WO2011001909A1 - 燃料電池システムの負荷追従運転方法 - Google Patents

燃料電池システムの負荷追従運転方法 Download PDF

Info

Publication number
WO2011001909A1
WO2011001909A1 PCT/JP2010/060819 JP2010060819W WO2011001909A1 WO 2011001909 A1 WO2011001909 A1 WO 2011001909A1 JP 2010060819 W JP2010060819 W JP 2010060819W WO 2011001909 A1 WO2011001909 A1 WO 2011001909A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
catalyst layer
fuel cell
hydrocarbon
reforming catalyst
Prior art date
Application number
PCT/JP2010/060819
Other languages
English (en)
French (fr)
Inventor
進 旗田
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Priority to EP10794078.5A priority Critical patent/EP2450993A4/en
Priority to US13/379,759 priority patent/US8865358B2/en
Priority to CN201080029700.3A priority patent/CN102473944B/zh
Priority to CA2767081A priority patent/CA2767081A1/en
Publication of WO2011001909A1 publication Critical patent/WO2011001909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a load following operation method for a fuel cell system that generates power using a reformed gas obtained by reforming a hydrocarbon fuel such as kerosene.
  • a solid oxide electrolyte fuel cell (Solid Oxide Fuel Cell, hereinafter referred to as SOFC in some cases) system is usually used to reform hydrocarbon fuels such as kerosene and city gas to produce hydrogen-containing gas (reformed gas).
  • a reformer for generating and SOFC for electrochemically generating and reacting reformed gas and air are included.
  • SOFC is usually operated at a high temperature of 550-1000 ° C.
  • SR steam reforming
  • POX partial oxidation reforming
  • ATR autothermal reforming
  • Patent Documents 2 and 3 proposals regarding load following operation of the fuel cell system are made.
  • hydrocarbon-based fuel is not reformed to a predetermined composition and the unreformed component is supplied to the SOFC, particularly when higher hydrocarbons such as kerosene are used as the hydrocarbon-based fuel, carbon deposition may occur. It may cause flow path blockage and anode deterioration.
  • SOFC system may perform load following operation. That is, there is a case where operation is performed in which the amount of power generated by the SOFC system is changed in accordance with fluctuations in power demand. For example, when the power generation amount is increased, the supply amount of hydrocarbon fuel to the SOFC system may be increased. Even in such a case, carbon may be deposited. Therefore, it is desirable to reliably reform the hydrocarbon fuel even during load following operation. In the techniques disclosed in Patent Documents 2 and 3, improvement is still desired in that reliable reform is performed.
  • P f ⁇ 1 (F)
  • the maximum electrical output of the fuel cell represents a P M
  • a plurality of reforming catalyst layer temperatures T j (j is an integer of 1 to N, where N is an integer of 2 or more), and a hydrocarbon fuel flow rate G j corresponding to each T j , Set
  • each G j is a flow rate of the hydrocarbon-based fuel that can be reformed in the reforming catalyst layer at the corresponding reforming catalyst layer temperature T j , and each G j is larger than 0, and G j increases as j increases.
  • A) a step of measuring the temperature T of the reforming catalyst layer, B) a reformable flow rate F R is the flow rate of the hydrocarbon-based fuel that can be reformed in the reforming catalyst layer temperature T, the step of employing a G j corresponding to the largest T j below the temperature T, C) wherein the reformable flow rate F R is, when the minimum value F min is smaller than, the step of stopping the power generation in the fuel cell, If D) the reformable flow rate F R is the said minimum value F min or more, Step fuel cell output demand value P D, wherein performs maximum electrical output P M or less value, if step d1, the fuel cell output demand value P D, performing step d2 if exceeds the maximum electrical output P M, d1) using the function F f (P), the hydrocarbon-based fuel required to the fuel cell output demand value P D supplied to the reforming catalyst layer in order to output the fuel cell flow f (P D ) If f (P D) is less than the reformable
  • hydrocarbon fuel includes a hydrocarbon fuel having 2 or more carbon atoms.
  • FIG. 1 It is a schematic diagram which shows an outline
  • the fuel cell system used in the present invention includes a reformer that reforms a hydrocarbon-based fuel to produce a hydrogen-containing gas, and a high-temperature fuel cell.
  • the reformer has a reforming catalyst layer.
  • the hydrogen-containing gas obtained from the reformer is called reformed gas.
  • the reforming catalyst layer is composed of a reforming catalyst that can promote the reforming reaction.
  • a high-temperature fuel cell generates power using a hydrogen-containing gas (reformed gas) obtained from a reformer.
  • FIG. 1 schematically shows an embodiment of an indirect internal reforming SOFC that can implement the present invention.
  • an indirect internal reforming SOFC system will be described, but the present invention can also be applied to an external reforming SOFC system or MCFC system.
  • the indirect internal reforming SOFC has a reformer 3 that reforms a hydrocarbon fuel to produce a reformed gas (hydrogen-containing gas).
  • the reformer has a reforming catalyst layer 4.
  • the indirect internal reforming SOFC has an SOFC 6 that generates electric power using the reformed gas, and also has a combustion region 5 in which anode off-gas discharged from the SOFC (particularly its anode) is combusted.
  • the indirect internal reforming SOFC has a reformer, a solid oxide fuel cell, and a housing 8 that houses a combustion region.
  • Indirect internal reforming SOFC refers to the housing (module container) 8 and the equipment contained therein.
  • an igniter 7 that is an ignition means for igniting the anode off-gas is provided, and the reformer includes an electric heater 9.
  • Each supply gas is preheated as necessary and then supplied to the reformer or SOFC.
  • the indirect internal reforming SOFC is connected with a water vaporizer 1 equipped with an electric heater 2, and a pipe for supplying hydrocarbon fuel to the reformer is connected in the middle of the connecting pipe.
  • the water vaporizer 1 generates water vapor by heating with the electric heater 2. Water vapor can be superheated appropriately in the water vaporizer or downstream thereof and then supplied to the reforming catalyst layer.
  • air for partial oxidation reforming reaction
  • air can be supplied to the reforming catalyst layer, but here, air can be supplied to the reforming catalyst layer after preheating with a water vaporizer.
  • Water vapor can be obtained from the water vaporizer, and a mixed gas of air and water vapor can be obtained.
  • Hydrocarbon fuel is mixed with hydrocarbon fuel and supplied to the reformer 3, particularly the reforming catalyst layer 4.
  • hydrocarbon-based fuel can be appropriately vaporized and then supplied to the reforming catalyst layer.
  • the reformed gas obtained from the reformer is supplied to the SOFC 6, particularly the anode thereof. Although not shown, air is appropriately preheated and supplied to the SOFC cathode.
  • the combustible component in the anode off gas (gas discharged from the anode) is burned by oxygen in the cathode off gas (gas discharged from the cathode) at the SOFC outlet.
  • ignition can be performed using the igniter 7.
  • the outlets of both the anode and the cathode are opened in the module container 8.
  • the combustion gas is appropriately discharged from the module container.
  • Reformer and SOFC are accommodated in one module container and modularized.
  • the reformer is disposed at a position where heat can be received from the SOFC. For example, if the reformer is disposed at a position where it receives heat radiation from the SOFC, the reformer is heated by heat radiation from the SOFC during power generation.
  • the reformer is preferably disposed at a position where radiation heat can be directly transferred from the SOFC to the outer surface of the reformer. Therefore, it is preferable that a shielding object is not substantially disposed between the reformer and the SOFC, that is, a gap is provided between the reformer and the SOFC. Further, it is preferable to shorten the distance between the reformer and the SOFC as much as possible.
  • the reformer 3 is heated by the combustion heat of the anode off gas generated in the combustion region 5. Further, when the SOFC is at a higher temperature than the reformer, the reformer is also heated by radiant heat from the SOFC.
