WO2017049821A1 - 水溶性多西他赛抗癌药物化合物及其制备方法和应用 - Google Patents

水溶性多西他赛抗癌药物化合物及其制备方法和应用 Download PDF

Info

Publication number
WO2017049821A1
WO2017049821A1 PCT/CN2016/071696 CN2016071696W WO2017049821A1 WO 2017049821 A1 WO2017049821 A1 WO 2017049821A1 CN 2016071696 W CN2016071696 W CN 2016071696W WO 2017049821 A1 WO2017049821 A1 WO 2017049821A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
docetaxel
drug compound
anticancer drug
soluble
Prior art date
Application number
PCT/CN2016/071696
Other languages
English (en)
French (fr)
Inventor
张跃华
Original Assignee
南京友怡医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京友怡医药科技有限公司 filed Critical 南京友怡医药科技有限公司
Priority to US15/762,985 priority Critical patent/US10406239B2/en
Publication of WO2017049821A1 publication Critical patent/WO2017049821A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/14Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment

Definitions

  • the invention relates to a novel anticancer drug compound, a preparation method and application thereof, in particular to a water-soluble docetaxel anticancer drug compound, a preparation comprising the same, a preparation method thereof and application as an anticancer drug.
  • Docetaxel (formula 1), also known as docetaxel, is a lipophilic taxane antitumor drug that is a cell inhibitor that enhances tubulin polymerization and inhibits microtubule depolymerization. The action forms a stable non-functional microtubule bundle, thereby destroying the mitosis of the tumor cells to achieve an anti-tumor effect.
  • the intracellular concentration of docetaxel is three times higher than that of paclitaxel, and it has a long residence time in cells, so it has stronger antitumor activity than paclitaxel. It is mainly used for the treatment of advanced breast cancer, ovarian cancer, non-small cell lung cancer, head and neck cancer, small cell lung cancer, and has certain curative effects on gastric cancer, pancreatic cancer and melanoma.
  • Docetaxel has high anti-tumor activity, good safety and tolerability, and its clinical application has become more widespread since its introduction. Like other anti-tumor drugs, it has no selective recognition of tumor cells and normal cells, which makes its side effects especially prominent. Reports on its adverse reactions are gradually increasing. The main adverse reactions found so far are fluid retention and skin toxicity. Such as systemic erythema, itching and rash, severe weakness and paralysis, hematological toxicity including leukopenia, neutropenia and thermal neutropenia; non-hematologic toxicity with hair loss, sensory and motor neurotoxicity, mouth Inflammation, weakness, and digestive reactions such as nausea, vomiting, and diarrhea.
  • Docetaxel is insoluble in water, resulting in a small drug loading of its clinical dosage form, which limits its dosage and affects clinical efficacy; its oral bioavailability is poor, below 8%.
  • the marketed dosage form of docetaxel is docetaxel injection. Tween 80 is used as a solvent in the preparation, which has certain toxic and side effects, and docetaxel is easily degraded and difficult to preserve in aqueous solution.
  • the preparation of docetaxel nano-lipid carrier by thin film ultrasonic method can achieve the purpose of small particle size, high drug encapsulation rate and controlled release;
  • the carrier material contains docetaxel preparation and grows a circulating preparation, which can escape the phagocytosis of the liver and spleen reticuloendothelial system and prolong its circulation time in the blood;
  • 3 use soybean oil and triacylglycerol as oil phase, Polo Preparation of injectable docetaxel microemulsion by using sam 188 and soybean phospholipid as emulsifier, the microemulsion has good stability, and the increase of drug loading does not affect the particle size and drug encapsulation efficiency;
  • 4 micelle preparation Commonly used micelle carriers loaded with docetaxel are polyethylene glycol-polylactic acid block copolymer, polyvinylpyrrol
  • the object of the present invention is to provide a novel water-soluble docetaxel anticancer drug compound which has high anticancer activity and low toxicity; the compound is not only soluble in water but also capable of forming nanoparticles in an aqueous solution, and With drug release function.
  • Another object of the present invention is to provide a method for synthesizing the water-soluble docetaxel anticancer drug compound.
  • Another object of the present invention is to provide a composition comprising the water-soluble docetaxel anticancer drug compound, which can be directly dissolved by using the water-soluble docetaxel anticancer drug compound as a prodrug.
  • a composition comprising the water-soluble docetaxel anticancer drug compound, which can be directly dissolved by using the water-soluble docetaxel anticancer drug compound as a prodrug.
  • water saline or glucose
  • the solution is made into an injection.
  • Another object of the present invention is to provide an application of the compound in the preparation of an anticancer drug.
  • the water-soluble docetaxel anticancer drug compound of the invention comprises a lipophilic anticancer drug active part and a hydrophilic part, and the lipophilic anticancer drug active part is a drug compound molecule docetaxel having anticancer activity,
  • the hydrophilic portion is a water-soluble alkoxy polyethylene glycol ester, and the alkoxy polyethylene glycol is passed through a linking group oxydiacetyl, diglycoloyl, diglycolyl and an anticancer drug compound docetaxel.
  • the ester bond is covalently bound to form the anticancer drug compound of the present invention.
  • the object of the present invention is to adopt the following technical solution: a water-soluble docetaxel anticancer drug compound, the molecular formula of which can be represented by the following formula I:
  • R is a C1-C5 alkyl group, and the following groups are common and preferred:
  • the invention also relates to a method for preparing the water-soluble docetaxel anticancer drug compound, comprising the steps of:
  • polyethylene glycol monoalkyl ether (1) and diglycolic acid or diglycolic anhydride esterification reaction to form polyethylene glycol monoalkyl ether diglycolic acid monoester (2);
  • the method comprises the steps of:
  • DMAP 4-dimethylaminopyridine
  • CMPI 2-chloro-1-methylpyridinium iodide
  • DCC N,N'-dicyclohexylcarbodiimide
  • DMAP The methylaminopyridine
  • DMAP is a catalyst, and the polyethylene glycol monoalkyl ether diglycolic acid monoester (2) obtained in the step 1) is reacted with docetaxel to form the water-soluble docetaxel Cancer drug compound (I).
  • the present invention also relates to a formulation of the water-soluble docetaxel anticancer drug, such a novel water-soluble docetaxel
  • the anticancer drug compound can be directly dissolved in water, physiological saline (0.9% sodium chloride) or glucose (5%) injection to prepare an injection preparation to form a micelle preparation.
  • the water-soluble docetaxel drug compound may be present in the formulation in an amount of from about 0.005% to 5.0% by weight; preferably from about 0.01% to 2.5% by weight; more preferably the pharmaceutical compound is in the formulation.
  • the weight percentage is about 0.1% to 2.0%.
  • the pharmaceutical compound has good water solubility and forms a nanoparticle micelle liquid in an aqueous solution.
  • the compound contains a lipophilic anticancer drug active moiety and a hydrophilic polyethylene glycol moiety.
  • the whole molecule is both a drug molecule and a surfactant. When dissolved in water, it can automatically form nanomicelles without adding any surfactant or help. Agent.
  • the nanoparticle micelle fluid also has a drug sustained release function.
  • the pharmaceutical compound of the invention has high anticancer activity and low toxicity, and has good water solubility.
  • the drug compound can be used as a prodrug to release active drug molecules by hydrolysis or enzymatic hydrolysis in an aqueous solution or a body fluid.
  • the present invention also provides the use of the newly invented pharmaceutical compound, that is, the use of the water-soluble docetaxel anticancer drug compound in the preparation of an anticancer drug.
  • the pharmaceutical compounds of the invention are useful in the manufacture of a medicament for the treatment of cancer.
  • the pharmaceutical compound of the present invention can be used for the treatment of cancer including the blood system such as leukemia, lymphoma, myeloma; and non-blood cancer such as solid tumor cancer (such as breast cancer, ovarian cancer, pancreatic cancer, colon cancer, rectal cancer, non- Small cell lung cancer, bladder cancer), sarcoma and glioma.
  • the efficacy and toxicity of the pharmaceutical compounds of the present invention are determined by in vitro cell or in vivo animal experiments, such as ED50 (50% effective dose, half effective amount: 50% of the dose when the subject is positive), LD50 (50% lethal dose) The median lethal dose: the dose of killing half of the test subject) and GI50 (concentration of the anti-cancer drug that inhibits the growth of cancer cells by 50%, inhibiting the concentration of the drug grown by 50% of the subjects).
  • the ratio of the median lethal dose (LD50) / half effective dose (ED50) is usually referred to as the therapeutic index to indicate the safety of the drug. Drugs with a large therapeutic index are safer than drugs with a small therapeutic index.
  • the newly invented anticancer drug compound aims to improve the therapeutic index and the safety of the drug while also improving the therapeutic effect.
  • the dose of the drug obtained from in vitro cell experiments and in vivo animal experiments can be used to formulate a dose range for the human body.
  • the dose of such a compound is preferably in the range of ED50 with little or no toxicity.
  • the dosage change will generally depend on the dosage form employed, the sensitivity of the patient, and the route of administration. It is usually possible to refer to conventional doses of the same or similar drugs, such as Ai Su et al.
