WO2011004763A1 - 過熱水蒸気に曝される鉄系金属表面の処理方法 - Google Patents

過熱水蒸気に曝される鉄系金属表面の処理方法 Download PDF

Info

Publication number
WO2011004763A1
WO2011004763A1 PCT/JP2010/061264 JP2010061264W WO2011004763A1 WO 2011004763 A1 WO2011004763 A1 WO 2011004763A1 JP 2010061264 W JP2010061264 W JP 2010061264W WO 2011004763 A1 WO2011004763 A1 WO 2011004763A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
iron
based metal
steam pipe
treatment
Prior art date
Application number
PCT/JP2010/061264
Other languages
English (en)
French (fr)
Inventor
良幸 安部
正道 宮島
和雄 丸亀
正樹 吉田
裕二 清水
Original Assignee
中部電力株式会社
内外化学製品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中部電力株式会社, 内外化学製品株式会社 filed Critical 中部電力株式会社
Priority to EP10797074.1A priority Critical patent/EP2455514A4/en
Priority to US13/377,851 priority patent/US20120145187A1/en
Publication of WO2011004763A1 publication Critical patent/WO2011004763A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F14/00Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes
    • C23F14/02Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes by chemical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/025Devices and methods for diminishing corrosion, e.g. by preventing cooling beneath the dew point