  • the reformer may be heated by heat generated by reforming. If the reforming is partial oxidation reforming or autothermal reforming (autothermal reforming) and the heat generation by the partial oxidation reforming reaction is greater than the endothermic reaction by the steam reforming reaction, Fever accompanies.
  • a function F f () of an electric output P of a fuel cell and a flow rate F of a hydrocarbon-based fuel that needs to be supplied to the reforming catalyst layer in order to output the electric output P by the fuel cell in advance.
  • F is uniquely determined for a certain electric output P, and one or a plurality of P can exist for a certain F.
  • the current and the fuel utilization rate for a certain electric output P are determined in advance by preliminary experiments or simulations so that the power generation efficiency is as high as possible while maintaining the SOFC at a temperature at which power generation is preferable.
  • F for a certain electric output P is uniquely determined.
  • the flow rate of the hydrocarbon-based fuel with respect to a certain electric output P or less is made constant as shown in FIG. In this case, there are a plurality of Ps for a certain F.
  • the flow rate of fluid supplied to the indirect internal reforming SOFC other than the hydrocarbon-based fuel, the input / output of electricity to the indirect internal reforming SOFC other than the output of the fuel cell, in advance are set to the electric output P.
  • a steam / carbon ratio ratio of the number of moles of water molecules to the number of moles of carbon atoms in the gas supplied to the reforming catalyst layer
  • the air flow rate supplied to the reformer should be determined so that the oxygen / carbon ratio (ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms in the gas fed to the reforming catalyst layer) is a predetermined value. Can do.
  • the SOFC is preferably maintained at a temperature capable of generating electricity. However, it can be determined by preliminary experiments and simulations so that the power generation efficiency is as high as possible. In this way, when the output of the fuel cell is set to a certain value P, these flow rates and electrical inputs / outputs can be determined using a previously obtained function.
  • the P M the maximum electrical output of the fuel cell.
  • P M is beforehand determined as a specification of the fuel cell system.
  • a plurality of temperatures T j of the reforming catalyst layer (j is an integer of 1 or more and N or less, where N is an integer of 2 or more), a hydrocarbon fuel flow rate G j corresponding to each T j , Is set in advance.
  • each G j is the flow rate of the hydrocarbon-based fuel that can be reformed in the reforming catalyst layer at the corresponding reforming catalyst layer temperature T j .
  • Each G j is greater than zero. This means that for all j is 0 ⁇ G j. Further, as j increases, G j has the same value or increases. That is, G j ⁇ G j +1 (where j is an integer from 1 to N ⁇ 1).
  • G j (G N ) when j is N is equal to or greater than F max . That is, G N ⁇ F max .
  • GN is the flow rate of the hydrocarbon-based fuel that can be reformed in the assumed maximum temperature reforming catalyst layer, that is, the maximum value of the reformable hydrocarbon-based fuel. If G N ⁇ F max , the hydrocarbon fuel having a flow rate of F max cannot be reformed, so the fuel cell system is naturally designed so that G N ⁇ F max .
  • the processes A to D are preferably performed repeatedly, that is, the process A, the process B, and the process C or D are repeated in this order, so that the reforming can be performed more reliably.
  • the deterioration of the anode can be prevented more reliably.
  • Step A is used to determine the reformable flow rate F R described later is carried out in order to know the temperature T of the reforming catalyst layer. It is preferable to start the process A within the shortest possible time from the start of the load following operation. It is preferable to start the process A immediately after starting the load following operation. If the temperature of the reforming catalyst layer is monitored (continuous measurement) before the start of the load following operation, the temperature may be monitored continuously.
  • thermocouple An appropriate temperature sensor such as a thermocouple can be used for temperature measurement.
  • the flow rate of the hydrocarbon-based fuel that can be reformed in the reforming catalyst layer at the temperature T corresponds to the largest T j below the temperature T.
  • G j is used. That is, among the preset T j , the largest T j is selected in the range below the measured temperature T. Then, the correspondence relationship between T j and G j set in advance, obtains a G j corresponding to the selected T j, for the G j and reformable flow rate F R.
  • Reformable flow rate F R calculated in step B is, if the minimum value F min is smaller than, stopping the power generation in the fuel cell. That is, when F R ⁇ F min , it is considered that the minimum required reformed gas cannot be reformed, and the electric output of the fuel cell is set to zero. At this time, it is possible to raise the temperature of the reforming catalyst layer with a heater or a burner attached to the reformer until at least F R ⁇ F min . If F R ⁇ F min , step D and subsequent steps can be performed.
  • step C it repeats the steps A and B while elevating the reforming catalyst layer, while F R that is determined by the steps A and B is F R ⁇ F min is The power generation is kept stopped (step C), and the step D can be performed when F R becomes F R ⁇ F min .
  • Reformable flow rate F R determined in step B is, if the it is the minimum value F min or more, the step D.
  • step D the fuel cell output demand value P D, the step d1 if the maximum electrical output P M or less of the fuel cell.
  • P D ⁇ P M is taken to mean that the fuel cell output request value P D means that the fuel cell can output.
  • the fuel cell output demand value P D, the step d2 if exceeds the maximum electrical output P M of the fuel cell.
  • P D > P M is considered to mean that the electric output of the fuel cell is insufficient with respect to the fuel cell output required value P D.
  • the calculated f (P D) is, if at reformable flow rate F R less decided step B, the electrical output of the fuel cell as a P D, the hydrocarbon-based fuel supplied to the reforming catalyst layer flow Is f (P D ).
  • f (P D) ⁇ F R is a hydrocarbon-based fuel at the flow rate f (P D) required to output the electrical output of the fuel cell output demand value P D, it can be reformed in the reforming catalyst layer Is taken to mean. Therefore, the hydrocarbon-based fuel at the flow rate f (P D ) is supplied to the reforming catalyst layer, the obtained reformed gas is supplied to the fuel cell, and the electric output of the fuel cell output required value P D is supplied to the fuel cell. To output.
  • F R is a hydrocarbon-based fuel in the fuel cell output demand value P D of the hydrocarbon-based fuel required to output the electrical output flow f (P D) is, in the reforming catalyst layer It is taken to mean that it cannot be modified.
  • There may be only one value of P calculated from P f ⁇ 1 (F R ), or there may be a plurality of values.
  • the electric output of the fuel cell is set to the value of P. If there are a plurality of values of a plurality of P, and P D below and largest value, the electrical output of the fuel cell. That is, when multiple values exist, reformable flow rate F of the hydrocarbon-based fuel of R is supplied to the reforming catalyst layer, the maximum electrical output obtained from the hydrocarbon fuel reformable flow rate F R Is output by a fuel cell.
  • the process d2 is performed when P D > P M (the electric output of the fuel cell is insufficient with respect to the required fuel cell output value P D ).
  • f (P M) is said if reformable flow rate F R less, the electrical output of the fuel cell and P M, the flow rate of the hydrocarbon-based fuel supplied to the reforming catalyst layer to f (P M) .
  • f (P M) ⁇ F R considers the hydrocarbon-based fuel at the flow rate f (P M), to mean that it is possible reformed in the reforming catalyst layer.
  • f (P M)> F R considers the hydrocarbon-based fuel at the flow rate f (P M), the means can not be reformed in the reforming catalyst layer.
  • N 5, that is, five different T j are set.
  • the temperature of the reforming catalyst layer measured in the step A determines the reformable flow rate F R in Step B.
  • step D is not performed but step D is performed.
  • the fuel cell output demand value P D is intended to vary in load following operation, F R is to vary the temperature of the reforming catalyst layer.
  • step D is not performed but step D is performed.
