RU2699071C1 - Новый полиэтиленгликольсодержащий глицеролипид - Google Patents

Новый полиэтиленгликольсодержащий глицеролипид Download PDF

Info

Publication number
RU2699071C1
RU2699071C1 RU2019111299A RU2019111299A RU2699071C1 RU 2699071 C1 RU2699071 C1 RU 2699071C1 RU 2019111299 A RU2019111299 A RU 2019111299A RU 2019111299 A RU2019111299 A RU 2019111299A RU 2699071 C1 RU2699071 C1 RU 2699071C1
Authority
RU
Russia
Prior art keywords
nayf
peg
polyethylene glycol
glycerolipid
nanoparticles
Prior art date
Application number
RU2019111299A
Other languages
English (en)
Inventor
Мария Евгеньевна Николаева
Мария Германовна Миронова
Андрей Валерьевич Нечаев
Андрей Федорович Миронов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет"
Priority to RU2019111299A priority Critical patent/RU2699071C1/ru
Application granted granted Critical
Publication of RU2699071C1 publication Critical patent/RU2699071C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen

Abstract

Изобретение относится к области химии, биотехнологии, медицины и химико-фармацевтической промышленности. Предложен полиэтиленгликольсодержащий глицеролипид формулы (1):
Figure 00000003
,
где PEG - цепь полиэтиленгликоля с молекулярной массой от 750 Да до 2000 Да. Также предложен конъюгат указанного глицеролипида с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4, покрытыми остатками олеиновой кислоты, и способ получения такого конъюгата, согласно которому к суспензии апконвертирующих наночастиц в гексане добавляют раствор полиэтиленгликольсодержащего глицеролипида в хлороформе, затем полученную смесь упаривают досуха и сушат в вакууме в течение 1-3 ч. Технический результат заключается в расширении арсенала полиэтиленгликольсодержащих глицеролипидов и их конъюгатов с апконвертирующими наночастицами, а также обеспечении биосовместимости и солюбилизации гидрофобных апконвертирующих наночастиц в биологических средах и увеличении времени циркуляции их в кровотоке. 3 н.п. ф-лы, 2 ил., 6 пр.