Definitions

  • the present invention relates to a method for treating a ferrous metal surface exposed to superheated steam. More particularly, the present invention relates to a surface treatment method that suppresses the generation and growth of steam oxidation scale on the surface of iron-based metal exposed to superheated steam.
  • the inner surface of steam pipes such as superheater pipes, main steam pipes, reheater pipes, and reheat steam pipes for thermal power plants, etc. are overheated by overheating saturated steam generated in the boiler with a superheater or reheater. Since it is exposed to steam, it is oxidized by long-term operation and covered with a steam oxidation scale. Since the coefficient of thermal expansion differs between the steam pipe base material (iron-based metal) and the steam oxide scale, thermal stress occurs between the two due to temperature changes when the boiler starts and stops, causing the steam oxide scale to peel off from the steam pipe surface. . It is said that the steam oxide scale is easily peeled when the thickness grows to 200 ⁇ m or more.
  • the peeled steam oxidation scale accumulates on the U vent part of the steam pipe and closes the steam line, or collides with the steam turbine and damages the turbine blade. Decrease, increase in equipment repair costs, etc. As described above, the generation and growth of the steam oxidation scale on the inner surface of the steam pipe or the like can cause problems related to the reliability and maintenance of the plant.
  • anticorrosion treatment on the inner surface of cooling water pipes has been carried out by means of anticorrosion using a precipitation film such as calcium phosphate, zinc phosphate or calcium carbonate, or anti-corrosion using an oxidizing agent such as sodium nitrite, sodium molybdate or sodium chromate. It has been broken.
  • anticorrosion is carried out by using neutralizing amines such as morpholine and cyclohexylamine, and film-forming amines such as octadecylamine alone or in combination. Yes.
  • the steam oxidation scale is considered to be a corrosion phenomenon caused by high-temperature steam, but the conventional anticorrosion method using a precipitation film, neutralizing amine, film-forming amine, etc. cannot suppress the formation and growth, and the temperature is 450 ° C. or higher.
  • the steam oxidation scale formed and grown on the inner surface of the steam pipe carrying superheated steam was usually removed by chemical cleaning in Japan and abroad.
  • a cleaning agent containing an inorganic acid such as hydrochloric acid or hydrofluoric acid, an organic acid such as citric acid or oxalic acid, or a chelating agent such as EDTA (ethylenediaminetetraacetic acid) salt is used for chemical cleaning.
  • Patent Document 1 a steel pipe for boilers having excellent resistance to steam oxidation
  • Patent Document 2 a method for suppressing oxidation of the inner surface of the pipe by setting the potential on the inner surface of the steam pipe to a specific range
  • an object of the present invention is to provide a surface treatment method capable of suppressing the generation and growth of steam oxidation scale on the surface of an iron-based metal exposed to superheated steam.
  • an iron-based metal surface exposed to superheated steam is treated with a polyoxy saturated aliphatic mono- or dicarboxylic acid or a salt thereof and the following formula (I): Z (CH 2 CH 2 NH) n CH 2 CH 2 NH 2 (I) (In the formula, Z represents H, OH group or NH 2 group, and n is an integer of 0 to 5)
  • the surface treatment method which suppresses the production
  • the generation and growth of steam oxidation scale is suppressed on the surface of the iron-based metal exposed to superheated steam.
  • the frequency of irregular shutdowns and chemical cleaning of plants (for example, power generation plants) caused by peeling of the steam oxidation scale can be reduced compared to the conventional system, and the reliability and operation of plants equipped with superheated steam transfer piping Improvement of efficiency and reduction of equipment maintenance costs can be achieved.
  • the environmental load can be reduced.
  • FIG. 2 shows an experimental system used to apply the method of the present invention to a test piece.
  • generation and growth of the steam oxidation scale in the test piece processed by the method of this invention and the test piece of a comparative example is shown.
  • the evaluation result by the evaluation system shown in FIG. 2 (relationship between the exposure time to superheated steam and the increase in mass of the test piece) is shown.
  • the treatment method of the present invention is a surface treatment agent comprising a polyoxy-saturated aliphatic mono- or dicarboxylic acid or a salt thereof and an aliphatic amine represented by the above formula (I) on an iron-based metal surface exposed to superheated steam. Processing.
  • the treatment method of the present invention is considered to suppress the generation and growth of steam oxidation scale by high-temperature superheated steam on the surface of iron-based metal by the following mechanism, but the present invention is limited by the theory explained below. Not intended.
  • the steam oxidation scale is generated and grows when the iron-based metal surface is oxidized in contact with high-temperature superheated steam as shown in Formula (1).
  • the thickness T of the steam oxidation scale follows a parabolic equation expressed by the 0.5th power of the product of the oxidation rate constant Kp and time t as shown in Equation (2).
  • the oxidation rate constant Kp varies depending on the material. 3Fe + 4H 2 O (steam) ⁇ Fe 3 O 4 (steam oxidation scale) + 4H 2 (1)
  • T (Kp ⁇ t) 0.5 (2)
  • a dense film is formed on the surface of the iron-based metal, and this film diffuses oxygen inwardly derived from high-temperature superheated steam or outwardly diffuses iron from the surface of the iron-based metal. It is considered that the generation and growth of the steam oxidation scale on the iron-based metal surface is suppressed by preventing the oxidation rate constant (Kp becomes small).
  • iron-based metal means iron, carbon steel (eg, STB410, etc.), stainless steel (eg, SUS321THB, etc.), alloy steel (eg, chromium, nickel, molybdenum and / or manganese, etc.). Alloy steel, for example, an alloy containing iron as a main component (50% or more) such as STBA24 and STPA24).
  • the iron-based metal surface to which the treatment method of the present invention is applied is an inner surface of a pipe exposed to superheated steam (for example, superheated steam at 450 ° C. or higher, preferably 450 to 700 ° C.), more preferably a power plant (particularly The inner surface of the main steam pipe or reheat steam pipe of a thermal power plant).
  • the treating agent used in the treatment method of the present invention is a polyoxy saturated aliphatic mono- or dicarboxylic acid or a salt thereof and the following formula: Z (CH 2 CH 2 NH) n CH 2 CH 2 NH 2 (I) (In the formula, Z represents H, OH group or NH 2 group, and n is an integer of 0 to 5, preferably an integer of 0 to 3)
  • Z represents H, OH group or NH 2 group, and n is an integer of 0 to 5, preferably an integer of 0 to 3
  • the aliphatic amine represented by these is comprised.
  • the polyoxy saturated aliphatic mono or dicarboxylic acid or salts thereof are preferably selected from the group consisting of C 4 to C 6 polyoxy saturated aliphatic mono and dicarboxylic acids and salts thereof, more preferably gluconic acid, tartaric acid and their Selected from the group consisting of salts.
  • the polyoxy saturated aliphatic mono- or dicarboxylic acid may be any optical isomer of d-form, l-form and dl-form.
  • the salt of polyoxy saturated aliphatic mono- or dicarboxylic acid is preferably an alkali metal salt, more preferably a sodium salt.
  • Polyoxy saturated aliphatic mono- or dicarboxylic acid or a salt thereof may be used alone or in combination of two or more.
  • concentration of the polyoxy saturated aliphatic mono- or dicarboxylic acid or a salt thereof in the treatment agent can be, for example, 20 to 6000 mg / L, preferably 40 to 3000 mg / L, more preferably 200 to 600 mg / L.