  • the value, the flow rate of the hydrocarbon-based fuel supplied to the reforming catalyst layer is set to F R i.e. 2 g / min.
  • the flow rate f (P M ) of the hydrocarbon fuel is calculated. This value is 4.5 g / min.
  • step D is performed without performing step C.
  • the flow rate f (P M ) of the hydrocarbon fuel is calculated. This value is 4.5 g / min.
  • the correlation between F and P is made extreme for the sake of explanation. However, in practice, it is considered that there are many cases where the correlation is close to that shown in FIG.
  • the flow rate F of the hydrocarbon-based fuel is set to 1.5 g / min in order to maintain the SOFC at a preferable power generation temperature in a range where the electrical output P is small, that is, in a range where the electrical output P is 0 W or more and 300 W or less. It is constant.
  • the hydrocarbon fuel is increased as the electrical output P increases. It is assumed that the flow rate F increases from 1.5 g / min to 4.5 g / min.
  • step B How to set T j
  • the minimum value of T j is preferably as small as possible. The lowest temperature among the temperatures at which the flow rate of the reformable hydrocarbon fuel exceeds zero can be achieved.
  • N is preferably as large as possible within the allowable range of the memory of the control means.
  • N is preferable to decrease the interval of T j as the temperature increases.
  • G j of setting G j is a flow rate of the corresponding hydrocarbon-based fuel that can be reformed in the reforming catalyst layer in the reforming catalyst layer temperature T j (reformable flow rate). Accordingly, when the temperature of the reforming catalyst layer is the temperature T j , the flow rate G j of the hydrocarbon-based fuel that can be reformed in the reforming catalyst layer is obtained in advance, and the correspondence between T j and G j is set in advance. .
  • T j the flow rate G j of the hydrocarbon-based fuel that can be reformed in the reforming catalyst layer
  • the flow rate of the hydrocarbon-based fuel that can be reformed in the reforming catalyst layer is such that when the hydrocarbon-based fuel at that flow rate is supplied to the reforming catalyst layer, the composition of the gas discharged from the reforming catalyst layer is the fuel cell.
  • the reformable flow rate in the reforming catalyst layer can be an arbitrary flow rate that is not more than the maximum value of the flow rate at which the supplied hydrocarbon fuel can be decomposed to the C1 compound (compound having 1 carbon atom). That is, the reforming catalyst layer is modified until the C2 + component (the component having 2 or more carbon atoms) in the reforming catalyst layer outlet gas has a concentration that does not cause a problem with respect to channel blockage or anode deterioration due to carbon deposition.
  • the flow rate can be set to an arbitrary flow rate that is not more than the maximum value of the supply flow rate of the hydrocarbon-based fuel to the reforming catalyst layer.
  • the reformable flow rate can be the maximum value, or can be a value obtained by dividing the maximum value by a safety factor (a value exceeding 1; for example, 1.4).
  • the concentration of the C2 + component at this time is preferably 50 ppb or less as a mass fraction in the reformed gas.
  • the reforming catalyst layer outlet gas only needs to be reducible. It is allowed that methane is contained in the reforming catalyst layer outlet gas. In the reforming of hydrocarbon-based fuels, methane usually remains in equilibrium. Even when the reforming catalyst layer outlet gas contains carbon in the form of methane, CO, or CO 2 , carbon deposition can be prevented by adding steam as necessary. When methane is used as the hydrocarbon-based fuel, reforming may be advanced so that the reforming catalyst layer outlet gas becomes reducible.
  • the partial pressure of oxidizing O 2 , H 2 O, CO 2 and the like contained in the reforming catalyst layer outlet gas can be made lower than the equilibrium partial pressure in the oxidation reaction of the anode electrode.
  • the O 2 partial pressure contained in the reforming catalyst layer outlet gas is less than 1.2 ⁇ 10 ⁇ 14 atm (1.2 ⁇ 10 ⁇ 9 Pa) , less than 1.7 ⁇ 10 2 partial pressure ratio of H 2 O for H 2, the partial pressure ratio of CO 2 to CO may be less than 1.8 ⁇ 10 2.
  • the reformable flow rate depends on the temperature of the reforming catalyst layer. Therefore, the reformable flow rate in the reforming catalyst layer is obtained based on the temperature of the reforming catalyst layer.
  • the reformable flow rate G j can be obtained by experiments in advance as a function of the temperature T j of the reforming catalyst layer. In addition, it is possible to obtain a reformable flow rate after dividing the function obtained by experiments by the safety factor or correcting the temperature to the safe side.
  • the unit of G j is, for example, g / min or mol / s.
  • the reformable flow rate G j can be a function of only the temperature T j .
  • the reformable flow rate G j may be a function having variables other than T j such as the catalyst layer volume and the gas component concentration, in addition to the temperature T j . In that case, when the reformable flow rate G j is calculated, a variable other than T j is obtained as appropriate, and the reformable flow rate G j is calculated from the variable other than T j and the measured T j. it can.
  • the temperature measurement portion of the reforming catalyst layer may be one point or a plurality of points.
  • a representative temperature such as an average value of a plurality of points can be used.
  • the flow rate of fuel that can be reformed in at least a part of the plurality of divided regions may be calculated, and the total value of the calculated flow rates may be used as the flow rate of fuel that can be reformed in the reforming catalyst layer.
  • the temperature T of the reforming catalyst layer during actual operation in step A it is desirable to measure the temperature of the reforming catalyst layer in the same manner as in the preliminary experiment for obtaining G j . That is, it is desirable to measure the temperature of the reforming catalyst layer at the same location as in the preliminary experiment.
  • the representative temperature it is desirable that the same representative temperature is set as the temperature T of the reforming catalyst layer in the process A.
  • the shortage of the fuel cell electrical output with respect to the power load can be supplied from the system power supply.
  • Fuel cell output demand value P D may be the value of the power load measured by an appropriate power meter. Alternatively, in the case of other generators and battery and interconnection, a portion of the measured electric power load may be a fuel cell output demand value P D.
  • the flow rate of the fluid supplied to the indirect internal reforming SOFC other than the hydrocarbon fuel and the indirect internal reformation other than the output of the SOFC according to the necessity.
  • the input / output of electricity to the type SOFC can be determined by calculating from the function of the electric output P obtained in advance.
  • the present invention is particularly effective when the hydrocarbon fuel supplied to the reforming catalyst layer includes a hydrocarbon fuel having 2 or more carbon atoms. According to the present invention, even during load following operation, the concentration of the compound having 2 or more carbon atoms in the reformed gas can be reduced to 50 ppb or less on the mass basis. Can be more reliably prevented.
  • an appropriate instrumentation control device including a computing means such as a computer can be used.
  • the hydrocarbon-based fuel is appropriately selected from compounds or mixtures thereof containing carbon and hydrogen (may contain other elements such as oxygen) known in the field of high-temperature fuel cells as a reformed gas raw material.
  • Compounds having carbon and hydrogen in the molecule such as hydrocarbons and alcohols can be used.
  • hydrocarbon fuel such as methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, gasoline, naphtha, kerosene, light oil, etc.
  • alcohol such as methanol and ethanol
  • ether such as dimethyl ether, etc.
  • kerosene and LPG are preferred because they are readily available. Moreover, since it can be stored independently, it is useful in areas where city gas lines are not widespread. Furthermore, a high-temperature fuel cell power generator using kerosene or LPG is useful as an emergency power source. In particular, kerosene is preferable because it is easy to handle.
  • High-temperature fuel cell The present invention can be suitably applied to a system including a high-temperature fuel cell that may cause channel blockage or anode deterioration due to carbon deposition.
  • fuel cells include SOFC and MCFC.
  • the SOFC it can be appropriately selected from known SOFCs of various shapes such as a flat plate type and a cylindrical type.
