency of the drug, and the encapsulation efficiency reaches 95.4% to 99.0%.
  • the surface of the liposome formed by the composite lipid of the present invention has a silicate network structure, and the drug is not easily leaked.
  • the preparation method of the invention has simple process, low raw materials, mild reaction conditions, strong operability, and promotes clinical application and industrial production.
  • the liposome having a silicate network structure prepared on the surface of the lipid of the present invention is more stable than the existing liposome, and will have a carrier as a drug of various types of drugs, dyes, quantum dots, magnetic nanoparticles and DNA. Good application prospects.
  • DRAWINGS 1 is a transmission electron micrograph of the porcelain body 1 prepared in Example 10;
  • FIG. 2 is a particle size distribution diagram of the porcelain body 1 prepared in Example 10;
  • FIG. 3 is a transmission electron microscope of the porcelain body 2 prepared in Example 18.
  • Figure 4 is a particle size distribution diagram of the porcelain body 2 prepared in Example 18;
  • Figure 5 is a transmission electron micrograph of the porcelain body 3 prepared in Example 19;
  • Figure 6 is a porcelain body 3 prepared in Example 19.
  • FIG. 7 is an infrared spectrum of a porcelain body, wherein FIG. 7 shows an infrared spectrum of the porcelain body 1 prepared in Example 10, and 2 shows an infrared spectrum of the porcelain body 2 prepared in Example 18.
  • 3 is an infrared spectrum of the porcelain body 3 prepared in Example 19;
  • FIG. 8 is a particle size distribution diagram of the porcelain body prepared in Example 31;
  • FIG. 11 is a transmission electron micrograph of the porcelain body formed by the composite liposome prepared in Example 38;
  • FIG. 12 is a preparation of Example 39.
  • FIG. 16 is the composite liposome solution in different The change of the particle size in the presence of the doubling surfactant TX-100, wherein (1) is the change of the particle size of the composite liposome solution prepared in Example 46 in the presence of different multiple surfactants TX-100;
  • Figure 14 is a transmission electron micrograph of the liposome prepared in Example 52;
  • Figure 18 is an example of the change in particle size of the DSPC liposome solution described in Example 46 in the presence of different multiple surfactants TX-100; Transmission electron micrograph of 55 prepared liposomes.
  • R 2 is C 6 ⁇ C s ⁇
  • R 5 represents -CO(CH 2 ) 5 N(CH 2 ) 2 (C3 ⁇ 4) 3 Si(X) 3 Y , -CO(CH 2 ) 2 CONH(CH 2 3 Si(X) 3 , - ⁇ 0(( 3 ⁇ 4) 3 ( ( ⁇ ( 3 ⁇ 4 ) 3 ( ) 3 or -( ( ⁇ ( 3 ⁇ 4 ) 3 ( ) 3 , where X is ethoxy or methoxy, Y is a halo group and a is equal to 2 or 3.
  • the liposome prepared by the lipid of the present embodiment has a uniform size and a silicate network structure on the surface, thereby improving the stability thereof; and adding a surfactant Tnton X-100 (TX-100) to the liposome solution to test the lipid
  • TX-100 surfactant Tnton X-100
  • the size of the plastid remains basically the same, and the traditional liposome made by DSPC has a significantly reduced particle size after adding 5 times the amount of TX-100 aqueous solution, indicating that the vesicle structure has been destroyed, thus demonstrating the implementation.
  • the porcelain body of the mode has better stability than the traditional liposome.
  • the liposome prepared by the lipid of the present embodiment has an encapsulation
  • This embodiment differs from the specific embodiment 1 in that the halogen group is Cl, Br or I. Others are the same as in the first embodiment.
  • Embodiment 1 differs from Embodiment 1 or 2 in that: R 1 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and ten. Hexaalkyl, heptadecyl or octadecyl. Others are the same as in Examples 1 and 2.
  • R 2 is n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, fifteen. , hexadecanyl, heptadecyl or octadecyl. Others are the same as in Examples 1, 2, and 3.
  • the preparation method of the pentaerythritol-based composite lipid described in Example 1 is carried out according to the following steps: 1) heating and refluxing the mercaptoamine and the alkyl bromide
  • the brominated hydrazine is R 2 -Br, wherein R 1 is a C 6 ⁇ C 1 S alkyl group; and R 2 is a C 6 ⁇ C 1 S fluorenyl group; ⁇
  • R 511 is -CONH(C3 ⁇ 4) 3 Si(X) 3 , X is ethoxy or methoxy; or ester 3 is reacted with 6-bromohexanoyl chloride, followed by dimethyl a nucleophilic reaction of a saturated tetrahydrofuran solution of an amine gas,
  • R 52 is -CO(C3 ⁇ 4) 5 N(CH 2 ) 2 (C3 ⁇ 4) 3 Si(X) 3 Y, X is ethoxy or methoxy, and Y is halo;
  • the silane is subjected to a condensation reaction and dehydrated, that is, the structural formula is Compound lipid, R « is
  • R 1 is a C 6 -C 1 S alkyl group
  • R 2 is a C 6 -C 1 S fluorenyl group
  • R ⁇ R 2 a is equal to 2 or 3
  • R 511 is -CONH(CH) 2 ) 3 Si(X) 3
  • X is ethoxy or methoxy.
  • the preparation method is as follows: 1. Under the condition of 95 'C, the mercaptoamine W-Ntt and the brominated alkane R 2 -Br in a molar ratio of 1: 2 are reminded by potassium carbonate.
  • the compound is heated and refluxed in an ethanol solvent for 5 days to obtain a compound; second, it is dissolved in tetrahydrofuran with succinic anhydride or glutaric anhydride.
  • the molar ratio of R 2 to succinic anhydride or glutaric anhydride is 1: 1.2, 4 to 6 times excess of pentaerythritol in dimethyl sulfoxide (DMSO) or dimethylformamide (DMF), dicyclohexylcarbodiimide (DCC) as a condensing agent, 4-dimethylaminopyridine ( DMAP) was stirred at 40 ° C for 1 day (esterification reaction).
  • represents a bromo group, and the rest is the same as in Example 6.
  • R 1 is a C 6 -C 18 fluorenyl group
  • R 2 is a C 6 ⁇ C 1 S fluorenyl group
  • R 521 represents CO(CH 2 ) 5 N(CH 2 ) 2 (CH 2 ) 3 Si(X) 3 Y
  • X is ethoxy or methoxy
  • Y represents Cl, Br or I.
  • the preparation method is as follows: in chloroform or dichloromethane solvent, with organic base (such as triethylamine, pyridine or DMAP) ) as a catalyst, compound 0 0
  • OH OH is first esterified with 6-bromohexanoyl chloride in a molar ratio of 1:3.5, and then nucleophilicly reacted with a solution of dimethylamine gas in saturated tetrahydrofuran followed by bromopropyltriethoxysilane or bromopropyltrimethyl
  • the compound OH OH in this example was prepared in the same manner as in Example 6 or 7.
  • a pentaerythritol-based complex lipid of the formula is prepared, wherein R 1 is C 6 -C 1 S alkyl, R 2 is C 6 -C 18 alkyl, and R 531 represents CO(CH 2 ) m CONH(CH 2 ) 3 Si(X) 3 ; a is 2 or 3.
  • the preparation method is as follows: The nucleophilic reaction with succinic anhydride (or glutaric anhydride) at a molar ratio of 1:6 is followed by a molar ratio of aminopropyltriethoxysilane or aminopropyltrimethoxysilane of 1:4.5.
  • Dicyclohexylcarbodiimide (DCC) or EDC catalyzed by stirring at room temperature for 24 hours and dehydration a compound lipid based on pentaerythritol.
  • a solution having a certain turbidity was obtained by ultrasonication with a probe type ultrasonic machine at 5 mm, and an aqueous solution of the porcelain body 1 was obtained by leaving it at room temperature for 12 hours.
  • the size and morphology were measured by DSC instrument and TEM instrument, respectively.
  • the specific transmission electron microscope is shown in Fig. 1, and the particle diameter is as shown in Fig. 2 and Table 1.
  • the grain size of the porcelain body prepared by the lipid of the present embodiment is substantially about 150 nm. It can be seen from Fig. 2 and Table 1 that the average particle size is 143 nm, the particle size distribution is narrow, and the polydispersity index is 0.237.
  • OR 4 OR 5 is a pentaerythritol-based complex lipid of 0 R4 or 4 , wherein R 4 represents a C 6 -C 1S fluorenyl group, and R 5 represents CONH(CH 2 ) 3 Si(X) 3 ,
  • CO(C3 ⁇ 4) a CONH(CH 2 ) 3 Si(X) 3 or CO(CH 2 ) 5 N(CH 2 ) 2 (CH 2 ) 3 Si(X) 3 Y, where a is equal to 2 or 3, X is A hydrolyzable group, the hydrolyzable group is an ethoxy group or a methoxy group, and Y represents a halogen group.
  • the lipid prepared by the lipid of the present embodiment has a uniform size and a silicate network structure on the surface, thereby improving the stability thereof; and adding a surfactant Triton X-100 (TX-100) to the liposome solution to test the lipid
  • TX-100 Triton X-100
  • the size of the plastid remains basically the same, and the traditional liposome made by DSPC has a significantly reduced particle size after adding 5 times the amount of TX-100 aqueous solution, indicating that the vesicle structure has been destroyed, thus demonstrating the implementation.
  • the porcelain body of the mode has better stability than the traditional liposome.
  • the encapsulation efficiency of the liposome prepared by the lipid of the present embodiment
  • R 4 being n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, decakidecyl, hexadecanyl, heptadecyl or octadecyl
  • R 4 being n-hexyl, n-octyl, undecyl, dodecyl, tridecyl, tetradecyl, decakidecyl, hexadecanyl, heptadecyl or octadecyl
  • a pentaerythritol-based complex lipid of the formula G r4 qr4 is prepared, wherein R 4 represents a C 6 ⁇ C 18 fluorenyl group, and R 3 represents
  • the preparation method is as follows: 1. Under the alkaline condition, pentaerythritol is reacted with 3 times the amount of bromopurine R 4 -Br by nucleophilic substitution for 6 hours. With isocyanate propyl triethoxysilane or isocyanic acid
  • the preparation method is as follows: 1. The pentaerythritol is reacted with a 3-fold amount of bromopurine R 4 — Br under basic conditions for 6 hours.
  • the synthetic lipid preparation route based on pentaerythritol is shown by the formula ⁇ .
  • R4 ° (formula II) L in formula II represents a leaving group.
  • OR 4 OR 52 prepares a pentaerythritol-based complex lipid of the formula GRi 0R4 , wherein R 4 represents a C 6 -C 18 alkyl group, R 5: CO(CH 2 ) 5 N(CH 2 ) 2 (CH 2 ) 3 Si (X) 3 Y, X is ethoxy or methoxy, Y is Cl, Br or I:
  • the preparation method is as follows: first serophilic reaction with succinic anhydride (or glutaric anhydride) in a molar ratio of 1: 2 and then the amino propyl triethoxy silane or aminopropyl trimethoxy silicon ⁇ Stir at room temperature for 24 hours at a molar ratio of 1:1.5 under DCC or EDC catalysis
  • the preparation method is as follows: Under electromagnetic stirring, to 100 ⁇ (0.25 g, 0.31 mmol), dissolved in CH 2 C1 2 (20 mL), then passed to the reaction flask Isocyanate propyl triethoxysilane (0.073 g, 0.31 mmol) and dibutyltin dilaurate (0.039 g, 0.062 mmol) were added, and the mixture was heated in a 50 ° C oil bath for 48 hours under nitrogen. The reaction solvent was removed under reduced pressure, and the crude product was separated and purified by silica gel column chromatography to obtain a compound lipid based on pentaerythritol, yield 81%.
  • the pentaerythritol-based composite lipid C 63 H 129 N0 8 Si prepared in the present embodiment was prepared in the same manner as in Example 10, and the transmission electron microscope of the porcelain body 2 was as shown in FIG. 3, and the particle size distribution was as shown in FIG. 4 and Table 2.
  • the particle size of the lipid-prepared porcelain body 2 of the present embodiment is substantially about 200 nm. It can be seen from Fig. 4 and Table 2 that the average particle size is 196 nm, the particle size distribution is narrow, and the polydispersity index is 0.243.
  • the preparation method is as follows:
  • Step 1 Add to a 50 ml round bottom flask with electromagnetic stirring. ( 0 17 g ,
  • Step 2 Add to a 50 ml round bottom flask with electromagnetic stirring.
  • the pentaerythritol-based composite lipid C 66 H 133 N0 9 Si prepared in the present embodiment was prepared in the same manner as in Example 10, and the transmission electron microscope of the porcelain body 3 was as shown in FIG. 5, and the particle size distribution was as shown in FIG. 6 and Table 3.
  • the particle size of the lipid-prepared porcelain body of the present embodiment is substantially about 200 nm. It can be seen from Fig. 6 and Table 3 that the average particle size is 216 nm, the particle size distribution is narrow, and the polydispersity index is 0.222.
  • the composite lipids C 71 H 144 N 4 0 18 Si 3 , C 63 H 129 N0 8 Si, C 66 H 133 N0 9 Si corresponding to Examples 10, 18, and 19 were prepared into a porcelain body 1 and a porcelain body. 2, Porcelain body 3, by adding different proportions of surfactant Triton X-100 (TX-100) to the liposome solution, the change of liposome particle size, and the traditional liposome made with DSPC The stability of the porcelain body was examined by comparing the particle size changes under the same conditions. The results are shown in Table 4.
  • the preparation method is as follows: Step 1. Under electromagnetic stirring, sequentially add to a 50-liter round bottom flask. (0.65g, 0.80 mmol), dichloromethane (20 mL), DMAP (0.10 g, 0.8 mmol) and triethylamine (0.162 g, 1.6 mmol), the solution was cooled to 0 ° C and then added dropwise A solution of 6-bromohexanoyl chloride (0.27 g, 1.2 mmol) in dichloromethane (8 mL) was stirred at 0 ° C for 1 hour, then stirred at room temperature for 16 hours and concentrated under reduced pressure. The complex lipid intermediate C 55 H 117 Br0 5 (colorless oil) based on pentaerythritol, the intermediate C 55 Hcontested 7 Br0 5 , yield 56%.
  • a composite lipid C 7 is obtained .
  • the preparation method is as follows: Step one, adding to a 50 ml round bottom flask under electromagnetic stirring (0.50 g, 0.73 mmol) and succinic anhydride (0.438 g, 4.38 mmol) were dissolved in CH 2 C1 2 (25 mL), then DMAP (0.089 g, 0.73 mmol) and triethylamine ( 0.293 g, 2.92 mmol), the mixture was placed in a 30 ° C oil bath for 4 days. The reaction mixture was concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography to afford the compound of the compound of the compound of C. ⁇ / RTI> C 53 H 93 N0 15 (white solid), yield 75%.
  • Steps were added to a 50 liter round bottom flask with electric stirring. (0.30 g, 0.305 mmol), dissolved in CH 2 C1 2 (20 mL) The solution was further stirred in DCC (0.075 g, 0.366 mmol), and then stirred at room temperature for 15 min. The organic product was concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography to obtain a compound lipid based on pentaerythritol.
  • a composite lipid C s is obtained .
  • Compound 33 which has the formula R 1 , R 2 is C 16 alkyl, a is 2, and the yield is 78%.
  • Example 25 3 ⁇ 4 will be 4 mmol of compound After mixing with 16 mmol of compound 411 o, it was dissolved in 40 mL of dichloromethane, and then 2 mmol of DMAP and 20 mmol of triethylamine were added, and the mixture was stirred at 35 ° C for 26 hours, and the solvent was evaporated under reduced pressure. The obtained crude product is purified by column chromatography to obtain a molecular formula of C 52 H 8S N0 9 , and the structural formula is
  • I 1 and R 2 are C 16 fluorenyl groups, a is 2, X 1 and Y 1 are -H, and R 311 is
  • X is an ethoxy group, molecular formula: C 77 H 136 N 5 0 16 Si 2 , yield 50.2%.
  • Example 29 1 mmol of compound 39 was mixed with 6 mmol of compound 411 o, dissolved in 40 mL of dichloromethane, followed by 1 mmol of DMAP and 6 mmol of triethylamine at 35 ° C. After stirring for 48 hours, the solvent was evaporated under reduced pressure, and the obtained crude product was subjected to column chromatography.
  • Example 30 0.5 mmol of the compound 40 was dissolved in 30 mL of dichloromethane, followed by the addition of 1.2 mmol of DCC and 1.5 mmol of the compound 131 at 30 ° C for 30 hours, and the solvent was evaporated under reduced pressure. Separation and purification based on season
  • a compound lipid of pentaerythritol whose structural formula is: R 2 is a C 16 alkyl with, a is 2, X 1 is -H, Y 1 is -H, R: is -CO (CH 2) 2 CONH ( CH 2) 3 Si (X) 3 X is an ethoxy , Molecular formula: C 83 H 144 N 6 0 18 Si 2 , yield 20%.
  • Example 30 4 mg of the composite lipid prepared in Example 30 was placed in a 20 mL round bottom flask, dissolved in 5 mL of chloroform, and then slowly evaporated under reduced pressure to form a film on the inner wall of the flask, and dried in a vacuum oven at 35 Torr to completely remove chloroform. A volume of deionized water was added to the film-forming flask to give a final solution concentration of 1 mmol/L. Ultrasonic probes were used for 5 min to obtain a solution with a certain turbidity. After standing at room temperature for 12 hours, an aqueous solution of the corresponding liposome was obtained.
  • the diameter of the porcelain body prepared by the lipid method of the present embodiment was substantially 156 nm, and the particle size distribution was narrow, and the polydispersity index was 0.197, which was consistent with the results of scanning electron microscopy.
  • the specific particle size distribution is shown in Fig. 8, and the scanning electron microscope is as shown in Fig. 9.
  • the liposome aqueous solution prepared in Example 31 was diluted to a concentration of 250 ⁇ M, and irradiated with ultraviolet light having a wavelength of 365 nm for different lengths, and the ultraviolet-visible absorption spectra were respectively measured. It can be seen from the test results that the absorption peak of the azobenzene group decreases at a wavelength of about 360 nm, and the absorption peak at a wavelength of about 450 nm gradually rises, indicating that the azobenzene group inside the prepared liposome is irradiated by ultraviolet light. From the trans configuration to the cis configuration. The specific ultraviolet-visible absorption spectrum is shown in Fig. 10.
  • the compound M ⁇ R ⁇ R ⁇ dealkyl, a is 2, has the formula C 72 H 129 N0 9 , yield 52%.
  • Example 37 4 mg of the composite lipid prepared in Example 37 was placed in a 20 mL round bottom flask, dissolved in 5 mL of chloroform, and then slowly evaporated under reduced pressure to form a film on the inner wall of the flask, and dried in a vacuum oven at 35 ° C to completely remove. Chloroform; A volume of deionized water was added to the flask forming the film to give a final solution concentration of 1 mmol/L. Ultrasonic 10 mm was used to obtain a solution with a certain turbidity. After standing at room temperature for 12 hours, an aqueous solution of the corresponding composite liposome was obtained. The transmission electron microscope is shown in Fig. 11.
  • the complex liposome solution prepared in Example 38 was added to the surfactant Triton X-100 (TX-100) to test the change of the particle size of the liposome, and the particle size of the conventional liposome prepared by DSPC under the same conditions.
  • the change of the change was used to examine the stability of the composite liposome.
  • TX-100 surfactant Triton X-100
  • the size of the composite liposome of the present invention remained substantially unchanged, and the conventional liposome prepared by DSPC was added.
  • the particle size was almost reduced to 0, indicating that the vesicle structure was destroyed, thereby demonstrating that the composite liposome of the present example has better stability than the conventional liposome. Specifically, as shown in FIG.
  • X 2 is -H, and the molecular formula is: C 89 H 114 N 6 0 8 , and the yield is 63.0%.
  • X 2 is -H
  • R 91 is -CO(C3 ⁇ 4) 2 COOH
  • the molecular formula is: C 97 H 122 N 6 0 14 , yield 85%.
  • M is a manganese metal ion (Mn) and a is 2.
  • Example 43 4 mg of the composite lipid prepared in Example 43 was placed in a 20 mL round bottom flask, dissolved in 5 mL of chloroform, and then slowly evaporated under reduced pressure to form a film on the inner wall of the flask, and dried in a vacuum oven at 35 ° C to completely remove. Chloroform; a volume of deionized water was added to the flask forming the film to give a final solution concentration of 1 mmol/L. Ultrasonic probes were used for 10 min to obtain a solution with a certain turbidity. After standing at room temperature for 12 hours, an aqueous solution of the corresponding liposome was obtained.
  • the diameter of the porcelain body prepared by the lipid method of the present embodiment was measured by the DSC instrument to be about 125 nm, the particle diameter distribution was narrow, and the polydispersity index was 0.210, which was consistent with the transmission electron microscope.
  • the specific particle size distribution is shown in Fig. 13, and the transmission electron microscope is shown in Fig. 14.
  • the complex lipid compound 42 prepared in Example 43 was dissolved in an appropriate amount of chloroform to prepare a solution having a concentration of 30 uM, and its absorption spectrum was measured by an ultraviolet-visible spectrophotometer as shown in Fig. 15;
  • the aqueous solution of the plastid was formulated to have a concentration of 25 uM, and its absorption spectrum was measured by an ultraviolet-visible spectrophotometer as shown in Fig. 15.
  • the composite lipid still has a characteristic absorption peak of the original porphyrin ring functional group after being prepared into a liposome.
  • the surfactant Triton X-100 (TX-100) was added to test the change of the particle size of the liposome, and the conventional liposome prepared by DSPC was granulated under the same conditions.
  • the stability of the porcelain body was examined by comparing the diameter changes.
  • the size of the composite liposome of the present invention remained substantially unchanged, and the conventional liposome prepared by DSPC was added.
  • the particle size was almost reduced to 0, indicating that the vesicle structure was destroyed, thereby demonstrating that the composite liposome of the present embodiment has better stability than the conventional liposome. Specifically, it is as shown in Fig. 16.
  • Example 49 Mix 2 mmol of compound 33 with 4 mmol of compound 47 HO ⁇ , dissolve in 40 mL of dimethylformamide, heat to complete dissolution, then add 4 mmol of DCC and 1 mmol of DMAP, 55 °. Stir at C temperature for 16 hours, minus
  • the product is purified by column chromatography to obtain a pentaerythritol-based complex lipid having the following structural formula, wherein a is 2,
  • Example 51 4 mmol of compound 48 with 16 mmol of compound 411 Then, 2 mmol of DMAP and 20 mmol of triethylamine were added in this order, and the mixture was stirred at 35 ° C for 26 hours, and the solvent was evaporated under reduced pressure.
  • the 131, 30 crude product was separated and purified by column chromatography to obtain a structure.
  • Pentaerythritol-based complex lipid 16 fluorenyl, X 1 is -H, R ; is -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 , X is ethoxy, and the molecular formula is: C 61 H Community.N 2 0 consult Si, yield 20%.
  • SiOCH 2 CH 3 1.47 1.58 (m, 6H, CH 3 (CH 2 ) CH 2 CH 2 N ⁇ ⁇ SiCH 2 CH 2 CH 2 NH), 2.44 ⁇ 2.67 (m, 8H, COCH 2 CH 2 CO), 3.11 ⁇ 3.19 (m, 6H, SiCH 2 CH 2 CH 2 NH and CH 3 (CH 2 13 CH 2 CH 2 N), 3.69 3.75 (m, 6H, SiOCH 2 CH 3 ), 3.79 4.47 (m, 8H, COOCH 2 C), 5.43 (s, 1H, Ph-CH), 7.34 - 7.45 (m , 5H, ArH). MS theoretical value: 1075.62, experimental value [M]+: 1076.5.
  • the product was stirred at 30 ° C for 30 hours, and the solvent was evaporated to dryness under reduced pressure.
  • Example 55 After mixing 4 mmol of compound 50 with 16 mmol of compound 411 o, it was dissolved in 40 mL of dichloromethane, followed by 2 mmol of DMAP and 20 mmol of triethylamine, and stirred at 35 ° C for 26 hours. , the solvent is evaporated under reduced pressure, and the obtained crude product is purified by column chromatography
  • R 91 is -CO(CH 2 ) 2 COOH;
  • R 81 is -CO(CH 2 ) 2 CONH(CH 2 ) 3 Si(X) 3 , X is ethoxy, and the molecular formula is: C 62 H 114 N 2 0 17 Si, yield 56%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)