  • Examples of the aliphatic amine represented by the formula (I) include ethylamine, ethylenediamine, monoethanolamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine (TEPA). Of these, monoethanolamine and TEPA are more preferable, and TEPA is even more preferable.
  • the said amine may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the concentration of the aliphatic amine represented by the formula (I) in the treatment agent is, for example, 3 to 15000 mg / L, preferably 6 to 7500 mg / L, more preferably 30 to 1500 mg / L.
  • the ratio of the carboxylic acid or a salt thereof to the amine in the treating agent is, for example, 1: 800 to 2000: 1 by weight, preferably 1: 200 to 500: 1, more preferably 1: 8 to 20: 1. It can be.
  • the treating agent contains other components such as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and aliphatic cyclic amines such as morpholine and cyclohexylamine (that is, non-aromatic cyclic amines). May be. These other components may be, for example, 5 to 5000 mg / L, preferably 10 to 2500 mg / L, more preferably 50 to 500 mg / L in the treatment agent.
  • the surface treatment agent can be an aqueous solution.
  • water as the solvent, demineralized water, softened water, tap water, industrial water, ground water, and the like can be used, but demineralized water with less residual components of corrosion and scale is preferable. It is effective to apply the treatment method of the present invention in a state where the surface of the iron-based metal is clean (for example, when it is not used or after removal of the steam oxide scale (for example, during regular maintenance)).
  • the treatment with the surface treatment agent on the surface of the iron-based metal can be performed, for example, at 120 ° C. to 380 ° C., but is preferably performed at 120 ° C. to 250 ° C. from the viewpoint of cost, efficiency, and ease.
  • the treatment agent can be directly heated by, for example, an electric heater, or indirectly by heating the iron-based metal to be treated by, for example, an electric heater or steam. It can also be heated.
  • a minimum may be 10 hours or more, for example, Preferably it is 24 hours or more, and an upper limit may be 100 hours from a viewpoint of cost or efficiency.
  • the treatment with the surface treating agent on the iron-based metal surface can be performed by bringing the surface treating agent into contact with the iron-based metal surface.
  • the iron-based metal surface to be treated is the inner surface of the pipe, it is preferable to circulate the treatment agent in order to keep the reaction conditions constant.
  • the present invention relates to an inner surface of a main steam pipe or a reheat steam pipe of a power plant that is an iron-based metal inner face exposed to superheated steam, gluconic acid, tartaric acid or a salt thereof, and tetraethylenepetamine.
  • Inhibiting the formation and growth of steam oxidation scale on the inner surface of the main steam pipe or reheat steam pipe of a power plant comprising treating with a surface treatment agent at 120 ° C. to 250 ° C. for 10 to 100 hours
  • a surface treatment method is provided.
  • pipe test alloy steel STPA24 (chromium molybdenum steel) is molded to 7 ⁇ 10 ⁇ 1 mm as a test piece (iron-based metal), and polished using No. 400 of abrasive cloth paper. And degreased with acetone.
  • Tables 1 and 2 show the surface treatment agents and treatment conditions used in the examples.
  • test pieces were surface-treated under the above conditions 1 to 4 to obtain test pieces of Examples 1 to 4, respectively.
  • the surface treatment was performed in the autoclave shown in FIG. Briefly, 2400 mL of the surface treatment agent 5 was put in the pressure vessel 1 of the autoclave, and the test piece 6 attached to the tip of the rotating shaft of the stirrer 2 was immersed therein and surface-treated while rotating at 100 rpm.
  • the surface treating agent 5 was heated and maintained at a set temperature by the electric heater 3 provided on the outer wall of the container 1. The temperature was monitored with a thermocouple 4.
  • the untreated test piece was used as the test piece of the comparative example.
  • boiler water actually used in a thermal power plant was introduced into the steam generator 11 (using the autoclave shown in FIG. 1), and the temperature was raised to 250 ° C. to generate saturated steam.
  • the generated saturated steam was supplied to the superheating electric furnace 12 and further heated to form superheated steam at 550 ° C.
  • superheated steam at 550 ° C. was supplied from the superheating electric furnace 12 to the test piece holding tube 15 in which the test piece 17 was held in advance, and the test piece 17 was exposed to superheated steam.
  • the temperature was kept at 550 ° C. in the heat-retaining electric furnace 14.
  • the superheated steam that passed through the test piece holding tube 15 was cooled by the air-cooled cooler 16 and returned to the steam generator 11 as condensed water.
  • the evaluation system was a closed circulation system and was cycled with water ⁇ saturated steam ⁇ superheated steam ⁇ water.
  • the mass was measured, and the oxidation rate constant Kp was calculated from the increase in mass.
  • the oxidation rate constant it is assumed that the thickness of the steam oxidation scale follows the parabolic formula of the above formula (2), and “Study on steam oxidation behavior of Cr—Mo steel pipe for boilers” (Sumitomo Metal Industries, Ltd. Catalog JB04806). ), The steam oxidation scale thickness [ ⁇ m] was set to 0.75 times the mass increase [g / m 2 ] of the test piece. Further, the appearance of the test piece was observed after 10,000 hours.
  • Table 3 shows the oxidation rate constant Kp value calculated based on the mass increase amount and the number of peeled portions obtained from the appearance observation after 10,000 hours.
  • the oxidation rate constant Kp value calculated from the increase in mass was less than half that of the test piece of Comparative Example 1. From this, the growth rate of the steam oxidation scale on the surface of the ferrous metal treated by the method of the present invention is less than half that of the untreated surface. Therefore, if treated by the method of the present invention, the steam oxidation scale is subsequently increased. It is understood that the interval of chemical cleaning performed for removing the scale can be about twice as long as the conventional interval.
  • Example 1 comparative example 1 was confirmed to be peeled off at seven places, while in the test piece of Example 4, no peeled part was observed, and in the test pieces of Examples 1 and 2, the specimen base material was used. As a result, slight peeling that could not be confirmed was confirmed, and even in the test piece of Example 3, only one location was confirmed. From this, it is understood that the treatment with the method of the present invention can reduce the frequency of peeling of the steam oxide scale from the iron-based metal surface.
  • the method of the present invention is applied to, for example, the inner surface of a superheated steam piping system of a power plant, it is possible to prevent the piping system from being blocked or the steam turbine from being damaged due to the peeled steam oxidation scale.
  • the treatment method of the present invention it was confirmed that the generation and growth of the steam oxidation scale by the superheated steam on the iron-based metal surface can be suppressed. Therefore, the treatment method of the present invention is particularly suitable for application to piping systems that cannot frequently be cleaned (especially chemical cleaning) and that cannot constantly circulate anticorrosives, for example, superheated steam piping systems of power plants. Therefore, it can contribute to the improvement of the reliability and operation efficiency of the plant equipped with such a piping system and the reduction of the maintenance cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