  • oxygen ion conductive ceramics or proton ion conductive ceramics are generally used as an electrolyte.
  • MCFC can be selected from known MCFCs as appropriate.
  • the SOFC or MCFC may be a single cell, but in practice, a stack in which a plurality of single cells are arranged (in the case of a cylindrical type, it may be called a bundle, but the stack referred to in this specification also includes a bundle) Is preferably used. In this case, one or more stacks may be used.
  • the indirect internal reforming SOFC is superior in that it can increase the thermal efficiency of the system.
  • the indirect internal reforming SOFC includes a reformer that produces a reformed gas containing hydrogen from a hydrocarbon-based fuel using a steam reforming reaction, and the SOFC.
  • a steam reforming reaction can be performed, and autothermal reforming accompanied by a partial oxidation reaction in the steam reforming reaction may be performed.
  • the partial oxidation reaction does not occur after the start-up is completed.
  • the steam reforming becomes dominant after the start-up is completed, so that the reforming reaction becomes an endothermic by overall.
  • the reformer and SOFC are accommodated in one module container and modularized.
  • the reformer is disposed at a position that receives heat radiation from the SOFC. By doing so, the reformer is heated by heat radiation from the SOFC during power generation.
  • the SOFC can be heated by burning the anode off-gas discharged from the SOFC at the cell outlet.
  • the reformer is preferably disposed at a position where radiation heat can be directly transferred from the SOFC to the outer surface of the reformer. Therefore, it is preferable that a shielding object is not substantially disposed between the reformer and the SOFC, that is, a gap is provided between the reformer and the SOFC. Further, it is preferable to shorten the distance between the reformer and the SOFC as much as possible.
  • Each supply gas is preheated as necessary and then supplied to the reformer or SOFC.
  • an appropriate container that can accommodate the SOFC and the reformer can be used.
  • the material for example, an appropriate material having resistance to the environment to be used, such as stainless steel, can be used.
  • the container is appropriately provided with a connection port for gas exchange and the like.
  • the module container has airtightness so that the inside of the module container does not communicate with the outside (atmosphere).
  • the combustion region is a region where the anode off gas discharged from the SOFC anode can be combusted.
  • the anode outlet can be opened in the housing, and the space near the anode outlet can be used as a combustion region.
  • This combustion can be performed using, for example, a cathode off gas as the oxygen-containing gas.
  • the cathode outlet can be opened in the housing.
  • An ignition means such as an igniter can be appropriately used to burn the combustion fuel or anode off gas.
  • the reformer produces a reformed gas containing hydrogen from a hydrocarbon fuel.
  • any of steam reforming, partial oxidation reforming, and autothermal reforming accompanied by a partial oxidation reaction in the steam reforming reaction may be performed.
  • the reformer is appropriately equipped with a steam reforming catalyst having steam reforming ability, a partial oxidation reforming catalyst having partial oxidation reforming ability, and a self-thermal reforming catalyst having both partial oxidation reforming ability and steam reforming ability. Can be used.
  • a structure known as a reformer can be appropriately adopted.
  • a structure having a region for accommodating the reforming catalyst in a sealable container and having an inlet for fluid necessary for reforming and an outlet for reforming gas can be appropriately adopted.
  • the material of the reformer can be appropriately selected and adopted from materials known as reformers in consideration of resistance in the use environment.
  • the shape of the reformer can be an appropriate shape such as a rectangular parallelepiped or a circular tube.
  • Any of the steam reforming catalyst, partial oxidation reforming catalyst, and autothermal reforming catalyst used in the reformer can be a known catalyst.
  • Examples of the partial oxidation reforming catalyst include platinum-based catalysts
  • examples of the steam reforming catalyst include ruthenium-based and nickel-based catalysts
  • examples of the autothermal reforming catalyst include rhodium-based catalysts.
  • the temperature at which the partial oxidation reforming reaction can proceed is, for example, 200 ° C. or more, and the temperature at which the steam reforming reaction can proceed is, for example, 400 ° C. or more.
  • steam reforming steam is added to reforming raw materials such as kerosene.
  • the reaction temperature of the steam reforming can be performed, for example, in the range of 400 ° C. to 1000 ° C., preferably 500 ° C. to 850 ° C., more preferably 550 ° C. to 800 ° C.
  • the amount of steam introduced into the reaction system is defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms contained in the hydrocarbon fuel (steam / carbon ratio), and this value is preferably 1 to 10, more preferably It is 1.5-7, more preferably 2-5.
  • the space velocity (LHSV) at this time is A / B when the flow rate in the liquid state of the hydrocarbon fuel is A (L / h) and the catalyst layer volume is B (L).
  • This value is preferably set in the range of 0.05 to 20 h ⁇ 1 , more preferably 0.1 to 10 h ⁇ 1 , still more preferably 0.2 to 5 h ⁇ 1 .
  • an oxygen-containing gas is added to the reforming raw material in addition to steam.
  • the oxygen-containing gas may be pure oxygen, but air is preferred because of its availability.
  • An oxygen-containing gas can be added so that the endothermic reaction accompanying the steam reforming reaction is balanced, and a heat generation amount capable of maintaining the temperature of the reforming catalyst layer and SOFC or raising the temperature thereof can be obtained.
  • the addition amount of the oxygen-containing gas is preferably 0.005 to 1, more preferably 0.01 to 0.00 as the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the hydrocarbon fuel (oxygen / carbon ratio). 75, more preferably 0.02 to 0.6.
  • the reaction temperature of the autothermal reforming reaction is set in the range of, for example, 400 ° C. to 1000 ° C., preferably 450 ° C. to 850 ° C., more preferably 500 ° C. to 800 ° C.
  • the space velocity (LHSV) at this time is preferably 0.05 to 20 h ⁇ 1 , more preferably 0.1 to 10 h ⁇ 1 , further preferably 0.2 to 5 h ⁇ 1. Is selected within the range.
  • the amount of steam introduced into the reaction system is preferably 1 to 10, more preferably 1.5 to 7, and still more preferably 2 to 5 as a steam / carbon ratio.
  • an oxygen-containing gas is added to the reforming raw material.
  • the oxygen-containing gas may be pure oxygen, but air is preferred because of its availability.
  • the amount added is appropriately determined in terms of heat loss and the like.
  • the amount is preferably 0.1 to 3, more preferably 0.2 to 0.7, as the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the hydrocarbon fuel (oxygen / carbon ratio).
  • the reaction temperature of the partial oxidation reaction can be set, for example, in the range of 450 ° C. to 1000 ° C., preferably 500 ° C. to 850 ° C., more preferably 550 ° C. to 800 ° C.
  • the space velocity (LHSV) at this time is preferably selected in the range of 0.1 to 30 h ⁇ 1 .
  • steam can be introduced, and the amount thereof is preferably 0.1 to 5, more preferably 0.1 to 3, more preferably 1 to 3 as the steam / carbon ratio. 2.