Description

基于季戊四醇的复合脂质、 其中间体、 制备方法和用途 技术领域
本发明属于材料科学生物医用材料领域, 具体涉及以季戊四醇为骨架、 含有脂肪链和硅氧烷基的复合脂 质及其其中间体、 制备方法和用途。 背景技术
脂质体(liposome)是一种人工膜, 当两性分子如磷脂和鞘脂分散于水相时, 分子的疏水尾部倾向于聚集 在一起, 避开水相,而亲水头部暴露在水相, 磷脂之间依靠疏水缔合作用在水中自发形成的一种分子有序组合 体, 形成具有双分子层结构的封闭囊泡。 脂质体由连续的双层或多层复合脂质组成, 每层均为类脂双分子膜, 层间和脂质体内核为水相, 双分子膜为油相。脂质体可以作为生物膜的实验模型, 在研究或治疗上用来包载药 物、 酶或其他制剂, 使它们更有效地运送到靶细胞, 经同细胞融合而释放。
由于脂质体具有制备简单, 无毒性, 无免疫原性反应, 在体内可降解, 并且易于实现靶向性, 提高和延长 药物疗效, 缓和毒性, 避免耐药性和改变给药途径等方面的优点; 同时, 它还具有亲水性和疏水性, 既可以包 裹水溶性药物又可以包裹脂溶性药物,水溶性药包裹在脂质体的水层结构中,而脂溶性药物或两亲性药物则被 包裹在脂质脂基部分或脂质双分子层中, 具有广泛的适用性, 自 20世纪 70年代以来, 脂质体在作为药物载体 上的应用就备受关注。
但脂质体的实际应用受到其稳定性的限制。具体表现在脂质体在储存过程中, 由于药物渗漏、粒子的聚集 以及磷脂易于氧化水解等原因而被破坏;进入体内后, 由于血液中的白蛋白、调理素、抗体等各种物质的作用, 脂质体可能发生破裂, 致使包封药物快速渗漏, 很快被被一些酶类物质降解和巨噬细胞吞噬, 不能到达靶向组 织而有效地发挥药物作用。因此,研制出稳定的脂质体是其作为药物载体走向实用的前提, 具有十分重要的意 义。
近年来, 各种功能化脂质体逐渐被开发出来, 如对温度敏感的脂质体, 对 PH值敏感的脂质体, 对光敏感 的脂质体等, 从而使定点, 定时, 定量的释放药物成为可能。其中对光敏感的脂质体具有其独特的优势, 将该 类材料的脂质体包埋药物,导入身体特定位置后,通过外来光源的照射就可简单的使其中的光敏基团发生结构 上的变化, 从而实现对内包药物的可控释放。 目前报道较多的光控材料是偶氮苯的衍生物, 虽然引入偶氮苯的 衍生物可能达到定点, 定时, 定量释放的效果, 但是仍然存在一些方面的问题。例如, 利用含偶氮苯基团的表 面活性剂作为光控材料时, 容易引起脂质体的相分离和熔合(Cfe/M. Ze«. (1981) 1001-1004); 而引入含有偶氮 苯基团的磷脂作为光控释放材料, 会使脂质体的稳定性下降, 导致药物突然间释放, 从而难以进行实际应用 CPhotochem.Photobiol.62 (1995) 24- 29)。
胆固醇是细胞膜的重要组成成分之一, 胆固醇的最重要的功能是调节细胞膜的物理化学性质(Yeagle PL. Biochim Biophys Acta 1985, 822(3-4), 267 - 87; Yeagle PL. In: Yeagle PL, editor. Biology of cholesterol. Boca Raton (FL, USA): CRC Press, 1988. p. 121 - 146)。在细胞膜中, 胆固醇与膜磷脂和鞘脂之间相互作用从而影响它们的 性质。 增加脂质双层中胆固醇的含量将会扩大以及最终消除脂质双层的凝胶液晶相转变的协调性 (Lewis RNAH, McElhaney RN. In: Yegle PL, editor. The structure of biological membranes. Boca Raton (FL, USA): CRC Press, 1992. p. 73 - 156; Maulik PR, Shipley GG. Biophys J 1996, 70, 2256 - 2265 )。 在磷脂双层中胆固醇存在一 种中间状态, 当在相转变温度之上时降低膜的流动性, 而在相转变温度之下时增加膜的流动性 (Demd RA, de Kruijff B. Biochim Biophys Acta 1976, 457(2), 109 - 132)。 在生物学相关的液晶状态, 胆固醇在膜中的排列相对 有序, 从而使得磷脂的垸基碳链的运动速率下降。在膜中相对有序的状态将使膜更加致密, 从而使膜的机械性 能增加, 渗透性能下降(Lund-Katz S, Laboda HM, McLean LR, Phillips MC. Biochemistry 1988, 27(9), 3416 - 3423)。 此外, 生物体及传统脂质体中的胆固醇一般是游离状态, 在实际研究和应用过程中,游离胆固醇 往往会快速地从生物膜或者脂质体中转移出来 (Kan, C. C; Yan, J.; Bittman, . Biochemistry 1992, 31, 1866 - 1874; Hamilton, J. A. Curr. Opin. Lipidol. 2003, 14, 263 - 271),从而使得脂质体的稳定性下降, 使脂质体在作为 药物载体方面的应用受到极大的限制。
卟啉及其衍生物是含有四个吡咯环结构的共扼大环分子, 由于其独特和易于修饰的性能,使其在医学、生 物化学、 分析化学、 合成化学、材料科学等领域有着非常广泛的应用, 特别是具有卟啉环的衍生物具有独特的 电子结构和光电性能, 近年在医药、 光储存、 分子器件、 仿真设计和合成人工系统以用于模拟电荷分离, 电子 转移, 以及信号转导等方面成为国内外科研人员研究的热点。但卟啉环衍生物一般都是刚性分子,难以加工成 型, 而且其水溶性比较差, 这在一定程度上限制了它的实际应用 Photochem. Photobiol., B imi, 66, 89-106), 此外, 将卟啉的衍生物, 包括金属配合物直接应用于生物体内, 在安全性和效果方面也存在着不少问题。
将卟啉分子包埋于胶束, 脂质体, 低密度的脂质蛋白, 高分子胶束或者亲水性的高分子聚合物等各种载体 当中, 以改善其水溶性和生物相溶性。 但胶束体系的载体在生物体内往往容易引起过敏反应 (ft U . 1980, 280, 1353-1353), 脂质类载体容易为生物体的免役系统所捕获 (J 1995, ^, 166-173), 而高分子聚合 物容易聚集于生物体正常组织, 而在病变组织的聚集较少 (J. Pharm. Pharmacol. 2001, 53, 155-166)。 以上所述 载体都有一个共同的缺点, 就是包埋于其中的卟啉衍生物容易泄漏, 从而引起生物体的一些光毒副作用。而基 于二氧化硅载体包埋的纳米粒子则可以克服以上其他载体所出现的缺点,具有高度稳定性, 良好生物相容性和 水中分散性, 可修饰易于功能化, 不易为微生物攻击等优点 (·7. ^«. Chem. Soc. 2003, 125, 7860-7865)。
另外, 在脂质体作为药物载体的应用上, 包封率是其能否实用的衡量标准, 目前关于改善脂质体包封率的 方法很多 (中国医药工业杂志 2002, 33(11), 564-568),而通过分子间作用力或者静电引力来提高脂质体包封率 具有其显著的优势。其中, 含有苯环结构的脂质体可以与一些带有类似基团的药物, 如喜树碱等, 产生分子间 共轭作用, 从而有效地提高对药物的包埋 (Journal of Controlled Release, 2008, 127, 231-238)。 而含有羧酸 基团的脂质体由于表面具有丰富的游离羧酸基团,一方面便于与含有羟基或者氨基的药物如阿霉素等发生化合 作用, 另一方面使脂质体在特定 pH值条件下带有丰富的负电荷, 从而可以通过静电吸引作用将一些带正电荷 的药物有效地包埋,极大地提高包封率和载药量。 同时, 表面丰富的羧酸基团还便于脂质体修饰上各种靶向分 子, 提高其靶向效果。
目前, 现有脂质体大多采用磷脂质制备, 这类脂质体与血浆蛋白、 调理素、 扰体等各种物质的静电, 疏水 性和范德瓦耳斯相互作用导致了脂质体的去稳定化,通常会使脂质体在达到目标之前被循环系统快速清除,使 包封药物在到达靶向组织之前快速释放, 不仅不能够有效地发挥药物作用, 而且还可能产生严重的毒副作用。 此外, 由于某此药物与脂质体的磷脂的相互作用(例如, 蒽环霉素表现出对磷脂双层的表面活性剂或去污剂样 作用), 会导致药物在贮存过程中发生泄漏, 从而使脂质体更加不稳定。 由于脂质体在体内的不稳定性和贮存 的不稳定性等缺点,从而限制了脂质体制剂的临床应用和工业化生产。尽管对脂质体的相关研究已经进行了几 十年, 但开发的脂质体药物制剂仍然很少, 稳定性差是脂质体商品化过程中亟待解决的问题。 因此, 研制出稳 定的脂质体是其作为药物载体走向实用的前提, 具有十分重要的意义。
基于以上考虑, 本发明人设计合成了一类新型复合脂质, 该类脂质分子结构中含有一 Si(0Et)3或 Si(0C¾)3基团, 在水溶液中能自组装形成脂质双层囊泡结构, 而且在所形成的囊泡表面具有稳定的 Si-0-Si网络结构, 共价键连覆盖于脂质体的表面, 从而极大地增强其稳定性和水溶性。
在新型复合脂质的基础上,本发明人还作了一系列的相关研究:如在新型复合脂质的分子结构中引入偶氮 苯基团, 通过光控方法可以简便的改变脂质双层的渗透性, 从而实现对药物的可控释放; 在新型复合脂质的分 子结构中共价键连胆固醇基团,可进一步调节脂质双层的流动性和渗透性,同时可以防止胆固醇的流失,用于作 为模型研究细胞膜的结构与功能;在新型复合脂质的分子结构中引入苯环或者羧酸基团,可以通过电子共轭吸 引力或者静电吸引等作用与要包封的疏水或者亲水药物发生作用,从而提高对药物的包封率;在新型复合脂质 的分子结构中共价键连卟啉环功能基团,这使得卟啉环能有序地排布于所形成的囊泡双层结构中,继而通过配 位不同的金属将可开发出一系列功能化的纳米材料。 发明内容
本发明的首要目的是针对上述问题提供一种基于季戊四醇的复合脂质、其中间体、制备方法和应用, 本发 明的脂质可通过水解和缩合得到表面具有硅酸盐网络结构的相应脂质体 (称之为瓷质体); 制得的脂质体具有 稳定性高、 生物相容性好、 低毒甚至无毒, 且药物不易渗漏优点。
为了实现上述目的, 本发明一方面提供一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000003_0001
其中, R1 为 C6〜 C1S 烷基; R2 为 C6〜 C1S 烷基; R5 为 -CO(CH2)5N(CH2)2(CH2)3Si(X)3Y、 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(C¾)3Si(X)3,其中 X为乙氧基或甲氧基,
Y为卤代基; a等于 2或 3。
本发明再一方面提供一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000004_0001
其中, R1 为 C6〜C1S 垸基; R2 为 C6〜C18 垸基; R3 为 -CO(CH2)2CONH(C¾)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基; a为 2或 3 ; X1 为 -H、 -CH3、 CH30-、 卤代基或 -N02; Y1为 -H、 -C¾、 C¾0-或卤代基。
其中,当 Y1位于偶氮基的邻位时, Υ1为 -Η或卤代基;当 Υ1位于偶氮基的间位时, Υ1为 -Η、- CH3或 C¾0-。 本发明另一方提供一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000004_0002
其中, R1 为 C6〜C18垸基; R2 为 C6〜C18垸基; R3 ¾ -CO(CH2)2CONH(CH2)3Si(X)3
-CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基; a为 2或 3。
本发明再一方面提供一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000004_0003
其中, R1 为 C6〜C18 垸基; R2 为 C6〜C18 烷基; R3 为 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3,其中 X为乙氧基或甲氧基; a为 2或 3 ; X2 为 -H, -CH3, CH3O-, 卤代基; M为与卟啉环配位的金属离子。
其中, 所述的金属离子为铁离子、 锌离子、 镁离子、 锰离子、 钴离子、 铜离子、 钼离子、 铬离子、 离子、 镍离子、 钒离子、 铝离子、 稼离子或铱离子中的一种。
本发明另一方面提供一种基于季戊四醇的复合脂质, 其结构通式如下: ί - 其中, R1 为 C6〜 C1S 烷基; R2 为 Cs〜 C1S 垸基; R3 为 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(C¾)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基: a为 2或 3 ; X1 = -H, -CH3, CH3O-, 卤代基或 -N02
本发明另一方面提供一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000005_0001
其中, R4为 C6〜C18垸基, R5为 -CO(C¾)5N(CH2)2(CH2)3Si(X)3Y、 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基, Y为卤代基。
本发明另一方面提供一种基于季戊四醇的复合脂质, 其结构通式如下:
1、
Figure imgf000005_0002
其中, R1 为 C6〜 C1S 烷基; R2 为 C5 C1S 垸基; R8 为 -CC CH^CONI^CH^SWX^、 -CO(C¾)3CONH(CH2)3Si(X)3或 -CO H(CH2)3Si(X) 其中 X为乙氧基或甲氧基; R9为 -CO(CH2)2COOH 或 -CO(CH2)3COOH; a等于 2或 3。
其中, 所述的卤代基为 -F、 -Cl、 -Br, -1。
特别是, 所述 R1为正己基、 正辛基、 十一垸基. 二垸基、 十三垸基、 十四垸基、 十五垸基、 十六垸基、 十七垸基或十八垸基; 所述 R2为正己基、 正辛基、 十一烷基、 十二烷基、 十三垸基、 十四烷基、 十五垸基 十六烷基、 十七垸基或十八垸基。
Figure imgf000005_0003
的基于季戊四醇的复合脂质的制备方法, 包括如下顺序进行的步骤:
NH
1 )将烷基胺和溴代垸加热回流进行取代反应制得结构式为 R2^ 的化合物 1, 其中所述垸基胺是 -NIt, 所述溴代垸是 R2-B 其中, R1 为 C6〜C18垸基; R2 为 C6〜C18垸基;
Figure imgf000005_0004
2)将化合物 1与丁二酸酐或戊二酸酐亲核反应得到结构式为 R' 的化合物 2, 接着将化合物 2与过量 4〜6倍的季戊四醇进行酯化反应得到结构式
Figure imgf000006_0001
的化合物 3, 其中 a为 2或 3 ;
3 ) 将化合物 3 与异氰酸丙基三乙氧基硅烷或异氰酸丙基三甲氧基硅垸进行亲核反应, 即得结构式为
Figure imgf000006_0002
的复合脂质, 其中 R51为 -CONH(CH2)3Si(X)3, X为乙氧基或甲氧基: 或者将化合物 3与 6-溴己酰氯进行酯化反应, 接着与二甲胺气体的饱和四氢呋喃溶液进行亲核反应, 然
后再与溴丙基三乙氧基硅垸或溴丙基三甲氧基硅烷进行亲核反应,
Figure imgf000006_0003
的复合脂质, 其中 R52为 -CO(CH2)5N(CH2)2(CH2)3Si(X)3Y, X为乙氧基或甲氧基, Y为卤代基;
或者将化合物 3与丁二酸酐或戊二酸酐进行亲核反应,然后再与氨丙基三乙氧基硅烷或氨丙基三甲氧基硅
Figure imgf000006_0004
垸进行缩合反应, 脱水得到, 即得结构式为 的复合脂质, R53
-CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3, X为乙氧基或甲氧基。
其中, 所述的卤代基为 -F、 -Cl、 -Br, -1。
特别是, 所述 R1为正己基、 正辛基、 十一垸基、 十二烷基、 十三垸基、 十四垸基、 十五烷基、 十六烷基、 十七垸基或十八烷基; 所述 R2为正己基、 正辛基、 十一烷基、 十二烷基、 十三烷基、 十四烷基、 十五垸基、 十六垸基、 十七垸基或十八垸基。
其中, 步骤 1 ) 中加热回流的时间为 5天; 步骤 3 ) 中亲核反应的吋间为 2-3天。
Figure imgf000006_0005
的基于季戊四醇的复合脂质的 制备方法, 包括如下顺序进行的步骤:
1 )在极性有机溶剂中, 将结构式为 化合物 4在 25-7CTC反应 24-48小 时后, 依次进行酸洗、 水洗, 重结晶得到
Figure imgf000006_0006
结构式为 化合物 2, 其中, 化合物 1与化合物 4的 摩尔之比为 1: 1+5-4, a为 2或:
HO- -O R61
2)在极性有机溶剂中,将化合物 2、二环己基碳二酰亚胺、 4-二甲胺基吡啶和结构式为 HO- -。XR7 化
合物 5在 50-80°C反应 12-36
Figure imgf000007_0001
6, 其中化合物 2、 二环己基碳二酰亚胺, 4-二甲胺基吡啶、 化合物 5的摩尔比是 1: 1-3: 0.8-1.2: 3-6, 6为 -H, 苯基或- CH3, R7为 -H, 苯基或 -CH3;
3) 在非质子性有机溶剂中, 化合物 6、 4-二甲胺基吡啶、 缚酸剂和化合物 4在 25-70°C反应 24-48小时,
然后酸洗, 再水洗, 柱层析制得结构式为
Figure imgf000007_0002
的化合物 7, 其中, 化合物 6、
4-二甲胺基吡啶、 缚酸剂、 化合物 4的摩尔比例是 1:0.4-1: 1-6:2-5, a为 2或 3:
4) 在四氢呋喃与甲醇或者乙醇的混合溶剂中, 化合物 7与氢气在催化剂作用下, 于 25-80°C温度下反应
12-48
Figure imgf000007_0003
8, 其中化合物 7与催化剂的质量之比是 1:
0.4-0.6, 氢气压力为 1.0-L2MPa, 所述混合溶剂中四氢呋喃与甲醇或者乙醇的体积之比是 3-4: 1, 催化剂是钯
/碳或者氢氧化钯 /碳;
5)在非质子性有机溶剂中, 化合
合物 9在 25-45 °C下反应 24-60小时,
Figure imgf000007_0004
合物 Ϊ 1100,, 其其中中化化合合物物 88,, 二二环环己己基基碳碳二二酰酰亚亚胺胺、、 化化合合物 9的摩尔之比为 1: 1,2-1.5: 1.1-2
6)在非质子性有机溶剂中, 化合物 10、 结构式为 0CN" ' Χ 的化合物 11, 二月桂酸二丁基锡
在 40-70°C下反应 48-72小吋,
Figure imgf000007_0005
的复合脂质, 其中, 化合物 10, 化合物 11、 二月桂酸二丁基锡的摩尔之比为 1: 2-4: 0.2-0.8, R31 为 -CONH(CH2)3Si(X)3, X为乙氧基或甲氧基;
或者在非质子性有机溶剂中, 化合物 10、 4-二甲胺基吡啶、 缚酸剂和化合物 4在 25-70°C下反应 24-48小
时, 然后酸洗, 再水洗,
Figure imgf000008_0001
的化合物
12, 其中 R9为 -CO(CH2)2COOH、 -CO(CH2)3COOH; 化合物 10、 4-二甲胺基吡啶 缚酸剂和化合物 4的摩尔 之比是 1: 0.8-2: 3-8 : 4-8; 最后在非质子性有机溶剂中, 将化合物 12、 二环己基碳二酰亚胺和结构式为
Ξι(Χ
-40Ό 反 应 24-36 小 时 , 制 得 结 构 式 为 的
Figure imgf000008_0002
其 中 32
-CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3, X为乙氧基或质甲氧基, 化合物 12、 二环己基碳 二酰亚胺和化合物 13的摩尔之比为 1: 1-2: 1.5-2+0。
其中, 当 Y1位于偶氮基的邻位吋, Y1为 -H, 或卤代基; 当 Y1位于偶氮基的间位时, Y1为 -H、 -CH3或 CH30
其中, 当 R6为苯基时, R7为 -H; 或当 R6为 -(:¾时, R7为 -CH3
其中, 所述的卤代基为 -F、 -Cl、 -Br, -1; 所述 R]为正己基、 正辛基、 十一垸基、 十二烷基、 十三烷基、 十四垸基、 十五垸基、 十六烷基、 十七垸基或十八烷基; 所述 R2为正己基、 正辛基、 十一烷基、 十二垸基、 十三垸基、 十四垸基、 十五垸基、 十六烷基、 十七垸基或十八垸基。
其中, 步骤 1) 中所述的极性有机溶剂选择四氢呋喃, 丙酮, 二甲基甲酰胺或乙腈中的一种; 化合物 1与 化合物 4的摩尔之比为 1: 2-2.5;
步骤 2〕 中所述的极性有机溶剂选择四氢呋喃, 丙酮, 二甲基甲酰胺或乙腈中的一种; 所述化合物 2、 二 环己基碳二酰亚胺, 4-二甲胺基吡啶、 化合物 5的摩尔比是 1: 1.5-2 :0.9-1.1 :4-5;
步骤 3) 中所述化合物 6、 4-二甲胺基吡啶、 缚酸剂、 化合物 4的摩尔比例是 1: 0.4-0.6: 3-5: 3-4;
步骤 6) 中所述化合物 10、 化合物 11、 二月桂酸二丁基锡的摩尔之比为 1:2-2.5 : 0.3-0.5; 化合物 10、 4- 二甲胺基吡啶、 缚酸剂和化合物 4的摩尔之比是 1: 1-1.5: 5-6: 6-7。
特别是, 所述缚酸剂为三乙胺或者吡啶。
特别是, 所述极性有机溶剂是四氢呋喃, 丙酮, 二甲基甲酰胺或乙腈中的一种: 所述的非质子性有机溶剂 选择苯, 甲苯, 二氯甲垸、 氯仿、 DMSO或 DMF中的一种。 本发明再一方面提供一种
Figure imgf000009_0001
的基于季戊四醇的复 合脂质的制备方法, 包括如下顺序进行的步骤:
1 ) 在极性有机溶剂中, 化合物 6、 二环己基碳二酰亚胺、 4-二甲胺基吡啶和结构式为 4 在 50-80°C反应 12-36 小时, 制得结构式为
Figure imgf000009_0002
的化合物 15, 其中化合物 6、 二环己基碳二酰亚胺、 4-二 甲胺基吡啶和化合物 14的摩尔比为 1: 1-3: 0.8-1.2: 1-3, a为 2或 3, R6为苯基或 - CH3, R7为 -H或 -C¾.;
2) 在四氢呋喃与甲醇或者乙醇的混合溶剂中, 化合物 15、 氢气与催化剂在 25-8CTC反应 12-48小时制得
Figure imgf000009_0003
的化合物 16,其中化合物 15与催化剂的质量比 是 1:0.4-0.6,氢气压力为 1.0-1.2 MPa,所述混合溶剂中四氢呋喃与甲醇或者乙醇的体积比是 3-4: 1,催化剂是 钯 /碳或者氢氧化钯 /碳;
3)在非质子性有机溶剂中, 化合物 16、 化合物 11和二月桂酸二丁基锡在 40-70°C反应 48-72小时, 制得
Figure imgf000009_0004