 本発明は、過熱水蒸気に曝される鉄系金属表面を、ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩及び次式(I): Z(CH2CH2NH)nCH2CH2NH2 (I) (式中、ZはH、OH基又はNH2基を表し、nは0~5の整数) で表される脂肪族アミンを含む表面処理剤で処理することを含んでなる、鉄系金属表面における水蒸気酸化スケールの生成及び成長を抑制する表面処理方法を提供する。

Description

過熱水蒸気に曝される鉄系金属表面の処理方法
 本発明は、過熱水蒸気に曝される鉄系金属表面の処理方法に関する。より詳細には過熱水蒸気に曝される鉄系金属表面における水蒸気酸化スケールの生成及び成長を抑制する表面処理方法に関する。
 火力発電プラント等の過熱器管、主蒸気管、再熱器管、再熱蒸気管のような蒸気管内面は、ボイラで発生した飽和蒸気を過熱器や再熱器により過熱することにより生じる過熱蒸気に曝されるため、長時間の運転により酸化されて水蒸気酸化スケールに覆われる。蒸気管母材(鉄系金属)と水蒸気酸化スケールとは熱膨張率が異なるため、ボイラの起動・停止時の温度変化により両者間に熱応力が生じ、蒸気管表面から水蒸気酸化スケールが剥離する。水蒸気酸化スケールは厚さが200μm以上に成長すると剥離し易くなるといわれている。
 剥離した水蒸気酸化スケールは、蒸気管のUベント部等に堆積して蒸気ラインを閉塞したり、蒸気タービンに衝突してタービンブレードを損傷したりするなどし、発電プラントの不定期停止による発電効率の低下や設備修理経費の増大等を招くことがある。このように、蒸気管等の内面における水蒸気酸化スケールの生成及び成長は、プラントの信頼性や維持管理に関する諸問題を引き起こす原因となり得る。
 従来、冷却水用配管内面の防食処理には、リン酸カルシウム、リン酸亜鉛、炭酸カルシウム等の沈殿皮膜による防食や、亜硝酸ナトリウム、モリブデン酸ナトリウム、クロム酸ナトリウム等の酸化剤による電位防食等が行われている。また、450℃以下の比較的低温の蒸気を供給する蒸気配管系に対しては、モルホリン、シクロヘキシルアミン等の中和性アミンやオクタデシルアミン等の皮膜性アミンの単独又は組合せによる防食が行われている。
 水蒸気酸化スケールは、高温水蒸気による腐食現象とも考えられるが、沈殿皮膜、中和性アミン、皮膜性アミン等による従来の防食法では、その生成及び成長を抑制することはできず、450℃以上の過熱蒸気を搬送する蒸気管内面に生成・成長した水蒸気酸化スケールは、国内外において化学洗浄により除去されるのが通常であった。化学洗浄には、塩酸や弗酸等の無機酸、クエン酸やシュウ酸等などの有機酸、EDTA(エチレンジアミン4酢酸)塩等のキレート剤を配合した洗浄剤が用いられている。
 しかしながら、化学洗浄は、実施に際して洗浄対象の蒸気管系のみを(洗浄剤により悪影響を生じ易い)他の系統から一旦切断し、洗浄後に再度溶接して復旧させるという非常に大掛かりな作業が必要となる場合がある。また、例えば発電プラントで使用されるような大規模な配管系内面の洗浄には大量の化学洗浄液が必要となり、そのため発生する大量の洗浄排液の浄化処理も必要となる。更に、洗浄により配管内面から水蒸気酸化スケールを一旦除去しても、その後の使用によって内面に再び水蒸気酸化スケールが生成及び成長するので、再び洗浄しなければならない。このように、化学洗浄は非常に高コストであり、加えて環境負荷も大きいという問題がある。
 一方で、耐水蒸気酸化性の優れたボイラ用鋼管(例えば、特許文献1)や、水蒸気配管内面側の電位を特定範囲に設定して配管内面の酸化を抑制する方法(特許文献2)が検討されているが、高コストであるため汎用されるに至っていない。
特許4205921号明細書 特開2007-56312号公報
 上記問題点に鑑み、本発明は、過熱水蒸気に曝される鉄系金属表面において水蒸気酸化スケールの生成及び成長を抑制できる表面処理方法を提供することを課題とする。
 本発明は、過熱水蒸気に曝される鉄系金属表面を、ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩及び次式(I):
  Z(CH2CH2NH)nCH2CH2NH2  (I)
(式中、ZはH、OH基又はNH2基を表し、nは0~5の整数)
で表される脂肪族アミンを含む表面処理剤で処理することを含んでなる、鉄系金属表面における水蒸気酸化スケールの生成及び成長を抑制する表面処理方法を提供する。
 本発明の処理方法によれば、過熱水蒸気に曝される鉄系金属表面において水蒸気酸化スケールの生成及び成長が抑制される。その結果、水蒸気酸化スケールの剥離に起因するプラント(例えば、発電プラント)の不定期停止及び化学洗浄の頻度を従来より下げることができ、過熱水蒸気の搬送用配管を備えたプラントの信頼性及び稼動効率の向上並びに設備維持費の低減等を達成できる。また、環境負荷も低減できる。
本発明の方法を試験片に適用するために使用した実験系を示す。 本発明の方法で処理した試験片及び比較例の試験片における水蒸気酸化スケールの生成及び成長の評価系を示す。 図2に示す評価系による評価結果(過熱水蒸気への曝露時間と試験片の質量増加との関係)を示す。
 本発明の処理方法は、過熱水蒸気に曝される鉄系金属表面を、ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩及び前記式(I)で表される脂肪族アミンを含む表面処理剤で処理することを含んでなる。
 本発明の処理方法は、下記のような機序で、鉄系金属表面における高温の過熱水蒸気による水蒸気酸化スケールの生成及び成長を抑制すると考えられるが、下記で説明した理論により本発明が制限されることは意図していない。