  • the present invention can be applied to, for example, a stationary or mobile power generation system, and a high-temperature fuel cell system used for a cogeneration system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

確実な改質、流路閉塞・アノード劣化防止が可能な燃料電池システム負荷追従運転方法を提供する。予め電気出力PとPを出力するに必要な燃料流量Fとの関数F=f(P)及びP=f-1(F)を求め改質触媒層温度TとTで改質可能な燃料流量Gを設定し、触媒層測定温度T以下で最大のTに対応するGをFとし、F<Fmin(Fの最小値)なら発電停止し、F≧Fminの場合出力要求値P≦最大出力Pなら1を、P>Pなら2を行なう。1)f(P)≦Fなら出力P、燃料流量f(P)とし、f(P)>Fなら出力をP=f-1(F)で計算されるPのP未満で最大の値とし燃料流量をFとし、2)f(P)≦Fなら出力P、燃料流量f(P)とし、f(P)>Fなら出力をP=f-1(F)から計算されるPの最大値とし燃料流量をFとする。

Description

燃料電池システムの負荷追従運転方法
 本発明は、灯油等の炭化水素系燃料を改質して得た改質ガスを用いて発電を行う燃料電池システムの負荷追従運転方法に関する。
 固体酸化物電解質形燃料電池(Solid Oxide Fuel Cell。以下場合によりSOFCという。)システムには、通常、灯油や都市ガスなどの炭化水素系燃料を改質して水素含有ガス(改質ガス)を発生させるための改質器と、改質ガスと空気を電気化学的に発電反応させるためのSOFCが含まれる。
 SOFCは通常、550~1000℃の高温で作動させる。
 改質には水蒸気改質(SR)、部分酸化改質(POX)、自己熱改質(ATR)など種々の反応が利用されるが、改質触媒を用いるためには、触媒活性が発現する温度に加熱する必要がある。
 水蒸気改質は非常に大きな吸熱反応であり、また、反応温度が550~750℃と比較的高く、高温の熱源を必要とする。そのため、SOFCの近傍に改質器(内部改質器)を設置し、主にSOFCからの輻射熱を熱源として改質器を加熱する内部改質型SOFCが知られている(特許文献1)。
 また特許文献2および3に、燃料電池システムの負荷追従運転に関する提案がなされている。
特開2004-319420号公報 特開2001-185196号公報 特開2006-32262号公報
 炭化水素系燃料が所定の組成まで改質されず、未改質分がSOFCに供給されてしまうと、特に炭化水素系燃料として灯油などの高次炭化水素を用いた場合には、炭素析出による流路閉塞やアノード劣化を引き起こすこともある。
 SOFCシステムは、負荷追従運転を行なうことがある。すなわち、電力需要の変動に合わせてSOFCシステムによる発電量を変化させる運転を行なうことがある。例えば、発電量を増加させる場合に、SOFCシステムへの炭化水素系燃料の供給量を増加させることがある。このような場合においても、炭素が析出する可能性がある。したがって、負荷追従運転に際しても炭化水素系燃料を確実に改質することが望まれる。特許文献2および3に開示される技術においても、確実な改質を行なうという点で、未だ改善が望まれる。
 これはSOFCに限らず溶融炭酸塩型燃料電池(MCFC)等の高温型燃料電池を有する燃料電池システムについても言えることである。
 本発明の目的は、改質触媒層を有する改質器と高温型燃料電池とを有する燃料電池システムを負荷追従運転する際に、より確実に改質を行い、流路閉塞やアノード劣化をより確実に防止することのできる方法を提供することである。
 本発明により以下に示す形態の燃料電池システムの負荷追従運転方法が提供される。
1)炭化水素系燃料を改質して水素を含有する改質ガスを製造する、改質触媒層を有する改質器と、該改質ガスを用いて発電を行う高温型燃料電池とを有する燃料電池システムの負荷追従運転方法であって、
 予め、該燃料電池の電気出力Pと、該電気出力Pを燃料電池で出力するために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの関数F=f(P)およびP=f-1(F)を求めておき、
ただし、P=f-1(F)はF=f(P)の逆関数であり、
該燃料電池の最大電気出力をPと表し、
Pが0以上P以下の範囲にあるときの、関数F=f(P)によって定まる炭化水素系燃料の流量の最小値をFminと表し、
 かつ、予め、改質触媒層の複数の温度T(jは1以上N以下の整数、ただしNは2以上の整数)と、各Tに対応する炭化水素系燃料の流量Gと、を設定しておき、
ただし、各Gは対応する改質触媒層温度Tにおいて改質触媒層において改質可能な炭化水素系燃料の流量であり、各Gは0より大きく、jの増加に伴ってGは同じ値であるか増加し、
 A)改質触媒層の温度Tを測定する工程、
 B)温度Tの改質触媒層において改質可能な炭化水素系燃料の流量である改質可能流量Fとして、前記温度T以下で最も大きいTに対応するGを採用する工程、
 C)前記改質可能流量Fが、前記最小値Fminより小さい場合、燃料電池における発電を停止する工程、
 D)前記改質可能流量Fが、前記最小値Fmin以上である場合に、
 燃料電池出力要求値Pが、前記最大電気出力P以下であれば工程d1を行ない、燃料電池出力要求値Pが、前記最大電気出力Pを超えていれば工程d2を行なう工程、
 d1)前記関数F=f(P)を用いて、燃料電池出力要求値Pを燃料電池で出力するために改質触媒層に供給することが必要な炭化水素系燃料の流量f(P)を算出し、
 f(P)が前記改質可能流量F以下であれば、燃料電池の電気出力をPとし、改質触媒層に供給する炭化水素系燃料の流量をf(P)とし、
 f(P)が前記改質可能流量Fを超えていれば、燃料電池の電気出力を、P=f-1(F)から計算されるPの値のうちのP未満で最大の値とし、改質触媒層に供給する炭化水素系燃料の流量をFとする工程、
 d2)前記関数F=f(P)を用いて、前記最大電気出力Pを燃料電池で出力するために改質触媒層に供給することが必要な改質触媒層に供給する炭化水素系燃料の流量f(P)を算出し、
 f(P)が、前記改質可能流量F以下であれば、燃料電池の電気出力をPとし、改質触媒層に供給する炭化水素系燃料の流量をf(P)とし、
 f(P)が、前記改質可能流量Fを超えていれば、燃料電池の電気出力を、P=f-1(F)から計算されるPの値のうちの最大の値とし、改質触媒層に供給する炭化水素系燃料の流量をFとする工程
を有する燃料電池システムの負荷追従運転方法。
 2)負荷追従運転の間、前記工程A~Dを繰り返して行なう1)記載の方法。
 3)前記炭化水素系燃料が、炭素数が2以上の炭化水素系燃料を含む1)または2)記載の方法。
 4)前記改質ガス中の、炭素数2以上の化合物の濃度が、質量基準で50ppb以下である3)記載の方法。
 本発明により、改質触媒層を有する改質器と高温型燃料電池とを有する燃料電池システムを負荷追従運転する際に、より確実に改質を行い、流路閉塞やアノード劣化をより確実に防止することのできる方法が提供される。
本発明を実施することのできる間接内部改質型SOFCシステムの例について概要を示す模式図である。 本発明の方法を説明するための、燃料電池の電気出力Pと、電気出力Pを得るために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの相関を示す模式的グラフである。 本発明の方法を説明するための、燃料電池の電気出力Pと、電気出力Pを得るために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの相関を示す模式的グラフである。 本発明の方法を説明するための、燃料電池の電気出力Pと、電気出力Pを得るために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの相関を示す模式的グラフである。 本発明の方法を説明するための、燃料電池の電気出力Pと、電気出力Pを得るために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの相関を示す模式的グラフである。 本発明の方法を説明するための、燃料電池の電気出力Pと、電気出力Pを得るために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの相関を示す模式的グラフである。
