WO2011004877A1 - 車両用窓ガラス及びアンテナ - Google Patents

車両用窓ガラス及びアンテナ Download PDF

Info

Publication number
WO2011004877A1
WO2011004877A1 PCT/JP2010/061643 JP2010061643W WO2011004877A1 WO 2011004877 A1 WO2011004877 A1 WO 2011004877A1 JP 2010061643 W JP2010061643 W JP 2010061643W WO 2011004877 A1 WO2011004877 A1 WO 2011004877A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
glass plate
antenna
slot
electrodes
Prior art date
Application number
PCT/JP2010/061643
Other languages
English (en)
French (fr)
Inventor
修 加賀谷
耕司 井川
幸太郎 末永
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to BRPI1015942A priority Critical patent/BRPI1015942A2/pt
Priority to JP2011521967A priority patent/JP5655782B2/ja
Priority to CN2010800305283A priority patent/CN102474002A/zh
Priority to EP10797188.9A priority patent/EP2453521B1/en
Publication of WO2011004877A1 publication Critical patent/WO2011004877A1/ja
Priority to US13/344,874 priority patent/US8941545B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the present invention relates to a vehicle window glass provided with an antenna on a conductive film provided on a glass plate, and an antenna having a slot formed in the conductive film.
  • FIG. 1 is a cross-sectional view of a laminated glass for a vehicle formed by sandwiching a conductive film 3 and an intermediate film 4 between glass plates 1 and 2.
  • the antenna conductor 5 for receiving radio waves is formed on the laminated glass on the inside of the vehicle as in the past, the reception characteristics required for the antenna conductor 5 by shielding the radio waves coming from outside the vehicle with the conductive film 3. May not be sufficiently obtained.
  • Japanese Unexamined Patent Publication No. 6-45817 Japanese Laid-Open Patent Publication No. 9-175166 Japanese Unexamined Patent Publication No. 2000-59123 US Pat. No. 5,012,255
  • Patent Documents 1, 2, and 4 are slot antennas that use a slot between a flange of a vehicle body to which a glass plate is fixed and a conductive film.
  • the size of the slot is determined for each vehicle model.
  • it resonates at a predetermined frequency. It is difficult to do.
  • the positional relationship between the flange and the conductive film must be accurately controlled.
  • Patent Document 4 when the slot is provided in the conductive film in addition to the slot between the flange of the vehicle body and the conductive film, the effect of the conductive film is reduced if the slot is large, and the glass plate is heated and bent.
  • the molding there is a problem that a large heat distribution is generated on the glass plate depending on the presence or absence of the conductive film, and the molding accuracy is lowered.
  • the present invention can resonate at a predetermined frequency regardless of the size of the slot between the flange of the vehicle body and the conductive film, and does not require the installation accuracy of the glass plate to the vehicle body flange.
  • An object is to provide a vehicle window glass and an antenna using a conductive film.
  • a vehicle window glass comprises: A vehicle window glass having a glass plate, a conductive film laminated on the glass plate, and an antenna configured by installing a feeding structure on the conductive film,
  • the power feeding structure has a dielectric and a pair of electrodes
  • the conductive film has a slot whose one end is an end of the conductive film, and is disposed between the glass plate and the dielectric
  • the pair of electrodes is disposed on the opposite side of the conductive film with the dielectric interposed therebetween, and is disposed so that the slot is sandwiched between the pair of electrodes when the pair of electrodes is projected onto the conductive film. It is characterized by being capacitively coupled.
  • the antenna according to the present invention is An antenna having a glass plate, a conductive film laminated on the glass plate, and a feeding structure provided on the conductive film,
  • the power feeding structure has a dielectric and a pair of electrodes
  • the conductive film has a slot whose one end is an end of the conductive film, and is disposed between the glass plate and the dielectric
  • the pair of electrodes is disposed on the opposite side of the conductive film with the dielectric interposed therebetween, and is disposed so that the slot is sandwiched between the pair of electrodes when the pair of electrodes is projected onto the conductive film. It is characterized by being connected to each other.
  • the present invention it is possible to resonate at a predetermined frequency regardless of the size of the slot between the flange of the vehicle body and the conductive film, and it does not require the installation accuracy of the glass plate to the vehicle body flange.
  • An antenna using a conductive film can be realized.
  • FIG. 1 is a cross-sectional view of a laminated glass for a vehicle formed by sandwiching a conductive film 3 and an intermediate film 4 between glass plates 1 and 2.
  • FIG. It is an exploded view of the window glass for vehicles and antenna which concern on this invention. It is a front view of the window glass 100 for vehicles which is the 1st Embodiment of this invention. 2 is an enlarged view of an antenna 20. FIG. This is an example in which an independent slot 24 is added.
  • the glass plate 12 is coated with a conductive film 13.
  • the conductive film 13 is sandwiched between the intermediate film 14A and the intermediate film 14B. In the form of FIG. 4B, the conductive film 13 is not offset with respect to the glass plate 12.
  • the glass plate 11 is coated with a conductive film 13.
  • the conductive film 13 between the glass plate 11 and the dielectric substrate 32 is coated on the glass plate 11.
  • the conductive film 13 between the glass plate 11 and the dielectric substrate 32 is bonded to the glass plate 11 with an adhesive 38A.
  • the masking film 18 is arranged between the glass plate 12 and the electrode 16. In this embodiment, the masking film 18 is disposed between the glass plate 11 and the conductive film 13.
  • FIG. 3B simulation result and experiment result of S11 regarding embodiment of the window glass for vehicles and antenna which concern on this invention.
  • FIG. 3C simulation result and experiment result of S11 regarding embodiment
  • FIG. 3 is a cross-sectional view of a laminated glass in which a dielectric substrate 48 is attached to a glass plate 12. It is a conceptual diagram of the antenna which added the independent slot 24 (24A, 24B) to the antenna of the form of FIG. 3B. It is a front view (vehicle interior view) of the laminated glass attached to the vehicle body opening. The average antenna gain when the distance L5 is changed is shown. The average antenna gain when the terminal position Ly is changed is shown. It is the figure which moved the electrode 16 to the right, fixing the position of the slot 23. FIG. The ratio band when the area ratio Sr is changed is shown.
  • the ratio band when the impedance Zc which changes according to the area of the electrode 16 is changed is shown.
  • the average antenna gain when the antenna length H1 is changed is shown.
  • the average antenna gain when the antenna width W5 is changed is shown.
  • FIG. 18 shows a configuration in which two thin line slots 23B1 and 23B2 are arranged at the same pitch as the antenna width W5 in FIG. 18A.
  • FIG. 18A shows a configuration in which four thin line slots 23C1-23C4 are arranged at equal intervals between antenna widths W5.
  • a configuration in which the fine line slot 23D1 and the fine line slot 23D2 are connected by a through slot 23D3 is shown.
  • the vehicle window glass according to the present invention may be a windshield attached to the front of the vehicle or a side glass attached to a side portion of the vehicle. Moreover, the rear glass attached to a rear part may be sufficient.
  • FIG. 2 is an exploded view of the vehicle window glass and antenna according to the present invention.
  • the vehicle window glass shown in FIG. 2 is formed by combining a glass plate 11 that is a first glass plate disposed on the vehicle exterior side and a glass plate 12 that is a second glass plate disposed on the vehicle interior side. Laminated glass.
  • FIG. 2 shows components of the vehicle window glass and the antenna according to the present invention separated in a normal direction to the surface of the glass plate 11 (or the glass plate 12).
  • the conductive film 13 is disposed between the glass plate 11 and the glass plate 12, and the pair of electrodes 16 composed of the electrodes 16 ⁇ / b> A and 16 ⁇ / b> B are formed by It is arrange
  • a slot 23 is formed in the conductive film 13. The slot 23 is in contact with the upper edge 13 a of the conductive film 13. That is, one end of the slot 23 is opened at the upper edge 13 a that is the outer peripheral edge of the conductive film 13.
  • the glass plate 11, the conductive film 13 in which the slot 23 is formed, the glass plate 12, and the pair of electrodes 16 are laminated in this order to form an antenna.
  • the conductive film 13 is arranged in a layer between the glass plate 11 and the glass plate 12, and the glass plate 12 is arranged in a layer between the conductive film 13 and the electrode 16.
  • the antenna can be configured by the conductive film, the slot formed in the conductive film, and the pair of electrodes, the fanaticism can be achieved at a predetermined frequency regardless of the slot between the vehicle body flange and the conductive film.
  • An intermediate film 14 ⁇ / b> A is disposed between the glass plate 11 and the conductive film 13, and an intermediate film 14 ⁇ / b> B is disposed between the conductive film 13 and the glass plate 12.
  • the glass plate 11 and the conductive film 13 are joined by an intermediate film 14A
  • the conductive film 13 and the glass plate 12 are joined by an intermediate film 14B.
  • the intermediate films 14A and 14B are, for example, thermoplastic polyvinyl butyral.
  • the relative dielectric constant ⁇ r of the intermediate films 14A and 14B can be 2.8 or more and 3.0 or less, which is the relative dielectric constant of a general intermediate film of laminated glass.
  • the glass plates 11 and 12 are transparent plate-like dielectrics. Further, either one of the glass plates 11 and 12 may be translucent, or both the glass plates 11 and 12 may be translucent.
  • An antenna is formed by installing a feeding structure including a glass plate 12 as a dielectric and a pair of electrodes 16 on the conductive film 13 in which the slots 23 are formed.
  • the conductive film 13 is a conductive heat ray reflective film that can reflect heat rays coming from the outside.
  • the conductive film 13 is transparent or translucent.
  • the conductive film 13 illustrated in FIG. 2 is a conductive film formed on the surface of polyethylene terephthalate, but may be a conductive film formed on the surface of a glass plate.
  • the conductive film 13 is formed with a slot 23 having the upper edge 13a of the conductive film 13 as an open end.
  • the electrode 16 composed of the electrodes 16A and 16B is disposed on the surface on the inner side of the glass plate 12, that is, the surface opposite to the surface facing the conductive film 13.
  • the electrode 16 is disposed so as to be exposed on the inner surface of the glass plate 12.
  • the slot 23 extends in a direction perpendicular to the longitudinal direction of the slot 23 and parallel to the film surface of the conductive film 13. It is arrange
  • the electrode 16B is capacitively coupled to the second coupling portion 22 that is a portion projected onto the conductive film via the glass plate 12 and the intermediate film 14B.
  • the first coupling portion 21 is located on one side of the conductive film 13 defined by the slot 23, and the second coupling portion 22 is located on the other side across the slot 23.
  • the antenna of this aspect has a laminated structure in which a conductive film 13 is disposed between a glass plate 11 and a glass plate 12, and a pair of electrodes 16 composed of electrodes 16 ⁇ / b> A and 16 ⁇ / b> B sandwich the glass plate 12.
  • a slot 23 which is disposed on the opposite side to the position where the conductive film 13 is disposed and one end of which is an open end, is formed in the conductive film 13.
  • the first coupling portion 21 that is a projection portion of the electrode 16A onto the conductive film 13 and the second coupling portion 22 that is a projection portion of the electrode 16B onto the conductive film 13 are positioned with the slot 23 interposed therebetween.
  • the pair of electrodes is formed such that the electrode 16A and the first coupling portion 21 are separated by a distance capable of capacitive coupling, and the electrode 16B and the second coupling portion 22 are separated by a distance capable of capacitive coupling. 16 is provided.
  • the antenna of this aspect has an effect of shortening the antenna by electrostatic coupling between the electrode 16A and the first coupling portion 21 and electrostatic coupling between the electrode 16B and the second coupling portion 22, and a general notch antenna or the like.
  • the length of the slot 23 can be made shorter than the required slot length. Therefore, the slot 23 can be made small, and the portion where the conductive film is not formed can be made small.
  • the slot 23 is formed with a shape and size suitable for reception of radio waves in a frequency band to be received by the antenna.
  • the slot 23, that is, the shape and size of the slot 23 may be set so as to satisfy the required value of the antenna gain necessary for receiving the radio wave in the frequency band that the antenna should receive.
  • the slot 23 is formed so as to be suitable for receiving radio waves in the terrestrial digital television broadcast band 470 to 710 MHz.
  • the arrangement position of the antenna on the glass is not particularly limited as long as the antenna is suitable for reception of radio waves in a frequency band to be received.
  • the antenna of this aspect is disposed in the vicinity of the vehicle body opening end, which is an attachment site of the vehicle window glass. As shown in FIG. 10, it is preferable to arrange in the vicinity of the vehicle body opening end 41 on the roof side in terms of improving the antenna gain. Further, it may be arranged at a position moved to the right or left from the position shown in FIG. 10 so as to approach the vehicle body opening end 42 or 44 on the pillar side. Further, it may be disposed in the vicinity of the chassis-side vehicle body opening end 43. In the case of FIG. 10, the longitudinal direction of the slot 23 coincides with the direction orthogonal to the side of the vehicle body opening end 41 or 43.
  • the antenna of this embodiment has a laminated structure in which a conductive film 13 is disposed between a glass plate 11 and a glass plate 12, and includes a signal line side electrode 16A, a ground line side electrode 16B, A first coupling portion 21 electrostatically coupled to the electrode 16A via the glass plate 12, a second coupling portion 22 electrostatically coupled to the electrode 16B via the glass plate 12, and a first coupling portion 21. And a slot 23 sandwiched between the second coupling portions 22.
