WO2011003907A1 - Optoelektronisches bauelement - Google Patents
Optoelektronisches bauelement Download PDFInfo
- Publication number
- WO2011003907A1 WO2011003907A1 PCT/EP2010/059638 EP2010059638W WO2011003907A1 WO 2011003907 A1 WO2011003907 A1 WO 2011003907A1 EP 2010059638 W EP2010059638 W EP 2010059638W WO 2011003907 A1 WO2011003907 A1 WO 2011003907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carrier substrate
- optoelectronic component
- component according
- electrically conductive
- layer
- Prior art date
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 158
- 239000004065 semiconductor Substances 0.000 claims abstract description 116
- 229910000679 solder Inorganic materials 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 15
- 230000005855 radiation Effects 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 230000001681 protective effect Effects 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 6
- 238000001465 metallisation Methods 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 239000010409 thin film Substances 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- -1 nitride compound Chemical class 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/483—Containers
- H01L33/486—Containers adapted for surface mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
Definitions
- the invention relates to an optoelectronic component which has a semiconductor body and a carrier substrate which is connected to the semiconductor body by means of a solder connection.
- a thin-film light-emitting diode chip in which a growth substrate for the epitaxial layer sequence of the semiconductor body has been detached from the semiconductor body and the semiconductor body is detached by means of a solder connection with a carrier substrate
- both electrical contacts are arranged on the rear side of the light-emitting diode chip.
- An object of the invention is to provide an improved optoelectronic device, the
- Bottom can be connected to the tracks of a circuit board, and at the same time by a small
- Electrostatic discharges (ESD - electrostatic discharge) distinguished.
- the optoelectronic component has according to a
- Embodiment a semiconductor body having a
- the optoelectronic component has a carrier substrate which is connected to the semiconductor body by means of a solder connection
- the carrier substrate advantageously has a first opening and a second opening.
- Carrier substrate led to a side facing away from the semiconductor body second major surface of the carrier substrate. Furthermore, a second electrically conductive connection layer is formed by the second breakdown of one of the semiconductor body
- the optoelectronic component is guided from the first main surface of the carrier substrate, which is connected to the semiconductor body via the solder connection, to the opposite second main surface of the carrier substrate, the optoelectronic component
- Main surface of the carrier substrate with tracks one
- Circuit board are connected by, for example, the first electrically conductive connection layer with a solder connection with a first conductor of a printed circuit board and the second electrically conductive connection layer with a second
- Solder connection is connected to a second conductor of the circuit board.
- the optoelectronic component is therefore advantageously surface mountable.
- the carrier substrate of the optoelectronic component is advantageously formed from a semiconductor material, in particular from silicon.
- Semiconductor material has the advantage over a carrier substrate of, for example, a ceramic that it
- Carrier substrate on side edges, at least in a first portion obliquely to the main surfaces of the
- Carrier substrate wherein the side edges are provided in the first portion with an electrically insulating layer.
- Solder for example, be connected to the tracks of a circuit board.
- solder during the soldering process up to the side edges of the Carrier substrate rises, so that in the case of a carrier substrate made of a semiconductor material due to the at least low conductivity of the semiconductor material can cause a short circuit. This risk is reduced by the applied to the first portion of the side edges electrically insulating layer.
- electrically insulating layer is applied, preferably adjacent to the second major surface of the carrier substrate.
- Main surface of the carrier substrate may be provided in particular for mounting the optoelectronic component on a printed circuit board, so that in the adjacent to the second main surface region of the side edges of the risk of
- Short circuit is increased by up to the side edge ascending solder. It is therefore advantageous if at least the part of the area adjoining the second main surface
- the height of the first portion, in which the side edges extend obliquely to the main surfaces of the carrier body and are provided with an electrically insulating layer is preferably between 10% inclusive and
- the height of the obliquely running side flanks is to be understood as meaning the projection of the side flanks onto the direction perpendicular to the main surfaces of the carrier substrate.
- the first portion of the side edges advantageously has a height between 20 .mu.m and 100 .mu.m.
- the first portion may have a height of about 30 ⁇ m.
- the carrier substrate of the optoelectronic component may in particular be a silicon substrate.
- a silicon substrate has the advantage that it can be processed relatively inexpensively, for example in the case of
- the electrically insulating layer which is applied in particular to the first portion of the side edges, preferably contains a silicon oxide or a silicon nitride.