  • the pharmaceutical compounds of the invention may be used alone or in combination with one or more other therapeutic agents.
  • the pharmaceutical compounds of the present invention can be used with the following therapeutic agents including, but not limited to, androgen inhibitors such as flutamide and luprolide; antiestrogens Such as tamoxifen; antimetabolites and cytotoxic drugs such as daunorubicin, fluorouracil, floxuridine, alpha-interferon (interferon alpha) ), methotrexate, plicamycin, mecaptopurine, thioguanine, adriamycin, carmustine, lomoviz Lomustine, cytarabine, cyclophosphamide, doxorubicin, estramustine, altretamine, hydroxyurea, heterocyclic Phosphoramide (ifosfamide), procarbazine, mutamycin, busulfan, mitoxantrone, carboplatin, cisp
  • the present invention combines the drug compound molecule docetaxel having a anticancer activity with a water-soluble alkoxy polyethylene glycol ester through a diglycol group to obtain a water-soluble docetaxel anticancer drug compound,
  • the compound contains a lipophilic anticancer drug active part and a hydrophilic polyethylene glycol part.
  • the drug molecule has the dual functions of a drug and a surfactant, does not require any surfactant, and can be dissolved in water, physiological saline or glucose injection to form a gel.
  • the bundled nanoparticles are directly prepared as an injection.
  • the novel anticancer drug compound of the invention has high anticancer activity, has good water solubility, can improve the sustained action time (half-life) and curative effect of docetaxel under physiological conditions in vivo, and has sustained release. Role, reducing its toxic side effects.
  • the pharmaceutical compound can be prepared as an injection, and is widely used in blood systems and non-blood systems. The treatment of cancer provides a new approach and approach for the clinical application of docetaxel.
  • Fig. 3 is a graph showing the average particle size distribution of the micelle when the concentration of the aqueous solution of the drug compound XBB-023 is 2.5 mg/mL.
  • Fig. 4 is a graph showing the average particle size distribution of micelles when the concentration of the aqueous solution of the drug compound XBB-023 is 5 mg/mL.
  • Figure 5 shows the percentage change in the percentage of docetaxel obtained after hydrolysis of the drug compound XBB-023 at different times.
  • Figure 7 is a three-dimensional chromatogram overlay of the hydrolysis of the drug compound XBB-023.
  • Figure 8 Growth inhibition effect of drug compound XBB-023 on human lung cancer A549 xenografts in nude mice.
  • Figure 9 Effect of drug compound XBB-023 on the weight of human lung cancer A549 xenograft tumor xenografts in nude mice.
  • Figure 10 Effect of drug compound XBB-023 on body weight of human lung cancer A549 nude mice xenograft tumor experimental animals.
  • Fig. 11 is a photograph showing the inhibitory effect of the drug compound XBB-023 on the growth of human lung cancer A549 xenograft tumor in nude mice.
  • the following examples are intended to illustrate the synthesis, formulation, in vitro cell assay and in vivo pharmacodynamics of the water-soluble docetaxel anticancer drug compounds of the present invention.
  • the applicant has described polyethylene glycol monomethyl ether docetaxel-2'-diglycolate as an example, and the same can be used for the water-soluble paclitaxel anticancer drug compound within the scope of the present invention.
  • similar methods are synthesized and verified to have the same or similar results.
  • the described embodiments are provided to aid in the understanding and implementation of the present invention and are not intended to limit the invention.
  • the synthesis of the water-soluble docetaxel anticancer drug compound comprises the following steps:
  • the present embodiment includes an injection prepared by using water, physiological saline (0.9% sodium chloride) or glucose (5%) injection, and the preparation formulation contains the water-soluble docetaxel anticancer drug compound of the present invention, each of which The content of the components in the formulation is calculated as a percentage by weight.
  • the resulting injection was filtered through a 0.2 micron filter and placed in a sterile glass vial.
  • the resulting injection was filtered through a 0.2 micron filter and placed in a sterile glass vial.
  • the resulting injection was filtered through a 0.2 micron filter and placed in a sterile glass vial.
  • the water-soluble docetaxel anticancer drug compound XBB-023 is dissolved in water to form micelles.
  • the particle size of the micelles is measured by the ZetaPlus laser scattering particle size analyzer of BROOKHAVEN, USA.
  • the measurement method is: weighing the drug (XBB-023) 5mg and 10mg, respectively, added to 2mL of distilled water, stirred to fully dissolve, allowed to stand for 10min, after the bubble disappeared, the liquid was added to the sample cell (cuvette), note that no bubbles can be generated during the sample addition, and then The cuvette was placed in the corresponding groove of the sample cell base, and the measurement was started. Each sample was measured in parallel three times to obtain an average value.
  • Methanol is chromatographic grade and purchased from Tedia Corporation (USA); KH 2 PO 4 and NaOH are analytically pure drugs purchased from Sinopharm Chemical Reagent Co., Ltd.; experimental water is distilled water.
  • the temperature of the collector type thermostatic stirrer was set to 37 ° C, and the XBB-023 preparation was placed therein for hydrolysis reaction.
  • XBB-023 and docetaxel can be simultaneously detected using the above HPLC analysis conditions.
  • Target retention time t XBB-023 9.6min
  • t docetaxel 8.0min.
  • the percentage content of docetaxel and XBB-023 after XBB-023 hydrolysis at different times can be obtained by the area normalization method.
  • the experimental results are shown in Table 1, Table 2, Figure 5, Figure 6, and Figure 7. Comparing the chromatograms of different hydrolysis time of XBB-023, the peak area of XBB-023 gradually decreases with the increase of time, and the peak height gradually decreases. There is a peak at the retention time of docetaxel, and the peak area gradually increases. The height is gradually increasing. It shows that over time, XBB-023 will continue to hydrolyze and release docetaxel.
  • the drug compound XBB-023 could be gradually hydrolyzed to release docetaxel in a 37 ° C, pH 4.0 buffer solution in vitro. Therefore, the pharmaceutical compound XBB-023 can be directly dissolved in water, physiological saline or glucose solution as a prodrug, and can be used as an injection preparation to release docetaxel in the body to inhibit tumor growth.
  • Example 5 Pharmacodynamic test of water-soluble docetaxel (XBB-023) on growth inhibition of human lung cancer A549 xenograft tumor in nude mice
  • Each dose of the drug XBB-02348mg was accurately weighed, and 0.9% sodium chloride solution (manufacturer: Chenxin Pharmaceutical Co., Ltd.; batch number: 1403222705; specification: 250ml: 12.5g) was added to 10ml to prepare a concentration of 4.8mg/ The liquid of ml is administered in a volume of 0.4 ml/20 g, that is, a dose of 96 mg/kg. Dilute with 0.9% sodium chloride solution to other required doses.
  • Docetaxel injection manufacturer: Jiangsu Hengrui Pharmaceutical Co., Ltd., batch number: 15011215, specification: 0.5ml: 20mg, preparation method: use the above specifications of docetaxel 20mg for injection into docetaxel
  • the injection solvent was 1.5 ml, the concentration was 10 mg/ml, and it was sufficiently diluted with physiological saline to 1 mg/ml, and the administration volume was 0.2 ml/20 g, that is, the dose was 10 mg/kg.
  • Human lung cancer A549 nude mice xenografts were established by inoculating human lung cancer A549 cell line into the axilla of nude mice. The amount of cells inoculated was 2*10 6 /piece.
  • Human lung cancer A549 cell line in logarithmic growth phase was prepared as a 1 ⁇ 10 8 /ml cell suspension under sterile conditions, and inoculated into the right axilla of nude mice in 0.1 ml.
  • the nude mice xenografts were measured with a vernier caliper to measure the diameter of the transplanted tumors, and the animals were randomly divided into groups after the tumors were grown to 100-300 mm 3 .
  • the effect of the anti-tumor effect of the test substance was dynamically observed using a method of measuring the tumor diameter. The number of measurements of tumor diameter was measured once every 3 days.
  • the administration volume was 0.4 ml / 20 g. Twenty-one days later, the mice were sacrificed and the tumor pieces were surgically removed and weighed.
  • the formula for calculating tumor volume (TV) is:
  • V 0 is the measured tumor volume at the time of sub-cage administration (i.e., d 0 )
  • V t is the tumor volume at each measurement.
  • the evaluation index of antitumor activity is the relative tumor growth rate T/C (%), and the calculation formula is as follows:
  • the formula for calculating the tumor inhibition rate is as follows:
  • T weight mean tumor weight of the treatment group
  • C weight mean tumor weight of the negative control group.
  • the experimental results are shown in Table 3, Table 4, and Figures 8 to 11.
  • the drug XBB-023 was administered intravenously at a dose of 96 mg/kg, 48 mg/kg, and 24 mg/kg, and was administered once every three days for a total of 7 doses.
  • the T/C of the experimental group on human lung cancer A549 nude mice was 12.83%, 25.56%, 56.30%; the tumor inhibition rate was 88.45%, 68.55%, 34.73%.
  • Docetaxel 10mg/kg was administered intravenously in the tail vein, once every 3 days. After 7 times of administration, the T/C of human lung cancer A549 nude mice was 21.15%, and the tumor inhibition rate was 72.16%. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种水溶性多西他赛抗癌药物化合物,具有式I的结构。抗癌药物活性部分多西他赛与聚乙二醇单烷基醚,通过连接基团二甘醇酰基(羰基甲氧基乙酰基)共价结合形成所述的水溶性多西他赛抗癌药物化合物。本发明还涉及所述药物化合物的制备方法及应用。