  • the electrode 16A may be an electrode on the ground line side
  • the electrode 16B may be an electrode on the signal line side.
  • the electrode 16A is connected to a signal line connected to a signal processing device (for example, an amplifier) mounted on the vehicle body side so as to be conductive.
  • a signal processing device for example, an amplifier
  • the electrode 16B is connected to a ground line connected to a ground part on the vehicle body side so as to be conductive.
  • Examples of the ground part on the vehicle body side include a body ground and a ground of a signal processing device to which a signal line connected to the electrode 16A is connected.
  • the reception signal of the radio wave received by the antenna is transmitted to a signal processing device mounted on the vehicle via a conductive member connected to the pair of electrodes 16 so as to be energized.
  • a conductive member a power supply line such as an AV line or a coaxial cable may be used.
  • the electrodes 16A and 16B are formed by printing and baking a paste containing a conductive metal, such as a silver paste, on the inner surface of the window glass plate 12.
  • a paste containing a conductive metal such as a silver paste
  • the present invention is not limited to this forming method, and a linear body or a foil-like body made of a conductive material such as copper may be formed on the inner surface of the glass plate 12, and the glass plate 12 may be coated with an adhesive or the like. It may be affixed.
  • the shape of the electrodes 16A and 16B and the interval between the electrodes may be determined in consideration of the shape of the mounting surface of the conductive member or connector and the interval between the mounting surfaces.
  • a square shape or a polygonal shape such as a square, a substantially square, a rectangle, or a substantially rectangle is preferable for mounting. It may be a circle such as a circle, a substantially circle, an ellipse, or a substantially ellipse.
  • FIG. 8 is a cross-sectional view of a laminated glass in which the dielectric substrate 48 is attached to the glass plate 12.
  • An example of the dielectric substrate 48 is a glass epoxy substrate having FR4 as a base material, but substrates of other materials may be used as long as the impedance is adjusted.
  • the dielectric substrate 48 is attached to the surface of the glass plate 12 with, for example, an acrylic foam tape 47.
  • the electrode 49 includes an upper electrode 49A formed on the upper surface of the dielectric substrate 48 and a lower electrode 49B formed on the lower surface of the dielectric substrate 48.
  • the upper electrode 49A and the lower electrode 49B are electrically connected through a plurality of through holes 48a.
  • Two electrodes 49 are provided on the dielectric substrate 48, and the electrodes 16 corresponding to the electrodes 16A and 16B shown in FIG. 2 and the like are formed.
  • the connector can be mounted on the glass plate by simply attaching the dielectric substrate 48 to the glass plate 12 by attaching the above-described connector to the upper electrode 49A in advance. This can simplify the work.
  • the laminated glass when attached to the vehicle body opening end 41 or the like, it is attached to the flange portion of the vehicle body frame 45 by an adhesive 46 (or packing).
  • FIG. 3A is a front view of the vehicle window glass 100 according to the first embodiment of the present invention.
  • FIG. 3A is a view when the surface of the glass plate 12 disposed on the vehicle inner side is viewed from the vehicle inner side.
  • FIG. 3A is an overall view of the vehicle window glass 100.
  • the antenna 20 is arranged on the upper right side of the vehicle window glass 100.
  • FIG. 3B is an enlarged view of an arrangement place of the antenna 20.
  • edges (13a to 13d) of the conductive film 13 are offset from the edges (12a to 12d) of the glass plate 12 by a distance xd1. By providing such an offset, it is possible to prevent the conductive film 13 from being corroded by water or the like from the mating surfaces of the glass plates 11 and 12.
  • an independent slot 24 not connected to the slot 23 may be formed close to the slot 23 and closed in the conductive film 13 without contacting the outer peripheral edge of the conductive film 13. . Further, the independent slot may be formed with one end as an open end in the same manner as the slot 23. By providing the independent slot 24, it is possible to increase the bandwidth of the antenna 20 compared to the case where the independent slot 24 is not provided.
  • FIGS. 4A-4F are cross-sectional views of the vehicle window glass 100 along AA shown in FIG. 3A.
  • 4A to 4F show variations of the laminated form of the vehicle window glass and the notch antenna according to the present invention.
  • FIGS. 4A to 4F show a form having a laminated structure in which the glass plate 11 and the conductive film 13 are disposed between the glass plate 11 and a dielectric (that is, the glass plate 12 or the dielectric substrate 32).
  • the electrode 16 is disposed on the opposite side of the conductive film 13 with the dielectric in between.
  • the conductive film 13 is in contact with the adhesive layer between the glass plate and the dielectric.
  • FIG. 4A shows a form in which the conductive film 13 is coated on the glass plate 12 by performing a vapor deposition process on the opposite surface of the glass plate 12 facing the glass plate 11.
  • 4B shows a film-like structure between the intermediate film 14A in contact with the facing surface of the glass plate 11 facing the glass plate 12 and the intermediate film 14B in contact with the facing surface of the glass plate 12 facing the glass plate 11.
  • the conductive film 13 is sandwiched.
  • the film-like conductive film 13 may have a form in which the conductive film 13 is coated by depositing the conductive film 13 on the film.
  • FIG. 4C is a form in which the conductive film 13 is not offset with respect to the glass plate 12 in the form of FIG. 4B.
  • FIG. 4D shows a form in which the conductive film 13 is coated on the glass plate 11 by vapor-depositing the conductive film 13 on the facing surface of the window glass 11 facing the window glass 12.
  • the vehicle window glass according to the present invention may not be laminated glass.
  • the conductive film 13 is disposed between the glass plate 11 and the dielectric substrate 32.
  • FIG. 4E shows a form in which the conductive film 13 is coated on the glass plate 11 by vapor-depositing the conductive film 13 on the opposite surface of the glass plate 11 facing the dielectric substrate 32.
  • the conductor film 13 and the dielectric substrate 32 are bonded by an adhesive 38.
  • FIG. 4F shows a form in which the conductive film 13 is bonded to the opposing surface of the glass plate 11 facing the dielectric substrate 32 with an adhesive 38A.
  • the conductor film 13 and the dielectric substrate 32 are bonded by an adhesive 38B.
  • the dielectric substrate 32 is a resin substrate made of resin, and is provided with a pair of electrodes.
  • the resin substrate may be a printed substrate on which a pair of electrodes are printed.
  • FIG. 5A is a front view and a BB sectional view of a vehicle window glass 200 according to a second embodiment of the present invention.
  • FIG. 5A is a front view when the surface of the glass plate 12 disposed on the vehicle inner side is viewed from the vehicle inner side. The description of the same parts as in FIG. 3A will be omitted or simplified.
  • the surface of the glass plate is interposed between the pair of electrodes 16 and the glass plate 11 (on the back side in FIG. 5A).
  • a masking film 18 to be formed may be provided.
  • the masking film 18 may be a ceramic that is a fired body such as a black ceramic film. In this case, when viewed from the outside of the window glass, the portions of the electrodes 16A and 16B provided on the masking film 18 by the masking film 18 become invisible from the outside of the vehicle, and the window glass has an excellent design.
  • 5B and 5C are cross-sectional views of the vehicle window glass 100 taken along BB shown in FIG. 5A.
  • 5B and 5C show variations of the laminated form of the vehicle window glass and the antenna according to the present invention.
  • 5B and 5C show a form having a laminated structure in which the glass plate 11 and the conductive film 13 are disposed between the glass plate 11 and a dielectric (that is, the glass plate 12), and the pair of electrodes 16 has a dielectric structure. It shows what is disposed on the opposite side of the conductive film 13 across the body.
  • FIG. 5B shows a form in which the conductive film 13 is coated on the glass plate 11 by subjecting the conductive film 13 to the opposite surface of the glass plate 11 facing the glass plate 12 by vapor deposition.
  • a shielding film 18 formed on the glass plate 12 is disposed between the glass plate 12 and the electrode 16.
  • FIG. 5C shows a form in which the conductive film 13 is coated on the glass plate 12 by performing a vapor deposition process on the opposing surface of the glass plate 12 facing the glass plate 11.
  • a concealment film 18 formed on the glass plate 11 is disposed between the glass plate 11 and the conductor film 13.
  • the masking film 18 is formed in the inner region at a distance xd3 from the outer edge of the glass plate 12.
  • the distance xd1 (or xd2) between the outer edge of the glass plate 12 and the conductive film 13 shorter than the distance xd3, the outer peripheral edge of the conductive film 13 can be hidden by the masking film 18, and the outer peripheral edge of the conductive film becomes conspicuous. Loss of design is improved. Further, the heat rays can be shielded between the conductive film 13 and the masking film 18 without a gap.
  • the mounting angle of the window glass with respect to the vehicle is preferably 15 to 90 °, particularly 30 to 90 ° with respect to the horizontal plane (horizontal plane).
  • the experiment was conducted assuming that a glass substrate with a square of 300 mm in length and width of 3.1 mm was used as the window glass.
  • the size of the electrode is a square of 15 mm in length and width.
  • the size of the copper foil is 250 mm long and 300 mm wide.
  • the offset distance from the edge of the glass substrate assumed to be the roof side edge to the edge of the copper foil was set to 50 mm.
  • the slot was formed in the copper foil so that one end of the slot of the antenna was opened at the edge of the copper foil on the roof side. Assume that there is no car body or defogger.
  • the return loss characteristic (reflection characteristic) S11 was measured for each 5 Hz at a frequency of 100 to 1100 MHz for the antenna actually manufactured in this manner and the numerically calculated antenna having the same dimensions. In addition, measurements were performed on the notch antennas of the respective forms of FIGS. 3B and 3C. In the case of numerical calculation, numerical calculation was performed by electromagnetic field simulation based on the FDTD method (Finite-Difference Time-Domain method), and the return loss characteristic (reflection coefficient) S11 was calculated. In S11, the closer to zero, the larger the return loss and the smaller the antenna gain, and the larger the negative value, the smaller the return loss and the larger the antenna gain.
  • FDTD method Finite-Difference Time-Domain method
  • the dimensions at the time of measurement in S11 are as follows: the length in the longitudinal direction of the slot 23 is 83 mm, and the width of the slot 23 is 3 mm.
  • the measurement dimensions of S11 are the same as the length and width of the slot 23 in the longitudinal direction as in the form of FIG. 3B.
  • the length of the independent slot 24 in the longitudinal direction parallel to the longitudinal direction of the slot 23 is 165 mm, and the width of the independent slot 24 is 3 mm.
  • the separation distance in the direction orthogonal to the longitudinal direction of the slot 23 and the independent slot 24 is 10 mm.
  • the shortest distance between the copper foil roof side edge and the independent slot 24 is 41.5 mm.
  • 6A and 6B show the simulation results and experimental results of S11 in FIGS. 3B and 3C.
  • 6A shows the result in the case of FIG. 3B
  • FIG. 6B shows the result in the case of FIG. 3C
  • the solid line shows the calculated value on the simulation
  • the dotted line shows the experimental value.
  • the antenna of FIG. 3B has a resonance point in the vicinity of 350 to 400 MHz, and it can be seen that the conductive film functions as an antenna.
  • two resonance points are generated in the vicinity of 300 to 350 MHz and in the vicinity of 550 to 600 MHz, so that the bandwidth is increased as compared with the case where there is no independent slot. be able to.
  • FIG. 7 shows the antenna of FIG. 3B (Example 1), the notch antenna (Example 2) that feeds power directly to the slot without electrostatic coupling in the conductive film having the same slot shape as FIG. 3B, and no electrostatic coupling.
  • Fig. 6 shows a result of comparison between a notch antenna (Example 3) in which the length of the slot is adjusted to 275 mm so as to resonate in the vicinity of 350 to 400 MHz in the notch antenna that feeds power directly to the slot.
  • the slot of the antenna of FIG. 3B can be formed short. Also, by configuring the feeding structure with electrostatic coupling, the return loss can be reduced at the resonance point compared to a notch antenna that feeds power directly to the slot without electrostatic coupling, so that the antenna gain can be improved.
  • an antenna using a conductive film can be configured without using a slot between the vehicle body flange and the conductive film. Therefore, since the vehicle body flange is not used, the installation accuracy of the glass plate on the vehicle body flange is not required.
  • the slot length can be shortened compared with the case where the conductive film is provided with a slot and power is directly supplied, and the region without the conductive film can be reduced. Further, since it is not necessary to make a hole in the glass plate and it is not necessary to provide a power supply conductor that bypasses the outer periphery of the glass plate, an antenna using a conductive film can be realized with a simple configuration.
  • Example 2 the effect of widening the antenna of the present invention by adding an independent slot will be described.
  • FIG. 9 is a typical view of an antenna in which independent slots 24 (24A, 24B) are added to the antenna of the form of FIG. 3B.
  • the independent slots 24A and 24B are parasitic slots formed with one end as an open end. The open ends of the independent slots 24A and 24B are in contact with the upper edge 13a of the conductive film 13 with which the open ends of the slots 23 are in contact.