- a silicon oxide layer may be on a silicon substrate
- Silicon nitride also be applied by a CVD method or by a spin-on technique on the semiconductor substrate.
- Main surface tapers. Due to the fact that the side flanks of the carrier substrate are inclined in the first subarea, the coating of the side flanks in the first subarea is facilitated. In particular, the side flanks running obliquely to the second main surface can be coated more easily than if they respectively run perpendicular to the second main surface and thus form surfaces facing away from one another.
- the side flanks in the first partial region are at an obtuse angle of including 100 ° to 135 ° inclusive to the second
- Main surface of the carrier substrate run.
- Support substrate adjacent second portion which is perpendicular to the first main surface.
- the second, perpendicular to the first main surface of the carrier substrate extending portion of the side edges may in the
- Optoelectronic device initially a variety of
- Semiconductor bodies are connected to a carrier substrate, wherein the production of the oblique side edges and the coating of the oblique side edges still in the wafer stage, ie before a divergence of the semiconductor wafer to individual optoelectronic devices takes place.
- Subarea with the vertical side edges arises when the semiconductor wafer is divided into individual optoelectronic components.
- the second subregions of the side flanks do not necessarily have to be provided with an insulating layer, since the risk of a short circuit occurs, above all, in the first subregions of the side flanks adjacent to the second main surface, which prior to the singulation of the
- Coating process can thus in the wafer composite for a
- the carrier substrate has on a main surface a doping zone which forms a protective diode between the electrically conductive connection layers.
- the protective diode advantageously protects the optoelectronic component from damage due to electrostatic discharges (ESD).
- the protective diode may in particular be designed such that the carrier substrate is undoped and the doping zone has a p-doped region and an n-doped region, wherein the first electrically conductive
- Each region of the doping zone can be generated by ion implantation of a p- or n-dopant in the carrier substrate.
- B may be used as a p-type dopant to form the p-type region
- P may be used as an n-type dopant to form the n-type region of the protective diode.
- the epitaxial layer sequence of the semiconductor body preferably has a p-doped semiconductor region and an n-doped semiconductor region, wherein the first electrically conductive connection layer with the n-doped semiconductor region
- Semiconductor region and the second electrically conductive Connection layer is electrically conductively connected to the p-doped semiconductor region.
- the doping zone forms a protective diode which is anti-parallel to the pn junction of the epitaxial layer sequence of
- Protective diode is therefore electrically conductive when a
- the doping zone is arranged on the first main surface of the carrier substrate facing the semiconductor body.
- the doping zone is preferably formed such that the p-doped subregion and the n-doped subregion adjoin one another and are arranged next to one another in a direction parallel to the main surface of the carrier substrate. To connect the p-doped portion of the doping zone with the first electrically
- the doping zone does not necessarily reach up to the openings in the carrier substrate. Rather, the
- Doping zone on the first main surface of the carrier substrate advantageously adjacent to a solder layer, which is the first electrically conductive connection layer with an n-contact of the semiconductor body electrically conductively connects, and the n-doped portion of the doping zone may be adjacent to a solder layer, which is the second electrically conductive
- Connection layer electrically conductively connects to a p-contact of the semiconductor body.
- the epitaxial layer sequence of the optoelectronic component has no growth substrate. So it is a so-called thin-film LED chip, in which the
- a composite of a plurality of semiconductor bodies and a semiconductor wafer functioning as a carrier substrate is produced in a first step.
- Carrier substrate produced, wherein the side edges in the first portion each obliquely to the main surfaces of the
- Carrier substrate run.
- an electrically insulating layer is applied to the side flanks in the first subregion.
- the semiconductor wafer is divided into individual optoelectronic components, wherein during the separation of a second region of the side edges is formed, which is not with a
- FIG. 1 shows a schematic representation of a cross section through an optoelectronic component according to a
- Figures 2A to 2D is a schematic representation of
- Size ratios of the components with each other are not to be considered as true to scale.
- the exemplary embodiment of an optoelectronic component according to the invention shown in FIG. 1 is an LED.
- the LED has a semiconductor body 1, which has an epitaxial layer sequence 2 with a
- Radiation emission suitable active layer 4 has.
- the active layer 4 may be a pn junction or a single or multiple quantum well structure
- the active layer 4 is arranged between a p-doped semiconductor region 3 and an n-doped semiconductor region 5.