Description

水溶性多西他赛抗癌药物化合物及其制备方法和应用 技术领域
本发明涉及一种新的抗癌药物化合物及其制备方法和应用,特别是涉及一种水溶性多西他赛抗癌药物化合物,包含该化合物的制剂、制备方法以及作为抗癌药物的应用。
背景技术
许多具有抗癌活性的化合物由于不溶于水和/或其它生物相容性溶剂,或在水和生物相容性溶剂中稳定性差已成为药物开发的一个障碍,往往导致药物开发时间延迟。据估计,多达百分之四十经筛选出的具有潜在价值的候选药物化合物由于其水溶性差而被拒绝进入制剂研究与开发阶段,并且百分之三十的现有药物是难溶性的。当前有数种技术正在研究和开发之中,以解决药物化合物溶解度差的问题,这些技术包括增加溶解度的配位剂技术、纳米颗粒技术、微乳液技术、增强溶解度的制剂技术、脂质体制剂技术、脂溶性和水溶性前药技术,以及新型的聚合物载药技术等。
多西他赛(docetaxel,式1)又名多烯紫杉醇,是一种亲脂性的紫杉烷类抗肿瘤药物,属于细胞抑止剂类药物,通过加强微管蛋白聚合作用和抑制微管解聚作用,形成稳定的非功能性微管束,从而破坏肿瘤细胞的有丝分裂达到抗肿瘤的效果。多西他赛细胞内浓度比紫杉醇高3倍,在细胞内滞留时间长,因此比紫杉醇具有更强的抗肿瘤活性。临床主要用于治疗主要治疗晚期乳腺癌、卵巢癌、非小细胞肺癌,头颈部癌、小细胞肺癌;对胃癌、胰腺癌、黑色素瘤等也有一定疗效。
Figure PCTCN2016071696-appb-000001
式1.多西他赛分子结构。
多西他赛抗肿瘤活性高,安全性及耐受性较好,自上市以来其临床应用日趋广泛,但 与其他抗肿瘤药物一样,它对肿瘤细胞和正常细胞没有选择性识别作用,使得其副作用表现也尤为凸显,关于其不良反应的报道也逐渐增加,目前发现的主要不良反应有体液潴留,皮肤毒性如全身红斑、瘙痒和皮疹,严重虚弱和麻痹,血液学毒性包括白细胞减少症、中性粒细胞减少症和热性中性粒细胞减少症;非血液毒性有脱发、感觉和运动神经毒性,口炎、虚弱以及恶心、呕吐、腹泻等消化系统反应。
为了降低多西他赛的毒副作用,扩大其临床应用范围,国内外诸多药物研究者致力于多西他赛新剂型的研发。多西他赛不溶于水,导致其临床剂型的载药量小,从而限制了它的给药剂量,影响了临床疗效;其口服生物利用度差,低于8%。目前,多西他赛的上市剂型为多西他赛注射液,该制剂中使用Tween 80为溶剂,有一定的毒副作用,且多西他赛在含水溶液中易发生降解、不易保存。
为解决以上弊端,很多研究者致力于新型给药系统的研究与开发。如①脂质体剂型,采用薄膜超声法制备多西他赛纳米脂质载体,能够达到粒径小、药物包封率高且控释的目的;②由亲水性物质聚乙二醇修饰的载体材料包载多西他赛制备而成长循环制剂,能在体内逃脱肝脾网状内皮系统的吞噬,延长其在血液中的循环时间;③将大豆油和三酰甘油作为油相,泊洛沙姆188和大豆磷脂为乳化剂制备可注射的多西他赛微乳,该微乳稳定性较好,且载药量的增加不影响粒径大小以及药物包封率;④胶束制剂,常用的装载多西他赛的胶束载体有聚乙二醇-聚乳酸嵌段共聚物、聚乙烯吡咯酮-外消旋聚乳酸嵌段共聚物等,还有pH敏感嵌段共聚物胶束以及热敏感聚合物胶束;⑤多西他赛主动靶向纳米给药系统的研究。这些新剂型都围绕多西他赛水溶性、降低毒副作用、提高药物的生物利用率,并取得了很大的进展,不仅为提高多西他赛水溶性、降低毒副作用、提高药物的生物利用率提供了可能,也为癌症患者提供了更安全用药的希望。但各种给药系统或多或少存在缺陷,如包封率低、药物渗漏和稳定性等问题有待进一步解决。
发明内容
本发明的目的在于提供一种新的水溶性多西他赛抗癌药物化合物,具有高抗癌活性且毒性低;所述的化合物不仅可以溶于水,而且在水溶液中能够形成纳米颗粒,且具有药物缓释功能。
本发明的另一目的在于提供所述的水溶性多西他赛抗癌药物化合物的合成方法。
本发明的另一目的还在于提供一种包含所述的水溶性多西他赛抗癌药物化合物的组合物,以所述的水溶性多西他赛抗癌药物化合物为前药,可直接溶于水、生理盐水或葡萄糖 溶液制成注射液。
同时,本发明的另一目的还在于提供所述化合物在制备抗癌药物中的应用。
本发明的水溶性多西他赛抗癌药物化合物,含有亲脂性的抗癌药物活性部分和亲水部分,亲脂性的抗癌药物活性部分是具有抗癌活性的药物化合物分子多西他赛,亲水部分是水溶性烷氧基聚乙二醇酯,烷氧基聚乙二醇通过连接基团二甘醇酰基(oxydiacetyl,diglycoloyl,diglycolyl)与抗癌药物化合物多西他赛(docetaxel)以酯键共价结合形成本发明的抗癌药物化合物。
实现本发明目的采用以下技术方案:一种水溶性多西他赛抗癌药物化合物,其分子式可以用以下通式I表示:
Figure PCTCN2016071696-appb-000002
其中,R为C1~C5的烷基,常见及优选以下基团:
a)甲基(-CH3);
b)乙基(-CH2CH3);
c)丙基(-CH2CH2CH3);
d)丁基(-CH2CH2CH2CH3)。
其中聚合度n=5-500。
本发明还涉及一种所述的水溶性多西他赛抗癌药物化合物的制备方法,包括以下步骤:
1)聚乙二醇单烷基醚(1)与二甘醇酸或二甘醇酸酐发生酯化反应,生成聚乙二醇单烷基醚二甘醇酸单酯(2);
2)步骤1)所得到的聚乙二醇单烷基醚二甘醇酸单酯(2),或者它们的酰氯化产物(3),与多西他赛发生酯化反应,生成所述的水溶性多西他赛抗癌药物化合物(I)。
更具体和优化地,所述的方法包括以下步骤:
1)以2-乙基己酸锡(II)、三氯化铝或碳酸铯为催化剂,聚乙二醇单烷基醚(1)与二甘醇酸酐反应,或者以4-二甲氨基吡啶(DMAP)和2-氯-1-甲基吡啶鎓碘化物(CMPI),或N,N′-二环己基碳化二亚胺(DCC)和4-二甲氨基吡啶(DMAP)为催化剂,与过量的二甘醇酸反应,生成聚乙二醇单烷基醚二甘醇酸单酯(2);
2)聚乙二醇单烷基醚二甘醇酸单酯(2)与酰氯化试剂(如亚硫酰(二)氯)反应生成酰氯化产物(3);
3)以碱(如三乙胺,吡啶,4-二甲氨基吡啶、碳酸钠,碳酸钾,碳酸铯)为催化剂,步骤2)所得到的酰氯化产物(3)与多西他赛反应,生成所述的水溶性多西他赛抗癌药物化合物(I);或
以4-二甲氨基吡啶(DMAP)和2-氯-1-甲基吡啶鎓碘化物(CMPI)为催化剂,或以N,N′-二环己基碳化二亚胺(DCC)和4-二甲氨基吡啶(DMAP)为催化剂,步骤1)所得到的聚乙二醇单烷基醚二甘醇酸单酯(2)与多西他赛反应,生成所述的水溶性多西他赛抗癌药物化合物(I)。
Figure PCTCN2016071696-appb-000003
式2.水溶性多西他赛抗癌药物化合物的合成路线。
本发明还涉及所述的水溶性多西他赛抗癌药物的制剂配方,这类新的水溶性多西他赛 抗癌药物化合物可直接溶于水、生理盐水(0.9%氯化钠)或葡萄糖(5%)注射液制成注射剂,形成胶束制剂。
采用的技术方案为,一种所述的水溶性多西他赛抗癌药物化合物注射剂,包含:
1)具有式Ⅰ结构的水溶性多西他赛抗癌药物化合物;