的复合脂质, 其中 R31为 -CONH(CH2)3Si(X)3, X为乙 氧基或甲氧基; 化合物 16, 化合物 11和二月桂酸二丁基锡的摩尔比例 1:2-4:0.2-0.8;
4) 在非质子性有机溶剂中, 化合物 16、 4-二甲胺基吡啶、 缚酸剂和化合物 4在 25-70°C反应 24-48小时,
Figure imgf000010_0001
然后酸洗, 再水洗, 柱层析制得结构式为 1 u " " 的化合 物 17, 其中化合物 16、 4-二甲胺基吡啶、 缚酸剂和化合物 4的摩尔比例是 1 : 0.8-2: 3-8 : 4-8, a为 2或 3:
5 )在非质子性有机溶剂中, 化合物 17、 二环己基碳二酰亚胺、 化合物 13在 25-4CTC反应 24-36小时, 可
Figure imgf000010_0002
的复合脂质,其中 R32为 -CO(C¾)2CONH(CH2)3Si(X)3
-CO(CH2)3CONH(CH2)3Si(X): X为乙氧基或甲氧基, 化合物 17、 二环己基碳二酰亚胺、 化合物 13的摩尔比 例 1: 1-2: 2.0-2+5。
其中, 所述 R1为正己基、 正辛基、 十一垸基、 十二垸基、 十三烷基、 十四垸基、 十五垸基、 十六垸基、 十七烷基或十八烷基; 所述 R2为正己基、 正辛基、 十一烷基、 十二垸基、 十三垸基、 十四烷基、 十五垸基、 十六垸基、 十七烷基或十八烷基。
其中, 步骤 1 ) 中所述的极性有机溶剂选择四氢呋喃, 丙酮, 二甲基甲酰胺或乙腈中的一种; 所述化合物 6、 二环己基碳二酰亚胺、 4-二甲胺基吡啶和化合物 14摩尔比例是 1: 1.5-2: 0.9-1.1: 1.2-2.5; 步骤 3 ) 中所述 化合物 16、 化合物 11和二月桂酸二丁基锡的摩尔比例是 1 : 2-2.5: 0.3-0.5步骤 4 ) 中所述的缚酸剂为三乙胺或 吡啶; 所述化合物 16、 4-二甲胺基吡啶、 缚酸剂和化合物 4的摩尔比例是 1: 1-1.5: 5-6: 6-7。
特别是, 所述极性有机溶剂是四氢呋喃, 丙酮, 二甲基甲酰胺或乙腈中的一种; 所述的非质子性有机溶剂 选择苯, 甲苯, 二氯甲垸、 氯仿、 DMSO或 DMF中的一种。
Figure imgf000010_0003
的基于季戊四 醇的复合脂质的制备方法, 包括如下顺序进行的步骤:
Figure imgf000010_0004
其中化合物 8、二环己基碳二酰亚胺、化合物 18的摩尔比例 1 1.2-1.5: 1.1-2, a为 2或 3,X2 为 -H, -CH3, CH30-, 卤代基; 2)在非质子性有机溶剂中, 化合物 19, 化合物 11和二月桂酸二丁基锡在 40-8CTC反应 36-72小时, 制得
Figure imgf000011_0001
的化合物 20, 其中, R31为 -CONH(CH2)3Si(X)3
X为乙氧基或甲氧基; 化合物 19, 化合物 11和二月桂酸二丁基锡的摩尔比例为 1: 2-5: 0.2-1.0;
3 ) 在非质子性有机溶剂中, 化合物 19、 4-二甲胺基吡啶, 缚酸剂和化合物 4在 25-75 °C反应 24-48小时,
然后酸洗, 再水洗, 柱层析制得结构式为
Figure imgf000011_0002
的化合物 21, 其 中 R9为 -CO(CH2)2COOH、 -CO(CH2)3COOH; 化合物 19、 4-二甲胺基吡 , 缚酸剂和化合物 4的摩尔比例是 1: 0.8-2: 3-9 : 3-10 , 所述缚酸剂为三乙胺或吡啶;
4) 在非质子性有机溶剂中, 化合物 21, 二环己基碳二酰亚胺和化合物 13在 25-45°C反应 24-48小时, 得
Figure imgf000011_0003
到 结 构 式 为 的 化合 物 22 , 其 中 R32
-CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3, X为乙氧基或甲氧基, 化合物 21,二环己基碳 二酰亚胺和化合物 13的摩尔比例 1 : 1-2: 1.5-2.0;
5 ) 在有机溶剂中, 化合物 20与结构式为 MY^金属盐类化合物 23在 25-180°C反应 2-48小时,然后减压除 去 反 应 溶 剂 再 水 洗 , 粗 产 物 柱 层 析 得 到 结 构 式 为 的
Figure imgf000011_0004
的复合脂质,其中化合物 20与化合物 23的摩 尔比例是 1 : 5-25 , R31为 -CONH(CH2)3Si(X)3, X为乙氧基或甲氧基;
或者化合物 22与结构式为 MY^的金属盐类化合物 23在 25-180Ό反应 2-48小时,然后减压除去反应溶剂, 再水洗, 粗产物柱层析得到结构式为的 、 Λ 复合扉 质, 其中化合物 22 与化合物 23 的摩尔比例是 1: 5-25 , 其中 R32为 -CO(CH2)2CONH(CH2)3Si(X)3 -CO(CH2)3CONH(CH2)3Si(X , X为乙氧基或甲氧基; 其中 X2为 -Η, -CH3, CH30-, 卤代基; M为与卟啉环配位 的金属离子, Y2为和 M形成金属盐的阴离子。
其中, 所述的卤代基为 -F -Cl -Br -I所述 R1为正己基、 正辛基、 十一垸基、 十二烷基、 十三烷基、 十四烷基、 十五烷基、 十六垸基、 十七烷基或十八烷基; 所述 R2为正己基、 正辛基、 十一烷基、 十二烷基、 十三垸基、 十四垸基、 十五烷基、 十六垸基、 十七垸基或十八垸基; 所述的金属离子为铁离子、 锌离子、 镁离 子、 锰离子、 钴离子、 铜离子、 钼离子、 铬离子、 钆离子、 镍离子、 钒离子、 铝离子、 稼离子或铱离子中的一 种; 所述阴离子为卤素阴离子或乙酸根离子。
特别是, 所述的非质子性有机溶剂选择苯, 甲苯, 二氯甲垸、 氯仿、 DMSO或 DMF中的一种。
其中, 步骤 2) 中所述的化合物 19、 化合物 11和二月桂酸二丁基锡的摩尔比例是 1 : 2-3 0.3-0.6; 步骤 3 ) 中所述的化合物 21、 其中化合物 19 4-二甲胺基吡 ¾ 缚酸剂和化合物 4的摩尔比例是 1 : 1-1.5: 5-6: 5-8 ; 步 骤 5 ) 中所述的有机溶剂为二甲基亚砜、 二甲基甲酰胺、 甲醇、 乙醇、 二氯甲烷或氯仿; 步骤 5 ) 中所述化合 物 20与化合物 23的摩尔比例是 1 :10-15; 化合物 22与化合物 23的摩尔比例是 1 : 10-15
本发明再一方面提供- 种结构式为 包 括如下顺序进行的步骤:
1 )在极性有机溶剂中, 将结构式为
Figure imgf000012_0001
化合物 4在 25-70°C反应 24-48小
0 o
ΌΗ
时后, 依次进行酸洗、 水洗, 重结晶得到结构式为 R2 化合物 2, 其中, 化合物 1与化合物 4的 摩尔之比为 1 : 1+5-4 a为 2或 3 ;
2 )在极性有机溶剂中,化合物 2,
Figure imgf000012_0002
的化合物 24在 50-8CTC反应 12-36小时得到结构式为的
Figure imgf000012_0003
25, 其中化合物 2, 二环己基碳二酰亚胺, 4-二甲胺基吡啶, 化合物 24的摩尔比是 1 : 1-3 : 0.8-1.2: 3-6 ;
3 )在非质子性有机溶剂中, 化合物 25, 化合物 11和二月桂酸二丁基锡在 40-70°C反应 48-72小时, 得到 结构式为
Figure imgf000013_0001
的复合脂质, 其中 R31 X为乙氧基或甲氧基; 化 合物 25、 化合物 11和二月桂酸二丁基锡的摩尔比例 1: 1-2:0.2-0.8;
4) 在非质子性有机溶剂中, 化合物 25, 4-二甲胺基吡啶, 缚酸剂和化合物 4在 25-70°C反应 24-48小时,
然后酸洗, 再水洗, 柱层析得到结构式为
Figure imgf000013_0002
的化合物 26, 其中, 化合物 25, 4-二甲胺基吡啶,缚酸剂和化合物 4的摩尔比例是 1: 0.4-1: 1-6: 2-5 ;
5) 在非质子性有机溶剂中, 化合物 26, 二环己基碳二酰亚胺和化合物 13在 25-4CTC反应 24-36小时, 制
得结构式为
Figure imgf000013_0003
的复合脂质, 其中 R32 为 -CO(CH2)2CONH(CH2)3Si(X)3
-CO(CH2)3CONH(CH2)3Si(X)3 , X为乙氧基或甲氧基; 所述化合物 26, 二环己基碳二酰亚胺和化合物 13的摩 尔比例 1: 1-2: 1.1-1+5。
其中, 步骤 1) 中所述化合物 1与化合物 4的摩尔之比为 1:2-2.5; 步骤 2) 中所述化合物 2、 二环己基碳 二酰亚胺、 4-二甲胺基吡啶、 化合物 24的摩尔比是 1: 1.5-2 : 0.9-1.1 :4-5; 步骤 3) 中所述化合物 25、 化合物 11和二月桂酸二丁基锡的摩尔比例为 1: 1-L25 :0.3-0.5; 步骤 4) 中所述化合物 25、 4-二甲胺基吡啶、 缚酸剂 和化合物 4的摩尔比例是 1: 0.4-0.6: 3-5: 3-4。
特别是, 所述的极性有机溶剂选择四氢呋喃, 丙酮, 二甲基甲酰胺或乙腈中的一种; 所述的非质子性有机 溶剂选择苯, 甲苯, 二氯甲垸、 氯仿、 DMSO或 DMF中的一种; 所述缚酸剂为三乙胺或者吡啶;
本发明再一方面提供一种结构式为
Figure imgf000013_0004
的基于季戊四醇的复合脂质的制备方法,包括如下顺序进 行的步骤:
1) 在碱性条件下, 将季戊四醇与溴代垸 R4-Br进行亲核取代反应, 制得结构式为 R4D 的化合 物 27, 其中季戊四醇与溴代垸的摩尔之比为 1: 3, 所述溴代烷是 R4Br, 其中 R4为 C6〜C18烷基;
2) 将化合物 27 与异氰酸丙基三乙氧基硅垸或异氰酸丙基三甲氧基硅垸进行亲核反应, 即得结构式为
Figure imgf000013_0005
其中 X为乙氧基或甲氧基;
或将化合物 27与与 6-溴己酰氯进行酯化反应, 接着与二甲胺气体的饱和四氢呋喃溶液进行亲核反应, 然 后再与溴丙基三乙氧基硅垸或溴丙基三甲氧基硅烷进行亲核反应, 即得结构式为
Figure imgf000014_0001
的复合脂质,其 中
Figure imgf000014_0002
其中 X为乙氧基或甲氧基, Y为卤代基;
或将化合物 27与丁二酸酐或戊二酸酐进行亲核反应, 然后再与氨丙基三乙氧基硅垸或氨丙基三甲氧基硅
垸进行缩合反应,脱水得到,即得结构式为
Figure imgf000014_0003
的复合脂质,其中 R53为- CO(CH2)2CONH(CH2)3Si(X)3 或 -CO(CH2)3CONH(C¾)3Si(X)3, 其中 X为乙氧基或甲氧基。
其中, 所述的卤代基为 -F、 -Cl、 -Br, -I; 所述 R4为正己基、 正辛基、 十一烷基、 十二垸基、 十三烷基、 十四垸基、 十五垸基、 十六垸基、 十七垸基或十八垸基。
Figure imgf000014_0004
的基于季戊四醇的复合脂质的制备方法, 包括如下顺序进行的步骤:
1 )在四氢呋喃与甲醇或者乙醇的混合溶剂中: 化合物 26,氢气与催化剂在 25-8CTC反应 12-48小时制得结
Figure imgf000014_0005
的化合物 8,其中化合物 26与催化剂的质量比是 1 : 0.4-0.6,氢气压力 为 1.0-1.2 MPa,所述混合溶剂中四氢呋喃与甲醇或者乙醇的体积比是 3-4: 1,催化剂是钯 /碳或者氢氧化钯/ «, a为 2或 3;
2)在非质子性有机溶剂中, 化合物 8, 二环己基碳二酰亚胺和化合物 13在 25-4CTC反应 24-36小吋, 制得
结构式为
Figure imgf000014_0006
的化合物 28, 其中, 化合物 8, 二环己基碳二酰亚胺 和化合物 13的摩尔比例 1: 1-2: 1.1-1.5, 其中 X为乙氧基或甲氧基:
3 ) 在非质子性有机溶剂中, 化合物 28, 4-二甲胺基吡啶, 缚酸剂和化合物 4在 25-70°C反应 24-48小时,
然后酸洗,再水洗,柱层析得到结构式为
Figure imgf000014_0007
的复合脂质,其中 R9为 -CO(CH2)2COOH 或 -CO(CH2)3COOH; 8 为 -CO(C¾)2CONH(CH2)3¾(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3, 其中 X为乙氧基或 甲氧基; a等于 2或 3, 所述化合物 28, 4-二甲胺基吡啶, 缚酸剂和化合物 4的摩尔比例是 1: 0.4-1: 1-6: 4-8。 其中, 步骤 3 ) 中所述化合物 28, 4-二甲胺基吡啶, 缚酸剂和化合物 4的摩尔比例是 1 : 0.4-0.6: 3-5 : 5-7。 特别是, 所述极性有机溶剂选择四氢呋喃, 丙酮, 二甲基甲酰胺或乙腈中的一种; 所述非质子性有机溶剂 选择苯, 甲苯, 二氯甲垸、 氯仿、 DMSO或 DMF中的一种; 所述缚酸剂为三乙胺或者吡啶。
其中, 所述 R1为正己基、 正辛基、 十一垸基、 十二烷基、 十三垸基、 十四烷基、 十五垸基、 十六垸基、 十七垸基或十八垸基; 所述 R2为正己基、 正辛基、 十一垸基、 十二烷基、 十三烷基、 十四垸基、 十五垸基、 +六垸基、 十七垸基或十八垸基。
本发明另一方方面提供一种上述基于季戊四醇的复合脂质经溶胶凝胶过程后在水溶液中能自组装形成脂 质体。
其中, 所述任意一种基于季戊四醇的复合脂质的表面具有硅酸盐网络结构。
Figure imgf000015_0001
的基于季戊四醇的复合脂 质作为控制脂质体内药物释放的光控释放材料的用途, 其中 R1 为 C6〜C1S烷基; R2为 C6〜C18垸基; R3 为 -CO(CH2)2CONH(CH2)3Si(X)3、-CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(C¾)3Si(X)3,其中 X为乙氧基或甲氧基: a为 2或 3 ; X1 为 -H, -CH3, CH30-, 卤代基或 -N02; Y1为 -H, -CH3, CH30-或卤代基。
本发明再一方面提供一种基于季戊四醇的复合脂质制备成相应的脂质体作为药物及药物载体用于炎症疾 病 、 神经疾病 、 动脉硬化、 肿瘤 的 治疗上的用途, 所述复合脂质的结构如下 :
Figure imgf000015_0002
其中 R1 为 C6〜C18烷基; R2 为 C6 ~ C18烷基; R3 为 -CO(CH2)2CONH(CH2)3Si(X)3、-CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(C¾)3Si(X)3,其中 X为乙氧基或甲氧基; a为 2或 3 ; X2 为 -H, -CH3, CH30-, 卤代基; M为与卟啉环配位的金属离子。
本发明再一方面提供一种基于季戊四醇的复合脂质制备成相应的脂质体作为功能材料应用于光储存和分
子器件的用途, 所述复合脂质的结构如下:
Figure imgf000015_0003
其中 R1 为 C6
C18烷基: R2 为 C6〜C18 垸基: R3 为 -CO(CH2)2CONH(C¾)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3 或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基; a为 2或 3 ; X2 为 -H, -CH3, C¾0-, 卤代基; M为与卟啉环 配位的金属离子。
本发明再一方面提供一种基于季戊四醇的复合脂质制备成相应的脂质体作为功能材料应用于仿真设计和
合成人工系统的用途, 所述复合脂质的结构如下:
Figure imgf000015_0004
其中 R1 为 C6〜C1S烷基; R2为 C6〜C1S烷基; R3 为 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(C¾)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基; a为 2或 3 ; X2 为 -H, -CH3, C¾0-, 卤代基; M为与卟啉环 配位的金属离子。
本发明的目的提供一种基于季戊四醇的复合脂质的用途, 该类物质可用于作为包埋药物的光控释放材料。 本发明另一方面提供用于制备纳米复合膜材料基于季戊四醇的复合脂质。
本发明又一方面提供用于清除环境中的持久性有机污染物基于季戊四醇的复合脂质。
为实现本发明的目的, 本发明又一方面提供一种基于季戊四醇的复合脂质:
Figure imgf000016_0001
, 其中
R1为 0;〜 C18垸基, R2为 C6〜C1 S垸基, R3 表示 CO(CH2)mCONH(CH2)3Si(X)3、 CO(CH2)5N(CH2)2(CH2)3Si(X)3Y 或 CONH(CH2)3Si(X)3, 以上所述 m等于 2或 3, X为乙氧基或甲氧基, Y表示卤代基; 制备方法是按下述步
R1
' 'ίΊΗ ί-JH
骤进行的: 将垸基胺和溴代垸加热回流 5天制得 二、 再将 R2 与丁二酸酐或戊二酸酐亲核反应 H
Figure imgf000016_0002
与过量 4〜6倍的季戊四醇酯化反应得到 H .
三、 再
Figure imgf000016_0003
与异氰酸丙基三乙氧基硅烷或异氰酸丙基三甲氧基硅烷亲核反应 2〜3天得到
R3二( 0^^¾( }¾)^003的基于季戊四醇的复合脂质, 或者
Figure imgf000016_0004
6_溴己酰氯进行酯化 反应,然后与二甲胺气体的饱和四氢呋喃溶液亲核反应后再与溴丙基三乙氧基硅烷或溴丙基三甲氧基硅烷亲核
反应得到 R3 = CO(CH2)5N(CH2)2(CH2)3Si(X)3Y的基于季戊四醇的复合脂质,或者将
Figure imgf000016_0005
二酸酐 (或戊二酸酐) 亲核反应后再与氨丙基三乙氧基硅烷或氨丙基三甲氧基硅烷缩合反应脱水得到 R3 = < 0(( ¾) 0^¾( ¾)3 )3的基于季戊四醇的复合脂质。
OR4 OR5 本发明的基于季戊四醇的复合脂质另一种结构式为: or4 OR4 , 其中 R4表示 C6〜C1 S烷基, R5表示 CONH(CH2)3Si(X)3、 CO(CH2)mCONH(CH2)3Si(X)3或 CO(C¾)5N(CH2)2(CH2)3Si(X)3Y, 其中 m等于 2或 3, X 为乙氧基或甲氧基, Y表示卤代基; 其制备方法是按下述步骤进行的: 一、 在碱性条件下, 将季戊四醇与 3
倍量的溴代烷亲核取代反应 6小时得到
Figure imgf000016_0006
二、 再将 与异氰酸丙基三乙氧基硅 垸或异氰酸丙基三甲氧基硅烷亲核反应 2 天得到 R5= CONH^H^S X 的基于季戊四醇的复合脂质, 或者 将
Figure imgf000017_0001
先与 6-溴己酰氯进行酯化反应, 然后与二甲胺气体的饱和四氢呋喃溶液亲核反应后再与溴 丙基三乙氧基硅垸或溴丙基三甲氧基硅垸亲核反应得到 R5 = CO(CH2)5N(CH2)2(CH2)3Si(X)3Y的基于季戊四醇
R40 的复合脂质, 或者将 R4o 与丁 (或戊) 二酸酐亲核反应后再与氨丙基三乙氧基硅垸或氨丙基三甲 氧基硅垸缩合反应脱水得到 R5= CO(CH2)mCONH(C¾)3Si(X)3的基于季戊四醇的复合脂质。
本发明所述的基于季戊四醇的含偶氮苯基团的复合脂质的结构如下:
Figure imgf000017_0002
其中, 1^ = ( 618院基, R2 = C61S垸基, R1, R2可以相同, 也可以不同; R3=OEt或 OC¾; a = 2或 3;b = 2 或 3, c= 1, 且当 b = 0时, c = 0; = (¾,< ¾0, <1,81 >«32;丫可以是 ( ¾,( ¾0, < 1,81"且在氨基 邻位为 H, CH3, CH30, 在氨基间位为 H, F, CI, Br。
本发明的制备路线如下所示:
Figure imgf000017_0003
Figure imgf000017_0004
化合物
其中, R^ ^院基, 112 = (6 垸基, R1, R2可以相同, 也可以不同; R3=OEt或 OCH3: a = 2或 3;b = 2 或 3, c= 1, 且当 b = 0时, c = 0; 当 R4=Ph时, R5=H; 当 R4=CH3时, R5 = CH3; X = H, CH3, CH30, F, CI, Br, N02; Y可以是 H, CH3, CH30, F, CI, Br且在氨基邻位吋为 H, CH3, CH30, 在氨基间位时为 H, F, CI, Br。
化合物 1的制备方法参照文献 (J. Am. Chem. Soc.118, 8524-8530, 1996); 化合物 4的制备方法参照文献 (^有机 化学.2005, 9, 1049-1052); 化合物 8的制备方法参照文献、青岛科技大学学报.2008, 29(2), 110-113) 本发明的方法具体描述如下:
(1)在极性有机溶剂中, 化合物 1与化合物 2在 25-70'C反应 24-48小时, 然后酸洗, 再水洗, 重结晶可 得化合物 3。化合物 1与化合物 2的摩尔比例 1: 1.5-4,推荐的摩尔比例是 1: 2-2.5。所述的极性有机溶剂可以 是四氢呋喃, 丙酮, 乙睛, 二甲基甲酰胺等。
(2) 在极性有机溶剂中, 化合物 3, 二环己基碳二酰亚胺 (DCC), 4位二甲胺基吡啶 (DMAP) 和化合 物 4在 50-8(TC反应 12-36小时可得化合物 5。 化合物 3, 二环己基碳二酰亚胺 (DCC), 4位二甲胺基吡啶
(DMAP), 化合物 4的摩尔比是 1: 1-3: 0.8-1.2: 3-6,推荐的摩尔比例是 1: 1.5-2: 09-1.1: 4-5。 所述的极性有 机溶剂可以是四氢呋喃, 丙酮, 乙睛, 二甲基甲酰胺等。
(3)在非质子性有机溶剂中,化合物 5, DMAP,缚酸剂和化合物 2在 25-7CTC反应 24-48小吋,然后酸洗, 再水洗, 柱层析可得化合物 6。 化合物 5, DMAP, 缚酸剂和化合物 2的摩尔比例是 1: 0.4-1: 1-6: 2-5 ,推荐的摩 尔比例是 1:0.4-0.6: 3-5: 3-4。所述的非质子性有机溶剂可以是苯, 甲苯, 二氣甲院, 氯仿等, 缚酸剂可以是三 乙胺或者吡啶等。
(4) 在四氢呋喃与甲醇或者乙醇的混合溶剂中, 化合物 6,氢气与催化剂在 25-80'C反应 12-48小时可得 化合物 7。化合物 6与催化剂的质量比是 1:0.4-0.6,氢气压力为 1.0-1.2 MPa, 所述的四氢呋喃与甲醇或者乙醇 的混合溶剂体积比是 3-4: 1, 催化剂是钯 /碳或者氢氧化钯 。
(5) 在非质子性有机溶剂中, 化合物 7, DCC和化合物 8在 25-45Ό反应 24-60小时, 可得化合物 9。 化 合物 7, DCC和化合物 8的摩尔比例 1: 1.2-1.5: 1.1-2。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲烷, 氯仿等。
(6) 在非质子性有机溶剂中, 化合物 9, 化合物 10和二月桂酸二丁基锡在 40-70 °C反应 48-72小时, 可 得化合物 11。化合物 9,化合物 10和二月桂酸二丁基锡的摩尔比例 1: 2-4: 0.2-0.8, ,推荐的摩尔比例是 1: 2-2.5: 0.3-0.5。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲烷, 氯仿等。