- the side edges of the semiconductor body 1 are advantageous with a
- the semiconductor body 1 can at its
- Radiation exit surface 22 roughened or with a
- Structure 17 may be provided to improve the radiation extraction from the semiconductor body 1.
- Radiation exit surface 22 can be carried out in particular with an etching process.
- the LED according to the exemplary embodiment is a so-called thin-film LED of which a growth substrate used for growing the epitaxial layer sequence 2
- the original growth substrate was detached from the side of the semiconductor body 1, at which the
- Radiation exit surface 22 is located.
- the semiconductor body 1 On a surface opposite the radiation exit surface 22, the semiconductor body 1 is connected by means of a
- Solder 7 connected to a carrier substrate 6.
- Bonding of the semiconductor body 1 to the carrier substrate 6 preferably takes place during the production of the component, before the original growth substrate is removed from the surface of the substrate which now serves as the radiation exit surface 22
- a carrier substrate can be selected which is characterized by comparatively low costs and / or good thermal conductivity.
- the solder joint 7 can for example from a on the
- Solder layer 7a applied to the carrier substrate which may in particular be an Au layer
- a solder layer 7b applied to the semiconductor body 1 in which it may in particular be an AuSn layer formed.
- the solder layer 7a applied to the carrier substrate 6 and the solder layer 7b applied to the semiconductor body 1 can largely fuse together during the production of the solder connection 7 and therefore need not be recognizable as individual layers in the optoelectronic component.
- the carrier substrate 6 has a first main area 11 facing the semiconductor body 1 and a second main area 12 facing away from the semiconductor body 12.
- a first opening 8a is formed through which a first electrically conductive connection layer 9a is guided from the first main surface 11 to the second main surface 12 of the carrier substrate 6.
- a second opening 8 b is formed in the carrier substrate 6, through which a second electrically conductive connection layer 9 b of the first
- the electrically conductive connection layers 9a, 9b may contain, for example, Au or CuW.
- the carrier substrate 6 is made of a semiconductor material
- the carrier substrate 6 may be a
- carrier substrate 6 made of a semiconductor material such as silicon has the advantage that the carrier substrate 6 is relatively inexpensive and comparatively easy with
- Terminal layers 9a, 9b to isolate are also the terminal layers 9a, 9b to isolate.
- the electrically conductive connection layers 9a, 9b can be produced in the openings 8a, 8b of the carrier substrate 6, for example in such a way that initially
- Metallization layers 16 for example Au
- connection layers 9a, 9b are then used for
- Example galvanically generated in the openings 8a, 8b, the metallizations 16 serve as growth layers.
- Subbing layers 9a, 9b is to solder as
- the two electrically conductive connection layers 9a, 9b are used for electrical contacting of the semiconductor body 1.
- the first electrically conductive connection layers 9a, 9b are used for electrical contacting of the semiconductor body 1.
- An electrically conductive connection between the second electrically conductive connection layer 9b and the p-doped region 3 of the epitaxial layer sequence 2 can be achieved by the Solder connection 7 take place, which is arranged between the semiconductor body 1 and the carrier substrate 6.
- the second electrically conductive connection layer 9b adjoins a region of the solder connection 7 which is electrically connected to the p-doped semiconductor region 3.
- the p-type semiconductor region 3 need not necessarily be directly adjacent to the solder joint 7, as shown in the figure. Rather, between the p-doped
- Semiconductor region 3 and the solder joint 7 further layers may be arranged, in particular a mirror layer (not shown), the radiation emitted by the active layer 4 in the direction of the carrier substrate for
- Radiation exit surface 22 deflects.
- Mirror layer may also be arranged further layers between the p-doped semiconductor region 3 and the solder joint 7, for example barrier, wetting or adhesion promoter layers, for example, prevent diffusion of the solder material of the solder joint 7 in the mirror layer or the wetting of the semiconductor body 1 with the Improve soldering material.
- barrier, wetting or adhesion promoter layers for example, prevent diffusion of the solder material of the solder joint 7 in the mirror layer or the wetting of the semiconductor body 1 with the Improve soldering material.
- the first electrically conductive connection layer 9a is
- Insulating layers 23 is isolated from the remaining solder joint 7 and from the p-doped semiconductor region 3. From this region of the solder joint 7, a through contact 15 is led through an opening through the epitaxial layer sequence 2 into the n-doped semiconductor region 5.