  • the independent slot 24 ⁇ / b> A is formed so that the electrode 16 ⁇ / b> A is positioned between the independent slot 24 ⁇ / b> A and the independent slot 24 ⁇ / b> B is formed such that the electrode 16 ⁇ / b> B is positioned between the independent slot 24 ⁇ / b> B and the slot 23.
  • Example 2 the numerical calculation based on the FDTD method was performed every 0.6 MHz at a frequency of 200 to 500 MHz, assuming the antenna of the form of FIG. 9 in which the conductive film 13 was provided on the inner layer of the laminated glass.
  • the glass size of the laminated glass is changed, numerical calculation was performed for three different glass sizes with different W1, W2, H7, and H10.
  • the body frame which is the attachment part of the laminated glass on which the antenna is formed, is modeled as the conductor 50, and the boundary conditions around the glass are infinite.
  • the layer structure of FIG. 9 is the form of FIG. 4B.
  • the conductor 50 is formed in the same layer as the electrodes 16A and 16B.
  • the dimensions (unit: mm) and constants of each part in FIGS. 3B and 9 are as follows.
  • Example 2-1 first glass size] H1: 70 H2, H3: 170 H4, H5: 10 H6: 376 H7: 356 H8: 90 H9: 40 H10: 506 H11: 50 W1: 960 W2: 880 W3: 10 W4, W5, W6: 3 W7. W8: 40 W9, W10: 100 W40: 5 W41, H42, W43, H44: 20
  • Example 2-2 Second glass size (only the changed part from Example 2-1 is displayed)] H7: 470 H10: 620 W1: 1200 W2: 1100
  • Example 2-3 Third glass size (displays only the changed part from Example 2-1)] H7: 604 H10: 734 W1: 1440 W2: 1360
  • Thickness of the glass plates 11 and 12 2.0 Dielectric constant of glass plates 11 and 12: 7.0
  • the thickness of the intermediate films 14A and 14B 0.381 Sheet resistance of the conductive film 13: 2.0 [ ⁇ / ⁇ (ohm / square)]
  • the thickness of the conductive film 13 0.01
  • Thickness of conductor 50 and electrodes 16A and 16B 0.01
  • F w Bandwidth of VSWR ⁇ 3.0
  • F H Maximum value of frequency of VSWR ⁇ 3.0
  • F L Expressed by minimum value of frequency of VSWR ⁇ 3.0.
  • the addition of the independent slots 24A and 24B increases the value of the ratio band. That is, by adding an independent slot, it is possible to increase the bandwidth of the antenna.
  • FIG. 10 is a front view (in-vehicle view) of the laminated glass on which the antenna of the form of FIG. 3B is formed.
  • FIG. 10 shows a state in which the laminated glass is attached to the vehicle body opening.
  • Example 3 the distance L7 between the vehicle body opening end 41 on the roof side and the upper edge 13a of the conductive film 13 is set for a planar antenna of the form shown in FIG. 10 actually manufactured using laminated glass for an automobile windshield.
  • the antenna gain when changing was measured using a real vehicle.
  • the antenna gain was measured by assembling an automobile window glass with a glass antenna formed on an automobile window frame on a turntable.
  • the antenna part of the window glass for automobiles was in a state inclined about 16 ° with respect to the horizontal plane.
  • a connector connected to the coaxial cable was attached to the power feeding section (adopting the power feeding structure of FIG. 8).
  • the antenna gain was measured by setting the vehicle center of an automobile in which a window glass for an automobile on which a glass antenna was formed was set at the center of the turntable, and rotating the automobile 360 °.
  • the antenna gain data was measured every 5 MHz at 250 to 450 MHz for each rotation angle of 1 ° in two cases of horizontal polarization and vertical polarization.
  • the antenna gain was standardized so that the half-wave dipole antenna was 0 dB with reference to the half-wave dipole antenna.
  • the layer configuration of FIG. 10 is the form of FIG. 4B.
  • the dimensions and constants of each part in Example 2 are the same as in Example 2 except for the outer dimensions of the laminated glass.
  • Table 2 shows the arithmetic average value (unit: dBd) of the measured data of the antenna gain for the entire 360 ° circumference at the representative frequency of 330 MHz when the distance L7 is changed. As shown in Table 2, even if the distance L7 is changed, the antenna gain does not change greatly. That is, since the upper edge 13a of the conductive film 13 can be brought closer to the vehicle body opening end 41, the slot 23 can be brought closer to the upper edge 12a of the window glass, so that the visibility of the window glass is improved.
  • Example 4 a change in antenna gain due to a difference in installation position in the left-right direction of the entire antenna of the present invention will be described.
  • FIG. 11 shows an arithmetic average value (unit: dBd) of measured data of antenna gain for the entire 360 ° circumference at 330 MHz when the distance L5 normalized with the wavelength ⁇ 0 of the representative frequency 330 MHz is changed.
  • the length to the center line between the left edge 13d and right edge 13b of the conductive film 13 as the maximum value, the distance L5 is 0.1 [lambda] 0 or more, more preferably 0.4Ramuda 0 or more This is advantageous in terms of improving the antenna gain.
  • Example 5 a change in antenna gain due to a difference in position in the vertical direction of the electrode 16 (16A, 16B) of the antenna of the present invention will be described.
  • Example 5 the antenna gain when the distance L7 was set to 15 mm and the terminal position Ly of the electrode 16 was changed in the vertical direction was measured using a real vehicle for the planar antenna of the same form as in Example 3 in FIG. .
  • the dimensions and constants of each part and the antenna gain measurement conditions in Example 5 are the same as in Example 3.
  • FIG. 12 shows the arithmetic average value (unit: dBd) of the measured data of the antenna gain for the entire 360 ° circumference at the representative frequency of 330 MHz when the terminal position Ly is changed.
  • dBd arithmetic average value
  • Example 6 describes a change in antenna gain due to a difference in position in the left-right direction of the electrode 16 (16A, 16B) of the antenna of the present invention.
  • Example 6 assuming the antenna in the form of FIG. 3B in which the conductive film 13 is provided on the inner layer of a square laminated glass, numerical calculation based on the FDTD method was performed every 0.6 MHz at a frequency of 250 to 450 MHz. . Further, as shown in FIG. 13, the electrode 16 (16A, 16B) moves to the right as a whole as shown in FIG. 13 while the shortest distance W40 (see FIG. 3B) between the electrodes 16A and 16B is fixed to 10 mm. An assumed numerical calculation was performed. In this numerical calculation, it was modeled that there was no body frame that was the attachment part of the laminated glass on which the antenna was formed, and the boundary conditions around the glass were finite (the surrounding was free space).
  • the shape of the laminated glass assumed in Example 6 was a square of 300 mm in length and width. The position of the center line of the slot 23 was on the bisector of one side of the square laminated glass.
  • the layer configuration assumed in Example 6 was the layer configuration of the laminated glass and the feeding structure shown in FIG. The dimensions (unit: mm) and constants of each part in Example 6 are shown below with reference to the symbols in FIGS. 3A and 3B.
  • Thickness of the dielectric substrate 48 0.4 Dielectric constant of dielectric substrate 48: 4.0 Acrylic foam tape 47 thickness: 0.4 Relative permittivity of acrylic foam tape 47: 3.0 Electrode 49A thickness: 0.01 H1: 70 H21: 300 H23: 30 H24: 10 W5: 3 W21: 300 W23, W24: 10 W40: 10 W41, H42, W43, H44: 20
  • the area ratio Sr is 0.5 or more, more preferably 0.6 or more, it is advantageous in terms of widening the antenna band. That is, if the electrodes 16A and 16B are arranged on both sides of the slot 23 without overlapping the slot 23, it is advantageous in terms of widening the antenna.
  • Example 7 describes the change in antenna gain due to the difference in size (area) of the electrodes 16 (16A, 16B) of the antenna of the present invention.
  • Example 7 assuming the same antenna as in Example 6 in the form of FIG. 3B, numerical calculation based on the FDTD method was performed every 0.6 MHz at a frequency of 250 to 450 MHz. In addition, numerical calculation based on the FDTD method was performed for two cases where the width W5 of the slot 23 was 3.0 mm and 7.5 mm while the shape of each of the electrodes 16 was kept square. The dimensions and constants of each part in Example 7 are the same as in Example 6.
  • the ratio band on the vertical axis in FIG. 15 is a value calculated according to the above-described calculation formula (1).
  • ⁇ 400 ⁇ Zc ⁇ ⁇ 80, more preferably ⁇ 300 ⁇ Zc ⁇ ⁇ 100, is advantageous in terms of widening the antenna.
  • Example 8 describes changes in antenna gain due to differences in size (area) of the electrodes (16A, 16B) of the antenna of the present invention.
  • Example 8 with respect to the planar antenna of the same form of FIG. 10 as Example 3, the antenna length H1 of the slot 23 is fixed to 70 mm and the shape of each of the electrodes 16 is kept square, and one side of each square electrode 16 is maintained.
  • the antenna gain when the length W41 and the shortest distance W40 between the electrodes 16A and 16B were changed was measured using an actual vehicle.
  • the dimensions and constants of each part and the antenna gain measurement conditions in Example 8 are the same as in Example 3.
  • the antenna gain in Example 8 was measured by actually manufacturing the feed structure of FIG.
  • Table 3 shows an arithmetic average value (unit: average value) of actual measurement data of the antenna gain for the entire circumference of 360 ° at the representative frequency of 330 MHz when the shortest interval W40 and the length of one side W41 are changed in the case of horizontal polarization.
  • dBd shows the arithmetic average value (unit: dBd) of the measured data of the antenna gain for the entire 360 ° circumference at 330 MHz when the shortest interval W40 and the side length W41 are changed in the case of vertical polarization.
  • Table 5 shows Zc when the length W41 of one side is 16, 20, and 24 mm. As shown in Tables 3, 4, and 5, when the area of the electrode 16 is changed, Zc changes, and adjustment to a value close to the peak value of the graph shown in FIG. 15 is advantageous in that the antenna gain is improved. is there.
  • Example 9 the antenna gain when the antenna length H1 of the slot 23 was changed was measured for the planar antenna of the form of FIG. 3B actually manufactured using a square laminated glass.
  • the dimensions and constants of each part in Example 9 are the same as in Example 6.
  • the measurement conditions of the antenna gain are the same as those in Example 3 except that the measurement was performed by placing a square laminated glass on which the antenna of the form of FIG. 3B was formed vertically on a foamed polystyrene table.
  • FIG. 16 shows an arithmetic average value (unit: dBd) of measured data of antenna gain for the entire 360 ° circumference at a representative frequency of 380 MHz when the antenna length H1 is changed.
  • dBd arithmetic average value
  • Example 10 the antenna gain when the antenna width W5 of the slot 23 was changed was measured for the planar antenna in the form of FIG.
  • the dimensions and constants of each part in Example 10 are the same as in Example 6.
  • the antenna gain measurement conditions are the same as in the ninth embodiment.
  • FIG. 17 shows the arithmetic average value (unit: dBd) of the measured data of the antenna gain for the entire 360 ° circumference at the representative frequency of 380 MHz when the antenna width W5 is changed.
  • the antenna width W5 is 1 mm or more and 10 mm or less, more preferably 2 mm or more and 9 mm or less, it is advantageous in terms of improving the antenna gain.
  • Example 11 the antenna gain of a planar antenna in the form of FIGS. 18A-18D actually manufactured using a square laminated glass was measured.
  • a variation of the slot 23 composed of a plurality of thin line slots is shown.
  • the slot width of the plurality of thin line slots is W11.
  • FIG. 18A shows the same slot configuration as in FIG. 3B in which the antenna width W5 of the slot 23A is exaggerated.
  • FIG. 18B shows a slot configuration in which two thin line slots 23B1 and 23B2 are arranged at the same pitch as the antenna width W5 of FIG. 18A.
  • FIG. 18C shows a slot configuration in which four thin line slots 23C1-23C4 are arranged at equal intervals between the antenna width W5 of FIG.
  • FIG. 18D shows a U-shaped slot configuration in which the fine slot 23D1 and the through slot 23D3 penetrating the fine slot 23D2 are connected.
  • the dimensions and constants of each part in Example 11 are the same as in Example 6 except for the antenna width W5.
  • the antenna gain measurement conditions are the same as in the ninth embodiment.
  • Table 6 shows the arithmetic mean value (unit: dB) of the measured data of the antenna gain for the entire 360 ° circumference at the representative frequency of 380 MHz when the width W11 and the number of the thin wire slots are changed. The value expressed as a relative difference from the arithmetic mean value is shown.
  • the slot width W11 of the thin line can be narrowed while ensuring the antenna gain. Therefore, in order to obtain the antenna width W5 necessary for improving the antenna gain shown in the tenth embodiment (FIG. 17), it is possible to obtain the same characteristics by providing a plurality of thin line slots having a narrow width W11.
  • the passenger can be made inconspicuous as compared with the case where the thick slot 23 is provided, and the design is improved, and the fine wire slot can be easily formed by laser processing, so that the productivity is improved. .
  • the present invention is used for, for example, a glass antenna for an automobile that receives terrestrial digital TV broadcast, UHF analog TV broadcast, US digital TV broadcast, European Union digital TV broadcast, or People's Republic of China digital TV broadcast. It is preferable. Also used in Japan FM broadcast band (76-90 MHz), US FM broadcast band (88-108 MHz), TV VHF band (90-108 MHz, 170-222 MHz), vehicle keyless entry system (300-450 MHz) it can.
  • 800 MHz band for car phones (810 to 960 MHz), 1.5 GHz band for car phones (1.429 to 1.501 GHz), GPS (Global Positioning System), GPS signal of artificial satellites 1575.42 MHz), VICS (Registered trademark) (Vehicle Information and Communication System: 2.5 GHz).
  • ETC communication Electronic Toll Collection System: non-stop automatic toll collection system, roadside wireless device transmission frequency: 5.795 GHz or 5.805 GHz, roadside wireless device reception frequency: 5.835 GHz or 5.845 GHz), dedicated narrow Area communication (DSRC: Dedicated Short Range Communication, 915 MHz band, 5.8 GHz band, 60 GHz band), microwave (1 GHz to 3 THz), millimeter wave (30 to 300 GHz), and SDARS (Satellite Digital Audio Radio Service IV (2. 34 GHz, 2.6 GHz)).
  • DSRC Dedicated Short Range Communication