Description

Изобретение относится к области химии, биотехнологии, медицины и химико-фармацевтической промышленности. Более конкретно, предложены новый полиэтиленгликоль-содержащий глицеролипид определенного строения, конъюгат на его основе с апконвертирующими наночастицами и способ получения такого конъюгата.
Среди разработанных на сегодняшний день липидных производных наиболее широко распространены 1,2-диолеолоил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоль)-2000] (аммониевая соль) (DOPE-PEG) и 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[амино(полиэтиленгликоль)-2000] (аммониевая соль) (DSPE-PEG), благодаря таким преимуществам, как неиммуногенность, низкая токсичность, возможность крупномасштабного производства [Yang Li et al. Self-Assembled Nanoparticles Based on Amphiphilic Anticancer Drug-Phospholipid Complex for Targeted Drug Delivery and Intracellular Dual-Controlled Release / ACS Applied Materials & Interfaces, 2015, V. 7, N. 32, pp. 17573-17581; Michela Pisani et al. Metal cation induced cubic phase in poly(ethylene glycol)-functionalized dioleoylphosphatidylethanolamine aqueous dispersions / The Journal of Physical Chemistry B, 2008, V. 112, N. 17, pp. 5276-5278].
Однако за счет того, что длиноцепные заместители в 1 и 2 положении DOPE-PEG и DSPE-PEG присоединены через сложноэфирную связь, они быстро расщепляются в организме эстеразами. Кроме того, синтез глицерофосфолипидов отличается более сложной методикой по сравнению с синтезом глицеролипида на основе цистеина вместо фосфорной группы.
Из уровня техники известно, что использование полиэтиленгликоль содержащих липидов приводит к минимизации неспецифического клиренса в тканях ретикулоэндотелиальной системы, что увеличивает время удержания в кровотоке [Mark Kastantin et al. Effect of the Lipid Chain Melting Transition on the Stability of DSPE-PEG (2000) Micelles / Langmuir, 2009, V. 25, N. 13, pp. 7279-7286; Suk J.S. et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery / Advanced Drug Delivery Reviews, 2016, V. 99, pp. 28-51]. В некоторых случаях использование полиэтиленгликоля (ПЭГ) уменьшает агрегацию эритроцитов и/или гемолиз [Eliyahu Н. et al. Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery / Gene therapy, 2002, V. 9, pp. 850-858].
Задача настоящего изобретения состояла в расширении арсенала полиэтиленгликоль-содержащих глицеролипидов, которые, в том числе, могли бы образовывать комплексы с апконвертирующими наночастицами.
Технический результат заключается в получении нового полиэтиленгликоль-содержащего глицеролипида и конъюгата на его основе с апконвертирующими наночастицами. Дополнительно технический результат заключается в придании биосовместимости и в обеспечении солюбилизации гидрофобных апконвертирующих наночастиц в биологических средах, а также в увеличении времени циркуляции в кровотоке.
Технический результат достигается ПЭГ-содержащим глицеролипидом, имеющим строение формулы (1):
Figure 00000001
где PEG - цепь полиэтиленгликоля с молекулярной массой от 750 до 2000 Да.
Структура ПЭГ-содержащего глицеролипида (1) включает:
- остаток глицерина с двумя жирными углеводородными хвостами с длиной цепи C18 для взаимодействия с остатками олеиновой кислоты на поверхности апконвертирующих наночастиц с образованием конъюгатов ПЭГ-содержащего глицеролипида с апконвертирующими наночастицами; и
- остаток полиэтиленгликоля различной молекулярной массы (от 750 до 2000 Да), необходимый для солюбилизации гидрофобных апконвертирующих наночастиц в биологических средах и образования устойчивых дисперсий в водных средах, а также для защиты комплексов глицеролипид-апконвертирующие наночастицы от воздействия сыворотки крови и увеличения времени циркуляции в кровотоке.
Для присоединения ПЭГ к глицерину в качестве линкера используют янтарный ангидрид. В качестве аминокислоты использовали цистеин. Заряженная карбоксильная группа в остатке цистеина способствует предотвращению агрегации конъюгатов ПЭГ-содержащего глицеролипида с апконвертирующими наночастицами.
Технический результат также достигается конъюгатом ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4, покрытыми остатками олеиновой кислоты
Кроме того, технический результат достигается способом получения предложенного конъюгата, согласно которому к суспензии апконвертирующих наночастиц в гексане добавляют раствор ПЭГ-содержащего глицеролипида в хлороформе, затем полученную смесь упаривают досуха и сушат в вакууме в течение 1-3 ч.