2)水、生理盐水(0.9%氯化钠)或葡萄糖(5%)注射液。
所述的注射剂中,水溶性多西他赛药物化合物在配方中重量百分含量可以为约0.005%至5.0%;优选重量百分含量约为0.01%至2.5%;更优选药物化合物在配方中重量百分含量约为0.1%至2.0%。
所述的药物化合物具有较好的水溶性,在水溶液中形成纳米颗粒胶束液。该化合物含有亲脂的抗癌药物活性部分和亲水聚乙二醇部分,整个分子既是药物分子也是表面活性剂,溶于水后可自动形成纳米胶束,不需要加入任何表面活性剂或助剂。作为溶剂型给药体系,纳米颗粒胶束液还具有药物缓释功能。
本发明的药物化合物具有较高的抗癌活性且毒性低,同时具有较好的水溶解性,该药物化合物作为前药,在水溶液或体液中可经水解或酶催化水解释放出活性药物分子-多西他赛。申请人尝试了不同连接基团,如羰基-(C=O)-、C1-10亚烷基羰基(-(CH2)nCO-)、C1-10双酰基(-(C=O)(CH2)n(C=O)-,如戊二酰基)、-P(=O)(R)-等,在抗肿瘤活性和给药系统上,均难以取得令人满意的效果。
本发明还提供了新发明的药物化合物的应用,即所述的水溶性多西他赛抗癌药物化合物在制备抗癌药物中的应用。
例如,本发明的药物化合物用于制备治疗癌症的药物。本发明的药物化合物可用于治疗包括血液系统的癌症,如白血病,淋巴瘤,骨髓瘤;和非血液癌症,如实体瘤癌(如乳腺癌、卵巢癌、胰腺癌、结肠癌、直肠癌、非小细胞肺癌、膀胱癌),肉瘤和胶质瘤等。
本发明的药物化合物的疗效和毒性用体外细胞或体内动物实验来确定,例如ED50(50%effective dose,半数有效量:50%实验对象出现阳性反应时的药量)、LD50(50%lethal dose,半数致死量:杀死一半试验对象的剂量)和GI50(concentration of the anti-cancer drug that inhibits the growth of cancer cells by 50%,抑制50%的实验对象生长的药物浓度)。通常将半数致死量(LD50)/半数有效量(ED50)的比值称为治疗指数,用以表示药物的安全性。治疗指数大的药物相对治疗指数小的药物更安全。
新发明的抗癌药物化合物旨在提高治疗指数和药物的安全性,同时也提高治疗效果。从体外细胞实验和体内动物实验获得的药物剂量可以用来制定用于人体的剂量范围。这种 化合物的剂量最好在很少或根本没有毒性的ED50范围内。剂量变化通常取决于采用的剂型、病人的敏感性和给药途径等。通常可用相同或类似药物的常规剂量做参考,如
Figure PCTCN2016071696-appb-000004
艾素等。
本发明的药物化合物可以单独使用,也可与一个或多个其它的治疗药物一起使用。例如,在癌症的治疗时,本发明的药物化合物可与以下治疗药物一起使用,包括但不限于:雄激素抑制剂,如氟他胺(flutamide)和鲁珀若利得(luprolide);抗雌激素,如他莫昔芬(tomoxifen);抗代谢药物和细胞毒性药物,如道诺红菌素(daunorubicin)、五氟脲嘧啶(fluorouracil)、氟尿苷(floxuridine)、α-干扰素(interferon alpha)、甲氨蝶呤(methotrexate)、光神霉素(plicamycin)、硫基嘌呤(mecaptopurine)、硫鸟嘌呤(thioguanine)、阿霉素(adriamycin)、卡莫司汀(carmustine)、洛莫司汀(lomustine)、阿糖胞苷(cytarabine)、环磷酰胺(cyclophosphamide)、阿霉素(doxorubicin)、雌莫司汀(estramustine)、六甲蜜胺(altretamine)、羟基脲(hydroxyurea)、异环磷酰胺(ifosfamide)、甲基苄肼(procarbazine)、突变霉素(mutamycin)、白消安(busulfan)、米托蒽醌(mitoxantrone)、卡铂carboplatin)、顺铂(cisplatin)、链脲佐菌素(streptozocin)、博莱霉素(bleomycin)、放线菌素(dactinomycin)、和依达比星(idamycin);激素,如甲孕酮(medroxyprogesterone)、炔雌二醇(ethinyl estradiol)、雌二醇(estradiol,)、.亮丙瑞林(leuprolide)、甲地孕酮(megestrol)、奥曲肽(octreotide)、己烯雌酚(diethylstilbestrol)、氯烯雌醚(chlorotrianisene)、足叶乙甙(etoposide)、鬼臼毒素(podophyllotoxin)和戈舍瑞林(goserelin);氮芥衍生物,如苯丙酸氮芥(melphalan)、苯丁酸氮芥(chlorambucil)和塞替派(thiotepa);类固醇,如倍他米松(betamethasone);和其他抗肿瘤药物,如活牛分枝杆菌(live Mycobacterium bovis)、达卡巴嗪(dicarbazine)、天冬酰胺酶(asparaginase)、甲酰四氢叶酸(leucovorin)、米托坦(mitotane)、长春新碱(vincristine)、和长春碱(vinblastine)等。
本发明将具有抗癌活性的药物化合物分子多西他赛与水溶性烷氧基聚乙二醇酯通过二甘醇酰基共价结合,得到水溶性多西他赛抗癌药物化合物,所述的化合物含有亲脂的抗癌药物活性部分和亲水聚乙二醇部分,药物分子具有药物和表面活性剂双重功能,不需要任何表面活性剂,可以溶于水、生理盐水或葡萄糖注射液形成胶束状的纳米颗粒,直接制成注射剂。本发明的新的抗癌药物化合物具有较高的抗癌活性,同时具有较好的水溶解性,能够提高多西他赛在体内生理条件下的持续作用时间(半衰期)和疗效,具有缓释作用,降低其毒副作用。所述的药物化合物可以制成注射剂,广泛应用于血液系统和非血液系统 癌症的治疗,为多西他赛的临床应用提供了一种新的方法和途径。
下面结合具体实施例对本发明进行详细描述。本发明的保护范围并不以具体实施方式为限,而是由权利要求加以限定。
附图说明
图1水溶性多西他赛抗癌药物化合物(聚乙二醇单甲醚多西他赛-2’-二甘醇酸酯,聚乙二醇单甲醚的平均分子量:Mn=1000)的核磁共振氢谱图。
图2水溶性多西他赛抗癌药物化合物(聚乙二醇单甲醚多西他赛-2’-二甘醇酸酯,聚乙二醇单甲醚的平均分子量:Mn=1000)的质谱图。
图3药物化合物XBB-023水溶液的浓度为2.5mg/mL时,胶束平均粒径分布图。
图4药物化合物XBB-023水溶液的浓度为5mg/mL时,胶束平均粒径分布图。
图5药物化合物XBB-023水解不同时间后得到的多西他赛百分比含量变化。
图6药物化合物XBB-023水解不同时间后的百分比含量变化。
图7药物化合物XBB-023水解的三维色谱叠加图。
图8药物化合物XBB-023对人肺癌A549裸鼠移植瘤的生长抑制作用。