 水蒸気酸化スケールは、式(1)のように鉄系金属表面が高温の過熱水蒸気と接触して酸化されることによって生成及び成長する。水蒸気酸化スケールの厚さTは、式(2)のように酸化速度定数Kpと時間tの積の0.5乗で表される放物線式に従う。酸化速度定数Kpは材料により異なる定数である。
   3Fe+4H2O(水蒸気)→Fe34(水蒸気酸化スケール)+4H2  (1)
   T=(Kp・t)0.5  (2)
 本発明の処理方法を適用することで、鉄系金属表面に緻密な皮膜が形成され、この皮膜が高温の過熱水蒸気に由来する酸素の内方拡散や鉄系金属表面からの鉄の外方拡散を妨げる(酸化速度定数Kpが小さくなる)ことによって、鉄系金属表面での水蒸気酸化スケールの生成及び成長が抑制されると考えられる。
 本発明において、「鉄系金属」とは、鉄、及び炭素鋼(例えば、STB410など)、ステンレス鋼(例えば、SUS321THBなど)、合金鋼(例えば、クロム、ニッケル、モリブデン及び/又はマンガンなどとの合金鋼。例えばSTBA24、STPA24など)のような鉄を主成分(50%以上)とする合金をいう。本発明の処理方法の適用対象の鉄系金属表面は、過熱水蒸気(例えば、450℃以上、好ましくは450~700℃の過熱水蒸気)に曝される配管内面であり、より好ましくは発電プラント(特に、火力発電プラント)の主蒸気管又は再熱蒸気管の内面である。
 本発明の処理方法に用いられる処理剤は、ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩及び次式:
  Z(CH2CH2NH)nCH2CH2NH2  (I)
(式中、ZはH、OH基又はNH2基を表し、nは0~5の整数、好ましくは0~3の整数)
で表される脂肪族アミンを含んでなる。
 ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩は、好ましくはC4~C6ポリオキシ飽和脂肪族モノ及びジカルボン酸並びにこれらの塩からなる群より選択され、より好ましくはグルコン酸、酒石酸及びこれらの塩からなる群より選択される。ポリオキシ飽和脂肪族モノ若しくはジカルボン酸は、d体、l体及びdl体のいずれの光学異性体であってもよい。
 ポリオキシ飽和脂肪族モノ若しくはジカルボン酸の塩としては、好ましくはアルカリ金属塩、より好ましくはナトリウム塩である。
 ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 処理剤中のポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩の濃度は、例えば20~6000mg/L、好ましくは40~3000mg/L、より好ましくは200~600mg/Lであり得る。
 式(I)で表される脂肪族アミンとしては、エチルアミン、エチレンジアミン、モノエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン及びテトラエチレンペンタミン(TEPA)などが挙げられる。なかでもモノエタノールアミン及びTEPAがより好ましく、TEPAが更により好ましい。
 前記アミンは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 処理剤中の式(I)で表される脂肪族アミンの濃度は、例えば3~15000mg/L、好ましくは6~7500mg/L、より好ましくは30~1500mg/Lである。
 処理剤における前記カルボン酸又はこれらの塩と前記アミンとの比は、例えば重量比で1:800~2000:1、好ましくは1:200~500:1、より好ましくは1:8~20:1であり得る。
 処理剤には、水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物、モルホリンやシクロヘキシルアミン等の脂肪族環状アミン(すなわち、非芳香族の環状アミン)のような他の成分が含まれていてもよい。これら他の成分は、処理剤中、例えば5~5000mg/L、好ましくは10~2500mg/L、より好ましくは50~500mg/Lであり得る。
 表面処理剤は水溶液であり得る。溶媒としての水は、脱塩水、軟化水、水道水、工業用水、地下水等が使用できるが、腐食及びスケールの原因成分の残留が少ない脱塩水が好ましい。
 本発明の処理方法は、鉄系金属表面が清浄な状態で(例えば、未使用時又は(例えば定期メンテナンス時の)水蒸気酸化スケール除去後に)適用するのが効果的である。
 鉄系金属表面の表面処理剤での処理は、例えば120℃~380℃で行うことができるが、費用、効率及び容易性の観点から120℃~250℃で行うことが好ましい。前記のような温度で処理するために、処理剤は、例えば電気ヒータなどにより直接加温することもできるし、処理すべき鉄系金属を例えば電気ヒータや蒸気などにより加温することによって間接的に加温することもできる。
 処理時間は、特に限定されないが、下限は例えば10時間以上であり得、好ましくは24時間以上であり、上限は費用や効率の観点から100時間であり得る。
 鉄系金属表面の表面処理剤での処理は、表面処理剤を鉄系金属表面に接触させることにより行うことができる。処理する鉄系金属表面が配管内面である場合、反応条件を一定とするために処理剤を循環させることが好ましい。
 別の観点から、本発明は、過熱水蒸気に曝される鉄系金属内面である発電プラントの主蒸気管又は再熱蒸気管の内面を、グルコン酸、酒石酸又はこれらの塩とテトラエチレンペタミンとを含む表面処理剤で、120℃~250℃にて10~100時間処理することを含んでなる、発電プラントの主蒸気管又は再熱蒸気管の内面における水蒸気酸化スケールの生成及び成長を抑制する表面処理方法を提供する。