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

 車両用窓ガラスは、ガラス板11と、ガラス板11に積層された導電膜13と、導電膜13に給電構造設置して構成されたアンテナとを有し、前記給電構造は、誘電体12と一対の電極16とを有し、導電膜13は、一端が導電膜13の上縁13aを開放端とするスロット23を有し、かつガラス板11と誘電体12との間に配置され、一対の電極16は、誘電体12を挟んだ導電膜13側の反対側に、かつ一対の電極16を導電膜13に投影するとスロット23を一対の電極16で挟むように配置され、導電膜13と容量的に結合されることを特徴とする。

Description

車両用窓ガラス及びアンテナ
 本発明は、ガラス板に設けられた導電膜にアンテナを備える車両用窓ガラス、及び導電膜にスロットが形成されたアンテナに関する。
 図1は、ガラス板1と2の間に導電膜3及び中間膜4を挟んで形成された車両用合わせガラスの断面図である。この合わせガラスに、従来通り、電波を受信するためのアンテナ導体5を車内側に形成した場合、車外から到来する電波が導電膜3によって遮蔽されることによって、アンテナ導体5に要求される受信特性が十分に得られないことがある。
 このような弊害を排除するため、導電膜を利用してアンテナ機能を持たせた窓ガラスが知られている(例えば、特許文献1,2,3,4参照)。
日本国特開平6-45817号公報 日本国特開平9-175166号公報 日本国特開2000-59123号公報 米国特許第5012255号明細書
 特許文献1,2,4は、ガラス板が固定される車体のフランジと導電膜との間のスロットを利用したスロットアンテナである。車体のフランジと導電膜との間のスロットを利用したスロットアンテナの場合、スロットの大きさは車種毎に決まってくるものであり、特に高周波帯の電波を受信するには、所定の周波数で共振させることが困難である。また、高周波帯の電波を受信するにはフランジと導電膜との位置関係を正確にコントロールできなければならない。しかしながら、ガラス板には個体差があり、また車体のフランジへの固定は接着剤によるため、接着剤の厚さ、ガラス板のフランジへの固定位置など、様々な誤差が発生する。したがって、量産において同じ大きさのスロットを形成させることは難しいという問題があった。
 また、特許文献4のように、車体のフランジと導電膜とのスロットに加えて導電膜にスロットを設けた場合、スロットが大きければ導電膜の効果を減少させ、さらにガラス板を加熱して曲げ成形する時、導電膜の有無によってガラス板上に大きな熱分布が発生し成形精度を低下させる問題がある。
 そこで、本発明は、車体のフランジと導電膜との間のスロットの大きさに関係なく所定の周波数で共振させることが可能であり、また、ガラス板の車体フランジへの設置精度を要求しない、導電膜を利用した車両用窓ガラス及びアンテナの提供を目的とする。
 上記目的を達成するため、本発明に係る車両用窓ガラスは、
 ガラス板と、該ガラス板に積層された導電膜と、該導電膜に給電構造を設置して構成されたアンテナとを有する車両用窓ガラスであって、
 前記給電構造は、誘電体と一対の電極とを有し、
 前記導電膜は、一端が該導電膜の端部を開放端とするスロットを有し、かつ前記ガラス板と前記誘電体との間に配置され、
 前記一対の電極は、前記誘電体を挟んだ前記導電膜側の反対側に、かつ該一対の電極を前記導電膜に投影すると前記スロットを一対の電極で挟むように配置され、前記導電膜と容量的に結合されることを特徴とするものである。
 また、上記目的を達成するため、本発明に係るアンテナは、
 ガラス板と、該ガラス板に積層された導電膜と、該導電膜に設けられた給電構造とを有するアンテナであって、
 前記給電構造は、誘電体と一対の電極とを有し、
 前記導電膜は、一端が該導電膜の端部を開放端とするスロットを有し、かつ前記ガラス板と前記誘電体との間に配置され、
 前記一対の電極は、前記誘電体を挟んで前記導電膜側の反対側、かつ該一対の電極を前記導電膜に投影すると前記スロットを一対の電極で挟むように配置され、前記導電膜と容量的に結合されることを特徴とするものである。
 本発明によれば、車体のフランジと導電膜との間のスロットの大きさに関係なく所定の周波数で共振させることが可能であり、また、ガラス板の車体フランジへの設置精度を要求しない、導電膜を利用したアンテナを実現することができる。
ガラス板1と2の間に導電膜3及び中間膜4を挟んで形成された車両用合わせガラスの断面図である。 本発明に係る車両用窓ガラス及びアンテナの分解図である。 本発明の第1の実施形態である車両用窓ガラス100の正面図である。 アンテナ20の拡大図である。 独立スロット24を追加した例である。 ガラス板12に導電膜13がコーティングされた形態である。 中間膜14Aと中間膜14Bとの間に導電膜13が挟まれた形態である。 図4Bの形態において、導電膜13がガラス板12に対してオフセットしていない形態である。 ガラス板11に導電膜13がコーティングされた形態である。 ガラス板11と誘電体基板32との間の導電膜13がガラス板11にコーティングされた形態である。 ガラス板11と誘電体基板32との間の導電膜13が接着剤38Aによってガラス板11に接着された形態である。 本発明の第2の実施形態である車両用窓ガラス200の正面図である。 隠蔽膜18がガラス板12と電極16との間に配置された形態である。 隠蔽膜18がガラス板11と導電膜13との間に配置された形態である。 本発明に係る車両用窓ガラス及びアンテナの実施形態(図3B)に関しての、S11のシミュレーション結果と実験結果である。 本発明に係る車両用窓ガラス及びアンテナの実施形態(図3C)に関しての、S11のシミュレーション結果と実験結果である。 実施例1の効果を説明するための、3種類のアンテナに関するS11のシミュレーション結果である。 誘電体基板48がガラス板12に取り付けられた合わせガラスの断面図である。 図3Bの形態のアンテナに独立スロット24(24A,24B)を追加したアンテナの概念図である。 車体開口部に取り付けられた合わせガラスの正面図(車内視)である。 距離L5を変化させたときの、平均アンテナ利得を示す。 端子位置Lyを変化させたときの、平均アンテナ利得を示す。 スロット23の位置を固定したまま、電極16を右方へ移動させた図である。 面積比Srを変化させたときの、比帯域を示す。 電極16の面積に応じて変化するインピーダンスZcを変化させたときの、比帯域を示す。 アンテナ長H1を変化させたときの、平均アンテナ利得を示す。 アンテナ幅W5を変化させたときの、平均アンテナ利得を示す。 スロット23Aのスロット幅を誇張した、図3Bの形態と同じ構成を示す。 2本の細線スロット23B1,23B2が、図18Aのアンテナ幅W5と同じピッチで配置された構成を示す。 図18Aのアンテナ幅W5の間に、4本の細線スロット23C1-23C4が等間隔に配置された構成を示す。 細線スロット23D1と細線スロット23D2を貫通スロット23D3で接続した構成を示す。
 以下、図面を参照しながら、本発明を実施するための形態の説明を行う。なお、本発明に係る車両用窓ガラスは、車両の前方に取り付けられるフロントガラスでもよいし、車両の側部に取り付けられるサイドガラスでもよい。また、後部に取り付けられるリアガラスでもよい。
 図2は、本発明に係る車両用窓ガラス及びアンテナの分解図である。図2に示した車両用窓ガラスは、車外側に配置される第1のガラス板であるガラス板11と車内側に配置される第2のガラス板であるガラス板12とを合わせて形成された合わせガラスである。図2は、本発明に係る車両用窓ガラスとアンテナの構成要素を、ガラス板11(又は、ガラス板12)の面に対する法線方向に分離して示している。図2の車両用窓ガラスは、導電膜13がガラス板11とガラス板12との間に配置される積層構造を有し、電極16Aと16Bから構成される一対の電極16が、ガラス板12を挟んで導電膜13の配置位置に対して反対側に配置されている。導電膜13には、スロット23が形成される。スロット23は、導電膜13の上縁13aに接している。すなわち、スロット23は、その一端が導電膜13の外周縁である上縁13aで開放したものである。ガラス板11と、スロット23が形成された導電膜13と、ガラス板12と、一対の電極16がこの順番で積層され、アンテナを形成している。導電膜13は、ガラス板11とガラス板12との間に層状に配置され、ガラス板12は、導電膜13と電極16との間に層状に配置される。
 このように、導電膜と導電膜に形成されたスロットと一対の電極とでアンテナを構成できるため、車体フランジと導電膜との間のスロットに関係なく所定の周波数で狂信させることができる。
 ガラス板11と導電膜13との間には、中間膜14Aが配置され、導電膜13とガラス板12との間には、中間膜14Bが配置される。ガラス板11と導電膜13は、中間膜14Aによって接合され、導電膜13とガラス板12は、中間膜14Bによって接合される。中間膜14A,14Bは、例えば、熱可塑性のポリビニルブチラールである。中間膜14A,14Bの比誘電率εrは、合わせガラスの一般的な中間膜の比誘電率である2.8以上3.0以下が適用できる。
 ガラス板11,12は、透明な板状の誘電体である。また、ガラス板11,12のいずれか一方が半透明でもよいし、ガラス板11,12の両方が半透明でもよい。スロット23が形成された導電膜13に、誘電体であるガラス板12と一対の電極16とで構成される給電構造を設置してアンテナを形成している。
 導電膜13は、外部から到来する熱線を反射することができる導電性の熱線反射膜である。導電膜13は、透明又は半透明である。図2に記載された導電膜13は、ポリエチレンテレフタラートの表面に形成された導電性の膜であるが、ガラス板の表面に形成された導電性の膜でもよい。導電膜13には、導電膜13の上縁13aを開放端とするスロット23が形成されている。
 電極16Aと16Bから構成される電極16は、ガラス板12の車内側の面、すなわち導電膜13に対向している面に対して反対側の面に配置される。電極16は、ガラス板12の車内側の面に露出して配置される。一対の電極16は、一対の電極16を法線方向に導電膜13に投影すると、スロット23の長手方向に対して直交する方向であって且つ導電膜13の膜面に平行な方向にスロット23を挟むようにガラス板12の面上に配置される。つまり、電極16Aは、ガラス板12と中間膜14Bとを介して、導電膜上に投影される部分である第1の結合部21と容量的に結合される。また、電極16Bは、ガラス板12と中間膜14Bとを介して、導電膜上に投影される部分である第2の結合部22と容量的に結合される。第1の結合部21は、スロット23によって区画された導電膜13の一方の側に位置し、第2の結合部22はスロット23を挟んだもう一方の側に位置する。
 本態様のアンテナは、ガラス板11とガラス板12との間に導電膜13が配置される積層構造を有し、電極16Aと16Bから構成される一対の電極16が、ガラス板12を挟んで導電膜13の配置位置に対して反対側に配置されており、一端が開放端であるスロット23が導電膜13に形成されたものある。そして、電極16Aの導電膜13への投影部である第1の結合部21と、電極16Bの導電膜13への投影部である第2の結合部22とが、スロット23を挟んで位置し、電極16Aと第1の結合部21とが容量的に結合可能な距離だけ離間し、電極16Bと第2の結合部22とが容量的に結合可能な距離だけ離間するように、一対の電極16が設けられる。
 なお、「スロット23を挟む」とは、後述の図13に示されるように、一対の電極16のうちいずれか一方の電極がスロット23と重複する位置に配置されることを含み、スロット23と重複した電極の一部が、スロット23に対してもう一方の電極が位置する側と反対側の導電膜13に重複していればよい。
 本態様のアンテナは、電極16Aと第1の結合部21との静電結合及び電極16Bと第2の結合部22との静電結合によりアンテナの短縮効果があり、一般的なノッチアンテナなどで必要とされるスロットの長さより、スロット23の長さを短くできる。そのため、スロット23を小さくでき、導電膜を形成させない部分を小さくできる。この短縮効果を考慮して、スロット23はアンテナが受信すべき周波数帯の電波の受信に適した形状と寸法によって形成される。スロット23は、すなわち、スロット23の形状と寸法は、アンテナが受信すべき周波数帯の電波を受信するために必要なアンテナ利得の要求値を満たすように設定されていればよい。
 例えば、アンテナが受信すべき周波数帯が地上デジタルテレビ放送帯470~710MHzの場合、地上デジタルテレビ放送帯470~710MHzの電波の受信に適するようにスロット23は形成される。
 また、アンテナが受信すべき周波数帯の電波の受信に適した位置であれば、アンテナのガラス上の配置位置は、特に限定されない。例えば、本態様のアンテナは、車両用窓ガラスの取り付け部位である車体開口端の近傍に配置される。図10に示されるように、ルーフ側の車体開口端41の近傍に配置されると、アンテナ利得向上の点で、好適である。また、ピラー側の車体開口端42又は44に近づくように、図10に示す位置から右方又は左方に移動した位置に配置されてもよい。また、シャーシー側車体開口端43の近傍に配置されてもよい。図10の場合、スロット23の長手方向は、車体開口端41又は43の辺に直交する方向に一致する。
 図2において、本態様のアンテナは、ガラス板11とガラス板12との間に導電膜13が配置される積層構造を有し、信号線側の電極16Aと、アース線側の電極16Bと、電極16Aにガラス板12を介して静電結合された第1の結合部21と、電極16Bにガラス板12を介して静電結合された第2の結合部22と、第1の結合部21と第2の結合部22に挟まれたスロット23とを備える2極タイプのアンテナである。電極16Aがアース線側の電極で、電極16Bが信号線側の電極でもよい。電極16Aは、車体側に搭載された信号処理装置(例えば、アンプなど)に結線された信号線に導通可能に接続される。電極16Bは、車体側のグランド部位に結線された接地線に導通可能に接続される。車体側のグランド部位として、例えば、ボディーアース、電極16Aに接続される信号線が結線される信号処理装置のグランドなどが挙げられる。
 アンテナによって受信された電波の受信信号は、一対の電極16に通電可能に接続された導電性部材を介して、車両に搭載された信号処理装置に伝達される。この導電性部材として、AV線や同軸ケーブルなどの給電線が用いられるとよい。
 アンテナに電極16A,16Bを介して給電するための給電線として、同軸ケーブルを用いる場合には、同軸ケーブルの内部導体を電極16Aに電気的に接続し、同軸ケーブルの外部導体を電極16Bに接続すればよい。また、信号処理装置に接続されている導線等の導電性部材と電極16A,16Bとを電気的に接続するためのコネクタを、電極16A,16Bに実装する構成を採用してもよい。このようなコネクタによって、同軸ケーブルの内部導体を電極16Aに取り付けることが容易になるとともに、同軸ケーブルの外部導体を電極16Bに取り付けることが容易になる。さらに、電極16A,16Bに突起状の導電性部材を設置し、窓ガラス12が取り付けられる車体のフランジにその突起状の導電性部材が接触、嵌合するような構成としてもよい。