В качестве исходного соединения в синтезе ПЭГ-содержащего глицеролипида (1) использовали 1,2-изопропилиденглицерин (2), из которого при взаимодействии с бензилбромидом в N,N-диметилформамиде (ДМФА) был получен 1,2-изопропилиден-3-бензилглицерин (3). Удаление изопропилиденовой защиты в условиях кислотного гидролиза приводило к образованию 1-бензилглицерина (4), который в дальнейшем алкилировали октадецилбромидом в присутствии гидрида натрия в ДМФА с образованием 1,2-диоктадецил-3-бензилглицерина (5). Соединение (5) гидрировали в присутствии Pd/C в смеси растворителей тетрагидрофуран/метанол (ТГФ/МеОН), с образованием 1,2-диоктадецилглицерина (6). 1,2-диоктадецилглицерин растворяли в хлористом метилене, добавляли трифенилфосфин и N-бромсукцинимид, в результате получали 1,2-диоктадецил-3-бромглицерин (7) [Wenyan Wu et al. Structure-Activity relationship in Toll-like receptor-2 agonistic diacyithioglycerol lipopeptides / Journal of Medicinal Chemistry, 2010, V. 53, pp. 3198-3213]. Следующим этапом было присоединение аминокислоты к липидной части. В качестве аминокислоты использовали N-Boc-цистеин. Его алкилировали по атому серы с использованием хемоселективной реакции в ДМФА в присутствии триэтиламина и йодида калия, который добавляли в каталитических количествах и использовали как реагент для образования йодпроизводного 1,2-диоктадецилглицерина in situ, с получением соединения (9). Далее Вос-защиту удаляли 4М раствором хлороводорода в метаноле с образованием соединения со свободной аминогруппой (10), которую далее ацилировали янтарным ангидридом. Реакцию проводили в хлороформе в присутствии диизопропилэтиламина в качестве основания. В результате получали продукт со свободной карбоксильной группой (11) с количественным выходом. Для активации карбоксильной группы в соединении (11) для реакции с ПЭГ использовали N-гидроксисукцинимид в присутствии 1-этил-3-(3-диметиламинопропил)карбодиимида (EDC). На последней стадии проводили присоединение ПЭГ к активированному производному (12) в присутствии диизопропилэтиламина с образованием целевого соединения (1).
Растворители и реагенты Sigma-Aldrich. Хлористый метилен и триэтиламин кипятили над гидридом кальция и перегоняли перед реакцией. Пиридин кипятили над гидроксидом калия и перегоняли перед реакцией.
Колоночную хроматографию осуществляли на силикагеле Silicagel 60 (0,040-0,063 мм и 0,063-0,200 мм, Merck). Обнаружение пятен на хроматограммах проводили раствором фосформолибденовая кислота/церий (IV) сульфат с последующим прогреванием и с помощью УФ-лампы (254 нм).
Спектры 1Н-ЯМР и 13С-ЯМР регистрировали на приборе Bruker DPX 300 с использованием CDCl3 в качестве растворителя, если не указано иное. Химические сдвиги 1Н-ЯМР приведены относительно остаточного сигнала CHCl3Н 7.26 м.д.). Химические сдвиги 13С-ЯМР приведены относительно центрального сигнала растворителя (δC 77.0 м.д. для растворов в CDCl3). Масс-спектры были получены на спектрометре Ultraflex II Bruker Daltonics методом MALDI TOF.
Далее осуществляли получение конъюгата ПЭГ-содержащего глицеролипида с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4. Для этого к суспензии апконвертирующих наночастиц в гексане добавляли раствор ПЭГ-содержащего глицеролипида (1) в хлороформе, затем полученную смесь упаривают досуха и сушат в вакууме в течение 1-3 ч.
Для изучения времени удержания целевого конъюгата ПЭГ-содержащего глицеролипида с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4 в кровотоке использовали клетки SK-BR-3 и применяли 5% раствор исследуемого конъюгата в 0,9% растворе хлорида натрия. Далее проводилась серия экспериментов на лабораторных животных. Использовали модель черных мышей с введением наркоза золетил-рометара по 0,2 мл внутрибрюшинно, в количестве 3 шт.
Сопоставительный анализ заявляемого соединения с известными и широко используемыми DOPE-PEG и DSPE-PEG показал, что ПЭГ-содержащий глицеролипид (1) обладает следующими преимуществами:
1) увеличение времени удержания заявленного конъюгата ПЭГ-содержащего глицеролипида с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4 в кровотоке по сравнению с коммерчески доступными прототипами с 15 мин до 30 мин;