 以下、本発明の内容を実施例に基づいて具体的に説明するが、本発明はこれらに何ら制限されるものではない。
 以下の実施例及び比較例においては、試験片(鉄系金属)として、配管用合金鋼STPA24(クロムモリブデン鋼)を7×10×1mmに成型し、研磨布紙の400番までを用いて研磨し、アセトンで脱脂したものを用いた。
 実施例に使用した表面処理剤及び処理条件を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 試験片を上記条件1~4により表面処理してそれぞれ実施例1~4の試験片とした。
 表面処理は、図1に示すオートクレーブ中で行った。簡潔には、オートクレーブの圧力容器1内に表面処理剤5を2400mL入れ、その中に撹拌機2の回転軸の先端に取り付けた試験片6を浸漬し、100rpmで回転させながら表面処理した。表面処理剤5は、容器1の外側壁に設けられた電気ヒータ3により設定温度に加温・維持した。温度は熱電対4でモニターした。
 なお、未処理の試験片を比較例の試験片とした。
 次いで、実施例1~4及び比較例の試験片表面における水蒸気酸化スケールの生成及び成長を、図2に示す評価系で評価した。
 簡潔には、蒸気発生器11(図1に示すオートクレーブを用いた)に火力発電所で実際に用いられているボイラ水を導入し、250℃まで昇温して飽和水蒸気を発生させた。発生した飽和蒸気を過熱用電気炉12に供給し、更に過熱して550℃の過熱蒸気とした。次いで、予め試験片17を保持させた試験片保持管15に、過熱用電気炉12から550℃の過熱蒸気を供給し、試験片17を過熱蒸気に曝した。試験片保持管15内で過熱蒸気の温度が低下しないように保温用電気炉14で550℃に保温した。
 なお、試験片保持管15を通過した過熱蒸気は、空冷式冷却器16により冷却して凝縮水として蒸気発生器11に戻した。評価系は密閉循環系とし、水→飽和蒸気→過熱蒸気→水とサイクルさせた。
 試験片17を過熱蒸気と所定時間(830時間、3,830時間、7,680時間及び10,000時間)接触させた後、質量を測定し、質量増加量より酸化速度定数Kpを算出した。酸化速度定数の算出において、水蒸気酸化スケールの厚さは上記式(2)の放物線式に従うものと仮定し、「ボイラ用Cr-Mo鋼管の水蒸気酸化挙動に関する研究」(住友金属工業株式会社カタログJB04806)に記載された酸化重量増とスケール厚みの関係から、水蒸気酸化スケール厚さ[μm]は、試験片の質量増加[g/m2]の0.75倍とした。
 また、10,000時間経過後に、試験片の外観観察を行った。
 試験片の質量の経時変化を図3に示す。
 また、質量増加量に基づいて算出した酸化速度定数Kp値及び10,000時間経過後の外観観察から得られた剥離箇所数を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 図3に示されるように、実施例1~4の試験片は、比較例の試験片と比較して、過熱水蒸気との接触による質量増加が抑制された。この質量増加は、試験片表面での酸化による質量増加であると考えられるので、実施例1~4の試験片に適用した本発明の方法により表面における水蒸気酸化スケールの生成及び成長が抑制されたと理解できる。
 更に、実施例1~4の試験片は、質量増加から算出される酸化速度定数Kp値が比較例1の試験片と比べて半分以下であることが確認できた。このことから、本発明の方法により処理した鉄系金属表面における水蒸気酸化スケールの成長速度は、未処理表面と比較して半分以下であり、したがって本発明の方法により処理すれば、その後に水蒸気酸化スケールの除去のために行う化学洗浄の間隔を従来の2倍程度の間隔とすることができると理解される。
 また、試験片の外観観察から、比較例1では7ヶ所の剥離が確認された一方、実施例4の試験片では剥離箇所は認められず、実施例1および2の試験片では試験片母材が確認できないほどの軽微な剥離が確認され、実施例3の試験片でも僅かに1ヶ所のみ確認された。このことから、本発明の方法により処理すれば、鉄系金属表面からの水蒸気酸化スケールの剥離頻度を減少させることができると理解される。よって、本発明の方法を例えば発電プラントの過熱水蒸気配管系の配管内面に適用すれば、剥離した水蒸気酸化スケールに起因する配管系の閉塞や蒸気タービンの損傷を防止することが可能である。
 以上のように、本発明の処理方法によれば、鉄系金属表面における過熱水蒸気による水蒸気酸化スケールの生成及び成長を抑制できることが確認できた。
 このことから、本発明の処理方法は、頻繁に洗浄(特に化学洗浄)を行えず、また防食剤などを常時循環させることできない配管系、例えば発電プラントの過熱蒸気配管系への適用に特に適しており、そのような配管系を備えたプラントの信頼性及び稼動効率の向上並び維持管理費の低減に貢献できる。
 この出願は、2009年7月6日に出願された日本国特許出願 特願2009-159887号に関する。
 本明細書において引用した特許、特許出願及びその他の文献は、適用される特許法が許す範囲内で、言及によって、その内容自体が具体的に本明細書に記載されているのと同様にその内容全体が本明細書に組み込まれているものとみなされる。
1 ・・・ 圧力容器
2 ・・・ 攪拌機
3 ・・・ 電気ヒータ
4 ・・・ 熱電対
5 ・・・ 表面処理剤
6 ・・・ 試験片
11・・・ 蒸気発生器
12・・・ 過熱用電気炉
13・・・ 温度計
14・・・ 保温用電気炉
15・・・ 試験片保持管
16・・・ 空冷式冷却器
17・・・ 試験片