 また、電極16A,16Bは、銀ペースト等の、導電性金属を含有するペーストを窓ガラス板12の車内側表面にプリントし、焼付けて形成される。しかし、この形成方法に限定されず、銅等の導電性物質からなる、線状体又は箔状体を、ガラス板12の車内側表面に形成してもよく、ガラス板12に接着剤等により貼付してもよい。
 電極16Aと16Bの形状、及び各電極の間隔は、上記の導電性部材又はコネクタの実装面の形状や、それらの実装面の間隔を考慮して決めるとよい。例えば、正方形、略正方形、長方形、略長方形などの方形状や多角形状が実装上好ましい。なお、円、略円、楕円、略楕円などの円状でもよい。
 また、図8に示されるように、電極16相当する電極49が形成された誘電体基板48をガラス板12の車内側表面に取り付けてもよい。図8は、誘電体基板48がガラス板12に取り付けられた合わせガラスの断面図である。誘電体基板48の一例として、FR4を基材とするガラスエポキシ基板が挙げられるが、インピーダンスを調整すれば、他の材質の基板が用いられてもよい。誘電体基板48は、例えばアクリルフォームテープ47によってガラス板12の表面に貼付される。電極49は、誘電体基板48の上面に形成された上側電極49Aと、誘電体基板48の下面に形成された下側電極49Bとから構成される。上側電極49Aと下側電極49Bとは、複数のスルーホール48aを介して導通している。電極49は、誘電体基板48に2つ設けられており、図2などに示す電極16A、16Bに相当する電極16を形成している。図8に示される給電構造によれば、前述したコネクタを予め上側電極49Aに取り付けておくことにより、誘電体基板48をガラス板12に貼着するだけで、コネクタをガラス板に実装することができ、作業を簡略化することができる。
 なお、図8に示されるように、合わせガラスは、車体開口端41等に取り付けられる場合、接着剤46(又は、パッキン)によって、車体フレーム45のフランジ部に取り付けられる。
 図3Aは、本発明の第1の実施形態である車両用窓ガラス100の正面図である。図3Aは、車内側に配置されるガラス板12の面を車内側から対向して見たときの図である。図3Aは、車両用窓ガラス100の全体図である。図3Aの場合、アンテナ20が車両用窓ガラス100の右上側に配置されている。図3Bは、アンテナ20の配置場所の拡大図である。
 導電膜13の縁(13a~13d)は、ガラス板12の縁(12a~12d)から内側に距離xd1だけオフセットされている。このようなオフセットを設けることによって、ガラス板11と12の合わせ面からの浸水等によって導電膜13が腐食することを防ぐことができる。
 また、図3Cに示されるように、スロット23に近接して、スロット23に非接続の独立スロット24が導電膜13の外周縁に接することなく導電膜13内で閉じて形成されていてもよい。また、独立スロットをスロット23と同様に一端を開放端として形成させてもよい。独立スロット24を設けることによって、独立スロット24を設けない場合に比べて、アンテナ20の広帯域化を図ることができる。
 図4A-4Fは、図3Aに示したA-Aにおける車両用窓ガラス100の断面図である。図4A-4Fは、本発明に係る車両用窓ガラス及びノッチアンテナが有する積層形態のバリエーションを示したものである。図4A-4Fは、ガラス板11、導電膜13がガラス板11と誘電体(すなわち、ガラス板12又は誘電体基板32)との間に配置される積層構造を有する形態であって、一対の電極16がその誘電体を挟んで導電膜13の反対側に配置されているものを示している。導電膜13は、ガラス板と誘電体との間の接着層に接している。
 図4A-4Dの場合、ガラス板11とガラス板12の間に、導電膜13と中間膜14(又は、中間膜14A,14B)が配置されている。図4Aは、ガラス板12のガラス板11に対向している対向面に、導電膜13が蒸着処理されることによって、ガラス板12に導電膜13がコーティングされた形態である。図4Bは、ガラス板11のガラス板12に対向している対向面に接した中間膜14Aとガラス板12のガラス板11と対向した対向面に接する中間膜14Bとの間に、フィルム状の導電膜13が挟まれた形態である。フィルム状の導電膜13は、フィルムに導電膜13が蒸着処理されることによって導電膜13がコーティングされた形態であってもよい。図4Cは、図4Bの形態において、導電膜13がガラス板12に対してオフセットしていない形態である。図4Dは、窓ガラス11の窓ガラス12に対向している対向面に、導電膜13が蒸着処理されることによって、ガラス板11に導電膜13がコーティングされた形態である。
 また、図4E,4Fに示されるように、本発明に係る車両用窓ガラスは、合わせガラスでなくてもよい。図4E,4Fの場合、ガラス板11と誘電体基板32の間に、導電膜13が配置されている。図4Eは、ガラス板11の誘電体基板32に対向している対向面に、導電膜13が蒸着処理されることによって、ガラス板11に導電膜13がコーティングされた形態である。導体膜13と誘電体基板32は、接着剤38によって接着される。図4Fは、ガラス板11の誘電体基板32に対向している対向面に、導電膜13が接着剤38Aによって接着された形態である。導体膜13と誘電体基板32は、接着剤38Bによって接着される。誘電体基板32は樹脂からなる樹脂基板であり、一対の電極が設けられている。樹脂基板は、一対の電極がプリントされたプリント基板であってもよい。
 図5Aは、本発明の第2の実施形態である車両用窓ガラス200の正面図とB-B断面図である。図5Aは、車内側に配置されるガラス板12の面を車内側から対向して見たときの正面図である。図3Aと同様の部分については、その説明を省略又は簡略する。
 図5Aに示されるように、電極16A,16Bを車外側から見えなくするために、一対の電極16と(図5Aにおいて、紙面奥側の)ガラス板11との間に、ガラス板の面に形成される隠蔽膜18を設けてもよい。隠蔽膜18は黒色セラミックス膜等の焼成体であるセラミックスが挙げられる。この場合、窓ガラスの車外側から見ると、隠蔽膜18により隠蔽膜18上に設けられている電極16A,16Bの部分が車外から見えなくなり、デザインの優れた窓ガラスとなる。
 図5B,5Cは、図5Aに示したB-Bにおける車両用窓ガラス100の断面図である。図5B,5Cは、本発明に係る車両用窓ガラス及びアンテナが有する積層形態のバリエーションを示したものである。図5B,5Cは、ガラス板11、導電膜13がガラス板11と誘電体(すなわち、ガラス板12)との間に配置される積層構造を有する形態であって、一対の電極16がその誘電体を挟んで導電膜13の反対側に配置されているものを示している。
 図5B,5Cの場合、ガラス板11とガラス板12の間に、導電膜13と中間膜14が配置されている。図5Bは、ガラス板11のガラス板12に対向している対向面に、導電膜13が蒸着処理されることによって、ガラス板11に導電膜13がコーティングされた形態である。ガラス板12に形成された隠蔽膜18が、ガラス板12と電極16との間に配置されている。図5Cは、ガラス板12のガラス板11に対向している対向面に、導電膜13が蒸着処理されることによって、ガラス板12に導電膜13がコーティングされた形態である。ガラス板11に形成された隠蔽膜18が、ガラス板11と導体膜13との間に配置されている。
 隠蔽膜18は、ガラス板12の外縁から距離xd3の内側領域に形成されている。ガラス板12の外縁と導電膜13との距離xd1(又は、xd2)を距離xd3より短くすることによって、導電膜13の外周縁を隠蔽膜18によって隠すことができ、導電膜の外周縁を目立たなくし意匠性が向上する。また、熱線を導電膜13と隠蔽膜18とで隙間なく遮蔽することが可能となる。
 車両に対する窓ガラスの取り付け角度は、水平面(地平面)に対し、15~90°、特には、30~90°が好ましい。
 縦横300mmの正方形の厚さ3.1mmのガラス基板を窓ガラスと想定して、実験を行った。このガラス基板の車外側の面と仮定した片面に、電極間距離を5mm離した一対の電極を形成し、車内側の面と仮定したもう一方の片面に、アンテナのスロットが形成された銅箔を導体膜と仮定して形成した。電極の大きさは、縦横15mmの正方形である。銅箔の大きさは、縦250mm、横300mmである。ルーフ側縁部と仮定したガラス基板の縁部から銅箔の縁部までのオフセット距離は、50mmに設定した。アンテナのスロットの一端が銅箔のルーフ側縁部で開放するように、スロットを銅箔に形成した。車体やデフォッガはないものと仮定する。
 このように実際に製作されたアンテナと、これと同寸法の数値計算上のアンテナとについて、周波数100~1100MHzにおいて5Hz毎に、リターンロス特性(反射特性)S11を測定した。また、図3B,3Cのそれぞれの形態のノッチアンテナについて、測定を行った。数値計算の場合、FDTD法(Finite-Difference Time-Domain method)に基づく電磁界シミュレーションで数値計算を行い、リターンロス特性(反射係数)S11を計算した。S11は、零に近いほどリターンロスが大きくアンテナ利得が小さくなり、マイナスの値が大きくなるほどリターンロスが小さくアンテナ利得が大きくなる。
 図3Bの形態におけるS11の測定時の寸法は、スロット23の長手方向の長さは83mm、スロット23の幅は3mmである。
 図3Cの形態におけるS11の測定時の寸法は、スロット23の長手方向の長さ及び幅は、図3Bの形態の場合と同一である。また、スロット23の長手方向に平行な独立スロット24の長手方向の長さは165mm、独立スロット24の幅は3mmである。スロット23と独立スロット24との長手方向に直交する方向での離間距離は10mmである。銅箔のルーフ側縁部と独立スロット24と最短距離は41.5mmである。
 図6A,6Bは、図3B,3CのS11のシミュレーション結果と実験結果を示す。図6Aは、図3Bの場合の結果を示し、図6Bは、図3Cの場合の結果を示す、図6A,6Bにおいて、実線はシミュレーション上での計算値、点線は実験値を示す。
 図6Aに示されるように、図3Bのアンテナは、350~400MHz付近に共振点を有しており、導電膜がアンテナとして機能することがわかる。
 また、図6Bに示されるように、独立スロット24を設けることによって、300~350MHz付近と、550~600MHz付近に2つの共振点が生じるので、独立スロットが無い場合に比べて、広帯域化を図ることができる。
 また、図7に、図3Bのアンテナ(例1)と、図3Bとスロットの形状が同じ導電膜において、静電結合なしにスロットに直接給電するノッチアンテナ(例2)と、静電結合なしにスロットに直接給電するノッチアンテナにおいて、350~400MHz付近で共振するようにスロットの長さを275mmに調整したノッチアンテナ(例3)とを比較した結果を示す。これらはシミュレーション結果である。この結果より、例2のノッチアンテナは、図3Bのアンテナ(例1)と同形状のスロットを有していても、スロットの長さが短いため、高周波側で共振している。共振周波数を低周波側にシフトさせるためにスロットを長くすると、例3のように275mmの長さが必要となる。そのため、図3Bのアンテナのスロットは短く形成できることがわかる。また、給電構造を静電結合で構成することにより、静電結合なしにスロットに直接給電するノッチアンテナと比較して、共振点でリターンロスを小さくできるため、アンテナ利得を向上させることができる。
 このように、上述の構成によれば、車体フランジと導電膜との間のスロットを用いずに導電膜を利用したアンテナを構成できる。よって、車体フランジを利用しないため、ガラス板の車体フランジへの設置精度が要求されない。そして、導電膜にスロットを設けて直接給電する場合に比べてスロットの長さを短くでき、導電膜がない領域を小さくできる。また、ガラス板に孔を開ける必要もなく、ガラス板の外周縁の外側を迂回する給電用導体を設ける必要もないため、導電膜を利用したアンテナを簡易な構成で実現することができる。
 実施例2では、独立スロットを追加することによる本発明のアンテナの広帯域化の効果について説明する。
 図9は、図3Bの形態のアンテナに独立スロット24(24A,24B)を追加したアンテナの代表図である。独立スロット24A,24Bは、一端を開放端として形成された無給電スロットである。独立スロット24A,24Bの開放端は、スロット23の開放端が接する導電膜13の上縁13aに接している。独立スロット24Aは、スロット23との間に電極16Aが位置するように形成されていて、独立スロット24Bは、スロット23との間に電極16Bが位置するように形成されている。
 実施例2では、合わせガラスの内層に導電膜13が設けられた図9の形態のアンテナを想定して、FDTD法に基づく数値計算を、周波数200~500MHzにおいて0.6MHz毎に行った。また、合わせガラスのガラスサイズが変更されることを想定し、W1,W2,H7,H10が互いに異なる3通りのガラスサイズについて数値計算した。この数値計算では、アンテナが形成された合わせガラスの取り付け部位である車体フレームを導体50としてモデル化し、ガラス周辺の境界条件を無限とした。
 図9の層構成は、図4Bの形態とした。導体50は、電極16A,16Bと同一の層に形成されているとした。図3B及び図9における各部の寸法(単位:mm)及び定数は、以下のとおりである。
[実施例2-1:第1のガラスサイズ]
 H1:70
 H2,H3:170
 H4,H5:10
 H6:376
 H7:356
 H8:90
 H9:40
 H10:506
 H11:50
 W1:960
 W2:880
 W3:10
 W4,W5,W6:3
 W7.W8:40
 W9,W10:100
 W40:5
 W41,H42,W43,H44:20
[実施例2-2:第2のガラスサイズ(実施例2-1に対する変更箇所のみ表示)]
 H7:470
 H10:620
 W1:1200
 W2:1100
[実施例2-3:第3のガラスサイズ(実施例2-1に対する変更箇所のみ表示)]
 H7:604
 H10:734
 W1:1440
 W2:1360
[実施例2-1,2-2,2-3共通の寸法及び定数]
 ガラス板11,12の厚さ:2.0
 ガラス板11,12の比誘電率:7.0
 中間膜14A,14Bの厚さ:0.381
 導電膜13のシート抵抗:2.0[Ω/□(ohm/square)]
 導電膜13の厚さ:0.01
 導体50及び電極16A,16Bの厚さ:0.01
Figure JPOXMLDOC01-appb-T000001
 表1は、200~500MHzの周波数範囲において、VSWR(Voltage Standing Wave Ratio)=3.0以下の比帯域(fractional bandwidth)を数値計算した結果を示す。表1の比帯域は、演算式
  比帯域=F/{(F-F)/2}   ・・・(1)
          F:VSWR<3.0の帯域幅
          F:VSWR<3.0の周波数の最大値
          F:VSWR<3.0の周波数の最小値
で表される。
 表1に示されるように、ガラスサイズにかかわらず、独立スロット24A,24Bを追加することによって、比帯域の値が大きくなる。つまり、独立スロットを追加することによって、アンテナの広帯域化が可能になる。
 実施例3では、本発明のアンテナ全体の上下方向での設置位置の違いによるアンテナ利得の変化について説明する。
 図10は、図3Bの形態のアンテナが形成された合わせガラスの正面図(車内視)である。図10は、合わせガラスが車体開口部に取り付けられた状態を示す。