2) полученный конъюгат ПЭГ-содержащего глицеролипида с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4 не требует сложной процедуры приготовления;
3) предлагаемый конъюгат ПЭГ-содержащего глицеролипида с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4 стабилен при хранении как в сухом виде, так и в виде водных формуляций.
Изобретение иллюстрируется следующими примерами.
Пример 1. Синтез ПЭГ-содержащего глицеролипида (1), молекулярная масса ПЭГ 2000 Да.
К суспензии гидрида натрия (6 г, 0.14 моль) в N,N-диметилформамиде (150 мл) прикапывали 1,2-изопропилиденглицерин (2) (18.1 г, 0.14 моль) в N,N-диметилформамиде (10 мл) в течение 30 мин при охлаждении. Затем в течение 15 мин прикапывали бензилбромид (24 г, 0.14 моль), перемешивали еще 10 мин. Полученный раствор отфильтровывали, упаривали. Осадок соединения (3) растворяли в хлористом метилене (100 мл), промывали водой (50 мл) и упаривали. Остаток перегоняли в вакууме при 0,1 мм.рт.ст. (tкип=90°С). Получили 24.5 г (80%) 1,2-изопропилиден-3-бензилглицерина (3).
К раствору 1,2-изопропилиден-3-бензилглицерина (3) (10 г, 44.8 ммоль) в 80% водном метаноле (20 мл) добавляли смолу Dowex 50wx2 в Н+ форме (2 г) и перемешивали при кипячении 2 часа. Затем раствор отфильтровывали, промывали гексаном (200 мл), осушали над сульфатом натрия и упаривали. Остаток соединения (4) растворяли в хлороформе (30 мл) и выдерживали 2 суток над молекулярными ситами 3А, отфильтровывали, упаривали и сушили в вакууме масляного насоса в течение 3 ч. Получили 7.6 г (92%) 1-бензилглицерина (4).
К раствору 1-бензилглицерина (4) (188 мг, 1.03 ммоль) в N,N-диметилформамиде (5 мл) добавляли гидрид натрия (124 мг, 1.1 ммоль) и перемешивали в течение 15 мин. Затем добавляли октадецилбромид (824 мг, 1.03 ммоль) и перемешивали сутки. Избыток гидрида натрия нейтрализовали метанолом (2 мл). Полученный раствор растворяли в хлористом метилене (50 мл), промывали водой (50 мл). Осушали над сульфатом натрия и упаривали. Продукт очищали методом колоночной хроматографии, элюируя системой гексан/этилацетат. После чего перекристаллизовывали из изопропанола. Получили 319 мг (45%) 1,2-диоктадецил-3-бензилглицерина (5).
К раствору соединения (5) (8 г, 0.012 моль) в смеси ТГФ (100 мл) и метанола (10 мл), добавляли 10%-й палладий на угле (500 мг) и гидрировали при атмосферном давлении до поглощения необходимого объема водорода. Осадок отфильтровывали, раствор упаривали. Остаток растворяли в хлористом метилене (80 мл) и промывали водой (50 мл). Осушали над сульфатом натрия и упаривали. Продукт (6) перекристаллизовывали из гексана. Получили 4.94 г (71%) 1,2-диоктадецилглицерина (6).
К раствору соединения (6) (800 мг, 1.35 ммоль) в хлористом метилене (50 мл) добавляли трифенилфосфин (1.065 г, 4.05 ммоль) и перемешивали при охлаждении 10 мин. Затем при охлаждении к смеси добавляли N-бромсукцинимид (721 мг, 4.05 ммоль) и перемешивали 3 часа при комнатной температуре. Полученное соединение промывали водой (50 мл), осушали над сульфатом натрия и упаривали. От примесей трифенилфосфиноксида соединение (7) очищали переосаждением из гексана. Получили 797 мг (90%) 1,2-диоктадецил-3-бромглицерина (7).
К раствору метилового эфира цистеина (5 г, 29 ммоль) в ТГФ (40 мл) добавляли триэтиламин (5.8 г, 58 ммоль). Перемешивали при охлаждении в атмосфере аргона 10 мин и прикапывали раствор Вос-ангидрида (6.3 г, 29 ммоль) в ТГФ (10 мл). Затем реакционную смесь перемешивали 2 часа при комнатной температуре. Полученное соединение экстрагировали этилацетатом (100 мл), осушали над сульфатом натрия и упаривали. Получили 7 г (97%) метилового эфира N-трет-бутоксикарбонилцистеина (8).
К раствору соединения (7) (2.25 г, 3.41 ммоль) в N,N-диметилформамиде (30 мл) добавляли диизопропилэтиламин (3.7 г, 27.28 ммоль), метиловый эфир трет-бутоксицистеина (6.8 г, 27.28 ммоль) и каталитическое количество йодистого калия. Затем перемешивали 4 часа при нагревании до 80°С. Полученное соединение экстрагировали хлороформом (200 мл) и промывали 2 раза водой (2×20 мл) и 1 раз растровом разбавленной HCl, осушали над сульфатом натрия, упаривали. Продукт очищали методом колоночной хроматографии, элюируя системой гексан/этилацетат. Получили 2.5 г (90%) 1,2-диоктадецил-глицеро-S-(O-метил-N-трет-бутокси)-цистеина (9).