 本発明において用いる燃料電池システムは、炭化水素系燃料を改質して水素含有ガスを製造する改質器と、高温型燃料電池とを有する。改質器は、改質触媒層を有する。改質器から得られる水素含有ガスは改質ガスと呼ばれる。改質触媒層は改質反応を促進可能な改質触媒によって構成される。高温型燃料電池は、改質器から得られる水素含有ガス(改質ガス)を用いて発電を行う。
 以下、図面を用いて本発明の形態について説明するが、本発明はこれによって限定されるものではない。
 〔間接内部改質型SOFC〕
 図1に、本発明を実施することのできる間接内部改質型SOFCの一形態を模式的に示す。ここでは、間接内部改質型SOFCシステムについて説明するが、本発明は外部改質型SOFCシステムあるいはMCFCシステムについても適用可能である。
 間接内部改質型SOFCは、炭化水素系燃料を改質して改質ガス(水素含有ガス)を製造する改質器3を有する。改質器は、改質触媒層4を有する。
 間接内部改質型SOFCは、上記改質ガスを用いて発電を行うSOFC6を有し、また、SOFC(特にはそのアノード)から排出されるアノードオフガスを燃焼させる燃焼領域5を有する。
 間接内部改質型SOFCは、改質器、固体酸化物形燃料電池および燃焼領域を収容する筐体8を有する。
 間接内部改質型SOFCは、筐体(モジュール容器)8およびその内部に含まれる設備をいう。
 図1に示した形態の間接内部改質型SOFCでは、アノードオフガスに着火するための着火手段であるイグナイター7が設けられており、また、改質器は電気ヒータ9を備える。
 各供給ガスは必要に応じて適宜予熱されたうえで改質器もしくはSOFCに供給される。
 間接内部改質型SOFCには、電気ヒータ2を備える水気化器1が接続され、その接続配管の途中に炭化水素系燃料を改質器に供給するための配管が接続される。水気化器1は電気ヒータ2による加熱によって水蒸気を発生する。水蒸気は水気化器においてもしくはその下流において適宜スーパーヒートしたうえで改質触媒層に供給することができる。
 また空気(部分酸化改質反応用)も改質触媒層に供給されうるが、ここでは、空気を水気化器で予熱したうえで改質触媒層に供給できるようになっている。水気化器からは、水蒸気を得ることができ、また空気と水蒸気との混合ガスを得ることができる。
 水蒸気または空気と水蒸気との混合ガスは、炭化水素系燃料と混合されて改質器3、特にはその改質触媒層4に供給される。炭化水素系燃料として灯油等の液体燃料を用いる場合は、炭化水素系燃料を適宜気化したうえで改質触媒層に供給することができる。
 改質器から得られる改質ガスがSOFC6、特にはそのアノードに供給される。図示しないが、空気が適宜予熱されてSOFCのカソードに供給される。
 アノードオフガス(アノードから排出されるガス)中の可燃分がSOFC出口において、カソードオフガス(カソードから排出されるガス)中の酸素によって燃焼される。このために、イグナイター7を用いて着火することができる。アノード、カソードともその出口がモジュール容器8内に開口している。燃焼ガスは、モジュール容器から適宜排出される。
 改質器とSOFCが一つのモジュール容器に収容されモジュール化される。改質器はSOFCから受熱可能な位置に配される。例えば改質器をSOFCからの熱輻射を受ける位置に配置すれば、発電時にSOFCからの熱輻射によって改質器が加熱される。
 間接内部改質型SOFCにおいて、改質器は、SOFCから改質器の外表面へと直接輻射伝熱可能な位置に配することが好ましい。従って改質器とSOFCとの間には実質的に遮蔽物は配置しないこと、つまり改質器とSOFCとの間は空隙にすることが好ましい。また、改質器とSOFCとの距離は極力短くすることが好ましい。
 燃焼領域5において発生するアノードオフガスの燃焼熱によって、改質器3が加熱される。また、SOFCが改質器より高温である場合には、SOFCからの輻射熱によっても改質器が加熱される。
 さらに、改質による発熱によって改質器が加熱される場合もある。改質が部分酸化改質である場合、あるいは自己熱改質(オートサーマルリフォーミング)の場合であって水蒸気改質反応による吸熱より部分酸化改質反応による発熱の方が大きい場合、改質に伴って発熱する。
 〔負荷追従運転方法〕
 本発明では、予め、燃料電池の電気出力Pと、電気出力Pを燃料電池で出力するために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの関数F=f(P)およびP=f-1(F)を求めておく。P=f-1(F)はF=f(P)の逆関数である。ただし、或る電気出力Pに対して一義的にFが定まり、或るFに対して一もしくは複数のPが存在することができる。例えば、SOFCを好ましく発電可能な温度に維持しつつもできるだけ発電効率が高くなるよう、予備実験やシミュレーションなどにより、或る電気出力Pに対する電流と燃料利用率を予め定めておくことで、必然的に或る電気出力Pに対するFが一義的に定まる。また、例えば、電気出力が小さいときにもSOFCを好ましく発電可能な温度に維持するために、図6に示すように或る電気出力P以下に対する炭化水素系燃料の流量を一定値にする場合があるが、その場合には或るFに対して複数のPが存在する。
 また、必要に応じて、予め、炭化水素系燃料以外の間接内部改質型SOFCに供給する流体の流量、燃料電池の出力以外の間接内部改質型SOFCへの電気の入出力を電気出力Pの関数として求めておくことができる。例えば、改質器に供給する水流量については、炭素析出抑制のため、スチーム/カーボン比(改質触媒層に供給されるガス中の炭素原子モル数に対する水分子モル数の比)が所定の値となるよう求めておくことができる。改質器に供給する空気流量については、酸素/カーボン比(改質触媒層に供給されるガス中の炭素原子モル数に対する酸素分子モル数の比)が所定の値となるよう求めておくことができる。改質器に供給する水および空気以外の間接内部改質型SOFCに供給する流体の流量、間接内部改質型SOFCへの電気の入出力については、SOFCを好ましく発電可能な温度に維持しつつもできるだけ発電効率が高くなるよう、予備実験やシミュレーションなどにより、求めておくことができる。このようにすれば、燃料電池の出力を或る値Pにする際に、予め求めた関数を用いて、これら流量や電気入出力を決めることができる。
 ここで、Pを、燃料電池の最大電気出力とする。Pは燃料電池システムの仕様として予め定められる。また、Fminを、Pが0以上P以下の範囲にあるときの、関数F=f(P)によって定まる炭化水素系燃料の流量の最小値とする。さらに、Fmaxを、Pが0以上P以下の範囲にあるときの、関数F=f(P)によって定まる炭化水素系燃料の流量の最大値とする。
 このとき、関数F=f(P)およびP=f-1(F)は、
0≦P≦PおよびFmin≦F≦Fmaxの範囲で定まればよい。
 さらに、予め、改質触媒層の複数の温度T(jは1以上N以下の整数、ただしNは2以上の整数)と、各Tに対応する炭化水素系燃料の流量Gと、を設定しておく。
 ただし、各Gは対応する改質触媒層温度Tにおいて改質触媒層において改質可能な炭化水素系燃料の流量である。
 各Gは0より大きい。つまり全てのjについて0<Gである。またjの増加に伴ってGは同じ値であるか増加する。つまり、G≦G+1(ここではjは1以上N-1以下の整数)である。