 実施例3では、自動車のフロントガラス用の合わせガラスを使って実際に製作された図10の形態の平面アンテナについて、ルーフ側の車体開口端41と導電膜13の上縁13aとの距離L7を変化させたときのアンテナ利得を、実車を使って測定した。
 アンテナ利得は、ガラスアンテナが形成された自動車用窓ガラスを、ターンテーブル上の自動車の窓枠に組みつけて実測した。なお、自動車用窓ガラスのアンテナ部分は水平面に対して約16°傾いた状態となった。給電部(図8の給電構造を採用)には、同軸ケーブルに接続されるコネクタを取り付けた。
 アンテナ利得の測定は、ターンテーブルの中心に、ガラスアンテナが形成された自動車用窓ガラスを組みつけた自動車の車両中心をセットして、自動車を360°回転させて行った。アンテナ利得のデータは、水平偏波と垂直偏波の2つの場合について、回転角度1°毎に、250~450MHzにおいて5MHz毎に測定した。電波の発信位置とスロット23との仰角は水平方向(地面と平行な面を仰角=0°、天頂方向を仰角=90°とする場合、仰角=0°の方向)で測定した。アンテナ利得は、半波長ダイポールアンテナを基準とし、半波長ダイポールアンテナが0dBとなるように標準化した。
 図10の層構成は、図4Bの形態とする。実施例2での各部の寸法及び定数は、合わせガラスの外形寸法を除き、実施例2と同じである。
Figure JPOXMLDOC01-appb-T000002
 表2は、距離L7を変化させたときの、代表周波数330MHzにおける360°全周分のアンテナ利得の実測データの相加平均値(単位:dBd)を示す。表2に示されるように、距離L7を変えても、アンテナ利得に大きな変化は生じない。つまり、導電膜13の上縁13aを車体開口端41に近づけることができる結果、スロット23を窓ガラスの上縁12aに近づけることができるので、窓ガラスの視界が向上する。
 実施例4では、本発明のアンテナ全体の左右方向での設置位置の違いによるアンテナ利得の変化について説明する。
 実施例4では、実施例3と同じ図10の形態の平面アンテナについて、導電膜13のAピラー側左縁13dとスロット23の中心線との距離L5を変化させたときのアンテナ利得を、実車を使って測定した。距離L7を15mmとして、その他の各部の寸法及び定数、並びにアンテナ利得の測定条件は、実施例3と同じである。
 図11は、代表周波数330MHzの波長λで規格化した距離L5を変化させたときの、330MHzにおける360°全周分のアンテナ利得の実測データの相加平均値(単位:dBd)を示す。図11に示されるように、導電膜13の左縁13dと右縁13bと間の中心線までの長さを最大値として、距離L5が0.1λ以上、より好ましくは0.4λ以上であると、アンテナ利得向上の点で有利である。
 実施例5では、本発明のアンテナの電極16(16A,16B)の上下方向での位置の違いによるアンテナ利得の変化について説明する。
 実施例5では、実施例3と同じ図10の形態の平面アンテナについて、距離L7を15mmとして、電極16の端子位置Lyを上下方向に変化させたときのアンテナ利得を、実車を使って測定した。実施例5での各部の寸法及び定数、並びにアンテナ利得の測定条件は、実施例3と同じである。
 端子位置Lyは、図3Bの符号を引用して、演算式
 Ly=(H11+H44(又は、H42))/H1   ・・・(2)
  H11+H44(又は、H42):スロット23の下端と電極16の上端との距離
  H1:スロット23のスロット長(アンテナ長)
で表される。
 図12は、端子位置Lyを変化させたときの、代表周波数330MHzにおける360°全周分のアンテナ利得の実測データの相加平均値(単位:dBd)を示す。図12に示されるように、端子位置Lyが0.4以上1.2以下、より好ましくは0.5以上1.1以下であると、アンテナ利得向上の点で有利である。すなわち、電極16A,16Bが導電膜13の上縁13aに近いほど、アンテナ利得向上の点で有利である。
 実施例6では、本発明のアンテナの電極16(16A,16B)の左右方向での位置の違いによるアンテナ利得の変化について説明する。
 実施例6では、正方形の合わせガラスの内層に導電膜13が設けられた図3Bの形態のアンテナを想定して、FDTD法に基づく数値計算を、周波数250~450MHzにおいて0.6MHz毎に行った。また、電極16Aと16Bとの間の最短間隔W40(図3B参照)を10mmに固定したまま、図13に示されるように、電極16(16A,16B)が全体として右方向に移動する場合を想定した数値計算を行った。この数値計算では、アンテナが形成された合わせガラスの取り付け部位である車体フレームは無いものとしてモデル化し、ガラス周辺の境界条件を有限(周囲が自由空間)とした。
 実施例6で想定した合わせガラスの形状は、縦横300mmの正方形とした。スロット23の中心線の位置は、正方形の合わせガラスの一辺の二等分線上とした。実施例6で想定した層構成は、図8の合わせガラス及び給電構造の層構成とした。実施例6での各部の寸法(単位:mm)及び定数は、図3A,3Bの符号を引用して、以下に示す。
 誘電体基板48の厚さ:0.4
 誘電体基板48の比誘電率:4.0
 アクリルフォームテープ47の厚さ:0.4
 アクリルフォームテープ47の比誘電率:3.0
 電極49Aの厚さ:0.01
 H1:70
 H21:300
 H23:30
 H24:10
 W5:3
 W21:300
 W23,W24:10
 W40:10
 W41,H42,W43,H44:20
 図14は、面積比Srを変化させたときの、250~450MHzの周波数範囲において、VSWR=3.0以下の比帯域を数値計算した結果を示す。図13に示されるように、スロット23に対して電極16Aの左側領域を16Alとし、スロット23に対して電極16Aの右側領域を16Arとしたとき(スロット23と重複している面積は含まない)、図14の横軸の面積比Srは、演算式
  Sr=領域16Alの面積/(領域16Alの面積+領域16Arの面積)
         ・・・(3)
で表される。図14の縦軸の比帯域は、上述の演算式(1)に従って演算された値である。図14に示されるように、面積比Srが0.5以上、より好ましくは0.6以上であると、アンテナの広帯域化の点で有利である。すなわち、電極16A,16Bがスロット23に重複せずにスロット23の両側に配置されると、アンテナの広帯域化の点で有利である。
 実施例7では、本発明のアンテナの電極16(16A,16B)のサイズ(面積)の違いによるアンテナ利得の変化について説明する。
 実施例7では、実施例6と同じ図3Bの形態のアンテナを想定して、FDTD法に基づく数値計算を、周波数250~450MHzにおいて0.6MHz毎に行った。また、電極16それぞれの形状を正方形に維持したまま、スロット23の幅W5が3.0mm,7.5mmの2通りの場合について、FDTD法に基づく数値計算を行った。実施例7での各部の寸法及び定数は、実施例6と同じである。
 図15は、電極16の面積に応じて変化するインピーダンスZcを変化させたときの、250~450MHzの周波数範囲において、VSWR=3.0以下の比帯域を数値計算した結果を示す。電極16の面積に比例する電極16の静電容量をCとするとき、図15の横軸のインピーダンスZc(=-1/2πFcC)は、演算式(1)の分母(すなわち、W5=3.0mmの場合、中心周波数Fc=337MHzであり、W5=7.5mmの場合,中心周波数Fc=355MHz)における計算値とする。図15の縦軸の比帯域は、上述の演算式(1)に従って演算された値である。図15に示されるように、-400≦Zc≦-80、より好ましくは-300≦Zc≦-100であることが、アンテナの広帯域化の点で有利である。
 実施例8では、本発明のアンテナの電極(16A,16B)のサイズ(面積)の違いによるアンテナ利得の変化について説明する。
 実施例8では、実施例3と同じ図10の形態の平面アンテナについて、スロット23のアンテナ長H1を70mmに固定し且つ電極16それぞれの形状を正方形に維持したまま、正方形の各電極16の一辺の長さW41と、電極16Aと16Bとの間の最短間隔W40とを変化させたときのアンテナ利得を、実車を使って測定した。実施例8での各部の寸法及び定数、並びにアンテナ利得の測定条件は、実施例3と同じである。実施例8でのアンテナ利得は、図8の給電構造を実際に製作して測定した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3は、水平偏波の場合に、最短間隔W40及び一辺の長さW41を変化させたときの、代表周波数330MHzにおける360°全周分のアンテナ利得の実測データの相加平均値(単位:dBd)を示す。表4は、垂直偏波の場合に、最短間隔W40及び一辺の長さW41を変化させたときの、330MHzにおける360°全周分のアンテナ利得の実測データの相加平均値(単位:dBd)を示す。表5は、一辺の長さW41が16,20,24mmのときのZcを示す。表3,4,5に示されるように、電極16の面積を変更するとZcが変化し、図15に示すグラフのピーク値に近い値に調整されると、アンテナ利得が向上する点で有利である。
 実施例9では、本発明のアンテナのアンテナ長H1の違いによるアンテナ利得の変化について説明する。
 実施例9では、正方形の合わせガラスを使って実際に製作された図3Bの形態の平面アンテナについて、スロット23のアンテナ長H1を変化させたときのアンテナ利得を測定した。実施例9での各部の寸法及び定数は、実施例6と同じである。アンテナ利得の測定条件は、図3Bの形態のアンテナが形成された正方形の合わせガラスを発泡スチロールの台上に垂直に設置して測定した点を除いて、実施例3と同じである。
 図16は、アンテナ長H1を変化させたときの、代表周波数380MHzにおける360°全周分のアンテナ利得の実測データの相加平均値(単位:dBd)を示す。図16に示されるように、アンテナ長H1が63mm以上84mm以下、より好ましくは67mm以上80mm以下であると、アンテナ利得向上の点で有利である。
 実施例10では、本発明のアンテナのアンテナ幅W5の違いによるアンテナ利得の変化について説明する。
 実施例10では、実施例9と同じ図3Bの形態の平面アンテナについて、スロット23のアンテナ幅W5を変化させたときのアンテナ利得を測定した。実施例10での各部の寸法及び定数は、実施例6と同じである。アンテナ利得の測定条件は、実施例9と同じである。
 図17は、アンテナ幅W5を変化させたときの、代表周波数380MHzにおける360°全周分のアンテナ利得の実測データの相加平均値(単位:dBd)を示す。図17に示されるように、アンテナ幅W5が1mm以上10mm以下、より好ましくは2mm以上9mm以下であると、アンテナ利得向上の点で有利である。
 実施例11では、本発明のアンテナのスロット23の形態の違いによるアンテナ利得の変化について説明する。
 実施例11では、正方形の合わせガラスを使って実際に製作された図18A-18Dの形態の平面アンテナのアンテナ利得を測定した。複数の細線スロットから構成されるスロット23のバリエーションが図示されている。図18B-18Dの各図において、複数の細線スロットのスロット幅をW11としている。図18Aは、スロット23Aのアンテナ幅W5を誇張した、図3Bの形態と同じスロット構成を示す。図18Bは、2本の細線スロット23B1,23B2が、図18Aのアンテナ幅W5と同じピッチで配置されたスロット構成を示す。図18Cは、図18Aのアンテナ幅W5の間に、4本の細線スロット23C1-23C4が等間隔に配置されたスロット構成を示す。図18Dは、細線スロット23D1と細線スロット23D2を貫通する貫通スロット23D3で接続したU字のスロット構成を示す。実施例11での各部の寸法及び定数は、アンテナ幅W5を除いて、実施例6と同じである。アンテナ利得の測定条件は、実施例9と同じである。
Figure JPOXMLDOC01-appb-T000006
 表6は、細線スロットの幅W11と本数を変化させたときの、代表周波数380MHzにおける360°全周分のアンテナ利得の実測データの相加平均値(単位:dB)を、図18Aの場合の相加平均値との相対差として表した値を示す。表6に示されるように、アンテナ利得を確保したまま、細線のスロット幅W11を狭くできる。そのため、実施例10(図17)で示したアンテナ利得向上に必要なアンテナ幅W5を得るために、幅W11が細い細線スロットを複数設けることで、同等の特性を得ることができる。細い細線スロットを用いることによって、太いスロット23を設けるよりも搭乗者に目立たなくすることができ意匠性が向上するとともに、レーザー加工で容易に細線スロットを形成させることができるため生産性が向上する。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年7月9日出願の日本特許出願(特願2009-163099)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、例えば、地上波デジタルテレビ放送、UHF帯のアナログテレビ放送及び米国のデジタルテレビ放送、欧州連合地域のデジタルテレビ放送又は中華人民共和国のデジタルテレビ放送を受信する自動車用ガラスアンテナに利用されると好適である。その他、日本のFM放送帯(76~90MHz)、米国のFM放送帯(88~108MHz)、テレビVHF帯(90~108MHz、170~222MHz)、車両用キーレスエントリーシステム(300~450MHz)にも利用できる。
 また、自動車電話用の800MHz帯(810~960MHz)、自動車電話用の1.5GHz帯(1.429~1.501GHz)、GPS(Global Positioning System)、人工衛星のGPS信号1575.42MHz)、VICS(登録商標)(Vehicle Information and Communication System:2.5GHz)にも利用できる。
 さらに、ETC通信(Electronic Toll Collection System:ノンストップ自動料金収受システム、路側無線装置の送信周波数:5.795GHz又は5.805GHz、路側無線装置の受信周波数:5.835GHz又は5.845GHz)、専用狭域通信(DSRC:Dedicated Short Range Communication、915MHz帯、5.8GHz帯、60GHz帯)、マイクロ波(1GHz~3THz)、ミリ波(30~300GHz)、及び、SDARS(Satellite Digital Audio Radio Service (2.34GHz、2.6GHz))の通信に利用してもよい。
 1,2 ガラス板
 3 導電膜
 4 中間膜
 5 アンテナ導体
 6 電極
 7 導体
 11 車外側ガラス板
 12 車内側ガラス板
 12a~12d 外縁
 13 熱反射膜(導電膜)
 13a~13d 外縁
 14 中間膜
 16A,16B 電極
 18 隠蔽膜
 20 アンテナ
 21 第1の結合部
 22 第2の結合部
 23 スロット
 24,24A,24B 独立スロット
 32 誘電体基板
 38,38A,38B 接着剤(接着層)
 41 ルーフ側車体開口端
 42,44 ピラー側車体開口端
 43 シャーシー側車体開口端
 45 車体フレーム
 46 接着剤
 47 アクリルフォームテープ
 48 誘電体基板
 48a スルーホール
 49 電極
 49A 上側電極
 49B 下側電極
 50 導体