К раствору соединения (9) (2 г, 2.46 ммоль) в хлористом метилене (20 мл) добавляли HCl/МеОН (2 г, 28 ммоль). Перемешивали 12 часов при комнатной температуре. Полученное соединение упаривали и переосаждали из диэтилового эфира (40 мл). Получили 1.76 г (92%) гидрохлорида 1,2-диоктадецил-глицеро-S-(O-метил)-цистеина (10).
К раствору соединения (10) (200 мг, 0.28 ммоль) в хлористом метилене (5 мл) добавляли диизопропилэтиламин (15 мг, 0.7 ммоль) и янтарный ангидрид (12.5 мг, 0.7 ммоль). Перемешивали 12 часов при комнатной температуре. Полученное соединение промывали 2 раза водой (2×10 мл) и 1 раз растровом разбавленной HCl, осушали над сульфатом натрия, упаривали. В дальнейшем использовали без дополнительной очистки. Получили 200 мг (88%) 1,2-диоктадецил-глицеро-S-(O-метил-N-бутандионкарбокси)-цистеина (11).
К раствору соединения (11) (100 мг, 0.12 ммоль) в хлористом метилене (5 мл) добавляли N-гидроксисукцинимид (16 мг, 0.13 ммоль) и 1-этил-3-(3-диметиламинопропил)карбодиимид (26 мг, 0.13 ммоль). Перемешивали 12 часов при комнатной температуре. Полученный продукт промывали водой (5 мл), осушали над сульфатом натрия и упаривали. В дальнейшем использовали без дополнительной очистки. Получили 101 мг (90%) 1,2-диоктадецил-глицеро-S-(O-метил-N-бутандионкарбокси)-сукцинимидоцистеина (12).
К раствору соединения (12) 100 мг (0.11 ммоль) в хлористом метелене добавляли диизопропилэтиламин (30 мг, 0.22 ммоль) и амино-метокси-ПЭГ2000 (440 мг, 0.22 ммоль). Перемешивали 24 часа при комнатной температуре. Полученные продукты промывали 2 раза водой (2×10 мл) и 1 раз растровом разбавленной HCl, осушали над сульфатом натрия и упаривали. Продукт очищали методом колоночной хроматографии, элюируя системой хлороформ/метанол. Получили 213 мг (69%) 1,2-диоктадецил-глицеро-S-(O-метил-N-бутандионкарбокси-N-метокси)-ПЭГ-цистеина (13).
К раствору соединения (13) (100 мг, 0.03 ммоль) в ТГФ (2,5 мл) добавляли раствор гидроксида лития (27.5 мг, 1.14 ммоль) в воде (1 мл). Перемешивали 2 часа при комнатной температуре. Полученный продукт подкисляли раствором соляной кислоты до рН 4 и экстрагировали хлористым метиленом, осушали над сульфатом натрия и упаривали. Продукт очищали переосаждением из диэтилового эфира. Получили 95 мг (96%) 1,2-диоктадецил-глицеро-S-(N-бутандионкарбокси-N-метокси)-ПЭГ-цистеина (14).
К раствору соединения (14) (100 мг, 0.03 ммоль) в смеси МеОН/H2O (2 мл/2 мл) добавляли раствор гидрокарбоната натрия (20 мг, 0.24 ммоль) в воде (1,5 мл). Перемешивали и досуха упаривали. Полученный продукт сушили в вакууме масляного насоса 30 мин. Продукт растворяли в хлороформе (5 мл) и упаривали. Продукт очищали переосаждением из диэтилового эфира. Получили 99 мг (99%) натриевой соли 1,2-диоктадецил-глицеро-S-(N-бутандионкарбокси-N-метокси)-ПЭГ-цистеина (1).
Соединение 14: 1Н-ЯМР, (δ, м.д.): 7.05 (м, 1Н, N-H), 6.36 (с, 1H, ПЭГ-N-H), 4.74 (дк, J=11.0, 5.6 Гц, 1Н, HN-C-H), 3.96-3.22 (м, 192Н, глицерин-Н-О, O-СН 2-октадецил, ПЭГ-Н, ПЭГ-О-СН 3), 3.04-2.98 (м, 2Н, HS-CH 2), 2.88-2.46 (м, 6Н, СН 2-СООН, глицерин-СН 2-S), 1.69-1.45 (м, 4Н, O-СН2Н 2-октадецил), 1.26 (с, 60Н, октадецил-Н), 0.86 (т, J=6.7 Гц, 6Н, СН 3).
Пример 2. Синтез ПЭГ-содержащего глицеролипида (1), молекулярная масса ПЭГ 1500 Да.
ПЭГ-содержащий глицеролипид (1) с молекулярной массой ПЭГ 1500 Да получали в соответствии с аналогичной процедурой, которая подробно изложена в примере 1, за исключением в том, что вместо амино-метокси-ПЭГ2000 использовали амино-гидрокси-ПЭГ1500. Получили 120 мг (39%) натриевой соли 1,2-диоктадецил-глицеро-S-(N-бутандионкарбокси-N-метокси)-ПЭГ-цистеина (1).
1Н-ЯМР, (δ, м.д.): 7.05 (м, 1Н, N-H), 6.36 (с, 1Н, ПЭГ-N-H), 4.74 (дк, J=11.0, 5.6 Гц, 1Н, HN-C-H), 3.96-3.22 (м, 147Н, глицерин-Н-О, О-СН 2-октадецил, ПЭГ-Н, ПЭГ-О-СН 3), 3.04-2.98 (м, 2Н, HS-CH 2), 2.88-2.46 (м, 6Н, СН 2-СООН, глицерин-CH 2-S), 1.69-1.45 (м, 4Н, O-СН2Н 2-октадецил), 1.26 (с, 60Н, октадецил-Н), 0.86 (т, J=6.7 Гц, 6Н, СН 3).
Пример 3. Синтез ПЭГ-содержащего глицеролипида (1), молекулярная масса ПЭГ 750 Да.
ПЭГ-содержащий глицеролипид (1) с молекулярной массой ПЭГ 750 Да получали в соответствии с аналогичной процедурой, которая подробно изложена в примере 1, за исключением в том, что вместо амино-метокси-ПЭГ2000 использовали амино-гидрокси-ПЭГ750. Получили 90 мг (37%) натриевой соли 1,2-диоктадецил-глицеро-S-(N-бутандионкарбокси-N-метокси)-ПЭГ-цистеина (1).