图9药物化合物XBB-023对人肺癌A549裸鼠异种移植肿瘤瘤重的影响。
图10药物化合物XBB-023对人肺癌A549裸鼠异种移植肿瘤实验动物体重的影响。
图11药物化合物XBB-023对人肺癌A549裸鼠异种移植肿瘤生长抑制作用照片。
具体实施方式
下面的实施例用来说明本发明的水溶性多西他赛抗癌药物化合物的合成、制剂、体外细胞实验和体内药效学等。实施例中,申请人以聚乙二醇单甲醚多西他赛-2’-二甘醇酸酯为例进行详细描述,对于本发明范围内的水溶性紫杉醇抗癌药物化合物,可以采用相同或相似方法合成,并经验证具有相同或相似的结果。所述的实施例有助于对本发明的理解和实施,并不构成对于本发明的限制。
实施例1.聚乙二醇单甲醚(Mn=1000)多西他赛-2’-二甘醇酸酯的合成
所述水溶性多西他赛抗癌药物化合物的合成包括以下步骤:
1)聚乙二醇单甲醚(Mn=1000)二甘醇酸酯的合成
方法一:
反应式如下式所示:
Figure PCTCN2016071696-appb-000005
实验步骤:
在100mL圆底烧瓶中,加入2.400g(2.4mmol)干燥后的聚乙二醇单甲醚(Mn=1000)、0.557g(4mmol)二甘醇酸酐和200mg 2-乙基己酸锡(II),再加入30mL二甲苯,搅拌,氮气保护下加热回流至反应完成。用旋转蒸发仪除去反应液中的二甲苯后,加入20mL乙酸乙酯,搅拌,再加入10mL乙醚,析出白色固体,过虑除去固体物质,用旋转蒸发仪将滤液浓缩至10mL,柱层分离(100-200mesh硅胶为固定相,乙腈和1,4-二氧六环的混和液为淋洗液),得1.865g聚乙二醇单甲醚(Mn=1000)二甘醇酸酯,收率69.3%。
方法二:在100mL圆底烧瓶中,加入0.644g(4.8mmol)二甘醇酸、1.450g(12mmol)4-二甲氨基吡啶、1.530g(6mmol)2-氯-1-甲基吡啶鎓碘化物和30mL N,N-二甲基乙酰胺,电磁搅拌,慢慢向反应液中滴加2.400g(2.4mmol)干燥后的聚乙二醇单甲醚(Mn=1000)和30mL N,N-二甲基乙酰胺的溶液。在室温和氮气的保护下反应12h,用旋转蒸发仪将滤液浓缩至10mL,柱层分离(100-200mesh硅胶为固定相,乙腈和1,4-二氧六环的混和液为淋洗液),得1.631g聚乙二醇单甲醚(Mn=1000)二甘醇酸酯,收率60.6%。
2)聚乙二醇单甲醚(Mn=1000)多西他赛-2’-二甘醇酸酯(XBB-023)的合成
反应式如下式所示:
Figure PCTCN2016071696-appb-000006
在100mL圆底烧瓶中,将1.667g(1.49mmol)聚乙二醇单甲醚(Mn=1000)二甘醇酸酯溶解在30mL的无水甲苯中,加入550μL(7.45mmol)二氯亚砜,2滴DMF。电磁搅拌,在室温和氮气的保护下反应4h。减压蒸馏除去甲苯和过量的亚硫酰氯,得到粘稠液体,加入10mL无水氯仿得溶液A。
在50mL的反应瓶中,将0.958g(1.18mmol)的多西他赛溶解在20mL的氯仿中,加 入495.9μL(3.558mmol)的三乙胺,冰盐浴冷却,搅拌,慢慢加入10mL溶液A,在室温和氮气的保护下反应4h。反应完毕后,减压蒸馏除去反应液中的氯仿,再向反应瓶中加入20mL的乙酸乙酯,搅拌,过滤除去白色固体,再将滤液浓缩至10mL。柱层分离(100-200mesh硅胶为固定相,乙腈和1,4-二氧六环为淋洗剂(的混和液为淋洗液),进行梯度洗脱,得1.205g聚乙二醇单甲醚(Mn=1000)多西他赛-2’-二甘醇酸酯,产物为粘稠液体,产率53.6%(白色粘稠液)。
合成得到的化合物其质谱和核磁共振氢谱见图1和图2。
MS(Positive ESI):m/z=1885.0,1840.9,1796.9,1752.9,1708.9,1664.9,1620.8,1576.8。
MS(Negative ESI):m/z=1906,1861.9,1816.9,1773.9,1728.8,1685.8,1640.8,1596.7,1553.7,1508.7。
1H NMR(300MHz,CDCl3):δppm:8.1294~8.1051(d,2H,J=7.29Hz),7.6338~7.5848(t,1H,J=7.35Hz),7.5271~7.4775(t,2H,J=7.44Hz),7.4258~7.3779(m,2H),7.3465~7.2837(m,3H),6.2670~6.2131(t,1H),5.7025~5.6791(d,1H,J=7.02Hz),5.4493(m,2H),5.2145(s,1H),4.9775~4.9508(d,1H,J=8.01Hz),4.3705~4.1828(m,9H),3.9449~3.9220(d,1H),3.6429(m,84H),3.5766~3.5320(m,2H),3.3784(s,3H),2.6156~2.5076(m,1H),2.4342(s,3H),2.4340~2.3501(m,2H),1.9523(s,3H),1.940~1.9109(m,1H),1.9043(s,3H),1.3345(s,9H),1.2327(s,3H),1.1301(s,3H)。
实施例2.水溶性多西他赛抗癌药物化合物(XBB-023)的制剂
本实施例中包括用水、生理盐水(0.9%氯化钠)或葡萄糖(5%)注射液制成的注射液,制剂配方中含有本发明的水溶性多西他赛抗癌药物化合物,每一组分在配方中的含量按重量百分比计算。
1)水溶性多西他赛抗癌药物化合物的水注射液
将100mg水溶性多西他赛抗癌药物化合物(XBB-023)加入到10mL的容量瓶中,用去离子水定容至10mL,振摇后所生产的注射液的组成如下:
XBB-023            1.0%
水                 99.0%。
制成的注射液通过一个0.2微米的过滤器过滤,再装入无菌的玻璃瓶中。
2)水溶性多西他赛抗癌药物化合物的生理盐水(0.9%氯化钠)注射液
将50mg水溶性多西他赛抗癌药物化合物(XBB-023)加入到10mL的容量瓶中,用生理盐水定容至10mL,振摇后所生产的注射液的组成如下:
XBB-023              0.5%
生理盐水             99.5%。
制成的注射液通过一个0.2微米的过滤器过滤,再装入无菌的玻璃瓶中。
3)水溶性多西他赛抗癌药物化合物的5%葡萄糖注射液
将50mg水溶性多西他赛抗癌药物化合物(XBB-023)加入到10mL的容量瓶中,用5%葡萄糖注射液定容至10mL,振摇后所生产的注射液的组成如下:
XBB-023               0.5%
5%葡萄糖注射液       99.5%。
制成的注射液通过一个0.2微米的过滤器过滤,再装入无菌的玻璃瓶中。
实施例3.水溶性多西他赛抗癌药物化合物(XBB-023)胶束粒径的测定