(7)在非质子性有机溶剂中,化合物 9, DMAP,缚酸剂和化合物 2在 25-70°C反应 24-48小时,然后酸洗, 再水洗, 柱层析可得化合物 12。 化合物 9, DMAP, 缚酸剂和化合物 2的摩尔比例是 1: 0.8-2: 3-8 :4-8 ,推荐的 摩尔比例是 1: 1-1.5: 5-6: 6-7。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲垸, 氯仿等, 缚酸剂可以是 三乙胺或者吡啶等。 (8) 在非质子性有机溶剂中, 化合物 12,DCC和化合物 13在 25-40'C反应 24-36小时, 可得化合物 14。 化合物 12, DCC和化合物 13的摩尔比例 1: 1-2: 1.5-2.0。所述的非质子性有机溶剂可以是苯, 甲苯,二氯甲垸, 氯仿等。
本发明所述的含卟啉环功能基团的复合脂质的结构如下:
Figure imgf000019_0001
其中, 1^ = (:618烷基, R2 = C61S垸基, R1, R2可以相同, 也可以不同; R3=OEt或 OCH3; a = 2或 3;b = 2 或 3, c= 1, 且当 b = 0时, c = 0。
本发明的制备路线如下所示:
Figure imgf000019_0002
其中, Ε = (:6ι院基, R2 = C 1S烷基, R1, R2可以相同, 也可以不同; R3=OEt或 OCH3; a = 2或 3;b = 2 或 3时, c=l, 且当 b = 0时, c = 0。
化合物 1 的制备方法参照己申请专利(申请号: 200910073423.5); 化合物 2 的制备方法参照文献 (Carbohydrate Polymers 2006, 65, 337-345; European Polymer Journal 2008, 44, 55-565)
本发明的方法具体描述如下: ( 1 ) 在极性有机溶剂中, 化合物 1, 二环己基碳二酰亚胺 (DCC), 4位二甲胺基吡啶 (DMAP) 和化合 物 2在 50-80'C反应 12-36小吋可得化合物 3。 化合物 1, 二环己基碳二酰亚胺 (DCC), 4位二甲胺基吡啶
(DMAP), 化合物 2的摩尔比是 1: 1-3: 0.8-1.2: 1-3,推荐的摩尔比例是 1 : 1 5-2: 0.9-1.1: 1.2-2.5。 所述的极性 有机溶剂可以是四氢呋喃, 丙酮, 乙睛, 二甲基甲酰胺等。
(2) 在四氢呋喃与甲醇或者乙醇的混合溶剂中, 化合物 3,氢气与催化剂在 25-80'C反应 12-48小时可得 化合物 4。化合物 3与催化剂的质量比是 1: 0.4-0.6,氢气压力为 1.0-1.2 MPa, 所述的四氢呋喃与甲醇或者乙醇 的混合溶剂体积比是 3-4: 1, 催化剂是钯 /碳或者氢氧化钯 Λ。
(3 )在非质子性有机溶剂中, 化合物 4, 化合物 5和二月桂酸二丁基锡在 40-70°C反应 48-72小时, 可得 化合物 6。 化合物 4, 化合物 5和二月桂酸二丁基锡的摩尔比例 1: 2-4: 0.2-0.8, 推荐的摩尔比例是 1: 2-2.5: 0.3-0.5„ 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲垸, 氯仿等。
(4)在非质子性有机溶剂中,化合物 4, DMAP,缚酸剂和化合物 7在 25-7CTC反应 24-48小吋,然后酸洗, 再水洗, 柱层析可得化合物 8。化合物 4, DMAP, 缚酸剂和化合物 7的摩尔比例是 1 : 0.8-2: 3-8: 4-8 ,推荐的摩 尔比例是 1 : 1-1.5: 5-6: 6-7。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲垸, 氯仿等, 缚酸剂可以是三 乙胺或者吡啶等。
(5 )在非质子性有机溶剂中, 化合物 8, DCC和化合物 9在 25-40°C反应 24-36小时, 可得化合物 10。 化 合物 8, DCC和化合物 9的摩尔比例 1 : 1-2: 2.0-2.5。所述非质子性有机溶剂可以是苯, 甲苯, 二氯甲垸, 氯仿。
本发明所述的含卟啉环功能基团的复合脂质的结构如下:
Figure imgf000020_0001
其中, ^ = 0;〜18垸基, R2 = C618垸基, 1, R2可以相同, 也可以不同; R3 = OEt或 OCH3 ; a = 2或 3; b = 2 或 3, c = l, 且当 b = 0时, c = 0; X = H, CH3, CH30, 卤素; M代表两个 H或者所有可以和卟啉环配位的金 属, 如铁 (Fe)、 锌 (Zn)、 镁 (Mg)、 锰 (Mn)、 钴 (Co)、 铜 (Cu)、 钼 (Mo)、 铬 (Cr)、 IL(Gd), 铱 (Ir)等。
本发明的制备路线如下所示:
Figure imgf000020_0002
8 Η,Ν'
5或者 9
Figure imgf000021_0001
其中, R^ C S院基, R2 = C S垸基, R1, R2可以相同, 也可以不同; R3=OEt或 OCH3; a = 2或 3, b = 2 或 3时, c=l, 且当 b = 0时, c = 0; X = H, CH3, CH30, 卤素; M代表两个 H或者所有可以和卟啉环配位的 金属, 如铁 (Fe)、 锌 (Zn)、 镁 (Mg)、 锰 (Mn)、 钴 (Co)、 铜 (Cu)、 钼 (Mo)、 络 (Cr)、 钆 (Gd)、 铱 (Ir)等, Y代表可 以和 M形成金属盐的阴离子, 如卤素阴离子, 乙酸根离子等。
化合物 1的制备方法参照己申请专利 (申请号: 200910073423.5); 化合物 2的制备方法参照文献、化学试 剂, 1994, 16(2), 105-106; Tetrahedron 2004, 60, 2757-2763)
本发明的方法具体描述如下:
(1) 在非质子性有机溶剂中, 化合物 1, DCC和化合物 2在 25-45Ό反应 24-72小时, 可得化合物 3。 化 合物 1,DCC和化合物 2的摩尔比例 1: 1.2-1.5: 1.1-2。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲垸, 氯仿, DMSO, DMF等。
(2)在非质子性有机溶剂中, 化合物 3, 化合物 4和二月桂酸二丁基锡在 40-8CTC反应 36-72小时, 可得 化合物 5。化合物 3, 化合物 4和二月桂酸二丁基锡的摩尔比例 1: 2-5: 0.2-1.0,推荐的摩尔比例是 1: 2-3: 0.3-0.6。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲垸, 氯仿等。
(3)在非质子性有机溶剂中,化合物 3,DMAP(4-二甲胺基吡啶 缚酸剂和化合物 6在 25-75 Ό反应 24-48 小时,然后酸洗,再水洗,柱层析可得化合物 7。化合物 3, DMAP, 缚酸剂和化合物 6的摩尔比例是 1: 0.8-2: 3-9: 3-10, 推荐的摩尔比例是 1: 1-1.5: 5-6: 5-8。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲垸, 氯仿等, 缚 酸剂可以是三乙胺或者吡啶等。
(4) 在非质子性有机溶剂中, 化合物 7, DCC和化合物 8在 25-45Ό反应 24-48小时, 可得化合物 9。 化 合物 7, DCC和化合物 8的摩尔比例 1: 1-2: 1.5-2.0。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲烷, 氯 仿等。
(5)在有机溶剂中,化合物 5或者 9与化合物 10在 25-180°C反应 2-48小吋,然后减压除去反应溶剂, 再 水洗, 粗产物柱层析可得化合物 11。 化合物 5或者 9与化合物 10的摩尔比例是 1: 5-25, 推荐的摩尔比例是 1:10-15, 推荐的反应温度是使各有机溶剂达到回流状态。 所述的有机溶剂可以是 DMSO, DMF, 甲醇, 乙醇, 二氯甲垸, 氯仿等。
本发明所述的基于季戊四醇的复合脂质的结构如下:
Figure imgf000021_0002
其中, 1^ =。6~18垸基, R2 = C6〜18垸基, R1, R2可以相同, 也可以不同; R3 = OEt或 OCH3; a = 2或 3;b =2或 3, c=L 且当 b = 0时, c = 0; X = H,C¾,C¾0, 卤氣 N02。 其具体的制备路线如下所示:
Figure imgf000022_0001
Figure imgf000022_0002
本发明的基于季戊四醇的复合脂质的另一种结构式为:
Figure imgf000022_0003
其中, R^C ^垸基, R2 = : e 院基? R1? R2可以相同, 也可以不同; R3=OEt或 OCH3; a 2或 3;b = 2 或 3, c=l, 且当 b = 0时, c = 0; d = 2或 3 其具体的制备路线如下所示:
Figure imgf000022_0004
化合物 1的制备方法参照文献 μ Am. Chem. Soc. 118, 8524-8530, 1996); 化合物 4的制备方法参照文献 、有机 化学. 2005, 9, 1049-1052)
本发明的方法具体描述如下:
( 1 )在极性有机溶剂中, 化合物 1与化合物 2在 25-7CTC反应 24-48小时, 然后酸洗, 再水洗, 重结晶可 得化合物 3。化合物 1与化合物 2的摩尔比例 1 : 1.5-4,推荐的摩尔比例是 1 : 2 - 2.5。所述的极性有机溶剂可以 是四氢呋喃, 丙酮, 乙睛, 二甲基甲酰胺等。
(2 ) 在极性有机溶剂中, 化合物 3, 二环己基碳二酰亚胺 (DCC ) , 4位二甲胺基吡啶 (DMAP) 和化合 物 4在 50-80'C反应 12-36小吋可得化合物 5。 化合物 3, 二环己基碳二酰亚胺 (DCC), 4位二甲胺基吡啶
(DMAP), 化合物 4的摩尔比是 1: 1-3: 0.8-1.2: 3-6,推荐的摩尔比例是 1: 1.5-2: 0.9-1.1: 4-5。 所述的极性有 机溶剂可以是四氢呋喃, 丙酮, 乙睛, 二甲基甲酰胺等。
(3 )在非质子性有机溶剂中, 化合物 5, 化合物 6和二月桂酸二丁基锡在 40-70°C反应 48-72小时, 可得 化合物 7。 化合物 5,化合物 6和二月桂酸二丁基锡的摩尔比例 1 : 1-2: 0.2-0.8, ,推荐的摩尔比例是 1 : 1-1.25: 0.3-0.5 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲烷, 氯仿等。
(4 )在非质子性有机溶剂中,化合物 5, DMAP,缚酸剂和化合物 8在 25-70'C反应 24-48小时,然后酸洗, 再水洗, 柱层析可得化合物 9。 化合物 5, DMAP, 缚酸剂和化合物 8的摩尔比例是 1 : 0.4-1 : 1-6: 2-5 ,推荐的摩 尔比例是 1 : 0.4-0.6: 3-5: 3-4。所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲烷, 氯仿等, 缚酸剂可以是三 乙胺或者吡啶等。
( 5 ) 在非质子性有机溶剂中, 化合物 9, DCC和化合物 10在 25-40Ό反应 24-36小时, 可得化合物 11。 化合物 9, DCC和化合物 10的摩尔比例 1 : 1-2: 1.1-1.5。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲烷, 氯仿等。
( 6 ) 在四氢呋喃与甲醇或者乙醇的混合溶剂中, 化合物 9,氢气与催化剂在 25-80'C反应 12-48小时可得 化合物 12。 化合物 9与催化剂的质量比是 1 : 0.4-0.6,氢气压力为 1.0-1.2 MPa, 所述的四氢呋喃与甲醇或者乙 醇的混合溶剂体积比是 3-4: 1, 催化剂是钯 «或者氢氧化钯 /碳。
( 7) 在非质子性有机溶剂中, 化合物 12,DCC和化合物 10在 25-40'C反应 24-36小时, 可得化合物 13。 化合物 12, DCC和化合物 10的摩尔比例 1 : 1-2: 1.1-1.5。所述的非质子性有机溶剂可以是苯, 甲苯,二氯甲垸, 氯仿等。
( 8 )在非质子性有机溶剂中, 化合物 13, DMAP, 缚酸剂和化合物 14在 25-7CTC反应 24-48小时, 然后酸 洗, 再水洗, 柱层析可得化合物 15。化合物 13, DMAP, 缚酸剂和化合物 14的摩尔比例是 1 : 0.4-1: 1-6: 4-8,推 荐的摩尔比例是 1 : 0.4-0,6: 3-5 : 5-7。 所述的非质子性有机溶剂可以是苯, 甲苯, 二氯甲垸, 氯仿等, 缚酸剂可 以是三乙胺或者吡啶等。
本发明的复合脂质具有如下优点:
1、 本发明复合脂质通过水解、 缩合反应制得的脂质体 (又称瓷质体) 大小均匀, 且表面具有硅酸盐网 络结构, 稳定性高。 向脂质体溶液中加入表面活性剂 Triton X-100 (TX-100)测试脂质体粒径的变化, 并与磷脂 质 (DSPC ) 制成的传统脂质体在同等条件下粒径变化的比较来考察瓷质体的稳定性, 当加入至 30 倍量的 TX-100水溶液后, 本发明脂质制备的脂质体 (瓷质体) 的大小基本保持不变, 而 DSPC法制成的传统脂质体 在加入 5倍量的 TX-100水溶液后, 其粒径明显减小, 说明其囊泡结构已被破坏, 从而证明本发明脂质制备的 脂质体具有比传统脂质体更好的稳定性。
2、 本发明复合脂质通过水解、 缩合反应制得的脂质体(又称瓷质体), 复合脂质形成的脂质体中可以通 过电子共轭吸引力或者静电吸引作用与要包封的疏水或者亲水药物发生作用,从而提高对药物的包封率,包封 率达到 95.4 %〜99.0%。
3、 本发明复合脂质形成的脂质体的表面具有硅酸盐网络结构, 药物不易泄漏。
4、 本发明的制备方法工艺简单, 原料廉价, 反应条件温和, 具有较强的可操作性, 促进临床应用和工 业化生产。
5、 本发明脂质制备的表面具有硅酸盐网络结构的脂质体比现有脂质体更稳定, 在作为各类药物、 染料、 量子点、 磁性纳米粒子和 DNA等的载体方面将具有较好的应用前景。 附图说明 图 1是实施例 10制备的瓷质体 1的透射电镜图; 图 2是实施例 10制备的瓷质体 1的粒径分布图; 图 3为 实施例 18制备的瓷质体 2的透射电镜图; 图 4为实施例 18制备的瓷质体 2的粒径分布图; 图 5为实施例 19 制备的瓷质体 3的透射电镜图; 图 6为实施例 19制备的瓷质体 3的粒径分布图; 图 7为瓷质体的红外光谱图, 其中, 图 7中 1表示实施例 10制备的瓷质体 1的红外光谱, 2表示实施例 18制备的瓷质体 2的红外光谱, 3 表示实施例 19制备的瓷质体 3的红外光谱; 图 8为实施例 31制备的瓷质体的粒径分布图; 图 9为实施例 31 制备的瓷质体的扫描电镜图; 图 10为实施例 32制备的脂质体溶液在 365nm下的紫外可见吸收光谱图; 图 11 为实施例 38制备的复合脂质体形成的瓷质体的透射电镜图; 图 12为实施例 39制备的对应的复合脂质体的稳 定性实验, 其中 (1 ) 表示复合脂质体在不同倍数表面活性剂 TX-100存在时的粒径变化; (2)表示传统脂质 DSPC制备的脂质体在不同倍数表面活性剂 TX-100存在时的粒径变化; 图 13为实施例 46制备的脂质体的粒 径分布图; 图 14为实施例 46制备的脂质体的透射电镜图; 图 15为复合脂质体的氯仿溶液的紫外 -可见吸收光 谱图, 其中, (1 )是实施例 43合成的脂质化合物 45的氯仿溶液的紫外 -可见吸收光谱图, (2)是实施例 46制 备的复合脂质体溶液的紫外 -可见吸收光谱图; 图 16为复合脂质体溶液在不同倍数表面活性剂 TX-100存在下 粒径的变化图, 其中 (1 )是实施例 46制备的复合脂质体溶液在不同倍数表面活性剂 TX-100存在下粒径的变 化图; (2)是实施例 46所述的 DSPC脂质体溶液在不同倍数表面活性剂 TX-100存在下粒径的变化图; 图 17 为实施例 52制备的脂质体的透射电镜图; 图 18为实施例 55制备的脂质体的透射电镜图。
具体实施方式
通过下述具体实施方式将有助于理解本发明, 但并不限制本发明的内容。
实施例 1
本实施方式的基于季戊四醇的复合脂质的结构式为:
Figure imgf000024_0001
R2 为 C6〜 C】s 垸基, R5 表示 -CO(CH2)5N(CH2)2(C¾)3Si(X)3Y 、 -CO(CH2)2CONH(CH2)3Si(X)3 、 -〇0(( ¾)3( (^ ( ¾)3 ( )3或-( (^ ( ¾)3 ( )3, 其中 X为乙氧基或甲氧基, Y为卤代基, a等于 2或 3。
本实施方式脂质制备的脂质体大小均匀, 且表面具有硅酸盐网络结构, 提高了其稳定性; 向脂质体溶液 中加入表面活性剂 Tnton X-100 (TX-100)测试脂质体粒径的变化, 并与 DSPC制成的传统脂质体在同等条件下 粒径变化的比较来考察瓷质体的稳定性, 当加入至 30倍量的 TX-100水溶液后, 本发明瓷质体的大小基本保 持不变, 而 DSPC制成的传统脂质体在加入 5倍量的 TX-100水溶液后, 其粒径明显减小, 说明其囊泡结构己 被破坏,从而证明本实施方式的瓷质体具有比传统脂质体更好的稳定性。本实施方式的脂质制备的脂质体的包 封率在 95.4 %〜98.7%。
实施例 2
本实施方式与具体实施方式 1不同的是: 所述的卤代基为 Cl、 Br或 I。 其它与实施例 1相同。
实施例 3
本实施方式与具体实施方式 1或 2不同的是: R1为正己基、 正辛基、 十一垸基、 十二烷基、 十三烷基、 十四烷基、 十五烷基、 十六烷基、 十七垸基或十八垸基。 其它与实施例 1、 2相同。
实施例 4
本实施方式与具体实施方式 1、 2或 3不同的是: R2为正己基、 正辛基、 十一垸基、 十二垸基、 十三烷 基、 十四垸基、 十五垸基、 十六垸基、 十七烷基或十八垸基。 其它与实施例 1、 2、 3相同。
实施例 5
实施例 1所述的基于季戊四醇的复合脂质的制备方法按下述步骤进行的: 1 ) 将垸基胺和溴代烷加热回流
5天,
Figure imgf000024_0002
, 所述溴代垸是 R2-Br, 其中, R1 为 C6〜C1S烷基; R2为 C6〜C1S垸基; ΌΗ
2 )将化合物 1与丁二酸酐或戊二酸酐亲核反应得到结构式为 R2 的化合物 2, 接着将化合物
0 0
Ό OH
2与过量 4〜6倍的季戊四醇进行酯化反应得到结构式为 OH OH的化合物 3, 其中 a为 2或 3 ;
3 ) 将化合物 3 与异氰酸丙基三乙氧基硅垸或异氰酸丙基三甲氧基硅垸进行亲核反应, 即得结构式为
Figure imgf000025_0001
的复合脂质, 其中 R511为 -CONH(C¾)3Si(X)3, X为乙氧基或甲氧基; 或者将化合物 3与 6-溴己酰氯进行酯化反应, 接着与二甲胺气体的饱和四氢呋喃溶液进行亲核反应, 然
后再与溴丙基三乙氧基硅垸或溴丙基三甲氧基硅烷进行亲核反应,
Figure imgf000025_0002
的复合脂质, 其中 R52为 -CO(C¾)5N(CH2)2(C¾)3Si(X)3Y, X为乙氧基或甲氧基, Y为卤代基;
或者将化合物 3与丁二酸酐或戊二酸酐进行亲核反应,然后再与氨丙基三乙氧基硅烷或氨丙基三甲氧基
0 〇
硅烷进行缩合反应, 脱水得到, 即得结构式为
Figure imgf000025_0003
的复合脂质, R«为
-CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3, X为乙氧基或甲氧基
实施例 6
Figure imgf000025_0004
的基于季戊四醇的复合脂质, 其中 R1为 C6〜C1S烷基, R2 为 C6〜C1 S垸基, R^ R2, a等于 2或 3, R511为 -CONH(CH2)3Si(X)3, X为乙氧基或甲氧基。
其制备方法如下: 一、 在 95 'C条件下, 将摩尔比为 1 : 2的垸基胺 W-Ntt和溴代烷 R2-Br以碳酸钾为催
NH NH
化剂, 在乙醇溶剂中加热回流 5天制得化合物 ; 二、 再将 与丁二酸酐或戊二酸酐加入四氢呋喃溶
0 0
R
ΌΗ Η
剂中, 室温下搅拌两天得到 (亲核反应), R2 与丁二酸酐或戊二酸酐的摩尔比为 1 : 1.2,
Figure imgf000026_0001
与过量 4〜6倍的季戊四醇在二甲亚砜(DMSO)或二甲基甲酰胺(DMF〕 中, 以二环己 基碳二亚胺(DCC) 作缩合剂, 以 4-二甲氨基吡啶 (DMAP) 作催化剂在 40°C下搅拌 1天 (酯化反应) 得到
R
R2'
结构式为 的化合物; 三、 在氯仿或二氯甲垸溶剂中, 以二月桂酸二丁基锡作催化剂
Figure imgf000026_0002
, 与异氰酸丙基三乙氧基硅垸或者异氰酸丙基三甲氧基硅垸按 1 : 3的摩尔比在 5CTC条 件下亲核反应 3天得到 R511为 CONH(CH2 Sip¾的基于季戊四醇的复合脂质, m=2或 3, 制备路线如式 I所示。
Figure imgf000026_0003
(式 I ) 式 I中的 L表示可离去基团。
实施例 7
除了 R1与 R2不同, 在 95 °C条件下, 垸基胺 ^-ΝΗ2与溴代垸 Ζ- R2按 1: 2的摩尔比, 以碳酸钾为催化 剂, 在乙醇溶剂中加热回流 5天制得 ί
R 之外, Ζ表示溴代基, 其余与实施例 6相同。
实施例 8
Figure imgf000026_0004
基于季戊四醇的复合脂质, 其中 R1为 C6〜C18垸基, R2 为 C6〜C1 S垸基, R521表示 CO(CH2)5N(CH2)2(CH2)3Si(X)3Y, X是乙氧基或甲氧基, Y表示 Cl、 Br或 I 制备方法如下: 在氯仿或二氯甲烷溶剂中, 以有机碱 (如三乙胺、 吡啶或 DMAP ) 作催化剂, 化合物 0 0
1,
Ό OH
OH OH先与 6-溴己酰氯按 1 : 3.5 的摩尔比进行酯化反应, 再与二甲胺气体的饱和四氢呋喃溶 液亲核反应后再与溴丙基三乙氧基硅垸或溴丙基三甲氧基硅垸按 1 : 4 的摩尔比进行亲核反应得到 R521 = CO(CH2)5N(CH2)2(CH2)3Si(X)3Y的基于季戊四醇的复合脂质。 本实施例中所述化合物 OH OH, 按实施例 6或 7的方法制备而成。
实施例 9
Figure imgf000027_0001
制备结构式为的 基于季戊四醇的复合脂质, 其中 R1为 C6〜C1 S烷基, R2 为 C6〜C18烷基, R531表示 CO(CH2)mCONH(CH2)3Si(X)3 ; a为 2或 3。
制备方法如下: 化合
Figure imgf000027_0002
先与丁二酸酐(或戊二酸酐)按 1 : 6的摩尔比进行亲核反 应后所得物质再与氨丙基三乙氧基硅烷或氨丙基三甲氧基硅烷按 1 : 4.5 的摩尔比在二环己基碳二酰亚胺 (DCC)或 EDC催化下室温搅拌 24小时缩合反应脱水得到