- Through contact 15 is formed by an insulating layer 23 of the p-type semiconductor region 3 and the active
- the insulating layer 23 may in Area of the solder joint 7 have two cavities 21, which may be caused by that for the production of
- Lot est 7b and applied to the carrier substrate 6 solder layer 7a are thicker than those respectively on the
- the contacting of the optoelectronic component by means of a passage contact 15 guided through the active zone 4 has the advantage that both the contacting of the n-doped semiconductor region 5 and of the p-doped one
- Connection layers 9a, 9b are advantageously connected from the outside.
- the electrically conductive material 9a, 9b is advantageously connected from the outside.
- Connection layers 9a, 9b are connected to the second main surface of the carrier substrate 6, for example, with the conductor tracks 19 of a printed circuit board 18.
- the electrically conductive connection layers 9a, 9b may be provided, for example, on the second main surface 12 of the carrier substrate 6, in each case with a metallization layer 24, for example a nickel layer. Layer, be provided, which is connected in each case with a solder layer 20 with the conductor tracks 19 of the circuit board 18.
- the optoelectronic component is therefore advantageous
- the optoelectronic component is a
- Carrier substrate 6 made of a semiconductor material and two
- Printed circuit board 18 arise when a current over the
- the side flanks 10 are provided with an electrically insulating layer 13 at least in the partial area 10a.
- An electrically insulating layer 13 is thus not only on the main surfaces 11, 12 and the
- Part 10b of the side edges 10 not from the insulating layer 13 is covered. A not covered with the insulating layer 13 portion 10 b of
- Side flanks 10 may be formed, for example, by the fact that, in the production of the optoelectronic component, first of all a multiplicity of semiconductor bodies 1 are connected to a semiconductor wafer made of silicon functioning as carrier substrate 6, and the semiconductor wafer is subsequently separated into individual optoelectronic components. Those not covered by the insulating layer 13
- Portions 10b of the side edges are in this case the areas where the semiconductor wafer has been severed.
- the partial regions 10b of the side flanks 10 not covered with the insulating layer 13 therefore preferably run
- Carrier substrate 6 is preferably carried out by a thermal oxidation and / or a coating method, wherein
- the insulating layer 13 may be a silicon oxide layer, for example, SiO 2.
- a silicon oxide layer can on a
- a silicon nitride layer is particularly suitable, wherein the silicon nitride may have a stoichiometric or a non-stoichiometric composition SiN x .
- the 10a of the side edges 10 preferably extend obliquely to the main surfaces 11, 12 of the carrier substrate 6.
- the first portions 10a of the side edges in a obtuse angle ⁇ to the second main surface 12 of the support substrate 6 run.
- the obtuse angle ⁇ is preferably between 100 ° and 100 °
- Subareas 10a with the insulating layer 13 facilitates.
- the coating can be particularly from the side
- Carrier substrate 6 is arranged, and can be advantageously carried out in particular at the wafer stage, d. H. before dicing a carrier substrate 6 used
- the height of the partial regions 10a of the side flanks provided with the insulating layer is advantageously at least 30% of the total height of the carrier substrate 6.
- the height of the obliquely extending partial regions 10a of the side flanks is the projection perpendicular to the side
- the height of the subregions 10a of the side flanks provided with the insulating layer can amount to 10% to 50% of the height of the carrier substrate 6.
- the height of the partial regions 10a may be between 20 ⁇ m and 100 ⁇ m inclusive. The height of the
- Carrier substrate 6 may be for example about 150 microns.
- a doping zone 14 is formed, which forms a protective diode.
- the doping zone 14 has a p-doped region 14a and an n-doped region 14b, which adjoin one another and thus form a pn junction.
- the doping zone 14 is preferably arranged on the first main surface 11 of the carrier substrate 6.
- the doping zone 14 on the second main surface 12 of the carrier substrate 6.
- the p-doped region 14 a and the n-doped region 14 b of the doping zone 14 can be produced by ion implantation into the carrier substrate 6.
- the carrier substrate 6 is a silicon substrate, for example, the p-type portion may be formed by implanting B and the n-type
- Range can be generated by implantation of P.
- the p-doped region 14a of the doping zone 14 is connected to the first electrically conductive connection layer 9a.
- the n-doped portion 14b of the doping zone 14 is connected to the second electrically conductive connection layer 9b.