水溶性多西他赛抗癌药物化合物XBB-023溶于水后形成胶束,胶束的粒径采用美国BROOKHAVEN公司的ZetaPlus型激光散射粒度仪测量,测量方法为:称取药品(XBB-023)5mg和10mg,分别加入到2mL蒸馏水中,搅拌使其充分溶解,静置10min,待气泡消失后将该液体加入到样品池(比色皿)中,注意加入样品过程中不能产生气泡,然后将比色皿放入样品池底座相应的凹槽内,开始测量,各样品分别平行测量三次取其平均值。
实验结果见图3和4。结果表明:当XBB-023水溶液的浓度为2.5mg/mL和5mg/mL时,其平均粒径分别为101.2纳米和345.0纳米。
实施例4.水溶性多西他赛抗癌药物化合物(XBB-023)体外药物缓释实验
1.仪器与试剂
Shimadzu LC-20AT高效液相色谱仪,SPD-20A检测器,LabSolutions色谱工作站(日本岛津公司);DF-1集热式磁力恒温搅拌器(上海市江星仪器有限公司);FA2004B电子天平(上海越平科学仪器有限公司)。
甲醇为色谱级,购于Tedia公司(USA);KH2PO4、NaOH是分析纯药品,购于国药集团化学试剂有限公司;实验用水为蒸馏水。
配制pH=7.40的磷酸缓冲盐溶液(0.05M KH2PO4,0.04M NaOH)。
2.实验方法
准确称取10mg XBB-023放入螺口菌种瓶中,加入3ml磷酸缓冲盐溶液,磁力搅拌至澄清。
设置集热式磁力恒温搅拌器油浴温度为37℃,将XBB-023制剂置于其中进行水解反应。
用移液枪移取60μL XBB-023反应液于色谱瓶中,另移取540μL乙腈,制得0.33mg/ml的样品,依次在开始水解后0h,1h,2h,5h,6h,7h,25h,31h,48h,55h,72h,79h,103h,168h进行HPLC分析。
3.HPLC分析
色谱柱:C18柱(5μm,150mm×5mm);流动相:乙腈:水(50:50);检测波长:227nm;流速:1.0ml/min;进样量5μL;柱温40℃。
用以上HPLC分析条件可同时检测XBB-023和多西他赛。目标物保留时间tXBB-023=9.6min,t多西他赛=8.0min。
4.实验结果
用面积归一法可以获得XBB-023水解不同时间后多西他赛和XBB-023的百分比含量,实验结果如表1、表2、图5、图6和图7所示。对比XBB-023不同水解时间的色谱图可知,随着时间的增加XBB-023峰面积逐渐减小,峰高逐渐降低;多西他赛保留时间处有峰出现,且峰面积逐渐增大,峰高逐渐增高。表明随着时间的增加,XBB-023会不断水解释放出多西他赛。
表1.XBB-023水解不同时间后得到的多西他赛百分比含量
Figure PCTCN2016071696-appb-000007
表2.XBB-023水解不同时间后的百分比含量
Figure PCTCN2016071696-appb-000008
5结论
结果表明,药物化合物XBB-023在体外37℃,PH4.0的缓冲溶液中可逐步水解释放出多西他赛。因此,药物化合物XBB-023作为前药,可直接溶于水、生理盐水或葡萄糖溶液制成注射液等制剂,在体内可释放出多西他赛,抑制肿瘤生长。
实施例5.水溶性多西他赛(XBB-023)对人肺癌A549裸鼠异种移植肿瘤生长抑制作用的药效学试验
1)配制方法
每次给药精密称取药物XBB-02348mg,加入0.9%氯化钠溶液(生产厂家:辰欣药业股份有限公司;批号:1403222705;规格:250ml:12.5g)10ml配制成浓度为4.8mg/ml的液体,给药体积为0.4ml/20g,即给药剂量为96mg/kg。再用0.9%氯化钠溶液稀释成其他所需剂量。
2)对照药物
多西他赛注射液,生产厂家:江苏恒瑞医药股份有限公司,批号:15011215,规格:0.5ml:20mg,配制方法:使用时取上述规格的注射用多西他赛20mg加入多西他赛注射液溶剂1.5ml,浓度为10mg/ml,用生理盐水充分稀释成1mg/ml,给药体积为0.2ml/20g,即剂量为10mg/kg。
3)实验动物来源、种系、品系
BALB/c裸小鼠,由常州卡文斯实验动物有限公司提供(实验动物生产许可证:SCXK(苏)2011-0003)。日龄:35-40天,体重:18-24g,性别:雌性。
4)实验动物分组
Figure PCTCN2016071696-appb-000009
5)移植瘤
人肺癌A549裸小鼠移植瘤,由人肺癌A549细胞株接种于裸小鼠腋窝皮下而建立。细胞接种量为2*106个/只。
6)实验方法
取对数生长期的人肺癌A549细胞株,在无菌条件下后制备成1×108/ml细胞悬液,以0.1ml接种于裸小鼠右侧腋窝皮下。裸小鼠移植瘤用游标卡尺测量移植瘤直径,待肿瘤生长至100~300mm3后将动物随机分组。使用测量瘤径的方法,动态观察被试物抗肿瘤的效应。肿瘤直径的测量次数为每3天测1次,。给药体积为0.4ml/20g。21天后,小鼠处死,手术剥取瘤块称重。肿瘤体积(tumor volume,TV)的计算公式为:
TV=1/2×a×b2
其中a、b分别表示长宽。
根据测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为:RTV=Vt/V0。其中V0为分笼给药时(即d0)测量所得肿瘤体积,Vt为每一次测量时的肿瘤体积。抗肿瘤活性的评价指标为相对肿瘤增殖率T/C(%),计算公式如下:
Figure PCTCN2016071696-appb-000010
TRTV:治疗组RTV;CRTV:阴性对照组RTV。
抑瘤率计算公式如下:
Figure PCTCN2016071696-appb-000011
Tweight:治疗组平均瘤重;Cweight:阴性对照组平均瘤重。
7)结果和讨论
实验结果见表3、表4、图8~图11。药物XBB-023分别以96mg/kg、48mg/kg、24mg/kg剂量尾静脉注射给药,每3天给药1次,共给药7次。实验组对人肺癌A549裸小鼠移植瘤的T/C分别为12.83%,25.56%,56.30%;抑瘤率达88.45%,68.55%,34.73%。多西他赛10mg/kg尾静脉注射给药,每3天给药1次,共给药7次后对人肺癌A549裸小鼠移植瘤的T/C为21.15%,抑瘤率达72.16%。
阳性对照组多西他赛10mg/kg、药物XBB-02396mg/kg对实验鼠体重有极显著影响(P<0.01),药物XBB-02348mg/kg剂量对实验鼠体重有显著影响(P<0.05)。试验结果表明,药物XBB-02396mg/kg对肿瘤的抑制率比阳性对照组多西他赛10mg/kg高出16.29%,但对实验鼠体重的影响较少,说明XBB-023在高剂量时药效比多西他赛好,且毒性较低。
Figure PCTCN2016071696-appb-000012
Figure PCTCN2016071696-appb-000013
Figure PCTCN2016071696-appb-000014