Figure imgf000027_0003
的基于季戊四醇 的复合脂质。
本实施例中所述化合
Figure imgf000027_0004
, 按实施例 6或 7的方法制备而成。
实施例 10 制备分子式为 C71H144N4018Si3的基于季戊四醇的复合脂质
制 备方法 : 在 电 磁 搅拌下 , 向 100 毫升 两颈 圆底烧瓶 中 加 入(0.24 g; 0.35
mmol)
Figure imgf000027_0005
,异氰酸丙基三乙氧基硅垸 (0.26 g, 1.05 mmol) 和催化剂二月桂酸二丁基锡 (0.069 g, 0.105 mmol), 氮气保护下将上述混合物置于 40'C油浴中加热 48小时, 减压除去反应溶剂,粗产物用硅胶柱层析方法分离提纯得基于季戊四醇的复合脂质(无色油状物〕,产率 32%。
本实施方式制得复合脂质 C71H144N4018Si3 : !H NMR (300 MHz, CDC13) δ: 062 (t, J = 8.1 Hz, 6H, SiCH2CH2CH2NH), 0.88 (t, J = 6.6 Hz, 6H, NCH2CH2(CH2)13CH3), 1.18—1.62 (m, 89H, NC¾CH2(CH2)13C¾和 CH3CH2OSi和 SiC¾CH2CH2NH和 NCH2C¾(CH2)13C¾), 2.60〜2.75 (m, 4H, COC¾CH2CO), 3.13〜3· 16 (m, 10H, SiCH2CH2CH2NH 和 NC¾CH2(CH2)13CH3), 3.85〜3+78 (m, 18H, CH3CH2OSi), 4+ 13〜4.08 (m, 8H, COOCH2), 5.30 (s, 3H, NH). MS: 理论值 1426.18, 实验值 [M]+: 1427.0; [M +Na]+: 1448.8。
HO 。 r 、 、.-''、-、-.''.、、z、、..-'.'、、.,-■'
,·'、> ·'-''、- 一、、 ..'-、 >.'-、、■'·■、''
'、 、、 '八、,·'、、,·、、,、、...-. \
,£ # !
*- ( ¥·¾ 、、..、■■■■、,„.· .„,0、、 .. "
:丁'鰣 ί¾3 j EtO表示乙氧基。
制备瓷质体(即脂质体):取本实施例制备的 2 mg的基于季戊四醇的复合脂质 C71H144N4018¾放置于 20mL 的圆底烧瓶中, 加入 5mL氯仿溶解, 然后减压缓慢旋蒸使其在烧瓶内壁形成薄膜, 35°C真空干燥箱中干燥以 完全除去氯仿;再往形成薄膜的烧瓶中加入不同 pH 的水溶液使溶液浓度为 0.5 mmol/L。用探头式超声仪超声 5 mm得到有一定浑浊度的溶液, 室温下放置 12小时即可得到瓷质体 1的水溶液。 用 DSC仪器及 TEM仪器分 别检测其大小和形貌。 具体透射电镜如附图 1所示, 粒径如图 2及表 1所示。
由图 1可见本实施方式脂质制备的瓷质体粒径基本在 150nm左右。 由图 2和表 1可见其平均粒径为 143 nm, 粒径分布较窄, 多分散指数为 0.237。
Figure imgf000028_0001
实施例 11
OR4 OR5 结构式为0 R4 or4的基于季戊四醇的复合脂质,其中 R4表示 C6〜C1S垸基, R5表示 CONH(CH2)3Si(X)3
CO(C¾)aCONH(CH2)3Si(X)3或 CO(CH2)5N(CH2)2(CH2)3Si(X)3Y, 其中 a等于 2或 3, X是可水解基团, 可水 解基团为乙氧基或甲氧基, Y表示卤代基。
本实施方式脂质制备的脂质体大小均匀, 且表面具有硅酸盐网络结构, 提高了其稳定性; 向脂质体溶液 中加入表面活性剂 Triton X-100 (TX-100)测试脂质体粒径的变化, 并与 DSPC制成的传统脂质体在同等条件下 粒径变化的比较来考察瓷质体的稳定性, 当加入至 3C倍量的 TX-100水溶液后, 本发明瓷质体的大小基本保 持不变, 而 DSPC制成的传统脂质体在加入 5倍量的 TX-100水溶液后, 其粒径明显减小, 说明其囊泡结构已 被破坏,从而证明本实施方式的瓷质体具有比传统脂质体更好的稳定性。本实施方式脂质制备的脂质体的包封 率在 95.4 %〜98.7%。
实施例 12
除了所述的卤代基为 Cl、 Br或 I之外, 其余与实施例 11相同。
实施例 13
除了 R4为正己基、 正辛基、 十一垸基、 十二垸基、 十三烷基、 十四烷基、 十五垸基、 十六垸基、 十七 烷基或十八烷基之外, 其余与实施例 11或 12相同。
实施例 14
制备结构式为 Gr4 qr4的基于季戊四醇的复合脂质, 其中 R4表示 C6〜C18垸基, R3表示
CONH(C¾)3Si(X)3、 CO(CH2)aCONH(CH2)3Si(X)3或 CO(C¾)5N(CH2)2(C¾)3Si(X)3Y, 其中 a等于 2或 3, X 是可水解基团, 可水解基团为乙氧基或甲氧基, Y表示卤代基。
制备方法如下: 一、 在碱性条件下, 将季戊四醇与 3 倍量的溴代垸 R4-Br亲核取代反应 6 小时得到
Figure imgf000029_0001
与异氰酸丙基三乙氧基硅烷或异氰酸
O + OR51 丙基三甲氧基硅垸亲核反应 2~3天得到基于季戊四醇的复合脂质 0R , 其中 R51 = CONH(C¾)3Si(X)3, R*0、 或者将 R 先与 6-溴己酰氯进行酯化反应, 然后与二甲胺气体的饱和四氢呋喃溶液亲核反应后再
OR4 OR52 与溴丙基三乙氧基硅垸或溴丙基三甲氧基硅烷亲核反应得到基于季戊四醇的复合脂质0 R 0R , 其中 R52 =
R4。 V""¾H
CO(CH2)5N(CH2)2(CH2)3Si(X)3Y, 或者将 R+0 与丁二酸酐(或戊二酸酐)亲核反应后再与氨丙基三
OR4 OR53 乙氧基硅烷或氨丙基三甲氧基硅垸缩合反应脱水得到基于季戊四醇的复合脂质0 R+ or4 , 其中 R53=
CO(CH2)aCONH(CH2)3Si(X)3; 其中 R4为 C6~C1S院基, X是可水解基团, 可水解基团为乙氧基或甲氧基, Y 表示卤代基, a等于 2或者 3。
实施例 15
OR4 OR51 制备结构式为 Qr4 QRt 的基于季戊四醇的复合脂质, 其中 R4表示 C6〜C1S 烷基, R51 =
CONH(CH2)3Si(X)3, X为乙氧基或甲氧基:
其制备方法如下: 一、 将季戊四醇与 3 倍量的溴代垸 R4— Br在碱性条件下亲核取代反应 6 小时得到
R+0、
: H
Figure imgf000029_0002
; 二、 在氯仿或二氯甲烷溶剂中, 以二月桂酸二丁基锡作催化剂, R
丙基三乙氧基硅垸或者异氰酸丙基三甲氧基硅烷按 1: 1的摩尔比在 5CTC条件下亲核反应 2〜3天得到得到基
OR4 OR51 于季戊四醇的复合脂 DR 0R , 其中 R51为 <:ΟΝΗ(< Η2)3 (Χ)3
基于季戊四醇的复合脂质制备路线如式 π所示。
RO、
R 0,
Figure imgf000029_0003
r4° (式 II ) 式 II中的 L表示可离去基团。
实施例 16
OR4 OR52 制备结构式为 GRi 0R4 的基于季戊四醇的复合脂质, 其中 R4表示 C6〜C18 烷基, R5: CO(CH2)5N(CH2)2(CH2)3Si(X)3Y, X为乙氧基或甲氧基, Y为 Cl、 Br或 I:
制备方法如下: 在氯仿或二氯甲烷溶剂中, 以有机碱 (如三乙胺、 吡啶或 DMAP ) 作催化剂,
Figure imgf000030_0001
先与 6-溴己酰氯按 1 : 1.5的摩尔比进行酯化反应, 再与二甲胺气体的饱和四氢呋喃溶液亲核 反应后再与溴丙基三乙氧基硅烷或溴丙基三甲氧基硅烷按 1 : 4 的摩尔比进行亲核反应得到 R52 =
OR4 OR52
CO(CH2)5N(CH2)2(CH2)3Si(X)3Y的基于季戊四醇的复合脂质。Κ4 OR4
本实施方式所述
Figure imgf000030_0002
按照实施例 15的方法制备而成。
实施例 17
OR4 OR53 制备基于结构式为: gr4 or+ 的季戊四醇的复合脂质, 其中 R4表示 C6〜C 烷基, R5 =
CO(CH2)aCONH(CH2)3Si(X)3, 其中 a等于 2或 3, X为乙氧基或甲氧基:
R÷0、 制备方法如下: 先与丁二酸酐 (或戊二酸酐) 按 1 : 2的摩尔比进行亲核反应后所得物 质再与氨丙基三乙氧基硅烷或氨丙基三甲氧基硅垸按 1 : 1.5的摩尔比在 DCC或 EDC催化下室温搅拌 24小时
OR* OR53 缩合反应脱水得到 R =CO(C )aCONH(CH2)3Si(X)3的基于季戊四醇的复合脂质 OR 。
本实施方式所述
Figure imgf000030_0003
按照实施例 15的方法制备而成。
实施例 18
制备分子式为 C63H129N08Si的基于季戊四醇的复合脂质
制 备 方 法 如 下 : 在 电 磁 搅 拌 下 , 向 100 亳
Figure imgf000030_0004
(0.25 g, 0.31 mmol), 用 CH2C12 (20 mL)溶解, 再依次往反应瓶 中加入异氰酸丙基三乙氧基硅烷 (0.073 g, 0.31 mmol) 和二月桂酸二丁基锡 (0.039 g, 0.062 mmol),氮气保护下 将上述混合物置于 50°C油浴中加热 48小时, 减压除去反应溶剂, 粗产物用硅胶柱层析方法分离提纯得基于季 戊四醇的复合脂质, 产率 81%,
Figure imgf000031_0001
本实施方式制得复合脂质 C63H129N08Si: lU NMR (CDC13, 300 MHz) δ: 0.63 (t, J = 8.2 Hz, 2H, SiCH2CH2CH2NH), 0.88 (t, J = 6.6 Hz, 9H, CH3), 1.20 ~ 1.26 (m, 87H, SiOCH2CH3), 1.47 ~ 1.65 (m, 8H, SiCH2CH2CH2NH和 OCH2CH2(CH2)13CH3), 3.16 (t, J = 5.1 Hz, 2H, SiCH2CH2CH2NH), 3.15― 3.19 (m, 12H, CH2OCH2), 3.83 (q, J = 7.0 Hz, 6H, SiOCH2CH3), 4.10 (s, 2H, COOCH2CCH20), 4.83 (s, 1H, NH). MS理论值: 1056.7, 实验值 [M]+: 1057.4.
本实施方式制备的基于季戊四醇的复合脂质 C63H129N08Si按照实施例 10相同的方法制备瓷质体 2, 瓷质 体 2的透射电镜如附图 3所示, 粒径分布如图 4及表 2所示。
由图 3可见本实施方式脂质制备瓷质体 2的粒径基本在 200nm左右。由图 4和表 2可见其平均粒径为 196 nm, 粒径分布较窄, 多分散指数为 0.243。
表 2瓷质体 2的性能检测结果
实施例 19
制备分子式为 < 66Η133Ν09 的基于季戊四醇的复合脂质
制备方法如下:
步骤一、在电磁搅拌下,向 50毫升圆底烧瓶中加入
Figure imgf000031_0002
(0 17 g,
0.21 mmol) 和丁二酸酐 (0.042g, 0.42 mmol), 用 CH2C12 (20 mL)溶解, 再往反应瓶中依次加入 DMAP (0.028g, 0.21 mmol) 和三乙胺(0.084 g, 0.84 mmol), 将上述混合物置于 30°C油浴中加热 5天。 减压浓缩反应液, 所得 粗产物用硅胶柱层析分离提纯得基于季戊四醇的复合脂质中间体 C57H11207 (白色固体), 产率 70%。
Figure imgf000031_0003
本实施方式制得复合脂质中间体 C57H11207: Ή NMR (CDCI3, 300 MHz) δ: 0.90 (t, J = 6.6 Hz, 9H, CH3), 1.25 〜 1.52 (m, 86H, OCH2C¾(C¾)13CH3 和 NCH2CH2(CH2)13C¾禾卩 COOC¾CC¾0), 2.85 〜2.89 (m, 4H, COCH2CH2CO), 3.33 -3.37 (m, 12H, HOCH2CCH20和 OCH2CH2(C¾)13C¾), 4.15 (s, 1H, OH). MS 理论值: 909.49, 实验值 [M]+: 910.1。
步骤二、 在电磁搅拌下, 向 50毫升圆底烧瓶中加入
Figure imgf000032_0001
(0.255 g, 0.28 mmol), 用 CH2C12(20 mL)溶解, 再往反应瓶中 DCC (0.069 g, 0.336 mmol), 室温搅拌 15分钟后, 再加入氨丙基三乙氧基硅垸(0.093 g, 0.42 mmol), 室温下再搅拌 1天。减压浓缩, 所得粗产物用硅胶柱层析分 离提纯得基于季戊四醇的复合脂质(白色固体), 产率 50%。
Figure imgf000032_0002
本实施 方式制得复合脂质 C66H133N09Si: 'H NMR (CDCI3, 300 MHz) δ: 0.64 (t,J = 8.2 Hz, 2H, SiCH2CH2CH2NH), 0.88 (t, J = 6.7 Hz, 9H, CH3), 1.16 —1.32 (m, 87H, OCH2CH2(CH2)13CH3 和 SiOCH2CH3), 1.43 〜1.68 (m, 8H, OCH2CH2(CH2)13CH3 禾 Π SiCH2CH2CH2NH), 2.45 (t, J = 7.1 Hz, 2H, COCH2CH2CO), 2.67 (t, J = 7.1 Hz, 2H, COCH2CH2CO), 3.20 -3.37 (m, 14H, SiCH2CH2CH2NH和 COOCH2CCH20和 OCH2CH2(CH2)13CH3), 3.83 (q, ·/ = 7.0 Hz, 6H, SiOCH2CH3), 4.12 (s, 2H, COOCH2CCH20). MS理论值: 1112.8, 实验值 [M]+: 1113.5。
本实施方式制备的基于季戊四醇的复合脂质 C66H133N09Si按照实施例 10相同的方法制备瓷质体 3, 瓷质 体 3的透射电镜如附图 5所示, 粒径分布如图 6及表 3所示。
由图 5可见本实施方式脂质制备瓷质体的粒径基本在 200nm左右。 由图 6和表 3可见其平均粒径为 216 nm, 粒径分布较窄, 多分散指数为 0.222。
表 3瓷质体 3的性能检测结果
Figure imgf000032_0003
实施例 20 考察所形成瓷质体 1、 2和 3的稳定性
分别将实施例 10、 18、 19对应的复合脂质 C71H144N4018Si3、 C63H129N08Si、 C66H133N09Si制备成瓷质体 1、 瓷质体 2、 瓷质体 3,通过向脂质体溶液中加入不同比例的表面活性剂 Triton X-100 (TX-100), 测定脂质体粒径 的变化,并与 DSPC制成的传统脂质体在同等条件下粒径变化的比较来考察瓷质体的稳定性,结果如表 4所示, 当加入至 30倍量的 TX-100水溶液后, 瓷质体的大小基本保持不变, 而 DSPC制备的传统脂质体在加入 5倍 量的 TX-100水溶液后, 其粒径明显减小, 说明其囊泡结构已被破坏, 从而证明瓷质体具有比传统脂质体更好 的稳定性, 瓷质体稳定性检测结果如表 4所述。
表 4瓷质体的稳定性
TX-100/脂质 平均粒径 Dhy(单位: nm) 摩尔比 瓷质体 1 瓷质体 2 瓷质体 3 DSPC脂质体
156.1 169 183 161.7
155.9 166 179.5 20.1
167.6 166.7 182 -
173.4 165.5 184.6 - κ 22 " 15 " o o 55 " 179.9 166.3 189.1 - 倍倍倍倍倍倍倍
177.6 167.4 197.1 -
212.6 173.9 199.4 - 实施例 21
制备 CTOH144N08Si+的基于季戊四醇的复合脂质
制备方法如下 : 步骤一 、 在 电磁搅拌下 , 向 50 亳升 圆底烧瓶 中 依 次加 入
Figure imgf000033_0001
(0.65g, 0.80 mmol),二氯甲垸 (20 mL), DMAP (0.10 g, 0.8 mmol) 和三乙胺 (0.162g, 1.6mmol),将上述溶液冷却至 0°C , 再逐滴加入 6-溴己酰氯 (0.27g, 1.2 mmol) 的二氯甲垸溶 液 (8mL), 0°C下搅拌 1小时, 再于室温下搅拌 16小吋后减压浓缩, 所得粗产物用硅胶柱层析分离提纯得基于 季戊四醇的复合脂质中间体 C55H117Br05 (无色油状物〕, 所述的中间体 C55H„7Br05,产率 56%。
Figure imgf000033_0002
本实施方式制得复合脂质中间体 C55H117Br05: ¾ NMR (CDC13, 400 MHz) δ: 0.88 (t, J = 7.2 Hz, 9H, CH3), 1.26 - 1.45 (m, 78H, OCH2CH2(CH2)13CH3) 1.45 - 1.52 (m, 8H, OCH2CH2(CH2)13CH3和 BrCH2CH2CH2), 1.84 ~ 1.91 (m, 4H, BrCH2CH2CH2CH2CH2CO), 2.31 (t, J = 74 Hz, 2H, BrCH2CH2CH2CH2CH2CO), 333 - 3.37 (m, 12H, COOCH2CCH20 禾!] OCH2CH2(CH2)13CH3), 3.40(t, J = 7.6 Hz, 2H, BrCH2), 4.11 (s, 2H, COOCH2). MS 理论值: 986.46, 实验值 [M]+: 986.0, 988.0。 步骤二、 在电磁搅拌下, 将
Figure imgf000033_0003
( 0.45g, 0.46mmol )加入 经二甲胺气体饱和的四氢呋喃 (40mL)溶液中, 于室温下搅拌 3 天, 后通入空气将未反应的二甲胺气体除去, 再减压除去溶剂四氢呋喃, 所得固体用氯仿 (20mL)溶解, 后依次用饱和氯化钠水溶液, 4%的碳酸氢钠水溶液 洗涤, 无水硫酸镁干燥, 所得粗产物经硅胶柱层析分离提纯得基于季戊四醇的复合脂质中间体 C61H123N05 (白 色固体), 产率 70%。
Figure imgf000033_0004
本实施方式制得复合脂质中间体 C61H123N05: Ή NMR (CDC13, 400 MHz) S: 0.88 (t, J = 7.1 Hz, 9H, CH3): 1.26〜 1.47 (m, 78H, OCH2C¾(CH2)13CH3) 1.48〜 1.64 (m, 12H, OCH2CH2(CH2)13C¾和 NCH2CH2 CH2 C¾), 2.26 (s, 6H, N(CH3)2), 2.32 (t, J = 7.2 Hz, 2H, NCH2CH2CH2CH2CH2CO), 2.46 (t, J = 7.1 Hz, 2H, NCH2CH2CH2CH2CH2CO), 3.33 ~ 3.40 (m, 12H, COOCH2CCH20 和 OCH2CH2(CH2)13CH3), 4.10 (s, 2H. COOCH2). MS 理论值:950.63,实验值 [M]+: 951.7。 步 骤 三 在 电 磁 搅 拌 下 , 往 50 亳 升 的 圆 底 烧 瓶 中 依 次 加 入
Figure imgf000034_0001
g, 0.316 mmol),干燥的 DMF溶齐 J (25mL), 溴丙基三乙氧基硅垸(0.516 g, 1.264 mmol),将上述混合物在氮气保护下室温搅拌 5天,减压除去溶剂,所得粗 产物经硅胶柱层析分离提纯得基于季戊四醇的复合脂质 C7。H144NOsSi+ (无色油状物),产率 41%.
Figure imgf000034_0002
本实施方式制得复合脂质 C7。H144N08Si+: !H NMR (CDC13, 400 MHz): d = 0.59 (t,■/ = 7.8 Hz, 2H, SiCH2), 0.88 (t, J = 6.6 Hz, 9H, OCH2CH2(CH2)13CH3), 1.25 〜 1.43 (m, 89H, NCH2CH2(CH2)13CH3, N+CH2CH2CH2CH2CH2CO, CH3CH2OSi), 1.73 ~ 1.81 (m, 12H, OC¾CH2(C¾)13CH3,CH2CH2CH2N+CH2 C¾CH2CH2C¾CO), 2.33 (t, J = 7.0 Hz, 2H, N+CH2CH2CH2CH2CH2CO), 3.24〜 3.26 (m, 4H,CH2CH2N+CH2CH2), 3.31 (s, 6H, CH2N+(CH3)2CH2), 3.37 ~ 3.39 (m, 6H, OCH2CH2(CH2)13CH3), 3.7 〜 3.83 (m, 12H, CH3CH2OSi, CCH20), 4.01 (s, 1H, COOCH2).
实施例 22
制备 Cs。H156N4021Si3的基于季戊四醇的复合脂质
制 备 方 法 如 下 : 步 骤 一 , 在 电 磁 搅 拌 下 , 向 50 毫 升 圆 底 烧 瓶 中 加 入
Figure imgf000034_0003
(0.50 g, 0.73 mmol)和丁二酸酐 (0.438 g, 4.38 mmol), 用 CH2C12 (25 mL)溶解, 再往反应瓶中依次加入 DMAP (0.089 g, 0.73 mmol)和三乙胺 (0.293 g, 2.92 mmol), 将上述混合物置于 30°C油浴中加热 4天。减压浓缩反应液, 所得粗产物用硅胶柱层析分离提纯得基于 季戊四醇的复合脂质中间体 C53H93N015 (白色固体), 产率 75%。
Figure imgf000034_0004
本实施方式制得复合脂质中间体 C53H93N015 : Ή NMR (CDC13, 400 MHz) δ: 0.88 (t, J = 6.7 Hz, 6H, NCH2C¾(CH2)13CH3), 1.26 〜1.52 (m, 56H, NCH2CH2(CH2)13CH3, NCH2CH2(CH2)13C¾), 2.61 〜2.72 (m, 4H, NCOCH2CH2CO), 2.73 —2.82 (m, 12H, COCH2CH2COOH), 3.20-3.21 (m, 4H, NCH2), 4.00 (s, CCH2COO). MS 理论值: 984.30, 实验值 [M]+: 985.4。
步 骤 在 电 搅 拌 下 , 向 50 亳 升 圆 底 烧 瓶 中 加 入
Figure imgf000034_0005
(0.30 g, 0.305 mmol), 用 CH2C12 (20 mL)溶 解,再往反应瓶中 DCC (0.075 g, 0.366 mmol),室温搅拌 15分钟后, 再加入氨丙基三乙氧基硅烷 (0.308 g, 1.38 mmol) , 室温下再搅拌 1 天。 减压浓缩, 所得粗产物用硅胶柱层析分离提纯得基于季戊四醇的复合脂质
C80H156N4O21Si3 (无色油状物), 产率 53%。
Figure imgf000035_0001