1Н-ЯМР, (δ, м.д.): 7.05 (м, 1Н, N-H), 6.36 (с, 1H, ПЭГ-N-H), 4.74 (дк, J=11.0, 5.6 Гц, 1H, HN-C-H), 3.96-3.22 (м, 74Н, глицерин-Н-О, O-СН 2-октадецил, ПЭГ-Н, ПЭГ-О-СН 3), 3.04-2.98 (м, 2Н, HS-CH 2), 2.88-2.46 (м, 6Н, СН 2-СООН, глицерин-CH 2-S), 1.69-1.45 (м, 4Н, O-СН2Н 2-октадецил), 1.26 (с, 60Н, октадецил-Н), 0.86 (т, J=6.7 Гц, 6Н, СН 3).
Для создания конъюгатов на основе ПЭГ-содержащего глицеролипида (1) использовали апконвертирующие наночастицы со структурой ядро-оболочка NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4, полученные методом высокотемпературного разложения прекурсоров в высокипящих гидрофобных растворителях, методика синтеза таких наночастиц описана в уровне техники [Khaydukov E.V. et al. Riboflavin photoactivation by apconvertion nanoparticles for cancer treatment / Scientific Reports, 2016, V. 6, 35103; Nechaev A.V. et al. Natural Chlorins Octadecylamides - Upconversion Nanoparticles Complexes for the Study of Energy Transfer Process / Macroheterocycles, 2016, V. 9, pp. 361-365]. В данных работах получены монодисперсные гидрофобные наночастицы со средним размером 60 нм, покрытые остатками олеиновой кислоты. Наночастицы обладают антистоксовой фотолюминисценцией при возбуждении на длине волны 975 нм.
Пример 4. Синтез конъюгата ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4.
16 мг ПЭГ-содержащего глицеролипида (1) растворяли в 2 мл хлороформа и смешивали с 4 мг апконветирующих наночастиц NaYF4:Yb3+:Er3+/NaYF4, диспергированных в 4 мл гексана (концентрация наночастиц 1 мг/мл). Полученную смесь медленно упаривали до образования тонкой пленки и сушили в вакууме масляного насоса 2 часа.
Полученный конъюгат ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 суспендировали в 5 мл воды и фильтровали через шприцевой фильтр с размерами пор 0,2 мкм с последующим центрифугированием в течение 1 часа при 6000 об/мин, а затем диспергированием в 2 мл 0,9% раствора хлорида натрия с образованием устойчивой дисперсии.
Пример 5. Синтез конъюгата ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3+:Tm3+/NaYF4.
Конъюгат ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3+:Tm3+/NaYF4 получали в соответствии с аналогичной процедурой, которая подробно изложена в примере 4, за исключением в том, что вместо апконвертирующих наночастиц NaYF4:Yb3+:Er3+/NaYF4 использовали наночастицы NaYF4:Yb3+:Tm3+/NaYF4.
На фиг. 1 представлены фотографии 5% растворов полученных конъюгатов в 0,9% растворе хлорида натрия: фиг. 1а - раствор конъюгата ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3: Er3+/NaYF4; фиг. 1б - раствор конъюгата ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3+:Tm3+/NaYF4.
Пример 6. Анализ на время циркуляции в кровотоке.
Для исследования времени циркуляции конъюгата ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 в кровотоке проводилась серия экспериментов на лабораторных животных. Использовали модель черных мышей с введением наркоза золетил-рометара по 0,2 мл внутрибрюшинно, в количестве 3 шт. Вводили конъюгат ПЭГ-содержащего глицеролипида (1) с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 в 0,9% растворе хлорида натрия по 0,15 мл внутривенно (в ретроорбитальный синус). Забор крови осуществляли из хвостовой вены через 1, 3, 5, 10, 30, 60, 120, 180 мин и 1 сутки с подрезанием хвоста. Каждый образец крови исследовался на апконверсионном люминесцентном микроскопе (с детекцией отдельных наночастиц) в четырех случайных местах. Получали соответствующие фотографии и вручную подсчитывали количество наночастиц. На фиг. 2 выборочно представлены микрофотографии образцов крови с люминесцентного микроскопа, качественно демонстрирующие изменение концентрации наночастиц с течением времени.
С помощью оригинальных имиджинговых систем, разработанных во ФНИЦ «Кристаллография и фотоника» РАН, наблюдался апконверсионный сигнал в кровеносной системе малого животного до 30 мин.
Таким образом, приведенные примеры однозначно указывают на то, что ПЭГ-содержащий глицеролипид (1) обладает способностью солюбилизировать гидрофобные апконвертирующие наночастицы в биологических средах, а также защищает полученные конъюгаты ПЭГ-содержащий глицеролипид-апконвертирующие наночастицы от воздействия сыворотки крови, что приводит к увеличению времени циркуляции в кровотоке по сравнению с коммерчески доступными производными.