Claims (15)

  1.  ガラス板と、該ガラス板に積層された導電膜と、該導電膜に給電構造を設置して構成されたアンテナとを有する車両用窓ガラスであって、
     前記給電構造は、誘電体と一対の電極とを有し、
     前記導電膜は、一端が該導電膜の端部を開放端とするスロットを有し、かつ前記ガラス板と前記誘電体との間に配置され、
     前記一対の電極は、前記誘電体を挟んだ前記導電膜側の反対側に、かつ該一対の電極を前記導電膜に投影すると前記スロットを一対の電極で挟むように配置され、前記導電膜と容量的に結合されることを特徴とする車両用窓ガラス。
  2.  前記導電膜は、前記スロットに近接した独立スロットを有する、請求項1に記載の車両用窓ガラス。
  3.  前記誘電体は、前記ガラス板と異なる他のガラス板である、請求項1または2に記載の車両用窓ガラス。
  4.  前記ガラス板と前記他のガラス板との間に中間膜を備える、請求項3に記載の車両用窓ガラス。
  5.  前記ガラス板と前記導電膜との間に中間膜を備える、請求項4に記載の車両用窓ガラス。
  6.  前記導電膜は、前記他のガラス板の前記ガラス板側に対向する側の面に形成された、請求項3から5のいずれか一項に記載の車両用窓ガラス。
  7.  前記他のガラス板と前記導電膜との間に中間膜を備える、請求項4または5に記載の車両用窓ガラス。
  8.  前記誘電体は、樹脂からなる樹脂基板である、請求項1または2に記載の車両用窓ガラス。
  9.  前記導電膜と前記樹脂基板とを接着するための接着層を備える、請求項8に記載の車両用窓ガラス。
  10.  前記導電膜は、前記ガラス板に形成された、請求項1から4,8,9のいずれか一項に記載の車両用窓ガラス。
  11.  前記導電膜と前記ガラス板とを接着するための接着層を備える、請求項8または9に記載の車両用窓ガラス。
  12.  前記導電膜の外縁が、前記ガラス板の外縁に対して内側にオフセットした、請求項1から11のいずれか一項に記載の車両用窓ガラス。
  13.  前記ガラス板と前記一対の電極との間に隠蔽膜が配置された、請求項1から12のいずれか一項に記載の車両用窓ガラス。
  14.  前記スロットを複数備える、請求項1から13のいずれか一項に記載の車両用窓ガラス。
  15.  ガラス板と、該ガラス板に積層された導電膜と、該導電膜に設けられた給電構造とを有するアンテナであって、
     前記給電構造は、誘電体と一対の電極とを有し、
     前記導電膜は、一端が該導電膜の端部を開放端とするスロットを有し、かつ前記ガラス板と前記誘電体との間に配置され、
     前記一対の電極は、前記誘電体を挟んで前記導電膜側の反対側、かつ該一対の電極を前記導電膜に投影すると前記スロットを一対の電極で挟むように配置され、前記導電膜と容量的に結合されることを特徴とするアンテナ。
PCT/JP2010/061643 2009-07-09 2010-07-08 車両用窓ガラス及びアンテナ WO2011004877A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI1015942A BRPI1015942A2 (pt) 2009-07-09 2010-07-08 vidro de janela para veículo e antena.
JP2011521967A JP5655782B2 (ja) 2009-07-09 2010-07-08 車両用窓ガラス及びアンテナ
CN2010800305283A CN102474002A (zh) 2009-07-09 2010-07-08 车辆用窗玻璃及天线
EP10797188.9A EP2453521B1 (en) 2009-07-09 2010-07-08 Windowpane for vehicle and antenna
US13/344,874 US8941545B2 (en) 2009-07-09 2012-01-06 Windowpane for vehicle and antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009163099 2009-07-09
JP2009-163099 2009-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/344,874 Continuation US8941545B2 (en) 2009-07-09 2012-01-06 Windowpane for vehicle and antenna