Claims (8)

  1. 一种水溶性多西他赛抗癌药物化合物,具有下式I的结构:
    Figure PCTCN2016071696-appb-100001
    其中:R为C1~C5的烷基,n=5-500。
  2. 根据权利要求1所述的水溶性多西他赛抗癌药物化合物,其特征在于,式中R=-CH3、-CH2CH3、-CH2CH2CH3或-CH2CH2CH2CH3
  3. 一种权利要求1所述的水溶性多西他赛抗癌药物化合物的制备方法,包括以下步骤:
    1)聚乙二醇单烷基醚与二甘醇酸或二甘醇酸酐发生酯化反应,生成聚乙二醇单烷基醚二甘醇酸单酯;
    2)步骤1)所得到的聚乙二醇单烷基醚二甘醇酸单酯,或者它们的酰氯化产物,与多西他赛发生酯化反应,生成所述的水溶性多西他赛抗癌药物化合物。
  4. 根据权利要求3所述的水溶性多西他赛抗癌药物化合物的制备方法,其特征在于,所述的方法包括以下步骤:
    1)以2-乙基己酸锡(II)、三氯化铝或碳酸铯为催化剂,聚乙二醇单烷基醚与二甘醇酸酐反应,或者以4-二甲氨基吡啶和2-氯-1-甲基吡啶鎓碘化物,或N,N′-二环己基碳化二亚胺和4-二甲氨基吡啶为催化剂,与过量的二甘醇酸反应,生成聚乙二醇单烷基醚二甘醇酸单酯;
    2)步骤1)中所得到的聚乙二醇单烷基醚二甘醇酸单酯与酰氯化试剂反应生成酰氯化产物;
    3)以碱为催化剂,步骤2)所得到酰氯化产物与多西他赛反应;生成所述的水溶性多西他赛抗癌药物化合物;或者
    以4-二甲氨基吡啶和2-氯-1-甲基吡啶鎓碘化物,或以N,N′-二环己基碳化二亚胺和4-二甲氨基吡啶为催化剂,步骤1)所得到的聚乙二醇单烷基醚二甘醇酸单酯与多西他赛反应,生成所述的水溶性多西他赛抗癌药物化合物。
  5. 根据权利要求4所述的水溶性多西他赛抗癌药物化合物的制备方法,其特征在于,所述的酰氯化试剂为亚硫酰(二)氯,碱催化剂选自三乙胺、吡啶、4-二甲氨基吡啶、碳酸钠、碳酸钾或碳酸铯。
  6. 一种权利要求1所述的水溶性多西他赛抗癌药物化合物注射剂,包含:
    1)具有式Ⅰ结构的水溶性多西他赛抗癌药物化合物;
    2)水、生理盐水或葡萄糖注射液。
  7. 根据权利要求6所述的水溶性多西他赛抗癌药物化合物注射剂,其特征在于,所述的注射剂中,药物化合物在配方中重量百分含量为0.005%至5.0%。
  8. 权利要求1所述的水溶性多西他赛抗癌药物化合物在制备抗癌药物中的应用。
PCT/CN2016/071696 2015-09-26 2016-01-22 水溶性多西他赛抗癌药物化合物及其制备方法和应用 WO2017049821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/762,985 US10406239B2 (en) 2015-09-26 2016-01-22 Water-soluble docetaxel anticancer drug compound and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510624350.XA CN106554330B (zh) 2015-09-26 2015-09-26 水溶性多西他赛抗癌药物化合物及其制备方法和应用
CN201510624350.X 2015-09-26