Claims (5)

1. Полиэтиленгликольсодержащий глицеролипид, имеющий строение формулы (1):
Figure 00000002
,
где PEG - цепь полиэтиленгликоля с молекулярной массой от 750 Да до 2000 Да.
2. Конъюгат полиэтиленгликольсодержащего глицеролипида по п. 1 с апконвертирующими наночастицами NaYF4:Yb3+:Er3+/NaYF4 или NaYF4:Yb3+:Tm3+/NaYF4, покрытыми остатками олеиновой кислоты.
3. Способ получения конъюгата по п. 2, характеризующийся тем, что к суспензии указанных апконвертирующих наночастиц в гексане добавляют раствор указанного полиэтиленгликольсодержащего глицеролипида в хлороформе, затем полученную смесь упаривают досуха и сушат в вакууме в течение 1-3 ч.
RU2019111299A 2019-04-16 2019-04-16 Новый полиэтиленгликольсодержащий глицеролипид RU2699071C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019111299A RU2699071C1 (ru) 2019-04-16 2019-04-16 Новый полиэтиленгликольсодержащий глицеролипид

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019111299A RU2699071C1 (ru) 2019-04-16 2019-04-16 Новый полиэтиленгликольсодержащий глицеролипид

Publications (1)

Publication Number Publication Date
RU2699071C1 true RU2699071C1 (ru) 2019-09-03

Family

ID=67851701

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019111299A RU2699071C1 (ru) 2019-04-16 2019-04-16 Новый полиэтиленгликольсодержащий глицеролипид

Country Status (1)

Country Link
RU (1) RU2699071C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745187C1 (ru) * 2020-02-11 2021-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Способ получения комплекса для тераностики опухолей на основе антистоксовых нанофосфоров и белковых молекул