 なお、jがNである場合のG(G)は、Fmax以上である。すなわち、G≧Fmaxである。Gは想定している最高温度の改質触媒層において改質可能な炭化水素系燃料の流量、すなわち改質可能な炭化水素系燃料の最大値である。G<Fmaxであっては、Fmaxの流量の炭化水素系燃料を改質できないことになってしまうので、燃料電池システムは、当然にG≧Fmaxとなるよう設計される。
 負荷追従運転の間、工程A~Dを好ましくは繰り返して行なうことによって、つまり、工程Aと、工程Bと、工程CもしくはDと、をこの順に繰り返して行なうことによって、より確実に改質を行い、アノードの劣化をより確実に防止することができる。
 〔工程A〕
 実際に負荷変動運転を行なう際には、改質触媒層の温度を測定する工程Aを行なう。この測定は、負荷追従運転を行う間継続して行なうことができる。
 工程Aは、後述する改質可能流量Fを求める際に使用する、改質触媒層の温度Tを知るために行なう。工程Aは、負荷追従運転開始時点から極力短時間のうちに始めることが好ましい。負荷追従運転を開始して直ちに工程Aを始めることが好ましい。負荷追従運転開始より前から改質触媒層の温度監視(継続的計測)を行なっている場合は、そのまま継続して温度監視を行なえばよい。
 温度測定のために、熱電対等の適宜の温度センサーを用いることができる。
 〔工程B〕
 工程Bでは、温度T(工程Aで測定した温度)の改質触媒層において改質可能な炭化水素系燃料の流量(改質可能流量F)として、温度T以下で最も大きいTに対応するGを採用する。つまり、予め設定したTのうち、測定した温度T以下の範囲で最も大きいTを選ぶ。そして、予め設定したTとGとの対応関係から、選んだTに対応するGを求め、このGを改質可能流量Fとする。
 〔工程C〕
 工程Bで求めた改質可能流量Fが、前記最小値Fminより小さい場合、燃料電池における発電を停止する。つまり、F<Fminのとき、最低限必要な改質ガスを改質できないとみなし、燃料電池の電気出力をゼロにする。このとき、少なくともF≧Fminとなるまで、改質器に付設されたヒータやバーナなどで改質触媒層を昇温することができる。F≧Fminとなったら、工程D以降を行うことができる。より具体的には、工程Cで発電を停止し、改質触媒層を昇温しながら工程AおよびBを繰り返し行い、工程AおよびBによって決められたFがF<Fminの間は発電を停止したままにし(工程C)、FがF≧Fminとなったら工程Dを行うことができる。
 〔工程D〕
 工程Bで決めた改質可能流量Fが、前記最小値Fmin以上である場合に、工程Dを行なう。
 工程Dでは、燃料電池出力要求値Pが、燃料電池の最大電気出力P以下であれば工程d1を行なう。P≦Pは、燃料電池出力要求値Pを、燃料電池が出力可能であることを意味するとみなす。
 あるいは、燃料電池出力要求値Pが、燃料電池の最大電気出力Pを超えていれば工程d2を行なう。P>Pは、燃料電池出力要求値Pに対して、燃料電池の電気出力が不足することを意味するとみなす。
 ・工程d1
 前記関数F=f(P)を用いて、燃料電池出力要求値Pを燃料電池で出力するために改質触媒層に供給することが必要な炭化水素系燃料の流量f(P)を算出する。
 そして、算出したf(P)が、工程Bで決めた改質可能流量F以下であれば、燃料電池の電気出力をPとし、改質触媒層に供給する炭化水素系燃料の流量をf(P)とする。f(P)≦Fは、燃料電池出力要求値Pの電気出力を出力するために必要な流量f(P)の炭化水素系燃料を、改質触媒層において改質可能であることを意味するとみなす。よって、この流量f(P)の炭化水素系燃料を改質触媒層に供給し、得られた改質ガスを燃料電池に供給して、燃料電池出力要求値Pの電気出力を燃料電池で出力する。
 一方、算出したf(P)が、前記改質可能流量Fを超えていれば、燃料電池の電気出力を、P=f-1(F)から計算されるPの値のうちの、P未満で最大の値とし、改質触媒層に供給する炭化水素系燃料の流量をFとする。f(P)>Fは、燃料電池出力要求値Pの電気出力を出力するために必要な炭化水素系燃料の流量f(P)の炭化水素系燃料が、改質触媒層において改質できないことを意味するとみなす。P=f-1(F)から計算されるPの値は一つだけの場合もあり、複数存在する場合もある。一つだけの場合は、燃料電池の電気出力をそのPの値にする。複数存在する場合は、複数のPの値のうち、P未満かつ最大の値を、燃料電池の電気出力とする。つまり、複数の値が存在する場合には、改質可能流量Fの炭化水素系燃料を改質触媒層に供給し、改質可能流量Fの炭化水素系燃料から得られる最大の電気出力を燃料電池で出力する。
 ・工程d2
 前述のように、P>P(燃料電池出力要求値Pに対して、燃料電池の電気出力が不足)の場合に、工程d2を行なう。
 前記関数F=f(P)を用いて、前記最大電気出力Pを燃料電池で出力するために改質触媒層に供給することが必要な改質触媒層に供給する炭化水素系燃料の流量f(P)を算出する。
 f(P)が、前記改質可能流量F以下であれば、燃料電池の電気出力をPとし、改質触媒層に供給する炭化水素系燃料の流量をf(P)とする。f(P)≦Fは、流量f(P)の炭化水素系燃料を、改質触媒層において改質可能であることを意味するとみなす。
 一方、f(P)が、前記改質可能流量Fを超えていれば、燃料電池の電気出力を、P=f-1(F)から計算されるPの値のうちの最大の値とし、改質触媒層に供給する炭化水素系燃料の流量をFとする。P=f-1(F)から計算されるPの値のうちの最大の値は、必然的にP未満である。f(P)>Fは、流量f(P)の炭化水素系燃料を、改質触媒層において改質できないことを意味するとみなす。
 〔負荷追従運転例〕
 以下、図2~5を用い、或る一つの燃料電池システムの負荷追従運転を行なう際に、様々な条件において、どのように運転するかについて具体例を挙げて説明する。ただし、本発明はこれによって限定されるものではない。
 予め、燃料電池の電気出力Pと、該電気出力Pを得るために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの相関、すなわち関数F=f(P)およびP=f-1(F)が、図2のように求められたとする(図3~5においても同じ相関である)。
 また、同じ燃料電池システムについて、予め表1に示されるように、改質触媒層の温度Tと、各Tに対応する炭化水素系燃料の流量Gとが設定されたとする。ここでT=700℃、G=8g/min(>Fmax=7g/min)であり、これらは燃料電池システムに固有の値である。N=5、つまり5個の相異なるTが設定されている。
Figure JPOXMLDOC01-appb-T000001
 工程Aで改質触媒層の温度を測定し、工程Bで改質可能流量Fを決める。
 <ケース1>
 燃料電池出力要求値P=600W、工程Aで測定した改質触媒層温度T=660℃の場合を考える。また、燃料電池の最大電気出力P=1000W、0≦P≦Pの範囲で関数F=f(P)によって定まる炭化水素系燃料の流量の最小値Fmin=1g/minとする(図2参照)。
 工程Bを行なう。表1から、T(660℃)以下の範囲で最も大きいTはT(650℃)である。Tに対応するG(G)は3g/minである。改質可能流量Fとして、Gを採用する。よってF=3g/minである。
 F=3g/min≧1g/min=Fminなので、工程Cは行なわずに、工程Dを行なう。
 P=600W<1000W=Pなので、工程d2ではなく工程d1を行なう。
 工程d1において、関数F=f(P)を用いて、P(600W)の電力を出力するために改質触媒層に供給することが必要な炭化水素系燃料の流量f(P)を算出する。この値は2g/minである。
 f(P)=2g/min≦3g/min=Fなので、燃料電池の電気出力をPすなわち600Wとし、改質触媒層に供給する炭化水素系燃料の流量をf(P)すなわち2g/minとする。図2において、このようにして求めた操作条件を示す点に星印を付す(図3~5においても同様)。
 <ケース2>
 P=900W、T=640℃の場合を考える(図3参照)。