本实施方式制得复合脂质 Cs。H156N4021Si3 : ¾ NMR (CDC13, 400 MHz) δ: 062 (t, J = 8.0 Hz, 6H, SiCH2CH2CH2NH), 0.88 (t, J = 6.6 Hz, 6H, NCH2CH2(CH2)13CH3), 1.20 —1.61 (m, 89H, NCH2CH2(C¾)13C¾ 禾口 CH3C¾OSi, SiCH2CH2CH2NH, NCH2CH2(CH2)13CH3), 2.45 —2.75 (m, 12H, COCH2CH2CO), 3.13 〜3.30 (m, 10H, SiCH2CH2CH2NH 禾!] NCH2CH2(CH2)13C¾), 3.78〜 3.83 (m, 18H, C¾CH2OSi), 4.02 (s, 8H, CCH2OCO). MS理论值: 1594.37, 实验值 [M]+: 1595.4. ο ο
实施例 23 R
将 6 mmol的化合物双十六胺 (31)与 12 mmol的化合物丁二酸酐 (32) 混合后, 溶解于 60 mL的四氢呋喃 中 加热至完全溶解后, 室温搅拌 26小时, 旋干溶剂, 再加入 50mL氯仿溶解, 所得溶液依次用 10%的盐酸 水溶液和饱和食盐水洗涤, 无水硫酸镁干燥, 过滤所得滤液旋干后, 柱层析分离提纯得分子式为 C36H71N03
0 0
. N '― ϋ ΌΗ
的化合物 33, 其结构式为 R1 , R2为 C16烷基, a为 2, 产率 78%.
¾ NMR (400 MHz, CDCI3, TMS): S = 0.88 (t, J = 6.6 Hz, 6H, NC¾C¾(CH2)13CH3), 1.26 (m, 52 H, NCH2CH2(CH2)13CH3), 1.54 (m, 4H, NCH2CH2(CH2)13CH3), 2.69 (m, 4 H, HOCO(CH2)2CON), 3.15 (t, 2H, J = 7.8 Hz, NCH2CH2 (CH2)13CH3), 3.32 ppm (t, 2H, J = 7.8 Hz, NCH2CH2 (CH2)13CH3); MS理论值: 565.95, 实验值 [M]+: 566+9。
实施例 24
HO - 将 2 mmol的化合物 33 与 4 mmol的化合物 34Ηί 混合后, 溶解于 40 mL的二甲基甲酰胺 中, 加热至完全溶解后, 再依次加入 4 mmol的二环己基碳二酰亚胺 (DCC) 和 1 mmol的 4-二甲胺基吡啶 (DMAP), 55 °C温度下搅拌 16小时, 减压蒸干溶剂, 所得粗产物经柱层析分离提纯得分子式为 C48H85N06
Figure imgf000035_0002
35,其中 R]、R2为 C15烷基, a为 2, R61为 -Ph, R71为 -Η, 产率 43%.
Ή NMR (CDC13, 400 MHz) δ: 0.90 (t, J = 6.8 Hz, 6H, CH3), 1.25 (s, 52H, NCH2CH2(CH2)13CH3) (m, 4H, NCH2CH2(CH2)13CH3), 2.64 (s, 4H, COCH2CH2CO), 3.18 - 3.30 (m, 4H, NCH2CH2(CH2)13CH3), 3.77(d, J = 11.2 Hz, 2H, CH2OH), 3.96 (s, 4H, PhCHOCH2), 4.15 (d, J = 11.2 Hz, 2H), 4.60 (s, 1H, OH), 5.42 (s, 1H, PhCHOCH2), 7.35 (d, J = 6.4 Hz, 3H, Ph-H), 7.47(d, J = 7.2Hz, 2H, Ph-H). MS理论值: 772.19, 实验值 [M]+: 772.9, [M+Na]+: 794.9.
实施例 25 ¾ 将 4 mmol的化合物
Figure imgf000036_0001
与 16 mmol的化合物 411 o 混合后,溶 解于 40 mL的二氯甲垸中, 再依次加入 2 mmol的 DMAP和 20 mmol的三乙胺, 35 °C温度下搅拌 26小时, 减压蒸干溶剂, 所得粗产物经柱层析分离提纯得分子式为 C52H8SN09, 结构式为
Figure imgf000036_0002
的化合物 36, 其中 R1 R2为 C16垸基, a为 2, R61为 -H, R71为 -Ph, 产率 86»/»。
¾ NMR (CDC13, 400 MHz) δ: 0.88 (t, J = 7.2 Hz, 6H, CH3), 1.26-1.30 (m, 52H, NCH2CH2(CH2)13CH3), 1.49 ~ 1.60 (m, 4H, NCH2CH2(CH2)13CH3), 2.5 〜 2.70 (m, 8H, COCH2CH2CO), 3.23 〜 3.32 (m, 4H, NCH2CH2(CH2)13CH3), 3.75 ~ 3.93 (m, 4H, PhCHOCH2), 4.18 (d, J = 12Hz, 2H, NCOCH2CH2COOCH2), 4.54 (d, J = 24.4 Hz, 2H, HOOCCH2CH2COOCH2), 5.44 (s, 1H, PhCHOCH2), 7.35〜 7.46 (m, 5H, Ph-H). MS理论值: 872.26,实验值 [M]+: 873.2, [M+Na]+: 895.2.
实施例 26
将 2 mmol (1.75 g) 的化合物 36溶解于体积比为 1 :3的甲醇与四氢呋喃的混合溶剂中, 加入到 250mL的 反应釜中, 再加入 0.87g的氢氧化钯/ «, 通入氢气使压力为 1.0-1.2 MPa, 50 'C下剧烈搅拌 48小时, 减压蒸
干溶剂, 所得粗产物经柱层析分离提纯得分子式为 C45H85N09的化合物
Figure imgf000036_0003
为 2' 产率 52%.
'H MR (CDC13, 400 MHz) S: 0.88 (t, J = 6.8 Hz, 6H, CH3), 1.25-1.30 (m, 52H, NCH2CH2(CH2)13CH3), 1.47 - 1.58 (m, 4H, NCH2CH2(CH2)13CH3), 2.64 (d, J = 3.6 Hz, 8H, COCH2CH2CO), 3.20 - 3.29 (m, 4H, NCH2CH2(CH2)13CH3), 3.62 (s, 4H, HOCH2), 4.11-4.16 (m, 4H, COCH2CH2COOCH2). MS理论值: 784.16, 实验 值 [M]+: 785.2, [M+Na]+: 807.2.
实施例 27
将 1 mmol的结构式为 于 40 mL的二氯甲垸中, 再依次加
入 1.2 mmol的 DCC和 1.5m
Figure imgf000036_0004
mol的化合物 30 'C下搅拌 48小时, 旋干溶剂, 所得粗产物经柱层析分离提纯得结构式为
Figure imgf000037_0001
的化合物 39, 分子 式: C57H94N408, R R2为 C16烷基, a为 2, X1为 -H, Y1为 -H, 产率 43.2%.
Ή NMR (CDC13, 400 MHz) ό: 0.87 (t, J = 6.8 Hz, 6H, CH3), 1.21-1.30 (m, 52H, NCH2CH2(CH2)13CH3), 1.46 - 1.57 (m, 4H, NCH2CH2(CH2)13CH3), 2.62 ~ 2.65 (m, 4H, COCH2CH2CO), 2.73 ~ 2.80 (m, 4H, COCH2CH2CO), 3.19 ~ 3.28 (m, 4H, NCH2CH2(CH2)13CH3), 3.60 (s, 4H, HOCH2), 4.15 ~ 4.20 (m, 4H, COCH2CH2COOCH2), 7.42 - 7.52 (m, 3H, PhH), 7.69 (d, J = 8.4 Hz, 2H, PhH), 7.89 (t, J = 8.4 Hz, 4H, PhH). MS 理论值: 963.38, 实验值 [M]+: 964.4. 实施例 28
在氮气保护下, 将 1 mmol的化合物 39溶解于 40 mL的二氯甲烷中, 再依次加入 2.5 mmol的化合物 mO OM ^^^^^O 30 4 mmol ¾催化剂二月桂酸二丁基锡, 55Ό下搅拌 48小时, 旋干溶剂, 所得粗 产 物 经 柱 层 析 分 离 提 纯 得 基 于 季 戊 四 醇 的 复 合 脂 质 , 其 结 构 式 为
Figure imgf000037_0002
, 其中 I 1、 R2为 C16垸基, a 为 2, X1、 Y1为 -H, R311
-CONH(CH2)3Si(X)3, X为乙氧基, 分子式: C77H136N5016Si2, 产率 50.2%。
¾ NMR (CDC13, 300 MHz) δ: 0.61 (t, J = 8.0 Hz, 4H, SiCH2CH2CH2NH), 0.86 (t, J = 7.2 Hz, 6H, CH3(CH2)13CH2CH2N), 1.09 ~ 1.35 (m, 70H, NCH2CH2(CH2)13CH3 和 SiOCH2CH3), 1 37 ~ 1 +72 (m, 8H, CH3(CH2)13CH2CH2N 禾卩 SiCH2CH2CH2NH), 2.45 ~ 2.71 (m, 8H, COCH2CH2CO), 3.11 ~ 3.19 (m, 8H, SiCH2CH2CH2NH禾!] CH3(CH2)13CH2CH2N), 3.70 ~ 3.83 (m, 12H, SiOCH2CH3), 4.02 ~ 4.13 (m, 8H, COOCH2C), 7.46 ~ 7.50 (m, 3H, ArH), 7.77 ~ 7.80 (m, 2H, ArH), 7.85 ~ 7.91 (m, 4H, ArH). MS理论值: 1458.11, 实验值 [M]+: 1459.0.
实施例 29 将 1 mmol的化合物 39 与 6 mmol的化合物 411 o 混合后, 溶解于 40 mL的二氯甲垸中, 再依次加 入 1 mmol的 DMAP和 6 mmol的三乙胺, 35 °C温度下搅拌 48小时, 减压蒸干溶剂, 所得粗产物经柱层析分
离提纯得化合物 40, 其结构式为:
Figure imgf000037_0003
其中 R1 R2为 C16垸 基, a为 2, X1为 -H, Y1为 -H, R91为 -CO(CH2)2COOH, 产率 80%.分子式: (:652]\14014
'H NMR (CDC13, 400 MHz) δ: 0.88 (t, J = 7.2 Hz, 6H, CH3), 1.22 - 1.28 (m, 52H, CH3(CH2)13CH2CH2N, 1.47 ~ 1.57 (m, 4H, CH3(CH2)13CH2CH2N), 2.60 - 2.78 (m, 16H, COCH3CH2CO), 3.20 3.30 (m, 4H, CH3(CH2)13CH2CH2N), 4.09 ~ 4.14 (m, 8H, COOCH2C), 1.44 ~ 7.52 (m, 3H, ArH), 7.68 (d, J = 8.4 Hz, 2H, ArH), 7.86〜 7.90 (m, 4H, ArH). MS理论值: 1163.52, 实验值 [M]+: 1164.5, [M+Na]+: 1186.6.
实施例 30 将 0.5 mmol的化合物 40溶解于 30 mL的二氯甲烷中, 再依次加入 1.2 mmol的 DCC和 1.5 mmol的化合 物 131 30°C下搅拌 30小时, 减压蒸干溶剂, 所得粗产物经柱层析分离提纯得基于季
戊四醇的复合脂质,其结构式为:
Figure imgf000038_0001
R2为 C16垸基, a为 2, X1为 -H, Y1为 -H, R: 为 -CO(CH2)2CONH(CH2)3Si(X)3 X为乙氧基, 分子式: C83H144N6018Si2, 产 率 20%。
Ή NMR (CDC13, 300 MHz) ό: 0.62 (t, J = 8.4 Hz, 4H, SiCH2CH2CH2NH), 0.85 0.88 (m, 6H, CH3(CH2)13CH2CH2N), 1.10 - 1.34 (m, 70H, NCH2CH2(CH2)13CH3 和 SiOCH2CH3), 1.35 1.70 (m, 8H CH3(CH2) CH2CH2N 禾!] SiCH2CH2CH2NH), 2.42 〜 2.72 (m, 16H, COCH2CH2CO), 3.20 3.25 (m, 8H: SiCH2CH2CH2NH禾卩 CH3(CH2)13CH2CH2N), 3.69〜 3.84 (m, 12H, SiOCH2CH3), 4.08〜 4.17 (m, 8H, COOCH2C), 7.46 ~ 7.51 (m, 3H, ArH), 7.73 ~ 7.76 (m, 2H, ArH), 7.87 - 7.90 (m, 4H, ArH). MS理论值: 1570.23, 实验值 [M]+: 1571.7, [M+Na]+: 1592.6
实施例 31
将 4 mg的实施例 30制备的复合脂质置于 20mL 的圆底烧瓶中, 加入 5mL氯仿溶解, 然后减压缓慢旋蒸 使其在烧瓶内壁形成薄膜, 35Ό真空干燥箱中干燥以完全除去氯仿; 再往形成薄膜的烧瓶中加入一定体积的 去离子水使最终溶液浓度为 1 mmol/L。用探头式超声仪超声 5 min得到有一定浑浊度的溶液, 室温下放置 12 小时即可得到相应脂质体的水溶液。用 DSC仪器检测本实施方式脂质制备的瓷质体粒径基本在 156mn左右, 粒径分布较窄, 多分散指数为 0.197, 与扫描电镜结果相吻合。 具体粒径分布如附图 8所示, 扫描电镜如附 图 9所示。
实施例 32
将实施例 31所制备的脂质体水溶液稀释成浓度为 250μΜ,在波长为 365mn的紫外光下照射不同长度的时 间, 分别测试其紫外可见吸收光谱。 从测试结果可以看到偶氮苯基团在波长 360nm左右的吸收峰逐渐下降, 而在波长 450nm左右的吸收峰逐渐上升,表明所制备脂质体内部的偶氮苯基团在紫外灯照射下由反式构型逐 渐向顺式构型转化。 具体紫外可见吸收光谱如附图 10所示。
实施例 33
0 0
" 61
将 lmmol 的 化 合 物 35 H0 r71 与 2 mmol 的 化 合 物 、 U
Figure imgf000038_0002
V H
141 0 0 混合后, 溶解于 40 mL的二甲基甲酰胺中, 加热至完全溶解后, 再依 次加入 2 mmol的 DCC和 1 mmol的 DMAP, 55 °C温度下搅拌 20小时, 减压蒸干溶剂, 所得粗产物经柱层析
分离提纯得结构物为:
Figure imgf000038_0003
16烷基, a为 2, R61为 -Ph, R71为 -H, 分子式: C79H133N09, 产率 80%. ¾ NMR (CDC13, 400 MHz) δ: 0.85 ~ 2.92 (m, 15H, CH3), 0.99 (s, 3H, CH3), 1.09 ~ 1.60 (m, 70H), 1.81 ~ 1.85 (m, 2H), 2.31 {A, J = 1.6 Hz, 2H, CH2), 2.60〜 2.68 (m, 8H, NCOCH2CH2CO), 3.22 ~ 3.28 (m, 4H, NCH2), 3.87 - 4.51 (m, 8H, OCH2), 4.44 ~ 4.45 (m, 1H, COOCHCH2), 5.35 (m, 1H, C=CCH) 5.44 (s, 1H, PhCHOCH2), 7.34 ~ 7 48 (m, 5H, Ph-H). 质谱理论值: 1240.9, 实验值 [M]+: 1241.5, [M+Na]+: 1263.6.
实施例 34
将 1 mmol (2.48 g) 的化合物 151溶解于体积比为 1 :3的甲醇与四氢呋喃的混合溶剂中, 加入到 250mL的 反应釜中, 再加入 1.24 g的氢氧化钯 /碳, 通入氢气使压力为 1.0-1.2 MPa, 50 °C下剧烈搅拌 48小时, 减压蒸
干溶剂,所得粗产物经柱层析,
Figure imgf000039_0001
化合物 M^ R^R^de烷基, a为 2, 分子式为 C72H129N09, 产率 52%。
'H MR (CDC13, 400 MHz) δ: 0.85 ~ 0.92 (m, 15H, CH3), 1.01 (s, 3H, CH3), 1.08 ' 1.60 (m, 70H), 1.81 ~ 1.85 (m, 2H), 2.31 (d, J= 7.6 Hz, 2H, CH2), 2.62〜 2.68 (m, 8H, COCH2CH2CO), 3.19〜 3.28 (m, 4H, NCH2), 3.58 (s, 4H, HOOCH2), 4 16〜 4.19 (m, 4H, COOCH2), 4.44 - 4.45 (m, 1H, COOCHCH3), 5.36 (d, J = 4 Hz, 1H, C=CH). 质谱 理论值: 1152.80, 实验值 [M]+: 1153.5, [M+Na]+: 1175.5
实施例 35
在氮气保护下, 将 1 mmol的化合物 161溶解于 40 mL的二氯甲烷中, 再依次加入 2.5 mmol的化合物
OCN '
111 和 0.4 mmol的催化剂二月桂酸二丁基锡, 55Ό下搅拌 48小时, 旋干溶剂, 所得粗 产 物 '.' 柱 层 析 分 离 纯 得 基 于 醇 的 复 合 脂 质 其 结 构 式 为
Figure imgf000039_0002
16 烷基, a为 2, 产率 53.2%.分子式: C92H171N3017Si2
Ή NMR (CDC13, 400 MHz) δ: 0.61 (t, ·/ = 8.4 Hz, 4H, SiCH2CH2CH2NH), 0.67 (s, 3H, CH3), 0.86 ~ 1.10 (m, 18H, CH3), 1.10〜 1.35 (m, 89H), 1.45〜 1.62 (m, 12H), 1.81 ~ 2.30 (m, 5H), 2.60〜 2.65 (m, 8H, COCH2CH2CO), 3.20〜 3.36 (m, 8H, SiCH2CH2CH2NH和 CH3(CH2)13CH2CH2N), 3.68〜 3.83 (m, 12H, SiOC¾C¾), 4.00〜 4.13 (m, 8H, COOCH2C), 4.61 〜 4.64 (m, 1H, COOCHC¾), 5.38 (d, 7 = 4 Hz, 1H, OCH). MS理论值: 1647.52,实验值 [M]+: 1648.4.
实施例 36
o 将 1 mmol的化合物 161 与 6 mmol的化合物 411 o 混合后, 溶解于 40 mL的二氯甲烷中, 再依次 加入 1 mmol的 DMAP和 6 mmol的三乙胺, 35 Ό温度下搅拌 48小时, 减压蒸干溶剂, 所得粗产物经柱层析, 分离提纯得到化合物 171, 其结构式为
Figure imgf000040_0001
1^=1 2=(:16烷基, a为 2, 产率 82%.分子式: »Η137ΝΟ
Ή NMR (CDC13, 400 MHz) δ: 0.68 (s, 3Η, CH3), 0.87 - 0.99 (m, 18H, CH3), 1.07 (s, 6H, CH3), 1.10 - 1.30 (m, 70H), 1.43 ~ 1.59 (m, 12H), 1.84 ~ 2.03 (m, 5H), 2.32 (d, J = 8 Hz, 2H, COOCHCH2), 2.59 ~ 2.64 (m, 16H, COCH2CH2CO), 3.22 ~ 3.31 (m, 4H, NCH2), 4.08 - 4.14 (m, 8H, COOCH2C), 4.61 - 4.64 (m, 1H, COOCHCH2), 5.37 (d, 7= 4 Hz, 1H, C=CH). 质谱理论值: 1352.94,实验值 [M]+: 1353.7, [M+Na]+: 1375.8, [M+ ]+: 1391.7 实施例 37
将 1 mmol的化合物 171溶解于 30 mL的二氯甲烷中,再依次加入 2.0 mmol的 DCC和 2.2 mmol的化合物
H2N ΞΪ Χ ):
131 30'C下搅拌 30小时, 减压蒸干溶剂, 所得粗产物经柱层析, 分离提纯得结构式
如 下 的 基于 季 戊 四 醇 的 复合脂质
Figure imgf000040_0002
, R321
-CO(CH2)2CONH(CH2)3Si(X)3 , X为乙氧基, a为 2, 产率 20%.分子式: C9SH179N3019Si2
¾ NMR (CDCI3, 400 MHz) δ: 0.60 (t, J = 8.4 Hz, 4H, SiCH2CH2CH2NH), 0.68 (s, 3H, CH3), 0.87 - 1.08 (m, 18H, CH3), 1.08〜 1.31 (m, 89H), 1.43〜 1.59 (m, 12H), 1.84〜 2.32 (m, 5H), 2.5 〜 2.64 (m, 16H, COCH2CH2CO), 3.20 - 3.35 (m, 8H, SiCH2CH2CH2NH和 CH3(CH2)13CH2CH2N), 3.69 ~ 3.84 (m, 12H, SiOCH2C¾), 4.08 - 4.14 (m, 8H, COOCH2C), 4.61 ~ 4.64 (m, 1H, COOCHCH2), 5.38 (d, 7 = 4 Hz, 1H, C=CH).MS 理论值: 1759.65, 实验值 岡+: 1760.5.
实施例 38
将 4 mg实施例 37制备的复合脂质置于 20mL 的圆底烧瓶中, 加入 5mL氯仿溶解, 然后减压缓慢旋蒸使 其在烧瓶内壁形成薄膜, 35 °C真空干燥箱中干燥以完全除去氯仿; 再往形成薄膜的烧瓶中加入一定体积的去 离子水使最终溶液浓度为 1 mmol/L。 用探头式超声仪超声 10 mm得到有一定浑浊度的溶液, 室温下放置 12 小时即可得到相应复合脂质体的水溶液。 透射电镜如附图 11所示。
实施例 39
将实施例 38制备的复合脂质体溶液中加入表面活性剂 Triton X-100 (TX-100)测试脂质体粒径的变化, 并 与 DSPC制成的传统脂质体在同等条件下粒径变化的比较来考察复合脂质体的稳定性, 当加入至 30倍量的 TX-100 水溶液后, 本发明复合脂质体的大小基本保持不变, 而 DSPC制成的传统脂质体在加入 5 倍量的 TX-100水溶液后, 其粒径几乎降为 0, 说明其囊泡结构已被破坏, 从而证明本实施例的复合脂质体具有比传 统脂质体更好的稳定性。 具体如附图 12所示。
实施例 40
将 1 mmol的化合物
Figure imgf000040_0003
mL的二氯甲烷中, 再依次加入 1.2 mmol的 DCC和 1.5mmol的化合物 41
Figure imgf000041_0001
30 °C下搅拌 48小时, 旋干溶剂, 所得粗产物经柱层
Figure imgf000041_0002
½烷基, a为 2,
X2为 -H, 分子式为: C89H114N608 , 产率 63.0 %。