- the electrical connections are produced by a part of the solder layer 7, which is electrically connected to the first
- Terminal layer 9b with the p-doped semiconductor region 3rd is connected to the optoelectronic component, the doping zone 14 forms a pn junction, which is connected in anti-parallel to the pn junction of the optoelectronic component.
- the doping zone 14 thus forms an ESD protection diode for the optoelectronic component.
- the optoelectronic component is characterized in particular by a lower sensitivity to short circuits and
- ESD electrostatic discharges
- a plurality of optoelectronic components is preferably produced simultaneously on a semiconductor wafer functioning as carrier substrate 6.
- a composite of a carrier substrate 6 is used
- Semiconductor wafer and a plurality of semiconductor bodies 1 has been produced. The details of the semiconductor body 1 and the
- Carrier substrate 6 correspond to the embodiment shown in Figure 1 and are therefore not further explained.
- Positions of the second main surface 12 of the carrier substrate 6 are generated, at which the carrier substrate 6 is to be separated later into individual components.
- the V-shaped recesses 25 are thus in the vertical direction
- the V-shaped recesses 25 have been provided with an electrically insulating coating 13. Coating is advantageously still carried out in the wafer composite, ie before dicing the carrier substrate 6 into individual optoelectronic
- optoelectronic components are generated, each having a semiconductor body 1 on a carrier substrate 6, as shown in Fig. 2D.
- the finished optoelectronic components each have one
- Carrier substrate 6 the side edges 10 in a first portion 10a obliquely to the main surfaces 11, 12 of the
- Carrier substrate 6 extend and with an electrical
- Subareas 10b of the side flanks have been created by dicing the carrier substrate 6 and are uncoated.
- the second partial regions 10b of the side flanks 10 preferably run perpendicular to the second main surface 12 of the carrier substrate 6.
- the invention is not limited by the description with reference to the embodiments. Rather, the includes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080021372.2A CN102428581B (zh) | 2009-07-09 | 2010-07-06 | 光电子器件 |
EP10728256A EP2452373A1 (de) | 2009-07-09 | 2010-07-06 | Optoelektronisches bauelement |
US13/379,417 US8482026B2 (en) | 2009-07-09 | 2010-07-06 | Optoelectronic component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009032486.0 | 2009-07-09 | ||
DE102009032486A DE102009032486A1 (de) | 2009-07-09 | 2009-07-09 | Optoelektronisches Bauelement |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011003907A1 true WO2011003907A1 (de) | 2011-01-13 |
Family
ID=42985472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/059638 WO2011003907A1 (de) | 2009-07-09 | 2010-07-06 | Optoelektronisches bauelement |
Country Status (6)
Country | Link |
---|---|
US (1) | US8482026B2 (de) |
EP (1) | EP2452373A1 (de) |
KR (1) | KR20120048558A (de) |
CN (1) | CN102428581B (de) |
DE (1) | DE102009032486A1 (de) |
WO (1) | WO2011003907A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012010352A1 (de) * | 2010-07-20 | 2012-01-26 | Osram Opto Semiconductors Gmbh | Optoelektronisches bauelement |
WO2012168040A1 (de) * | 2011-06-06 | 2012-12-13 | Osram Opto Semiconductors Gmbh | Verfahren zum herstellen eines optoelektronischen halbleiterbauelements und derartiges halbleiterbauelement |
US9171995B2 (en) | 2011-05-30 | 2015-10-27 | Everlight Electronics Co., Ltd. | Flip chip type light emitting diode and manufacturing method thereof |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010054898A1 (de) * | 2010-12-17 | 2012-06-21 | Osram Opto Semiconductors Gmbh | Träger für einen optoelektronischen Halbleiterchip und Halbleiterchip |
DE102011012924A1 (de) | 2011-03-03 | 2012-09-06 | Osram Opto Semiconductors Gmbh | Träger für eine optoelektronische Struktur und optoelektronischer Halbleiterchip mit solch einem Träger |