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA011351B1 (ru) * 2003-05-23 2009-02-27 Нектар Терапеутикс Ал, Корпорейшн Полимерные реагенты, способы их получения, а также содержащие их конъюгаты и фармацевтические препараты
CN106075474A (zh) * 2016-06-06 2016-11-09 合肥工业大学 水溶性NaYF4:Yb,Er@NaGdF4核壳纳米晶及其制备方法和在核磁共振中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA011351B1 (ru) * 2003-05-23 2009-02-27 Нектар Терапеутикс Ал, Корпорейшн Полимерные реагенты, способы их получения, а также содержащие их конъюгаты и фармацевтические препараты
CN106075474A (zh) * 2016-06-06 2016-11-09 合肥工业大学 水溶性NaYF4:Yb,Er@NaGdF4核壳纳米晶及其制备方法和在核磁共振中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Mark Kastantin et al. Effect of the Lipid Chain Melting Transition on the Stability of DSPE-PEG (2000) Micelles / Langmuir, 2009, V. 25, N. 13, pp. 7279-7286. *
Mark Kastantin et al. Effect of the Lipid Chain Melting Transition on the Stability of DSPE-PEG (2000) Micelles / Langmuir, 2009, V. 25, N. 13, pp. 7279-7286. Suk J.S. et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery / Advanced Drug Delivery Reviews, 2016, V. 99, pp. 28-51. Рочева В.В. и др. Люминесцентная диагностика опухолей с применением апконвертирующих наночастиц. Альманах клинической медицины, февраль 2016, номер 44, с.227-233. *
Suk J.S. et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery / Advanced Drug Delivery Reviews, 2016, V. 99, pp. 28-51. *
Рочева В.В. и др. Люминесцентная диагностика опухолей с применением апконвертирующих наночастиц. Альманах клинической медицины, февраль 2016, номер 44, с.227-233. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745187C1 (ru) * 2020-02-11 2021-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Способ получения комплекса для тераностики опухолей на основе антистоксовых нанофосфоров и белковых молекул

Similar Documents

Publication Publication Date Title
JP2020526519A (ja) 分枝多官能性マクロモノマーおよび関連ポリマーならびにそれらの使用
US10590243B2 (en) Cationic polyphosphazene compound, polyphosphazenes-drug conjugate compound and method for preparing same
JP2018506515A (ja) 両親媒性ポリマー系
CA3206128A1 (en) Polyoxazoline-lipid conjugates and lipid nanoparticles and pharmaceutical compositions including same
RU2699071C1 (ru) Новый полиэтиленгликольсодержащий глицеролипид
WO2013067881A1 (zh) 水溶性维生素e衍生物修饰的双亲性抗癌药物化合物和制剂、该化合物的制备方法及应用
CN102727905B (zh) 一种金纳米-紫杉醇结合物及其制备方法和应用
CN114796513B (zh) 二硒键桥连多西他赛二聚体前药及其自组装纳米粒
WO2017049821A1 (zh) 水溶性多西他赛抗癌药物化合物及其制备方法和应用
CN111253505A (zh) 具有细胞靶向性的水溶性环糊精药物载体及其制备方法
CN114213346B (zh) 一种双价可电离脂质化合物、组合物及其应用
ES2374243B1 (es) Vectores no virales para terapia génica.
WO2007145455A1 (en) Water soluble micelle-forming and biodegradable cyclotriphosphazene-taxol conjugate anticancer agent and preparation method thereof
US20130197271A1 (en) Dendrimers and methods of preparing same through proportionate branching
KR20120126356A (ko) 양친성 저분자량 히알루론산 복합체를 포함하는 나노 입자 및 그의 제조 방법
CN111607101A (zh) 一种具有活性氧响应性的树状大分子及其制法和用途
WO2005082918A1 (ja) 重合性双頭型糖脂質、そのチューブ状凝集体及びその重合体
WO2015065168A1 (en) Oligo-ethylene glycol based phosphonate surface modification reagents and use thereof
CN113698589B (zh) 一种维生素e琥珀酸酯磷脂化合物及其应用
CN116199646B (zh) 一种基于Tris的可电离脂质及其制备方法与应用
ES2374245B1 (es) Vectores no virales para terapia génica.
JPH07145038A (ja) 閉鎖小胞膜構成成分
Valdivia et al. Synthesis and Characterization of New Biocompatible Amino Amphiphilic Compounds Derived from Oleic Acid as Nanovectors for Drug Delivery
FR2977162A1 (fr) Nanovecteurs ou particules polymeres et leur utilisation comme medicament et/ou agent de diagnostic
CN108403634B (zh) 基于Janus分子纳米粒子的水溶性胶束及其制备方法