¾ NMR (CDC13, 400 MHz) δ: -2.78 (s, 2H, NH-porphyrin), 0.83 ~ 0.88 (m, 6H, NCH2CH2(CH2)13CH3), 1.18 -1.26 (m, 52H, NCH2CH2(CH2) CH3), 1.48 ~ 1.56 (m, 4H, NCH2CH2(CH2)13CH3), 2.66 ~ 2.90 (m, 8H, COCH2CH2CO), 3.08 (s, 2H, OH), 3.17〜 3.30 (m, 4H, NCH2CH2(CH2)13C¾), 3.67 (s, 4H, HOCH2), 4.24〜 4.28 (m, 4H, COCH2CH2COOCH2), 7.71 ~ 7.79 (m, 9H, ArH), 7.88 (d, J = 8.4 Hz, 2H, ArH), 8.14 (d, J = 8.0 Hz, 2H, ArH), 8.20 (d, J = 5.6 Hz, 6H, ArH), 8.28 (s, 1H, CONH), 8.84 (d, J = 6.8 Hz, 4H, ArH). 质谱理论值: 1395.89,实验值 [M]+: 1396.4.
实施例 41
在氮气保护下, 将 1 mmol的化合物 42溶解于 40 mL的二氯甲烷中, 再依次加入 2+5 mmol的化合物
O CN
111 3和 0.4 mmol的催化剂二月桂酸二丁基锡, 55°C下搅拌 48小时, 旋干溶剂, 所得粗
Figure imgf000041_0003
产物经柱层析分离提纯得化合物 43 , 其结构式为 其中,
1^=1 2=(:16烷基, a为 2, X2为 -H, R311为 -CONH(CH2)3Si(X)3, X为乙氧基, 分子式为: (:1()911156>½0 6Si2, 产 率 54+5%.
Ή NMR (CDC13, 400 MHz) δ: -2.77 (s, 2H, NH-porphyrin), 0.60 (t, J = 7.4Hz, 4H, SiCH2CH2CH2NH), 0.83 ~ 0.88 (m, 6H, NCH2CH2(CH2)13CH3), 1.21 -1.30 (m, 52H, NCH2CH2(CH2)13CH3), 1.50 ~ 1.68 (m, 8H, CH3(CH2)13CH2CH2N 禾!] SiCH2CH2CH2NH), 2.49 - 2.69 (m, 8H, COCH2CH2CO), 3.18- 3.21 (m, 8H, SiCH2CH2CH2NH禾!] C¾(CH2)13CH2CH2N), 3.80 ~ 3.84 (m, 12H, SiOCH2CH3), 4.10 ~ 4.31 (m, 8H, COOCH2C), 6.19〜 6+21 (m, 2H, SiCH2CH2CH2NH), 7.77 ~ 7.83 (m, 9H, ArH), 7.97- 8.00 (m, 2H, ArH), 8.18 〜 8.21 (m, 2H, ArH), 8.25 (d, J = 6.0 Hz, 6H, ArH), 8.52〜 8.65 (m, 1H, ArCONH), 8.85〜 8.90 (m, 7H, ArH), 9.21 (s, 1H, ArH).. MS 理论值: 1890.62, 实验值 [M]+: 1891.7.
实施例 42
o
<<^
将 1 mmol的化合物 42 与 6 mmol的化合物 411 o 混合后, 溶解于 40 mL的二氯甲烷中, 再依次加 入 1 mmol的 DMAP和 6 mmol的三乙胺, 35 °C下搅拌 60小时, 减压蒸干溶剂, 所得粗产物经柱层析分离提 纯得到结构式为
Figure imgf000042_0001
垸基, a为 2,
X2为 -H, R91为 -CO(C¾)2COOH, 分子式为: C97H122N6014, 产率 85%.
'H MR (CDC13, 400 MHz) S: -2.757 (s, 2H, NH-porphyrin), 0.89 (t, J= 7.2 Hz, 6H, CH3), 1.24 ~ 1.33 (m, 52H, CH3(CH2)13CH2CH2N), 1.50 ~ 1.58 (m, 4H, CH3(CH2)13CH2CH2N), 2.61 〜 2.78 (m, 16H, COCH2CH2CO), 3.19 ~ 3.32 (m, 4H, CH3(CH2)13CH2CH2N), 4.18 - 4.24 (m, 8H, COOCH2C), 7.73 - 7.81 (m, 9H, ArH), 7.85 (d, J = 8.4 Hz, 2H, ArH), 8.15 (d, J = 8.4 Hz, 2H, ArH), 8.20 - 8.25 (m, 7H, ArH禾 P CONH), 8.86 (s, 8H, ArH). MS理论值: 1595.3, 实验值 [M]+: 1596.04.
实施例 43
将 0.5 mmol的化合物 44溶解于 30 mL的二氯甲垸中, 再依次加入 1.2 mmol的 DCC和 1.5 mmol的化合
Ξι( Χ >
物 131 °C下搅拌 48小吋, 减压蒸干溶剂, 所得粗产物经柱层析分离提纯得到结构
Figure imgf000042_0002
式 为 的 化 合 物 45, 其 中 R321
-CO(C¾)2CONH(CH2)3Si(X)3 X为乙氧基; a为 2, R^R^d s垸基, X2为 -H, 分子式为: Ci15H164N8018Si2, 产率 30.3%.
Ή NMR (CDC13, 400 MHz) ό: -2.75 (s, 2Η, NH-porphyrin), 0.65 (t, J = 8.4 Hz, 4H, SiCH2CH2CH2NH), 0.86 - 0.89 (m, 6H, CH3(CH2)13CH2CH2N), 1.19 ~ 1.30 (m, 70H, NCH2C¾(CH2)13C¾ 禾卩 SiOCH2CH3), 1.40 ~ 1.67 (m, 8H, CH3(CH2)13CH2CH2N 禾卩 SiC¾CH2CH2NH), 2.49 ~ 2.77 (m, 16H, COCH2CH2CO), 3.25-3.31 (m, 8H, SiCH2CH2CH2NH禾卩 CH3(CH2)13CH2CH2N), 3.78 ~ 3.85 (m, 12H, SiOCH2CH3), 4.19 ~ 4.29 (m, 8H, COOCH2C), 6.18 - 6.19 (m, 2H, SiCH2CH2CH2NH), 7.75 ~ 7.81 (m, 9H, ArH), 7.98〜 8.01 (m, 2H, ArH), 8.16 ~ 8.19 (m, 2H, ArH), 8.24 (d, J = 6.0 Hz, 6H, ArH), 8.50 ~ 8.67 (m, 1H, ArCONH), 8.86 ~ 8.91 (m, 7H, ArH), 9.20 (s, 1H, ArH). MS 理论值: 1570.23, 实验值 [M]+: 2002.75, [M+Na]+: 2003.8。
实施例 44
将 1 mmol的化合物 43溶解于 30 mL的 DMF中,加入 10 mmol的结构式为 MY3金属盐类化合物 46, 160°C 加热回流条件下搅拌 24小时, 减压蒸干溶剂, 所得粗产物经柱层析分离提纯得结构式如下的基于季戊四醇的
Figure imgf000042_0003
其中, M为锰金属离子(Mn), a为 2,
1^=1 2=(:16烷基, X2为 -H, R311为 -CONH(C¾)3Si(X)3,X为乙氧基,分子式为: C1()9H154N8016Si2Mn,产率 85.0%, Y3为 -Cl。 Ή NMR (CDCI3, 400 MHz) δ: 0.63 (t, J = 7.3 Hz, 4H, SiCH2CH2CH2NH), 0.80 ~ 0.86 (m, 6H, NCH2CH2(CH2)13CH3), 1.20 -1.34 (m, 52H, NCH2CH2(CH2)13CH3), 1.49 ~ 1.66 (m, 8H, CH3(CH2)13CH2CH2 和 SiCH2CH2CH2NH), 2.52 ~ 2.71 (m, 8H, COCH2CH2CO), 3 12-3.19 (m, 8H, SiCH2CH2CH2NH 和 CH3(CH2)13CH2CH2N), 3.79〜 3.81 (m, 12H, SiOCH2CH3), 4.05〜 4.19 (m, 8H, COOCH2C), 6.13〜 6.18 (m, 2H, SiCH2CH2CH2NH), 7.65 ~ 7.76 (m, 9H, ArH), 7.95- 8.02 (m, 2H, ArH), 8.13 ~ 8.18 (m, 2H, ArH), 8.30 (d,■/ = 6.0 Hz, 6H, ArH), 8.51〜 8.62 (m, 1H, ArCONH), 8.87〜 8.92 (m, 7H, ArH), 9.18 (s, 1H, ArH). MS 理论值: 1943.54, 实验值 [M]+: 1944.6.
实施例 45
将 1 mmol的化合物 45溶解于 30 mL的 CHC13中,加入 12 mmol的结构式为 MY3金属盐类化合物 46, 70°C 加热回流条件下搅拌 48小时, 减压蒸干溶剂, 所得粗产物经柱层析分离提纯结构式如下的基于季戊四醇的复
Figure imgf000043_0001
烷基, X2为 -H, 321为 -CO(CH2)2CONH(CH2)3Si(X)3, X为乙氧基,分子式为: C115H162N8018Si2Zn,产率 90.0%, Y3为 -Cl。
Ή NMR (CDCI3, 400 MHz) S: 0.66 (t, J = 8.4 Hz, 4H, SiCH2CH2CH2NH), 0.83 〜 0.87 (m, 6H, CH3(CH2)13CH2CH2N), 1.15 ~ 1.28 (m, 70H, NCH2C¾(CH2)13CH3 和 SiOCH2CH3), 1.41 ~ 1.68 (m, 8H, CH3(CH2)13CH2CH2N 和 SiC¾CH2CH2NH), 2.45 ~ 2.73 (m, 16H, COCH2CH2CO), 3.21-3.30 (m, 8H, SiCH2CH2CH2NH和 CH3(CH2)13CH2CH2N), 3.76一 3.83 (m, 12H, SiOCH2CH3), 4.15一 4.27 (m, 8H, COOCH2C), 6.15 ~ 6.18 (m, 2H, SiCH2CH2CH2NH), 7.72〜 7.79 (m, 9H, ArH), 7.97〜 8.04 (m, 2H, ArH), 8.13〜 8.16 (m, 2H, ArH), 8.25 (d, J = 6.0 Hz, 6H, ArH), 8.55 ~ 8.63 (m, 1H, ArCONH), 8.84 ~ 8.88 (m, 7H, ArH), 9.17 (s, 1H, ArH). MS 理论值:2066.14, 实验值 [M]+: 2067.1。
实施例 46
将 4 mg实施例 43制备的复合脂质置于 20mL 的圆底烧瓶中, 加入 5mL氯仿溶解, 然后减压缓慢旋蒸使 其在烧瓶内壁形成薄膜, 35°C真空干燥箱中干燥以完全除去氯仿;再往形成薄膜的烧瓶中加入一定体积的去离 子水使最终溶液浓度为 l mmol/L。 用探头式超声仪超声 10 min得到有一定浑浊度的溶液, 室温下放置 12小 时即可得到相应脂质体的水溶液。用 DSC仪器检测本实施方式脂质制备的瓷质体粒径基本在 125 nm左右,粒 径分布较窄, 多分散指数为 0.210, 与透射电镜结果相吻合。 具体粒径分布如附图 13所示, 透射电镜如附图 14所示。
实施例 47
将实施例 43制备的复合脂质化合物 42溶于适量氯仿, 配制浓度为 30uM的溶液, 用紫外-可见分光光度 计测试其吸收光谱, 如附图 15所示; 将实施例 46制备的复合脂质体的水溶液配制成浓度为 25uM, 用紫外- 可见分光光度计测试其吸收光谱, 如附图 15所示。 由图 15可见, 复合脂质制备成脂质体后仍然具有原来卟啉 环功能基团的特征吸收峰。
实施例 48
往实施例 46所制备的复合脂质体溶液中加入表面活性剂 Triton X-100 (TX-100)测试脂质体粒径的变化, 并与 DSPC 制成的传统脂质体在同等条件下粒径变化的比较来考察瓷质体的稳定性, 当加入至 35 倍量的 TX-100水溶液后,本发明复合脂质体的大小基本保持不变,而 DSPC制成的传统脂质体在加入 5倍量的 TX-100 水溶液后, 其粒径几乎降为 0, 说明其囊泡结构已被破坏, 从而证明本实施方式的复合脂质体具有比传统脂质 体更好的稳定性。 具体如附图 16所示。
实施例 49 将 2 mmol的化合物 33 与 4 mmol的化合物 47 HO ^ 混合后,溶解于 40 mL的二甲基甲 酰胺中, 加热至完全溶解后, 再依次加入 4 mmol的 DCC和 1 mmol的 DMAP, 55 °C温度下搅拌 16小时, 减
压蒸干溶剂, 所得粗产物经柱层析分离提纯得结构式为
Figure imgf000044_0001
HO 的化合 物 48,其中 a为 2, ^=] 2=(:16垸基, X1为 -H, 分子式为: C4SH85N06, 产率 43%.
Ή NMR (CDC13, 400 MHz) δ: 0.90 (t, J = 6.8 Hz, 6H, CH3), 1.25 (s, 52H, NCH2CH2(CH2)13CH3) (m, 4H, NCH2CH2(CH2)13CH3), 2.64 (s, 4H, COCH2CH2CO), 3.18 - 3.30 (m, 4H, NCH2CH2(CH2)13CH3), 3.77(d, J = 11.2 Hz, 2H, CH2OH), 3.96 (s, 4H, PhCHOCH2), 4.15 (d, J = 11.2 Hz, 2H), 4.60 (s, 1H, OH), 5.42 (s, 1H, PhCHOCH2), 7.35 (d, J = 6.4 Hz, 3H, Ph-H), 7.47(d, J = 7.2Hz, 2H, Ph-H). MS理论值: 772.19, 实验值 [M]十: 772.9, [M+Na]+: 794+9。
实施例 50
在氮气保护下, 将 1 mmol的化合物 48溶解于 40 mL的二氯甲垸中, 再依次加入 1.25 mmol的化合物
. O CN
111 ' °3和 0.4 mmol的催化剂二月桂酸二丁基锡, 55Ό下搅拌 48小时, 旋干溶剂, 所得粗
Figure imgf000044_0002
产物经柱层析分离提纯得结构式如下的基于季戊四醇的复合脂质 , 其中 a为 2,
1^=1 2=( 16垸基, X1为 -H, R311为 -CONH(CH2)3Si(X)3, X为乙氧基, 分子式为: C HTONZO!QSI, 产率 52.3%。
¾ NMR (CDC13, 400 MHz) δ: 0 60 (t, J = 8.0 Hz, 2H, SiCH2CH2CH2NH), 0.87 (t, J = 12 Hz, 6H, CH3(CH2)13CH2CH2N), 1.19 ~ 1.27 (m, 61H, NCH2CH2(CH2)13C¾ 和 SiOCH2CH3), 1.45 ~ 1.57 (m, 6H, CH3(CH2)13CH2CH2N 禾卩 SiCH2CH2CH2NH), 2.50 ~ 2.57 (m, 4H, COCH2CH2CO), 2.97 ~ 3.19 (m, 6H, SiCH2CH2CH2NH禾!] CH3(CH2)13CH2CH2N), 3.71 ~ 3.85 (m, 6H, SiOCH2CH3), 3 90 - 4.01 (m, 8H, COOCH2C), 5.42 (s, 1H, Ph-CH), 7.33 ~ 7.46 (m, 5H, ArH), MS 理论值: 1019,56, 实验值 [M]+: 1020.5.
实施例 51 将 4 mmol的化合物 48 与 16 mmol的化合物 411
Figure imgf000044_0003
再依次 加入 2 mmol的 DMAP和 20 mmol的三乙胺, 35 'C温度下搅拌 26小时, 减压蒸干溶剂, 所得粗产物经柱层析
Figure imgf000044_0004
16烷 基, X1为 -H, 分子式为: C52H89N09, 产率 86%。
Ή NMR (CDC13, 400 MHz) ό: 0.88 (t, J = 7.2 Hz, 6H, CH3), 1.26-1.30 (m, 52H, NCH2CH2(CH2)13CH3), 1.49 - 1.60 (m, 4H, NCH2CH2(CH2)】3CH3), 2.59 2.70 (m, 8H, COCH2CH2CO), 3.23 3.32 (m, 4H, NCH2CH2(C¾)BCH3), 3.75〜 3.93 (m, 4H, PhCHOCH2), 4.18 (d, J = 12Hz, 2H, NCOCH2CH2COOCH2), 4.54 (d, J = 24.4 Hz, 2H, HOOCCH2CH2COOCH2), 5.44 (s, 1H, PhCHOCH2), 7.35 7.46 (m, 5H, Ph-H). MS理论值: 872.26, 实验值 [M]+: 873.2, [M+Na]+: 895.2. 实施例 52
将 0.5 mmol的化合物 49溶解于 30 mL的二氯甲垸中, 再依次加入 1.2 mmol的 DCC和 1.5 mmol的化合
、 ζ
Ξι( Χ >
物 131 , 30 粗产物经柱层析分离提纯得到结构
式如下的基于季戊四醇的复合脂质
Figure imgf000045_0001
16垸基, X1为 -H, R; 为 -CO(CH2)2CONH(CH2)3Si(X)3, X为乙氧基, 分子式为: C61H„。N20„Si, 产率 20%。
Ή NM (CDC13, 400 MHz) δ: 0.61 (t, J = 8.0 Hz, 2H, SiCH2CH2CH2NH), 0.88 (t, J = 7.2 Hz, 6H, CH3(CH2)13CH2CH2N), 1.20 - 1.26 (m, 61H, NCH2CH2(CH2)13CH3 禾!] SiOCH2CH3), 1.47 1.58 (m, 6H, CH3(CH2) CH2CH2N 禾卩 SiCH2CH2CH2NH), 2.44 ~ 2.67 (m, 8H, COCH2CH2CO), 3.11 ~ 3.19 (m, 6H, SiCH2CH2CH2NH禾卩 CH3(CH2)13CH2CH2N), 3.69 3.75 (m, 6H, SiOCH2CH3), 3.79 4.47 (m, 8H, COOCH2C), 5.43 (s, 1H, Ph-CH), 7.34 - 7.45 (m, 5H, ArH). MS 理论值: 1075.62, 实验值 [M]+: 1076.5.
实施例 53
将 2 mmol (1.75 g) 的化合物 49溶解于体积比为 1 :3的甲醇与四氢呋喃的混合溶剂中, 加入到 250mL的 反应釜中, 再加入 0.87g的氢氧化钯 /碳, 通入氢气使压力为 1.0-1.2 MPa, 50 °C下剧烈搅拌 48小时, 减压蒸
干溶剂,
Figure imgf000045_0002
的化合物 37, 其中 a为 2,
R R C 垸基, 分子式为 C45HS5N09, 产率 52%。
'H NMR (CDC13, 400 MHz) ό: 0.88 (t, J = 6.8 Hz, 6H, CH3), 1.25-1.30 (m, 52H, NCH2CH2(CH2)13CH3), 1.47 - 1.58 (m, 4H, NC¾CH2(C¾)13CH3), 2.64 (d, J = 3.6 Hz, 8H, COCH2C¾CO), 3.20 ~ 3.29 (m, 4H, NCH2CH2(CH2)13CH3), 3.62 (s, 4H, HOCH2), 4.11-4.16 (m, 4H, COCH2CH2COOCH2) MS理论值: 784.16, 实验 值 [M]+: 785+2, [M+Na]+: 807+2,
实施例 54
将 0.5 mmol的化合物 37溶解于 30 mL的二氯甲烷中, 再依次加入 1.2 mmol的 DCC和 1.5 mmol的化合
Ά、―
物 131 30°C下搅拌 30小时, 减压蒸干溶剂, 所得粗产物经柱层析分离提纯得结构式
Figure imgf000045_0003
16垸基, X为乙氧基, 分子式 为: CwH^NsOuSi, 产率 35%。
Ή NMR (CDC13, 400 MHz) δ: 0.61 (t, J = 8.0 Hz, 2H, SiCH2CH2CH2NH), 0.88 (t, J = 7.2 Hz, 6H, CH3(CH2)13CH2CH2N), 1.20 ~ 1.26 (m, 61H, NCH2C¾(CH2)13C¾ 和 SiOCH2CH3), 1.47 ~ 1.58 (m, 6H, CH3(CH2)13CH2CH2N 禾卩 SiCH2CH2CH2NH), 2.49 ~ 2.63 (m, 8H, COCH2CH2CO), 3.21 - 3.25 (m, 6H, SiCH2CH2CH2NH和 CH3(C¾)13CH2CH2N), 3.58 ~ 3.60 (m, 4H, HOCH2 ), 3.69 ~ 3.85 (m, 6H, SiOCH2CH3), 4.11-4.17 (m, 4H, COOCH2C).MS 理论值: 987.51, 实验值 [M]+: 988.4.
实施例 55 将 4 mmol的化合物 50 与 16 mmol的化合物 411 o 混合后, 溶解于 40 mL的二氯甲垸中, 再依次 加入 2 mmol的 DMAP和 20 mmol的三乙胺, 35 'C温度下搅拌 26小时, 减压蒸干溶剂, 所得粗产物经柱层析
Figure imgf000046_0001
垸基, R91 为 -CO(CH2)2COOH; R81 为 -CO(CH2)2CONH(CH2)3Si(X)3, X为乙氧基,分子式为: C62H114N2017Si, 产率 56%。
¾ NM (CDC13, 400 MHz) S: 0.61 (t, J = 8.0 Hz, 2H, SiCH2CH2CH2NH), 0.88 (t, J = 7.2 Hz, 6H, CH3(CH2)13CH2CH2N), 1.18 ~ 1.27 (m, 61H, NCH2CH2(CH2)13CH3 禾!] SiOCH2CH3), 1.48 ~ 1.57 (m, 6H, CH3(CH2)13CH2CH2N 禾!] SiC¾CH2CH2NH), 2.48 〜 2,63 (m, 16H, COCH2CH2CO), 3.20 〜 3.26 (m, 6H, SiCH2CH2CH2NH和 CH3(CH2)13CH2CH2N), 3.70 - 3.84 (m, 6H, SiOCH2CH3), 4.00-4.07 (m, 4H, COOCH2C). MS 理论值: 1187.66, 实验值 [M]+:1188.7.
实施例 56
将实施例 52、 实施例 55制备的复合脂质各 4 mg, 分别置于 20mL 的圆底烧瓶中, 加入 5mL氯仿溶解, 然后减压缓慢旋蒸使其在烧瓶内壁形成薄膜, 35 °C真空干燥箱中干燥以完全除去氯仿; 再往形成薄膜的烧瓶中 加入一定体积的去离子水使最终溶液浓度为 1 mmol L。 用探头式超声仪超声 5 min得到有一定浑浊度的溶液, 室温下放置 12小时即可得到相应脂质体的水溶液。实施例 52制备的复合脂质脂质体的透射电镜扫描结果如图 17所示; 实施例 55制备的复合脂质脂质体的透射电镜扫描结果如图 18所示。