Claims (12)

  1.  過熱水蒸気に曝される鉄系金属表面を、ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩及び次式(I):
      Z(CH2CH2NH)nCH2CH2NH2  (I)
    (式中、ZはH、OH基又はNH2基を表し、nは0~5の整数)
    で表される脂肪族アミンを含む表面処理剤で処理することを含んでなる、鉄系金属表面における水蒸気酸化スケールの生成及び成長を抑制する表面処理方法。
  2.  前記アミンが、nが0~3の整数である式(I)で表されるアミンである請求項1に記載の方法。
  3.  前記アミンがモノエタノールアミン又はテトラエチレンペンタミンである請求項1に記載の方法。
  4.  前記アミンがテトラエチレンペンタミンである請求項1に記載の方法。
  5.  前記ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩がグルコン酸、酒石酸及びこれらの塩からなる群より選択される請求項1に記載の方法。
  6.  前記表面処理剤がアルカリ金属水酸化物又は脂肪族環状アミンを更に含む請求項1に記載の方法。
  7.  前記処理を120℃~380℃で行う請求項1に記載の方法。
  8.  前記処理を120℃~250℃で行う請求項1に記載の方法。
  9.  前記処理を10~100時間行う請求項1に記載の方法。
  10.  前記鉄系金属表面が発電プラントの主蒸気管又は再熱蒸気管の内面である請求項1に記載の方法。
  11.  前記アミンがテトラエチレンペンタミンであり、前記ポリオキシ飽和脂肪族モノ若しくはジカルボン酸又はこれらの塩がグルコン酸、酒石酸及びこれらの塩からなる群より選択され、前記処理を120℃~250℃で10~100時間行い、前記鉄系金属表面が発電プラントの主蒸気管又は再熱蒸気管の内面である請求項1に記載の方法。
  12.  過熱水蒸気に曝される鉄系金属内面である発電プラントの主蒸気管又は再熱蒸気管の内面を、グルコン酸、酒石酸又はこれらの塩とテトラエチレンペタミンとを含む表面処理剤で、120℃~250℃にて10~100時間処理することを含んでなる、発電プラントの主蒸気管又は再熱蒸気管の内面における水蒸気酸化スケールの生成及び成長を抑制する表面処理方法。
PCT/JP2010/061264 2009-07-06 2010-07-01 過熱水蒸気に曝される鉄系金属表面の処理方法 WO2011004763A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10797074.1A EP2455514A4 (en) 2009-07-06 2010-07-01 Method for treating iron-based metal surface which is exposed to superheated steam
US13/377,851 US20120145187A1 (en) 2009-07-06 2010-07-01 Method for treatment of iron-based metal surface exposed to superheated steam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009159887A JP5363893B2 (ja) 2009-07-06 2009-07-06 過熱水蒸気に曝される鉄系金属表面の処理方法
JP2009-159887 2009-07-06

Publications (1)

Publication Number Publication Date
WO2011004763A1 true WO2011004763A1 (ja) 2011-01-13

Family

ID=43429185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061264 WO2011004763A1 (ja) 2009-07-06 2010-07-01 過熱水蒸気に曝される鉄系金属表面の処理方法

Country Status (4)