Publications (1)

Publication Number Publication Date
WO2011004877A1 true WO2011004877A1 (ja) 2011-01-13

Family

ID=43429302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061643 WO2011004877A1 (ja) 2009-07-09 2010-07-08 車両用窓ガラス及びアンテナ

Country Status (7)

Country Link
US (1) US8941545B2 (ja)
EP (1) EP2453521B1 (ja)
JP (1) JP5655782B2 (ja)
KR (1) KR20120034722A (ja)
CN (1) CN102474002A (ja)
BR (1) BRPI1015942A2 (ja)
WO (1) WO2011004877A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153663A1 (ja) * 2011-05-10 2012-11-15 旭硝子株式会社 ガラスアンテナ及び窓ガラス
WO2014129588A1 (ja) 2013-02-21 2014-08-28 旭硝子株式会社 車両用窓ガラス及びアンテナ
WO2014157535A1 (ja) 2013-03-27 2014-10-02 旭硝子株式会社 車両用窓ガラス及びアンテナ
EP2649671B1 (en) 2010-12-09 2016-11-30 AGC Automotive Americas R & D, Inc. Window assembly having a transparent layer with a slot for a transparent antenna element
JP2017178695A (ja) * 2016-03-30 2017-10-05 大日本印刷株式会社 加熱電極付きガラス板、及び乗り物
CN107851890A (zh) * 2015-07-24 2018-03-27 旭硝子株式会社 玻璃天线和具有玻璃天线的车辆用窗玻璃

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033243A (ja) * 2010-11-30 2014-02-20 Asahi Glass Co Ltd 車両用窓ガラス及びアンテナ
JP2014045230A (ja) * 2010-12-28 2014-03-13 Asahi Glass Co Ltd アンテナ装置
GB201223253D0 (en) 2012-12-21 2013-02-06 Pilkington Group Ltd Glazing
US9653792B2 (en) 2014-02-03 2017-05-16 Pittsburgh Glass Works, Llc Window antenna loaded with a coupled transmission line filter
CN106463202A (zh) 2014-06-30 2017-02-22 株式会社村田制作所 导电性糊膏、及玻璃物品
EP3300167B1 (en) * 2015-05-21 2021-06-09 AGC Inc. Vehicle window glass and antenna
US10396427B2 (en) * 2016-05-06 2019-08-27 GM Global Technology Operations LLC Dual polarized wideband LTE thin film antenna
US10707554B2 (en) * 2016-05-06 2020-07-07 GM Global Technology Operations LLC Wideband transparent elliptical antenna applique for attachment to glass
US10707553B2 (en) * 2016-05-06 2020-07-07 GM Global Technology Operations LLC CPW-fed modified sleeve monopole for GPS, GLONASS, and SDARS bands
US10490877B2 (en) * 2016-05-06 2019-11-26 GM Global Technology Operations LLC CPW-fed circularly polarized applique antennas for GPS and SDARS bands
JP6743486B2 (ja) * 2016-05-24 2020-08-19 Agc株式会社 車両用窓ガラス
US10673122B2 (en) * 2017-10-20 2020-06-02 Gentex Corporation Vehicle communication module with improved transmission
US10608330B2 (en) * 2017-11-14 2020-03-31 Gm Global Technology Operations, Llc Method and apparatus to conceal near transparent conductors
US10721795B2 (en) 2018-02-20 2020-07-21 Agc Automotive Americas R&D, Inc. Window assembly comprising conductive transparent layer and conductive element implementing hybrid bus-bar/antenna
CN112005435B (zh) * 2018-04-24 2022-08-05 Agc株式会社 车辆用天线、附带车辆用天线的窗玻璃及天线系统
US10985756B2 (en) * 2018-05-14 2021-04-20 GM Global Technology Operations LLC Thin film door switch with integrated lighting
RU2686856C1 (ru) * 2018-09-03 2019-05-06 Дмитрий Алексеевич Антропов Дублет-антенна
EP3671561A1 (fr) * 2018-12-21 2020-06-24 Thales Dis France SA Procede de fabrication d'une carte a puce radiofrequence metallique a permittivite electromagnetique amelioree
US20220166126A1 (en) * 2019-01-31 2022-05-26 Agc Glass Europe Insulating glazing unit with antenna unit
KR102252062B1 (ko) * 2019-12-31 2021-05-14 한국항공우주연구원 안테나의 구동을 최적화하는 방법, 장치 및 컴퓨터 프로그램
CN112018511A (zh) * 2020-08-13 2020-12-01 安徽精卓光显技术有限责任公司 车联网天线及无线通信装置
CN116587696B (zh) * 2023-04-06 2024-09-24 福耀玻璃工业集团股份有限公司 玻璃组件及车辆

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012255A (en) 1988-03-12 1991-04-30 Blaupunkt-Werke Gmbh Combination antenna and windshield heater
JPH0645817A (ja) 1992-03-16 1994-02-18 Ppg Ind Inc スロットアンテナ
JPH11163625A (ja) * 1997-11-28 1999-06-18 Hitachi Cable Ltd スロットアンテナ及びアンテナアレイ
JP2000059123A (ja) 1998-07-17 2000-02-25 Saint Gobain Vitrage 自動車用のアンテナ付きガラス
JP2001185928A (ja) * 1999-12-22 2001-07-06 Asahi Glass Co Ltd 車両用ガラスアンテナ
JP2005260659A (ja) * 2004-03-12 2005-09-22 Nippon Sheet Glass Co Ltd アンテナ付き車両用ウィンドシールド
JP2006151373A (ja) * 2004-11-01 2006-06-15 Asahi Glass Co Ltd アンテナ封入型合わせガラス及びその製造方法
JP2006165756A (ja) * 2004-12-03 2006-06-22 Asahi Glass Co Ltd 自動車用高周波ガラスアンテナ装置
JP2006174050A (ja) * 2004-12-15 2006-06-29 Yagi Antenna Co Ltd 平面状アンテナ
JP2009163099A (ja) 2008-01-09 2009-07-23 Konica Minolta Business Technologies Inc 画像形成装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020A (en) * 1849-01-09 Improvement in plows
JPH0282701A (ja) 1988-09-19 1990-03-23 Central Glass Co Ltd 車両用透明ガラスアンテナ
JPH03196704A (ja) 1989-12-26 1991-08-28 Mazda Motor Corp 車両のアンテナ装置
JP3085581B2 (ja) 1989-12-29 2000-09-11 マツダ株式会社 車両用ガラスアンテナ
US5670966A (en) * 1994-12-27 1997-09-23 Ppg Industries, Inc. Glass antenna for vehicle window
DE19532431C2 (de) 1995-09-02 1998-07-02 Flachglas Automotive Gmbh Antennenscheibe in zumindest einer Fensteröffnung einer metallischen Karosserie eines Kraftfahrzeugs, insbesondere Personenkraftfahrzeugs
US6097345A (en) * 1998-11-03 2000-08-01 The Ohio State University Dual band antenna for vehicles
JP2005012588A (ja) 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd 車両用ガラスアンテナ装置
US7190316B2 (en) * 2004-03-05 2007-03-13 Delphi Techologies, Inc. Vehicular glass-mount antenna and system
US7119751B2 (en) * 2005-03-11 2006-10-10 Agc Automotive Americas R&D, Inc. Dual-layer planar antenna
JP4803004B2 (ja) * 2006-11-28 2011-10-26 旭硝子株式会社 自動車用高周波ガラスアンテナ及び窓ガラス板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012255A (en) 1988-03-12 1991-04-30 Blaupunkt-Werke Gmbh Combination antenna and windshield heater
JPH0645817A (ja) 1992-03-16 1994-02-18 Ppg Ind Inc スロットアンテナ
JPH11163625A (ja) * 1997-11-28 1999-06-18 Hitachi Cable Ltd スロットアンテナ及びアンテナアレイ
JP2000059123A (ja) 1998-07-17 2000-02-25 Saint Gobain Vitrage 自動車用のアンテナ付きガラス
JP2001185928A (ja) * 1999-12-22 2001-07-06 Asahi Glass Co Ltd 車両用ガラスアンテナ
JP2005260659A (ja) * 2004-03-12 2005-09-22 Nippon Sheet Glass Co Ltd アンテナ付き車両用ウィンドシールド
JP2006151373A (ja) * 2004-11-01 2006-06-15 Asahi Glass Co Ltd アンテナ封入型合わせガラス及びその製造方法
JP2006165756A (ja) * 2004-12-03 2006-06-22 Asahi Glass Co Ltd 自動車用高周波ガラスアンテナ装置
JP2006174050A (ja) * 2004-12-15 2006-06-29 Yagi Antenna Co Ltd 平面状アンテナ
JP2009163099A (ja) 2008-01-09 2009-07-23 Konica Minolta Business Technologies Inc 画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2453521A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2649671B1 (en) 2010-12-09 2016-11-30 AGC Automotive Americas R & D, Inc. Window assembly having a transparent layer with a slot for a transparent antenna element
WO2012153663A1 (ja) * 2011-05-10 2012-11-15 旭硝子株式会社 ガラスアンテナ及び窓ガラス
WO2014129588A1 (ja) 2013-02-21 2014-08-28 旭硝子株式会社 車両用窓ガラス及びアンテナ
EP2960986A4 (en) * 2013-02-21 2016-10-12 Asahi Glass Co Ltd VEHICLE WINDOW AND ANTENNA
US9509038B2 (en) 2013-02-21 2016-11-29 Asahi Glass Company, Limited Vehicle window glass and antenna
JPWO2014129588A1 (ja) * 2013-02-21 2017-02-02 旭硝子株式会社 車両用窓ガラス及びアンテナ
WO2014157535A1 (ja) 2013-03-27 2014-10-02 旭硝子株式会社 車両用窓ガラス及びアンテナ
JPWO2014157535A1 (ja) * 2013-03-27 2017-02-16 旭硝子株式会社 車両用窓ガラス及びアンテナ
US9755300B2 (en) 2013-03-27 2017-09-05 Asahi Glass Company, Limited Windshield and antenna
CN107851890A (zh) * 2015-07-24 2018-03-27 旭硝子株式会社 玻璃天线和具有玻璃天线的车辆用窗玻璃
JPWO2017018323A1 (ja) * 2015-07-24 2018-05-10 旭硝子株式会社 ガラスアンテナ及びガラスアンテナを備える車両用窓ガラス
JP2017178695A (ja) * 2016-03-30 2017-10-05 大日本印刷株式会社 加熱電極付きガラス板、及び乗り物

Also Published As

Publication number Publication date
JP5655782B2 (ja) 2015-01-21
US8941545B2 (en) 2015-01-27
BRPI1015942A2 (pt) 2016-04-19
US20120154229A1 (en) 2012-06-21
EP2453521B1 (en) 2017-02-08
JPWO2011004877A1 (ja) 2012-12-20
CN102474002A (zh) 2012-05-23
EP2453521A4 (en) 2012-12-12
KR20120034722A (ko) 2012-04-12
EP2453521A1 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5655782B2 (ja) 車両用窓ガラス及びアンテナ
EP2648276B1 (en) Window glass and antenna for vehicle
EP2630690B1 (en) Window antenna
US9509038B2 (en) Vehicle window glass and antenna
EP2660930B1 (en) Antenna
JP6743486B2 (ja) 車両用窓ガラス
EP2421090B1 (en) Vehicle glass antenna, vehicle window glass, and vehicle glass antenna feeding structure
WO2014142312A1 (ja) 車両用窓ガラス
JP2010010962A (ja) 車両用ガラスアンテナ及び車両用窓ガラス板
US20200023718A1 (en) Window glass for vehicle and window glass device for vehicle
WO2023026949A1 (ja) 車両用アンテナ装置
WO2023002896A1 (ja) 車両用窓ガラス及び車両用窓ガラス装置
US20240322418A1 (en) Vehicle antenna device and in-vehicle system
JP2007174513A (ja) 自動車用高周波ガラスアンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030528.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011521967

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010797188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010797188

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127000575

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 233/DELNP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1015942

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1015942

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111230