Claims

权利 要求书
1、 一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000047_0001
其中
R1 为 C6〜 C1S 烷基; R2 为 C6〜 C18 烷基; R5 为 -CO(CH2)5N(CH2)2(CH2)3Si(X)3Y、 -CO(C¾)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或 甲氧基, Y为卤代基; a等于 2或 3。
2、 一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000047_0002
其中
R1 为 C6〜 C18 烷基: R2 为 C6〜 C1 S 垸基: R3 为 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3,其中 X为乙氧基或甲氧基; a为 2或 3; X1 为 -H, -CH3, CH3O-, 卤代基或 -N02 ; Y1为 -H, -CH3, CH30-或卤代基。
3、 如权利要求 2所述的复合脂质, 其特征是当 Y1位于偶氮基的邻位时, Y1为 -H, 或卤代基; 当 Y1位 于偶氮基的间位时, Y1为 -H、 -CH3或 CH30-。
4、 一种基于季戊四醇的复合脂质, 其结构通式如下:
〇 〇
Figure imgf000047_0003
其中
R1 为 C6〜 C1S 垸基; R2 为 C6〜 C1 S 烷基; R3 为 -CO(CH2)2CONH(CH2)3Si(X): -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基; a为 2或 3。
5、 一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000048_0001
其中
R1 为 C6〜 C18 烷基; R2 为 C6〜 C1 S 垸基; R3 为 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3,其中 X为乙氧基或甲氧基: a为 2或 3; X2为 -H, -CH3: C¾0-或卤代基; M为与卟啉环配位的金属离子。
6、 如权利要求 5所述的复合脂质, 其特征是所述金属离子为铁离子、 锌离子、 镁离子、 锰离子、 钴离 子、 铜离子、 钼离子、 铬离子、 钆离子、 镍离子、 钒离子、 铝离子、 稼离子或铱离子中的一种。
7、 一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000048_0002
其中
R1 为 C6〜 C18 烷基; R2 为 C6〜 C1 S 烷基; R3 为 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基; a为 2或 3; X1为 -H, -CH3, CH3O-, 卤代基或 -N02
8、 一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000048_0003
其中
R4 为 C6〜C1S 烷基, R5 为 -CO(CH2)5N(CH2)2(CH2)3Si(X)3Y、 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基, Y为鹵代基。
9、 一种基于季戊四醇的复合脂质, 其结构通式如下:
Figure imgf000048_0004
其中
R1 为 C6〜 C18 垸基 ; R2 为 C6〜 C1 S 垸基 ; Rs 为 -CO(CH2)2CONH(CH2)3Si(X)3 、 -CO(C¾)3CONH(CH2)3Si(X)3或 -CONH(CH2)3Si(X)3,其中 X为乙氧基或甲氧基; R9为 -CO(CH2)2COOH 或 -CO(CH2)3COOH; a等于 2或 3。
10、 如权利要求 1-9任一所述的复合脂质, 其特征是所述的卤代基为 -F、 -Cl、 -Br、 -1。
11、 如权利要求 1-9任一所述的复合脂质, 其特征是所述 R1为正己基、 正辛基、 十一垸基、 十二垸基、 十三垸基、 十四烷基、 十五烷基、 十六垸基、 十七垸基或十八烷基。
12、 如权利要求 1-9任一所述的复合脂质, 其特征是所述 R2为正己基、 正辛基、 十一烷基、 十二垸基、 十三垸基、 十四垸基、 十五烷基、 十六垸基、 十七烷基或十八垸基。
13、 如权利要求 1所述的复合脂质的制备方法, 其特征是包括如下顺序进行的步骤:
NH
1 ) 将垸基胺和溴代烷加热回流进行取代反应制得结构式为 的化合物 1, 其中所述烷基胺是
R!-NH2, 所述溴代垸是 R2-Br, 其中, R1 为 C6〜C18垸基; R2 为 C6〜C1S垸基;
0 0
2 ) 将化合物 1与丁二酸酐或戊二酸酐亲核反应得到结构式为 R2' 的化合物 2, 接着将
化合物 2与过量 4〜6倍的季戊四醇进行酯化反应得到结构式为
Figure imgf000049_0001
的化合物 3,其中 a为 2或 3 ;
3 ) 将化合物 3与异氰酸丙基三乙氧基硅垸或异氰酸丙基三甲氧基硅烷进行亲核反应, 即得结构式 〇 〇
Figure imgf000049_0002
的复合脂质, 其中 R51为 -CONH(CH2)3Si(X)3, X为乙氧基或 或者将化合物 3与 6-溴己酰氯进行酯化反应,接着与二甲胺气体的饱和四氢呋喃溶液进行亲核反应, 然后再与溴丙基三乙氧基硅烷或溴丙基三甲氧基硅烷进行亲核反应, 即得结构式为
Figure imgf000049_0003
其中 R52-CO(CH2)5N(CH2)2(CH2)3Si(X)3Y, X为乙氧基或 甲氧基, Y为卤代基;
或者将化合物 3与丁二酸酐或戊二酸酐进行亲核反应,然后再与氨丙基三乙氧基硅烷或氨丙基三甲
〇 0
Figure imgf000049_0004
氧基硅垸进行缩合反应, 脱水得到, 即得结构式为 的复合脂质, R5: 为 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(C¾)3Si(X)3, X为乙氧基或甲氧基。
14、 如权利要求 2所述的复合脂质的制备方法, 其特征是包括如下顺序进行的步骤: NH
1) 在极性有机溶剂中, 将结构式为 的化合物 1与结构式为 化合物 4在 25-70°C反应
24_48小时后, 依次进行酸洗、 水洗,
Figure imgf000050_0001
化合物 2, 其中, 化合物 1 与化合物 4的摩尔之比为 1: 1.5-4, a为 2或 3, 1 为 C6〜C18垸基; R2 为 C6〜C18垸基;
2) 在极性有机溶剂中, 将化合物 2、 二环己基碳二酰亚胺、 4-二甲胺基吡啶和结构式为
Figure imgf000050_0002
化合物 6,其中化合物 2、二环己基碳二酰亚胺,4-二甲胺基吡啶、化合物 5的摩尔比是 1: 1-3:0.8-1.2:3-6, R6为 -H, 苯基或 -CH3, R7为 -H, 苯基或 -CH3;
3) 在非质子性有机溶剂中, 化合物 6、 4-二甲胺基吡啶、 缚酸剂和化合物 4在 25-70 'C反应 24-48
小时, 然后酸洗, 再水洗, 柱层析制得结构式为
Figure imgf000050_0003
的化合物 7, 其中, 化合物 6、 4-二甲胺基吡啶、 缚酸剂、 化合物 4的摩尔比例是 1:0.4-1: 1-6: 2-5, a为 2或 3;
4)在四氢呋喃与甲醇或者乙醇的混合溶剂中, 化合物 7与氢气在催化剂作用下, 于 25-8CTC温度下
反应 12-48
Figure imgf000050_0004
8,其中化合物 7与催化剂的质量 之比是 1: 0.4-0.6,氢气压力为 1.0-1.2 MPa,所述混合溶剂中四氢呋喃与甲醇或者乙醇的体积之比是 3-4:
1, 催化剂是钯 /碳或者氢氧化钯 /碳;
Figure imgf000050_0005
5)在非质子性有机溶剂中,化合物 8,二环己基碳二酰亚胺和结构式为
的 化 合 物 9 在 25-45 °C 下 反 应 24-60 小 时 制 得 结 构 式 为
Figure imgf000050_0006
的化合物 10, X1 为 -H, -C¾, C¾0-, 卤代 基或 -N02; Y1为 -H, -CH3, C¾0-或卤代基, 其中化合物 8, 二环己基碳二酰亚胺、 化合物 9的摩 尔之比为 1: 1.2-1.5: 1.1-2 OCN
6 ) 在非质子性有机溶剂中, 化合物 10、 结构式为 的化合物 11, 二月桂酸二
丁基锡在 40-70°C下反应 48-72
Figure imgf000051_0001
的 复合脂质, 其中, 化合物 10, 化合物 11、 二月桂酸二丁基锡的摩尔之比为 1 : 2-4: 0.2-0.8 , R31为 -CONH(CH2)3Si(X)3, X为乙氧基或甲氧基:
或者在非质子性有机溶剂中,化合物 10、 4-二甲胺基吡啶、缚酸剂和化合物 4在 25-7CTC下反应 24-48
小时, 然后酸洗, 再水洗,
Figure imgf000051_0002
化合物 12, 其中 R9为 -CO(CH2)2COOH、 -CO(C¾)3COOH; 化合物 10、 4-二甲胺基吡啶、 缚酸剂和化 合物 4的摩尔之比是 1 : 0.8-2: 3-8: 4-8 : 最后在非质子性有机溶剂中, 将化合物 12、 二环己基碳二酰亚
Si( X ):
胺和结构式为 的化合物 13 在 25-40°C反应 24-36 小时, 制得结构式为
Figure imgf000051_0003
的 复 合 脂 质 其 中 R32
-CO(C¾)2CONH(CH2)3Si(X)3、 -CO(CH2)3CO H(CH2)3Si(X)3, X为乙氧基或甲氧基, 化合物 12、 二环 己基碳二酰亚胺和化合物 13的摩尔之比为 1 : 1-2: 1.5-2.0。
15、如权利要求 14所述的制备方法,其特征是步骤 1 )中所述化合物 1与化合物 4的摩尔之比为 1: 2-2.5。
16、如权利要求 14所述的制备方法, 其特征是步骤 2 )中所述 R6为苯基时, R7为 - H或 R6为- CH3时, R7为 - CH3
17、 如权利要求 14所述的制备方法, 其特征是步骤 2) 中所述化合物 2、 二环己基碳二酰亚胺, 4-二甲 胺基吡啶、 化合物 5的摩尔比是 1 : 1.5-2 : 0.9-1.1 : 4-5。
18、 如权利要求 14所述的制备方法, 其特征是步骤 3 ) 中所述化合物 6、 4-二甲胺基吡啶、 缚酸剂、 化 合物 4的摩尔比例是 1 : 0.4-0.6: 3-5 : 3-4。
19、 如权利要求 14所述的制备方法, 其特征是步骤 6) 中所述化合物 10, 化合物 11、 二月桂酸二丁基 锡的摩尔之比为 1 : 2 -2.5; 0.3-0.5。
20、 如权利要求 14所述的制备方法, 其特征是步骤 6 ) 中所述化合物 10、 4-二甲胺基吡啶、 缚酸剂和 化合物 4的摩尔之比是 1 : 1-1.5: 5-6: 6-7。
21、 如权利要求 4所述的复合脂质的制备方法, 其特征是包括如下顺序进行的步骤:
1 ) 在极性有机溶剂中, 化合物 6、 二环己基碳二酰亚胺、 4-二甲胺基吡啶和结构式为 0°C反应 12-36 小时, 制得结构式为
Figure imgf000052_0001
15, 其中化合物 6、 二环己基碳二酰亚胺、
4-二甲胺基吡啶和化合物 14的摩尔比为 1: 1-3: 0.8-1.2: 1-3, a为 2或 3,!^ 为 C6〜C18垸基, R2为 C6〜 C1S烷基, R6为苯基或 -CH3, R7为 -H或 -CH3,;
2)在四氢呋喃与甲醇或者乙醇的混合溶剂中, 化合物 15、氢气与催化剂在 25-80Ό反应 12-48小时
Figure imgf000052_0002
的化合物 16, 其中化合物 15与催化 剂的质量比是 1: 0.4-0.6, 氢气压力为 1.0-1.2 MPa,所述混合溶剂中四氢呋喃与甲醇或者乙醇的体积比 是 3-4: 1, 催化剂是钯 /碳或者氢氧化钯 /碳;
3)在非质子性有机溶剂中, 化合物 16、 化合物 11和二月桂酸二丁基锡在 40-70°C反应 48-72小时,
制 得 结构 式为
Figure imgf000052_0003
的 复合脂质 , 其 中 R31
-CONH(CH2)3Si(X)3, X为乙氧基或甲氧基;化合物 16,化合物 11和二月桂酸二丁基锡的摩尔比例 1: 2-4: 0.2-0.8;
4) 在非质子性有机溶剂中, 化合物 16、 4-二甲胺基吡啶、 缚酸剂和化合物 4在 25-70°C反应 24-48 小 时 , 然 后 酸 洗 , 再 水 洗 , 柱 层 析 制 得 结 构 式 为
Figure imgf000052_0004
的化合物 17, 其中化合物 16、 4-二甲胺基 吡啶、 缚酸剂和化合物 4的摩尔比例是 1: 0.8-2: 3-8 :4-8, a为 2或 3;
5) 在非质子性有机溶剂中, 化合物 17、 二环己基碳二酰亚胺、 化合物 13在 25-4CTC反应 24-36小 时, 可得结构式为
Figure imgf000053_0001
的复合脂质, 其中 R32
-CO(C¾)2CONH(CH2)3Si(X)3、 -CO(CH2)3CO H(CH2)3Si(X)3, X为乙氧基或甲氧基, 化合物 17、 二环 己基碳二酰亚胺、 化合物 13的摩尔比例 1: 1-2: 2.0-2.5 »
22、 如权利要求 21所述的制备方法, 其特征是步骤 1 ) 中所述化合物 6、 二环己基碳二酰亚胺、 4-二 甲胺基吡啶和化合物 14摩尔比例是 1 : 1.5-2: 0.9-1.1: 1.2-2.5。
23、 如权利要求 21所述的制备方法, 其特征是步骤 3 ) 中所述化合物 16, 化合物 11和二月桂酸二丁基 锡的摩尔比例是 1 : 2-2.5: 0.3-0.5。
24、 如权利要求 21所述的制备方法, 其特征是步骤 4 ) 中所述化合物 16、 4-二甲胺基吡啶、 缚酸剂和 化合物 4的摩尔比例是 1 : 1-1.5: 5-6: 6-7。
25、 一种如权利要求 5所述复合脂质的制备方法, 其特征是包括如下顺序进行的步骤:
1 )在非质子性有机溶剂中,化合物 8、二环己基碳二酰亚胺和结构式为
Figure imgf000053_0002
Figure imgf000053_0003
化合物 18在 25-45°C反应 24-72小时,制得结构式为 的 化合物 19, 其中化合物 8、 二环己基碳二酰亚胺、 化合物 18的摩尔比例 1 : 1.2-1.5: 1.1-2, a为 2或 3, X2 为 -H, -CH3, CH30-或卤代基, R1 为 C6~Cu垸基, R2为 C6~C1 S烷基;
2 )在非质子性有机溶剂中, 化合物 19, 化合物 11和二月桂酸二丁基锡在 40-80Ό反应 36-72小时,
制得结构式为
Figure imgf000053_0004
的化合物 20, 其中, R31
-CONH(CH2)3Si(X)3, X为乙氧基或甲氧基; 化合物 19,化合物 11和二月桂酸二丁基锡的摩尔比例为 1 : 2-5: 0.2-1.0;
3 ) 在非质子性有机溶剂中, 化合物 19、 4-二甲胺基吡啶, 缚酸剂和化合物 4在 25-75 'C反应 24-48
小时, 然后酸洗, 再水洗,
Figure imgf000053_0005
合物 21, 其中 R9为 -CO(CH2)2COOH、 -CO(CH2)3COOH; 化合物 19、 4- 4的摩尔比例是 1: 0.8-2: 3-9 : 3-10 , 所述缚酸剂为三乙胺或吡啶;
4 ) 在非质子性有机溶剂中, 化合物 21,二环己基碳二酰亚胺和化合物 13在 25-45°C反应 24-48小
Figure imgf000054_0001
-CO(C )2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3 , X为乙氧基或甲氧基, 化合物 21, 二环己 基碳二酰亚胺和化合物 13的摩尔比例 1: 1-2: 1.5-2.0;
MY
5 ) 在有机溶剂中, 化合物 20与结构式为 金属盐类化合物 23在 25-18CTC反应 2-48小时,然后 减 压 除 去 反 应 溶 剂 , 再 水 洗 , 粗 产 物 柱 层 析 得 到 结 构 式 为 的
Figure imgf000054_0002
的复合脂质, 其中化合物 20与化合物 23 的摩尔比例是 1 : 5-25, R31为 -CONH(CH2)3Si(X)3, X为乙氧基或甲氧基;
或者化合物 22与结构式为 MY的金属盐类化合物 23在 25-180Ό反应 2-48小时,然后减压除去反应
溶剂, 再水洗,
Figure imgf000054_0003
复合脂质, 其中化合物 22与化合物 23的摩尔比例是 1: 5-25, 其中 R32为 -CO(CH2)2CONH(CH2)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X)3 , X为乙氧基或甲氧基;
其中 X2为 -Η, -CH3, CH30-, 卤代基; M为与卟啉环配位的金属离子, Y为和 M形成金属盐的阴离 子。
26、 如权利要求 25所述的制备方法, 其特征是步骤 2) 中所述的化合物 19,化合物 11和二月桂酸二丁 基锡的摩尔比例是 1: 2-3: 0+3-0+6。
27、 如权利要求 25所述的制备方法, 其特征是步骤 3 ) 中所述化合物 19、 4-二甲胺基吡啶,缚酸剂和化 合物 4的摩尔比例是 1 : 1-1.5: 5-6: 5-8。
28、 如权利要求 25所述的制备方法, 其特征是步骤 5 ) 中所述的化合物 20与化合物 23的摩尔比例是 1:10-15。
29、 如权利要求 25所述的制备方法, 其特征是步骤 5 ) 中所述的化合物 22与化合物 23的摩尔比例是 1:10-15。
30、 如权利要求 25所述的制备方法, 其特征是所述的金属离子为铁离子、 锌离子、 镁离子、 锰离子、 钻离子、 铜离子、 钼离子、 铬离子、 礼离子、 镍离子、 钒离子、 铝离子、 稼离子或铱离子中的一种。
31、 如权利要求 25所述的制备方法, 其特征是所述阴离子为卤素阴离子或乙酸根离子。
32、 一种如权利要求 7所述复合脂质的制备方法, 其特征是包括如下顺序进行的步骤:
0
R
NH
ί
1 ) 在极性有机溶剂中, 将结构式为 R: 的化合物 1 与结构式为 V。
O 化合物 4在 25-70'C反应 0 0
ΌΗ
24—48小时后, 依次进行酸洗、 水洗, 重结晶得到结构式为 R2— " 化合物 2, 其中, 化合物 1 与化合物 4的摩尔之比为 1 : 1.5-4, a为 2或 3, 1 为 C6〜C18垸基, R2 为 C6〜C1 S垸基;
2 ) 在极性有机溶剂中, 化合物 2, 二环己基碳二酰亚胺, 4-二甲胺基吡啶和结构式为
Figure imgf000055_0001
的 化 合物 24 在 50-8CTC 反应 12-36 小 时 得 到 结构 式 为 的
Figure imgf000055_0002
其中 X1为 -Η, -CH3, CH3O-, 卤代基或 -N02; 化合物 2, 二环己基碳二酰亚胺, 4-二甲胺基吡啶, 化合物 24的摩尔比是 1: 1-3: 0.8-1.2: 3-6;
3 )在非质子性有机溶剂中, 化合物 25, 化合物 11和二月桂酸二丁基锡在 40-70Ό反应 48-72小时,
得到结构式为
Figure imgf000055_0003
的复合脂质, 其中 R31为 -CONH(CH2)3 (X)3, X为乙氧基或 化合物 25、 化合物 11和二月桂酸二丁基锡的摩尔比例 1 : 1-2: 0.2-0.8;
4 ) 在非质子性有机溶剂中, 化合物 25, 4-二甲胺基吡啶, 缚酸剂和化合物 4在 25-70'C反应 24-48
小时, 然后酸洗, 再水洗, 柱层析得到结构式为
Figure imgf000055_0004
的化合 物 26, 其中, 化合物 25, 4-二甲胺基吡啶, 缚酸剂和化合物 4的摩尔比例是 1: 0.4-1: 1-6: 2-5 ;
5 ) 在非质子性有机溶剂中, 化合物 26,二环己基碳二酰亚胺和化合物 13在 25-40'C反应 24-36小
时, 制得结构式为
Figure imgf000055_0005
的复合脂质, 其中 R32为 -CO(CH2)2CONH(C¾)3Si(X)3、 -CO(CH2)3CONH(CH2)3Si(X); X为乙氧基或甲氧基: 所述化合物 26, 二环己基碳二酰亚胺和化合物 13 的摩尔比例 1 : 1-2: 1.1-1.5。
33、如权利要求 32所述的制备方法,其特征是步骤 1 )中所述化合物 1与化合物 4的摩尔之比为 1: 2-2.5。
34、 如权利要求 32所述的制备方法, 其特征是步骤 2) 中所述化合物 2, 二环己基碳二酰亚胺, 4-二甲 胺基吡啶, 化合物 24的摩尔比是 1: 1.5-2: 0.9-1.1 : 4-5。
35、 如权利要求 32所述的制备方法, 其特征是步骤 3 ) 中所述化合物 25、 化合物 11和二月桂酸二丁基 锡的摩尔比例为 1: 1-1.25: 0.3-0,5。
36、 如权利要求 32所述的制备方法, 其特征是步骤 4) 中所述化合物 25, 4-二甲胺基吡淀,缚酸剂和化 合物 4的摩尔比例是 1 : 0.4-0.6: 3-5: 3-4。
37、 如权利要求 8所述的复合脂质的制备方法, 其特征是包括如下顺序进行的步骤:
R40
1 )在碱性条件下,将季戊四醇与溴代烷 R4-Br进行亲核取代反应,制得结构式为 Κ 的 化合物 27, 其中季戊四醇与溴代烷的摩尔之比为 1 : 3, 所述溴代烷是 R4Br, 其中 R4为 C6〜C1S烷基;
2 )将化合物 27与异氰酸丙基三乙氧基硅垸或异氰酸丙基三甲氧基硅垸进行亲核反应, 即得结构式
Figure imgf000056_0001
的复合脂质, 其中 R51为 - CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基:
或将化合物 27与与 6-溴己酰氯进行酯化反应, 接着与二甲胺气体的饱和四氢呋喃溶液进行亲核反
OR4 OR52 应, 然后再与溴丙基三乙氧基硅烷或溴丙基三甲氧基硅烷进行亲核反应, 即得结构式为0£ GR 的 复合脂质, 其中 R52为 -CO(CH2)5N(CH2)2(CH2)3Si(X)3Y, 其中 X为乙氧基或甲氧基, Y为卤代基: 或将化合物 27与丁二酸酐或戊二酸酐进行亲核反应, 然后再与氨丙基三乙氧基硅烷或氨丙基三甲
氧基硅垸进行缩合反应, 脱水得到, 即得结构式为
Figure imgf000056_0002
的复合脂质, 其中 R53 为-
< 0(( ¾)2( (^ ( ¾)38 )3或-( 0(( ¾)3( 01^ ( ¾)^( )3, 其中 X为乙氧基或甲氧基。
38、 如权利要求 9所述的复合脂质的制备方法, 其特征是包括如下顺序进行的步骤:
1 )在四氢呋喃与甲醇或者乙醇的混合溶剂中, 化合物 26,氢气与催化剂在 25-80Ό反应 12-48小时
Figure imgf000056_0003
的化合物 8, 其中化合物 26 与催化剂的质量比是 1:
0.4-0.6,氢气压力为 1.0-1.2 MPa, 所述混合溶剂中四氢呋喃与甲醇或者乙醇的体积比是 3-4: 1, 催化剂 是钯 或者氢氧化钯 a为 2或 3, R1 为 C6〜C18垸基, R2为 C5〜C18垸基;
2 )在非质子性有机溶剂中,化合物 8, 二环己基碳二酰亚胺和化合物 13在 25-40Ό反应 24-36小时,
Figure imgf000056_0004
的化合物 28, 其中, 化合物 8,二环己基 碳二酰亚胺和化合物 13的摩尔比例 1: 1-2: 1.1-1.5, 其中 X为乙氧基或甲氧基;
3 ) 在非质子性有机溶剂中, 化合物 28, 4-二甲胺基吡啶, 缚酸剂和化合物 4在 25-70'C反应 24-48
小时, 然后酸洗, 再水洗,
Figure imgf000057_0001
的复合脂质, 其中 R9
-CO(C¾)2COOH或 -CO(C¾)3COOH; R8 为 -CO(CH2)2CONH(CH2)3Si(X)3、-CO(C¾)3CONH(CH2)3Si(X)3, 其中 X为乙氧基或甲氧基; a等于 2或 3, 所述化合物 28, 4-二甲胺基吡啶, 缚酸剂和化合物 4的摩尔比 例是 1: 0.4-1 : 1-6: 4-8
39、 如权利要求 38所述的制备方法, 其特征是步骤 3 ) 中所述化合物 28, 4-二甲胺基吡啶,缚酸剂和化 合物 4的摩尔比例是 1 : 0.4-0.6: 3-5: 5-7。
40、 如权利要求 14-39所述的制备方法, 其特征是所述极性有机溶剂选择四氢呋喃, 丙酮, 二甲基甲酰 胺或乙腈中的一种。
41、 如权利要求 14-39所述的制备方法, 其特征是所述非质子性有机溶剂选择苯, 甲苯, 二氯甲垸、 氯 仿、 DMSO或 DMF中的一种。
42、 如权利要求 14-39所述的制备方法, 其特征是所述缚酸剂为三乙胺或者吡啶。
43、 一种如权利要求 2-3所述的基于季戊四醇的复合脂质的用途, 其特征是作为控制脂质体内药物释放 的光控释放材料。
44、 一种脂质体, 其特征是如权利要求 1-9任一所述的基于季戊四醇的复合脂质经溶胶凝胶过程后在水 溶液中能自组装形成。
45、 一种如权利要求 44所述的复合脂质, 其特征是所形成脂质体表面具有硅酸盐网络结构。
46、 一种如权利要求 5、 44或 45所述的复合脂质的用途, 其特征是制备成相应的脂质体后作为药物及 药物载体用于炎症疾病、 神经疾病、 动脉硬化、 肿瘤治疗。
47、 一种如权利要求 5、 44或 45所述的复合脂质的用途, 其特征是制备成相应的脂质体从而作为功能 材料应用于光储存和分子器件。
48、 一种如权利要求 5、 44或 45所述的复合脂质的用途, 其特征是作为功能材料应用于仿真设计和合 成人工系统, 以此模拟电荷分离, 电子转移, 以及信号转导。
49、 一种如权利要求 1-9任一所述的基于季戊四醇的复合脂质的用途, 其特征是作为各类药物的载体。
50、 一种如权利要求 1-9任一所述的基于季戊四醇的复合脂质的用途, 其特征是可用于纳米复合膜材料 的制备。
51、 一种如权利要求 1-9任一所述的基于季戊四醇的复合脂质的用途, 其特征是可用于清除环境中的有 机污染物。
PCT/CN2010/075269 2009-07-17 2010-07-19 基于季戊四醇的复合脂质、其中间体、制备方法和用途 WO2011006453A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/384,032 US8729257B2 (en) 2009-07-17 2010-07-19 Hybrid lipid compounds based on pentaerythritol, intermediates, preparation methods and use thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN2009100725382A CN101613365B (zh) 2009-07-17 2009-07-17 基于季戊四醇的复合脂质及其制备方法
CN200910072538.2 2009-07-17
CN200910073423.5 2009-12-15
CN 200910073423 CN102093403B (zh) 2009-12-15 2009-12-15 含偶氮苯基团的复合脂质及其中间体,制备方法与用途
CN 201010222232 CN102311478B (zh) 2010-07-09 2010-07-09 含胆固醇基团的复合脂质及其用途
CN201010222238.0A CN102311454B (zh) 2010-07-09 2010-07-09 含卟啉环功能基团的复合脂质及其制备方法与用途
CN201010222232.3 2010-07-09
CN201010222238.0 2010-07-09
CN201010224640.2 2010-07-13
CN201010224640.2A CN102329335B (zh) 2010-07-13 2010-07-13 基于季戊四醇的复合脂质,制备方法及用途

Publications (1)

Publication Number Publication Date
WO2011006453A1 true WO2011006453A1 (zh) 2011-01-20

Family

ID=43448958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075269 WO2011006453A1 (zh) 2009-07-17 2010-07-19 基于季戊四醇的复合脂质、其中间体、制备方法和用途

Country Status (2)

Country Link
US (1) US8729257B2 (zh)
WO (1) WO2011006453A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108397A1 (ja) * 2011-02-08 2012-08-16 第一三共株式会社 新規脂質
CN104840421A (zh) * 2014-02-18 2015-08-19 北京大学 一种长循环胆固醇复合脂质体及其制备方法
CN105536000A (zh) * 2015-12-10 2016-05-04 北京大学 一种基于季戊四醇酯的超声造影剂及其制备方法和用途
US10011617B2 (en) 2014-09-26 2018-07-03 The Chemours Company Fc, Llc Isocyanate derived organosilanes
CN109400666A (zh) * 2018-09-14 2019-03-01 成都百事兴科技实业有限公司 一种薯蓣皂素醚的制备方法
WO2023085299A1 (ja) * 2021-11-10 2023-05-19 武田薬品工業株式会社 カチオン性脂質

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031080B (zh) * 2014-06-20 2016-07-13 东北林业大学 负载有10-羟基喜树碱的硅质体及其制备方法
EP3275448A4 (en) 2015-03-24 2019-05-01 Kyowa Hakko Kirin Co., Ltd. LIPID NANOPARTICLES CONTAINING NUCLEIC ACIDS
WO2018188635A1 (zh) * 2017-04-12 2018-10-18 北京茵诺医药科技有限公司 一种用于靶向活化cd44分子的硅质体递送系统、其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109901A (zh) * 2006-05-26 2008-01-23 富士胶片株式会社 固化性组合物、滤色器、及其制造方法
WO2008112150A1 (en) * 2007-03-09 2008-09-18 Momentive Performance Materials Inc. Epoxysilanes, processes for their manufacture and curable compositions containing same
CN101613365A (zh) * 2009-07-17 2009-12-30 哈尔滨工业大学 基于季戊四醇的复合脂质及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109901A (zh) * 2006-05-26 2008-01-23 富士胶片株式会社 固化性组合物、滤色器、及其制造方法
WO2008112150A1 (en) * 2007-03-09 2008-09-18 Momentive Performance Materials Inc. Epoxysilanes, processes for their manufacture and curable compositions containing same
CN101613365A (zh) * 2009-07-17 2009-12-30 哈尔滨工业大学 基于季戊四醇的复合脂质及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108397A1 (ja) * 2011-02-08 2012-08-16 第一三共株式会社 新規脂質
CN104840421A (zh) * 2014-02-18 2015-08-19 北京大学 一种长循环胆固醇复合脂质体及其制备方法
US10011617B2 (en) 2014-09-26 2018-07-03 The Chemours Company Fc, Llc Isocyanate derived organosilanes
CN105536000A (zh) * 2015-12-10 2016-05-04 北京大学 一种基于季戊四醇酯的超声造影剂及其制备方法和用途
CN109400666A (zh) * 2018-09-14 2019-03-01 成都百事兴科技实业有限公司 一种薯蓣皂素醚的制备方法
CN109400666B (zh) * 2018-09-14 2021-02-26 成都百事兴科技实业有限公司 一种薯蓣皂素醚的制备方法
WO2023085299A1 (ja) * 2021-11-10 2023-05-19 武田薬品工業株式会社 カチオン性脂質

Also Published As

Publication number Publication date
US8729257B2 (en) 2014-05-20
US20120116064A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2011006453A1 (zh) 基于季戊四醇的复合脂质、其中间体、制备方法和用途
CN113402405B (zh) 一种阳离子脂质、含该阳离子脂质的脂质体、含该脂质体的核酸药物组合物及其制剂和应用
Dong et al. Poly (ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy
CN104136419A (zh) 能够形成药物封装微球的在n末端上官能化的氨基酸衍生物
JP4698842B2 (ja) 両親媒性シクロデキストリン、組織的系を溶解して疎水性分子を組み込むための、前記シクロデキストリンの調製及び使用
CN111643482A (zh) 一种在乏氧条件下释放硫化氢的纳米粒子及其制备方法和应用
WO2018085962A1 (zh) 一种碱基乙酰胺甘油醚分子,其化学合成方法及其在基因治疗领域的应用
JP5624545B2 (ja) 金属ポルフィリン誘導体、それを含むナノ粒子、及び光線力学的療法へのその使用
CN111848658B (zh) 一种靶向线粒体的氟硼二吡咯类化合物及其脂质体包裹纳米粒子的制备方法和用途
CN102093403B (zh) 含偶氮苯基团的复合脂质及其中间体,制备方法与用途
JP5294263B2 (ja) デンドリマーからなるカーボンナノチューブ用分散剤及びそれを用いたカーボンナノチューブの分散方法
Assali et al. Covalent functionalization of graphene sheets for plasmid DNA delivery: experimental and theoretical study
CN110540551B (zh) 一种脂质体、其制备方法、脂质体组装体及载物脂质体复合体
JPH03160086A (ja) ポリペプチド薄膜
RU2699071C1 (ru) Новый полиэтиленгликольсодержащий глицеролипид
CN109734721B (zh) 一种基于吡嗪[2,3-g]喹喔啉类有机光敏剂及其制备方法与光动力应用
CN102311478B (zh) 含胆固醇基团的复合脂质及其用途
Wang et al. p-Phenyleneethynylene-based comb-like oligomers: the synthesis and self-assembling property
CN109336952B (zh) 一类新型可光控释放的核磁造影脂质及其制备方法
JP6202431B2 (ja) かご型シルセスキオキサン誘導体
Goldstein et al. The relationship between the structure of the headgroup of sphingolipids and their ability to form complex high axial ratio microstructures
JPS63139186A (ja) 三本鎖型リン脂質化合物およびその製造方法
JP3155072B2 (ja) 8置換ポルフィリン金属錯体
CN116410214A (zh) 一类新型阳离子型稠环共轭吡咯衍生物及其在医药领域的应用
CN102329335A (zh) 基于季戊四醇的复合脂质,制备方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13384032

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799451

Country of ref document: EP

Kind code of ref document: A1