Country Link
US (1) US20120145187A1 (ja)
EP (1) EP2455514A4 (ja)
JP (1) JP5363893B2 (ja)
WO (1) WO2011004763A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775286A4 (en) 2011-11-01 2015-06-10 Naigai Chemical Products Co Ltd DEVICE FOR MONITORING THE CORROSION OF A METAL TUBE AND USE THEREOF
US9670796B2 (en) 2012-11-07 2017-06-06 General Electric Company Compressor bellmouth with a wash door
US10272475B2 (en) 2012-11-07 2019-04-30 General, Electric Company Offline compressor wash systems and methods
US9759131B2 (en) 2013-12-06 2017-09-12 General Electric Company Gas turbine engine systems and methods for imparting corrosion resistance to gas turbine engines
JP6762010B2 (ja) * 2016-08-17 2020-09-30 株式会社片山化学工業研究所 ボイラの水処理剤およびそれを用いるボイラの水処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159388A (ja) * 1987-12-16 1989-06-22 Mitsubishi Heavy Ind Ltd 難溶性スケールの化学的洗浄方法
JPH0356681A (ja) * 1989-07-21 1991-03-12 Katayama Chem Works Co Ltd 純水ボイラの水処理剤及び水処理方法
JP2001070986A (ja) * 1999-09-09 2001-03-21 Fujisawa Pharmaceut Co Ltd スケール防止剤および高温高圧水系用水処理剤
JP2007056312A (ja) * 2005-08-24 2007-03-08 Chubu Electric Power Co Inc 水蒸気配管の酸化抑制方法及び水蒸気供給装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000829A (en) * 1958-06-12 1961-09-19 Purex Corp Ltd Composition and process for descaling metal parts
US3095380A (en) * 1958-07-14 1963-06-25 Purex Corp Ltd Composition for removal of heat scale and carbon deposits
US3025189A (en) * 1958-12-10 1962-03-13 Purex Corp Ltd Composition and process for removing heat scale from metal parts
US3072502A (en) * 1961-02-14 1963-01-08 Pfizer & Co C Process for removing copper-containing iron oxide scale from metal surfaces
ZA656244B (ja) * 1964-11-27
FR2180481B1 (ja) * 1972-04-18 1974-12-20 Raffinage Cie Francaise
US3996062A (en) * 1975-08-28 1976-12-07 Halliburton Company Method for removing scale from metallic substrates
US4032460A (en) * 1975-10-28 1977-06-28 Union Oil Company Of California Inhibition of scale deposition in high temperature wells
JP2601788B2 (ja) * 1984-01-24 1997-04-16 三菱重工業株式会社 防錆剤
CA2020858C (en) * 1989-07-14 2000-08-08 Sakae Katayama Water treatment agent and water treatment method for boiler
JP3162099B2 (ja) * 1991-04-30 2001-04-25 株式会社片山化学工業研究所 軟水ボイラの水処理法
US5322635A (en) * 1991-05-16 1994-06-21 H.E.R.C. Incorporated Soap compositions of carboxylic acids and amines useful in removal and prevention of scale
US6740168B2 (en) * 2001-06-20 2004-05-25 Dominion Engineering Inc. Scale conditioning agents
US20070001150A1 (en) * 2005-06-29 2007-01-04 Hudgens Roy D Corrosion-inhibiting composition and method of use
WO2011093849A1 (en) * 2010-01-26 2011-08-04 Dominion Engineering Inc. Method and composition for removing deposits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159388A (ja) * 1987-12-16 1989-06-22 Mitsubishi Heavy Ind Ltd 難溶性スケールの化学的洗浄方法
JPH0356681A (ja) * 1989-07-21 1991-03-12 Katayama Chem Works Co Ltd 純水ボイラの水処理剤及び水処理方法
JP2001070986A (ja) * 1999-09-09 2001-03-21 Fujisawa Pharmaceut Co Ltd スケール防止剤および高温高圧水系用水処理剤
JP2007056312A (ja) * 2005-08-24 2007-03-08 Chubu Electric Power Co Inc 水蒸気配管の酸化抑制方法及び水蒸気供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2455514A4 *

Also Published As

Publication number Publication date
JP2011012333A (ja) 2011-01-20
US20120145187A1 (en) 2012-06-14
EP2455514A4 (en) 2018-01-10
EP2455514A1 (en) 2012-05-23
JP5363893B2 (ja) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5363893B2 (ja) 過熱水蒸気に曝される鉄系金属表面の処理方法
CN102719834B (zh) 一种电站锅炉过热器换热管化学清洗剂
JP5800044B2 (ja) 蒸気発生設備のスケール除去方法及びスケール除去剤
US3248269A (en) Scale removal
CN107176703A (zh) 一种复合型锅炉阻垢缓蚀剂及其制备方法和应用
JP5806766B2 (ja) 沈積スラッジの物理化学的洗浄方法
KR101938142B1 (ko) 카보히드라지드를 포함하는 발전소 보일러 계통의 수처리 조성물
JP4305440B2 (ja) エロージョン・コロージョン低減用防食剤及び低減方法
Mann History and causes of on-load waterside corrosion in power boilers
JP2008240073A (ja) ボイラの防食方法
CN112144066B (zh) 高温气冷堆核电机组二回路水汽系统化学清洗剂及清洗方法
KR20050058447A (ko) 가압수형 원자로의 증기 발생기를 세척하는 방법
KR101514715B1 (ko) 스케일 및 녹 세정용 조성물
JP5842293B2 (ja) 緑青防止剤及び緑青防止方法
JP6314560B2 (ja) 蒸気発生設備の水処理方法
KR20010094757A (ko) 세정제 조성물 및 그 사용 방법
Rahman et al. Carbohydrazide vs hydrazine: a Comparative Study
Tahir et al. Experimental study of chemical de-scaling-I: Effect of acid concentration
JP5034483B2 (ja) エロージョン・コロージョン低減用防食剤及び低減方法
US3436261A (en) Removal of corrosion products from metal surfaces
WO2013140913A1 (ja) エコノマイザを有するボイラの水処理方法
US3585142A (en) Method of removing copper-containing incrustations from ferrous metal surfaces using an aqueous acid solution of aminoalkyl thiourea
US3523825A (en) Cleaning composition and method of using same
JP2008150684A5 (ja)
CN110118348B (zh) 锅炉中氧化皮的清洗方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000014

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2010797074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13377851

Country of ref document: US