DE102012105619A1 (de) * | 2012-06-27 | 2014-01-02 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements |
DE102012106953A1 (de) * | 2012-07-30 | 2014-01-30 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Mehrzahl von optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
DE102012108627B4 (de) * | 2012-09-14 | 2021-06-10 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronische Halbleitervorrichtung und Trägerverbund |
DE102012217533A1 (de) * | 2012-09-27 | 2014-03-27 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Bauelements |
DE102013109316A1 (de) | 2013-05-29 | 2014-12-04 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Mehrzahl von optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
CN104377291B (zh) * | 2013-08-16 | 2017-09-01 | 比亚迪股份有限公司 | Led芯片及其制备方法 |
DE102013111496A1 (de) * | 2013-10-18 | 2015-04-23 | Osram Opto Semiconductors Gmbh | Verfahren zum Herstellen von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement |
DE102013112881A1 (de) * | 2013-11-21 | 2015-05-21 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip |
DE102014100773A1 (de) * | 2014-01-23 | 2015-07-23 | Osram Opto Semiconductors Gmbh | Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements |
DE102014101492A1 (de) | 2014-02-06 | 2015-08-06 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement |
KR102075981B1 (ko) | 2014-02-21 | 2020-02-11 | 삼성전자주식회사 | 발광다이오드 패키지의 제조방법 |
DE102015211185A1 (de) * | 2015-06-18 | 2016-12-22 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips |
DE102015109755A1 (de) | 2015-06-18 | 2016-12-22 | Osram Opto Semiconductors Gmbh | Bauelement und Verfahren zur Herstellung eines Bauelements |
DE102015111487A1 (de) | 2015-07-15 | 2017-01-19 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
DE102015111485A1 (de) | 2015-07-15 | 2017-01-19 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement |
DE102015112280A1 (de) | 2015-07-28 | 2017-02-02 | Osram Opto Semiconductors Gmbh | Bauelement mit einem metallischen Träger und Verfahren zur Herstellung von Bauelementen |
DE102016101347A1 (de) * | 2016-01-26 | 2017-07-27 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung einer Mehrzahl von Bauelementen |
DE102016114550B4 (de) | 2016-08-05 | 2021-10-21 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Bauelement und Verfahren zur Herstellung von Bauelementen |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1020935A2 (de) * | 1999-01-11 | 2000-07-19 | Matsushita Electronics Corporation | Zusammengesetzte lichtemittierende Vorrichtung, lichtemittierende Halbleitereinheit und Herstellungsverfahren |
US6531328B1 (en) * | 2001-10-11 | 2003-03-11 | Solidlite Corporation | Packaging of light-emitting diode |
WO2005048363A2 (en) * | 2003-11-12 | 2005-05-26 | Cree, Inc. | Methods of processing semiconductor wafer backsides having light emitting devices (leds) thereon and leds so formed |
US20080142817A1 (en) * | 2005-06-30 | 2008-06-19 | Cree, Inc. | Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices |
WO2008131735A1 (de) | 2007-04-26 | 2008-11-06 | Osram Opto Semiconductors Gmbh | Optoelektronischer halbleiterkörper und verfahren zur herstellung eines solchen |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5477078A (en) | 1994-02-18 | 1995-12-19 | Analog Devices, Incorporated | Integrated circuit (IC) with a two-terminal diode device to protect metal-oxide-metal capacitors from ESD damage |
EP0865672B1 (de) * | 1995-12-04 | 2000-08-30 | Lockheed-Martin IR Imaging Systems | Infrarot-strahlungsdetektor mit verkleinerter wirksamer fläche |
US6784463B2 (en) * | 1997-06-03 | 2004-08-31 | Lumileds Lighting U.S., Llc | III-Phospide and III-Arsenide flip chip light-emitting devices |
JP4296644B2 (ja) | 1999-01-29 | 2009-07-15 | 豊田合成株式会社 | 発光ダイオード |
DE10006738C2 (de) * | 2000-02-15 | 2002-01-17 | Osram Opto Semiconductors Gmbh | Lichtemittierendes Bauelement mit verbesserter Lichtauskopplung und Verfahren zu seiner Herstellung |