Publications (1)

Publication Number Publication Date
WO2017049821A1 true WO2017049821A1 (zh) 2017-03-30

Family

ID=58385795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071696 WO2017049821A1 (zh) 2015-09-26 2016-01-22 水溶性多西他赛抗癌药物化合物及其制备方法和应用

Country Status (3)

Country Link
US (1) US10406239B2 (zh)
CN (1) CN106554330B (zh)
WO (1) WO2017049821A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109381427B (zh) * 2017-08-10 2021-04-13 南京友怡医药科技有限公司 一种寡聚乙二醇修饰的多西他赛衍生物的注射剂
CN109336850A (zh) * 2018-11-15 2019-02-15 南京友怡医药科技有限公司 烷基醇修饰的多西他赛衍生物抗癌药物化合物及其制备方法和应用
CN109574960B (zh) * 2018-11-15 2023-03-21 南京友怡医药科技有限公司 一种多西他赛衍生物及其制备方法和应用
CN117122564B (zh) * 2023-09-26 2024-05-14 海南卓科制药有限公司 一种氟尿嘧啶注射液及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011020A1 (en) * 1993-10-20 1995-04-27 Enzon, Inc. 2'- and/or 7- substituted taxoids
US5824701A (en) * 1993-10-20 1998-10-20 Enzon, Inc. Taxane-based prodrugs
CN101486744A (zh) * 2009-02-25 2009-07-22 江苏先声药物研究有限公司 聚乙二醇修饰的灯盏花乙素化合物及其制备方法
CN102731442A (zh) * 2012-07-18 2012-10-17 中国医学科学院生物医学工程研究所 一种水溶性多烯紫杉醇化合物的制备方法及用途
CN103641925A (zh) * 2012-11-27 2014-03-19 王晖 水溶性多聚糖与紫杉烷类化合物的共价聚化合物,其制备方法及医药用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033552A1 (en) * 1996-03-12 1997-09-18 Pg-Txl Company, L.P. Water soluble paclitaxel prodrugs
CN1125097C (zh) * 2000-07-05 2003-10-22 天津大学 聚乙二醇支载的紫杉醇或多烯紫杉醇的前药
CN1895676B (zh) * 2005-07-14 2010-11-10 上海艾力斯医药科技有限公司 聚乙二醇为载体的紫杉醇或多烯紫杉醇的前药
WO2008066902A2 (en) * 2006-11-30 2008-06-05 Nektar Therapeutics Al, Corporation Method for preparing a polymer conjugate
AU2012267200B2 (en) * 2011-06-06 2016-02-25 Starpharma Pty Ltd Macromolecules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011020A1 (en) * 1993-10-20 1995-04-27 Enzon, Inc. 2'- and/or 7- substituted taxoids
US5824701A (en) * 1993-10-20 1998-10-20 Enzon, Inc. Taxane-based prodrugs
CN101486744A (zh) * 2009-02-25 2009-07-22 江苏先声药物研究有限公司 聚乙二醇修饰的灯盏花乙素化合物及其制备方法
CN102731442A (zh) * 2012-07-18 2012-10-17 中国医学科学院生物医学工程研究所 一种水溶性多烯紫杉醇化合物的制备方法及用途
CN103641925A (zh) * 2012-11-27 2014-03-19 王晖 水溶性多聚糖与紫杉烷类化合物的共价聚化合物,其制备方法及医药用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DU, WENTING ET AL.: "Research Progress of Water Soluble Derivatives of Taxol", CHINESE JOURNAL OF MODERN APPLIED PHARMACY, vol. 22, no. 1, 28 February 2005 (2005-02-28), pages 29 - 31 *
GREENWALD, R.B. ET AL.: "HIGHLY WATER SOLUBLE TAXOL DERIVATIVES: 2'-POLYETHYLENEGLYCOL ESTERS AS POTENTIAL PRODRUGS", BIOORGANIC MEDICINAL CHEMISTRY LETTERS, vol. 4, no. 20, 20 October 1994 (1994-10-20), pages 2465 - 2470, XP000570930 *

Also Published As

Publication number Publication date
CN106554330A (zh) 2017-04-05
US10406239B2 (en) 2019-09-10
CN106554330B (zh) 2019-07-05
US20180303949A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
WO2017049821A1 (zh) 水溶性多西他赛抗癌药物化合物及其制备方法和应用
CN111116521B (zh) 茄尼醇修饰的紫杉醇前药及其制备方法和应用
CN113264906B (zh) 多西他赛二聚体小分子前药及其自组装纳米粒的构建
CN112089845B (zh) 紫杉烷类药物-阿霉素前药自组装纳米粒及其应用
CN111012918B (zh) 兼具抗肿瘤及载体作用的胆固醇双胍偶联物及其盐在微粒型给药制剂中的应用
WO2013067881A1 (zh) 水溶性维生素e衍生物修饰的双亲性抗癌药物化合物和制剂、该化合物的制备方法及应用
CN106554497B (zh) 水溶性卡巴他赛抗癌药物化合物及其制备方法和应用
WO2015110040A1 (zh) 苯丁酸氮芥衍生物、制备方法及应用
CN114796513A (zh) 二硒键桥连多西他赛二聚体前药及其自组装纳米粒
CN106554329B (zh) 水溶性紫杉醇抗癌药物化合物及其制备方法和应用
AU2019200753A1 (en) Biocompatible Magnetic Materials
CN109574960B (zh) 一种多西他赛衍生物及其制备方法和应用
RU2699071C1 (ru) Новый полиэтиленгликольсодержащий глицеролипид
CN110227164B (zh) 含酮羰基的疏水性抗肿瘤药物及其缀合物、含有缀合物的纳米制剂及其制备方法及应用
Qiao-Ling et al. Hepatocyte-targeted delivery using ph-sensitive liposomes loaded with lactosylnorcantharidin phospholipid complex: Preparation, characterization, and therapeutic evaluation in vivo and in vitro
CN110845452A (zh) 一种卡巴他赛衍生物及其制备方法和应用
CN109336850A (zh) 烷基醇修饰的多西他赛衍生物抗癌药物化合物及其制备方法和应用
CN113698589B (zh) 一种维生素e琥珀酸酯磷脂化合物及其应用
Valdivia et al. Synthesis and Characterization of New Biocompatible Amino Amphiphilic Compounds Derived from Oleic Acid as Nanovectors for Drug Delivery
WO2022227554A1 (zh) 拉洛他赛-脂肪醇小分子前药及其自组装纳米粒的构建
KR101761692B1 (ko) 약물 전달용 자극 반응형 양친매성 고분자 및 이의 제조 방법
Valdivia Giménez et al. Synthesis and Characterization of New Biocompatible Amino Amphiphilic Compounds Derived from Oleic Acid as Nanovectors for Drug Delivery
Vettorato et al. Deformable Vesicles with Edge Activators for the Transdermal Delivery of Non-Psychoactive Cannabinoids
JP2023541389A (ja) がんの処置において有用なpd-1アンタゴニストプロドラッグを含有する製剤化および/または共製剤化リポソーム組成物ならびにその方法
CN116327968A (zh) 一种多西他赛前药抗肿瘤制剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847718

Country of ref document: EP

Kind code of ref document: A1