ATE459981T1 (de) * | 2000-03-30 | 2010-03-15 | Nxp Bv | Halbleiterbauelement und dessen herstellungsverfahren |
US20020017652A1 (en) * | 2000-08-08 | 2002-02-14 | Stefan Illek | Semiconductor chip for optoelectronics |
DE10148227B4 (de) * | 2001-09-28 | 2015-03-05 | Osram Opto Semiconductors Gmbh | Strahlungsemittierender Halbleiterchip, Verfahren zu dessen Herstellung und strahlungsemittierendes Bauelement |
JP3776824B2 (ja) * | 2002-04-05 | 2006-05-17 | 株式会社東芝 | 半導体発光素子およびその製造方法 |
NL1023680C2 (nl) * | 2003-06-17 | 2004-12-20 | Tno | Sensor met polymeren componenten. |
JP4250576B2 (ja) * | 2004-08-24 | 2009-04-08 | 株式会社東芝 | 半導体発光素子 |
JP2006086300A (ja) | 2004-09-15 | 2006-03-30 | Sanken Electric Co Ltd | 保護素子を有する半導体発光装置及びその製造方法 |
TW200637033A (en) | 2004-11-22 | 2006-10-16 | Matsushita Electric Ind Co Ltd | Light-emitting device, light-emitting module, display unit, lighting unit and method for manufacturing light-emitting device |
JP4613709B2 (ja) * | 2005-06-24 | 2011-01-19 | セイコーエプソン株式会社 | 半導体装置の製造方法 |
TWI394300B (zh) * | 2007-10-24 | 2013-04-21 | Advanced Optoelectronic Tech | 光電元件之封裝結構及其製造方法 |
US8044412B2 (en) * | 2006-01-20 | 2011-10-25 | Taiwan Semiconductor Manufacturing Company, Ltd | Package for a light emitting element |
DE102006015788A1 (de) * | 2006-01-27 | 2007-09-13 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip |
KR100746783B1 (ko) * | 2006-02-28 | 2007-08-06 | 엘지전자 주식회사 | 발광소자 패키지 및 그 제조방법 |
KR100854328B1 (ko) * | 2006-07-07 | 2008-08-28 | 엘지전자 주식회사 | 발광 소자 패키지 및 그 제조방법 |
US8436371B2 (en) * | 2007-05-24 | 2013-05-07 | Cree, Inc. | Microscale optoelectronic device packages |
TWI372478B (en) * | 2008-01-08 | 2012-09-11 | Epistar Corp | Light-emitting device |
DE102008022793B4 (de) * | 2008-05-08 | 2010-12-16 | Universität Ulm | Vollständig selbstjustierter oberflächenemittierender Halbleiterlaser für die Oberflächenmontage mit optimierten Eigenschaften |
DE102008034560B4 (de) | 2008-07-24 | 2022-10-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Strahlungsemittierender Halbleiterchip und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips |
KR101332794B1 (ko) * | 2008-08-05 | 2013-11-25 | 삼성전자주식회사 | 발광 장치, 이를 포함하는 발광 시스템, 상기 발광 장치 및발광 시스템의 제조 방법 |
JP2010135488A (ja) | 2008-12-03 | 2010-06-17 | Toshiba Corp | 発光装置及びその製造方法 |
DE102009013085A1 (de) | 2009-03-13 | 2010-09-16 | Siemens Aktiengesellschaft | Metallisierte Durchführungen eines Wafers mit integrierten Dioden |
-
2009
- 2009-07-09 DE DE102009032486A patent/DE102009032486A1/de not_active Withdrawn
-
2010
- 2010-07-06 WO PCT/EP2010/059638 patent/WO2011003907A1/de active Application Filing
- 2010-07-06 US US13/379,417 patent/US8482026B2/en active Active
- 2010-07-06 CN CN201080021372.2A patent/CN102428581B/zh not_active Expired - Fee Related
- 2010-07-06 EP EP10728256A patent/EP2452373A1/de not_active Withdrawn
- 2010-07-06 KR KR1020127000798A patent/KR20120048558A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1020935A2 (de) * | 1999-01-11 | 2000-07-19 | Matsushita Electronics Corporation | Zusammengesetzte lichtemittierende Vorrichtung, lichtemittierende Halbleitereinheit und Herstellungsverfahren |
US6531328B1 (en) * | 2001-10-11 | 2003-03-11 | Solidlite Corporation | Packaging of light-emitting diode |
WO2005048363A2 (en) * | 2003-11-12 | 2005-05-26 | Cree, Inc. | Methods of processing semiconductor wafer backsides having light emitting devices (leds) thereon and leds so formed |
US20080142817A1 (en) * | 2005-06-30 | 2008-06-19 | Cree, Inc. | Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices |
WO2008131735A1 (de) | 2007-04-26 | 2008-11-06 | Osram Opto Semiconductors Gmbh | Optoelektronischer halbleiterkörper und verfahren zur herstellung eines solchen |
Non-Patent Citations (1)
Title |
---|
See also references of EP2452373A1 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012010352A1 (de) * | 2010-07-20 | 2012-01-26 | Osram Opto Semiconductors Gmbh | Optoelektronisches bauelement |
US9000476B2 (en) | 2010-07-20 | 2015-04-07 | Osram Opto Semiconductors Gmbh | Optoelectronic component |
US9171995B2 (en) | 2011-05-30 | 2015-10-27 | Everlight Electronics Co., Ltd. | Flip chip type light emitting diode and manufacturing method thereof |
WO2012168040A1 (de) * | 2011-06-06 | 2012-12-13 | Osram Opto Semiconductors Gmbh | Verfahren zum herstellen eines optoelektronischen halbleiterbauelements und derartiges halbleiterbauelement |
CN103563110A (zh) * | 2011-06-06 | 2014-02-05 | 奥斯兰姆奥普托半导体有限责任公司 | 用于制造光电子半导体器件的方法和这样的半导体器件 |
US9281425B2 (en) | 2011-06-06 | 2016-03-08 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic semiconductor component and such a semiconductor component |
Also Published As
Publication number | Publication date |
---|---|
DE102009032486A1 (de) | 2011-01-13 |
US8482026B2 (en) | 2013-07-09 |
EP2452373A1 (de) | 2012-05-16 |
CN102428581B (zh) | 2015-08-19 |
US20120098025A1 (en) | 2012-04-26 |
CN102428581A (zh) | 2012-04-25 |
KR20120048558A (ko) | 2012-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2452373A1 (de) | Optoelektronisches bauelement | |
EP2351079B1 (de) | Strahlungsemittierender halbleiterchip | |
EP2596532B1 (de) | Optoelektronisches bauelement | |
EP2652785B1 (de) | Träger für einen optoelektronischen halbleiterchip und halbleiterchip | |
DE102011054891B4 (de) | Verfahren zum Durchtrennen eines Halbleiterbauelementverbunds | |
WO2015055346A9 (de) | Verfahren zum herstellen von optoelektronischen halbleiterbauelementen und optoelektronisches halbleiterbauelement | |
EP2586068A1 (de) | Optoelektronisches bauelement und verfahren zu dessen herstellung | |
EP2499668A1 (de) | Dünnfilm-halbleiterbauelement mit schutzdiodenstruktur und verfahren zur herstellung eines dünnfilm-halbleiterbauelements | |
DE112015000850B4 (de) | Verfahren zur Herstellung einer Mehrzahl von Halbleiterbauelementen und Halbleiterbauelement | |
EP2606511A1 (de) | Optoelektronischer halbleiterchip und verfahren zur herstellung von optoelektronischen halbleiterchips | |
WO2012130900A1 (de) | Optoelektronischer halbleiterchip | |
EP2193553A1 (de) | Optoelektronischer halbleiterchip, optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements | |
EP2553726A1 (de) | Optoelektronischer halbleiterchip | |
DE102015111558B4 (de) | Optoelektronisches Bauelement und ein Verfahren zur Herstellung eines optoelektronischen Bauelements | |
WO2009079983A1 (de) | Leuchtdiodenchip mit überspannungsschutz | |
DE112014002623B4 (de) | Optoelektronisches Bauteil und Herstellungsverfahren hierfür | |
WO2016135024A1 (de) | Optoelektronisches halbleiterbauelement, verfahren zur herstellung eines elektrischen kontakts und verfahren zur herstellung eines halbleiterbauelements | |
WO2012116858A1 (de) | Träger für eine optoelektronische struktur und optoelektronischer halbleiterchip mit solch einem träger | |
EP2599123A1 (de) | Verfahren zur herstellung eines optoelektronischen halbleiterbauteils und optoelektronisches halbleiterbauteil | |
DE102017117645A1 (de) | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips | |
WO2015154956A1 (de) | Halbleiterchip, optoelektronisches bauelement mit halbleiterchip und verfahren zur herstellung eines halbleiterchips | |
WO2023041429A1 (de) | Optoelektronisches halbleiterbauelement und verfahren zur herstellung eines optoelektronischen halbleiterbauelements | |
WO2018024914A1 (de) | Filament mit einem träger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080021372.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10728256 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13379417 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010728256 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010728256 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127000798 Country of ref document: KR Kind code of ref document: A |