 燃料電池出力要求値Pは負荷追従運転において変動するものであり、Fは改質触媒層の温度によって変化するものである。P=1000W、Fmin=1g/minは基本的には燃料電池システムに固有の値なので、ケース1と同様である。
 工程Bを行なう。表1から、T(640℃)以下の範囲で最も大きいTはT(625℃)である。Tに対応するG(G)は2g/minである。改質可能流量Fとして、Gを採用する。よってF=2g/minである。
 F=2g/min≧1g/min=Fminなので、工程Cは行なわずに、工程Dを行なう。
 そして、P=900W≦1000W=Pなので、工程d2ではなく工程d1を行なう。
 工程d1において、関数F=f(P)を用いて、P(900W)の電力を出力するために改質触媒層に供給することが必要な炭化水素系燃料の流量f(P)を算出する。この値は3g/minである。
 f(P)=3g/min>2g/min=Fなので、燃料電池の電気出力を、P=f-1(F)から計算されるPの値のうちのP未満で最大の値とし、改質触媒層に供給する炭化水素系燃料の流量をFすなわち2g/minとする。
 P=f-1(F)から計算されるPの値は、30W、600Wおよび800Wである。これらの値のうち、P(900W)未満で最大の値は、800Wである。よって、燃料電池の電気出力を800Wとする。
 <ケース3>
 P=1200W、T=680℃の場合を考える(図4参照)。P=1000W、Fmin=1g/minはケース1と同様である。
 工程Bを行なう。表1から、T(680℃)以下の範囲で最も大きいTはT(675℃)である。Tに対応するG(G)は5g/minである。改質可能流量Fとして、Gを採用する。よってF=5g/minである。
 このとき、F=5g/min≧1g/min=Fminなので、工程Cは行なわずに、工程Dを行なう。
 そして、P=1200W>1000W=Pなので、工程d1ではなく工程d2を行なう。
 工程d2において、前記関数F=f(P)を用いて、最大電気出力P(1000W)の電気出力を出力するために改質触媒層に供給することが必要な改質触媒層に供給する炭化水素系燃料の流量f(P)を算出する。この値は4.5g/minである。
 f(P)=4.5g/min≦5g/min=Fなので、燃料電池の電気出力をPすなわち1000Wとし、改質触媒層に供給する炭化水素系燃料の流量をf(P)すなわち4.5g/minとする。
 <ケース4>
 P=1200W、T=640℃の場合を考える(図5参照)。P=1000W、Fmin=1g/minはケース1と同様である。
 工程Bを行なう。表1から、T(640℃)以下の範囲で最も大きいTはT(625℃)である。Tに対応するG(G)は2g/minである。改質可能流量Fとして、Gを採用する。よってF=2g/minである。
 このとき、F=2g/min≧1g/min=Fminなので、工程Cは行なわずに、工程Dを行なう。
 そして、P=1200W>1000W=Pなので、工程d1ではなく工程d2を行なう。
 工程d2において、前記関数F=f(P)を用いて、最大電気出力P(1000W)の電気出力を出力するために改質触媒層に供給することが必要な改質触媒層に供給する炭化水素系燃料の流量f(P)を算出する。この値は4.5g/minである。
 f(P)=4.5g/min>2g/min=Fなので、燃料電池の電気出力を、P=f-1(F)から計算されるPの値のうちの最大の値とし、改質触媒層に供給する炭化水素系燃料の流量をFすなわち2g/minとする。
 P=f-1(F)から計算されるPの値は、30W、600Wおよび800Wである。これらのうち最大の800Wを燃料電池の電気出力とする。
 図2~5を用いた説明においては、説明のために、FとPとの相関を極端なものとした。しかし実用上は、図6に示すような相関に近い場合が多いと考えられる。図6では、電気出力Pが小さい範囲、すなわち電気出力Pが0W以上、300W以下の範囲において、SOFCを好ましく発電可能温度に維持するために炭化水素系燃料の流量Fを1.5g/minで一定としている。また、電気出力Pが大きい範囲、すなわち電気出力Pが300Wより大きく、最大電気出力P(1000W)以下の範囲において、発電効率を高くするために、電気出力Pの増加とともに炭化水素系燃料の流量Fが1.5g/minから4.5g/minまで増加するとしている。
 〔TおよびTに対応するGの設定の仕方〕
 ・Tの設定の仕方
 触媒層の測定温度TがTのうちの最小値より小さい場合、工程Bが実施不可能となるため、Tの最小値は、できるだけ小さい方が好ましく、例えば、改質可能な炭化水素系燃料の流量がゼロを超える温度のうちの最低温度することができる。
 Nは発電効率の観点から、制御手段のメモリの許容範囲内で、できるだけ大きくするのが好ましい。特に、触媒層温度が高くなるにつれ、改質可能な炭化水素系燃料の流量の増加率が高くなる場合には、温度が高くなるほど、Tの間隔を小さくするのが好ましい。
 ・Gの設定の仕方
 Gは対応する改質触媒層温度Tにおいて改質触媒層において改質可能な炭化水素系燃料の流量(改質可能流量)である。したがって、改質触媒層の温度が温度Tのときの、改質触媒層において改質可能な炭化水素系燃料の流量Gを予め求め、TとGとの対応関係を予め設定する。以下、Gの求め方について、説明する。
 改質触媒層において改質可能な炭化水素系燃料の流量は、その流量の炭化水素系燃料を改質触媒層に供給した場合に、改質触媒層から排出されるガスの組成が、燃料電池のアノードに供給するに適した組成になる流量をいう。
 例えば、改質触媒層における改質可能流量は、供給した炭化水素系燃料がC1化合物(炭素数1の化合物)まで分解されうる流量の最大値以下の任意の流量とすることができる。すなわち、改質触媒層出口ガスにおけるC2+成分(炭素数が2以上の成分)が炭素析出による流路閉塞やアノード劣化に対して問題にならない濃度以下である組成になるまで改質触媒層において改質が進みうる場合の、改質触媒層への炭化水素系燃料の供給流量の最大値以下の任意の流量とすることができる。改質可能流量は、この最大値とすることができ、あるいは、この最大値を安全率(1を超える値。例えば1.4。)で除した値とすることができる。このときのC2+成分の濃度は、改質ガス中の質量分率として50ppb以下が好ましい。そしてこのとき、改質触媒層出口ガスが還元性になっていればよい。改質触媒層出口ガス中に、メタンが含まれることは許容される。炭化水素系燃料の改質においては、通常、平衡論上メタンが残留する。改質触媒層出口ガス中に、メタン、COあるいはCOの形で炭素が含まれていても、必要に応じてスチームを添加することで炭素析出を防止することができる。炭化水素系燃料としてメタンを用いる場合は、改質触媒層出口ガスが還元性になるように、改質が進めばよい。
 改質触媒層出口ガスの還元性については、このガスがアノードに供給されても、アノードの酸化劣化を抑えられる程度であればよい。このために、例えば、改質触媒層出口ガスに含まれる酸化性のO、HO、COなどの分圧をアノード電極の酸化反応における平衡分圧より低くすることができる。例えば、アノード電極材料がNiで、アノード温度が800℃のとき、改質触媒層出口ガスに含まれるO分圧を1.2×10-14atm(1.2×10-9Pa)未満、Hに対するHOの分圧比を1.7×10未満、COに対するCOの分圧比を1.8×10未満とすることができる。
 改質可能流量は、改質触媒層の温度に依存する。そのため、改質触媒層の温度に基づいて、改質触媒層における改質可能流量を求める。
 改質可能流量Gは、改質触媒層の温度Tの関数として、予め実験により求めることができる。また、実験により求めた関数を安全率で除したり、安全側に温度を補正したりしたうえで、改質可能流量とすることもできる。なお、Gの単位は例えばg/minやmol/sである。改質可能流量Gは、温度Tのみの関数とすることができる。しかしその限りではなく、改質可能流量Gは、温度Tに加えて、触媒層体積やガス成分の濃度などのT以外に変数を持つ関数であってもよい。その場合、改質可能流量Gを計算する際には、T以外の変数を適宜求め、T以外の変数と、測定されたTとから改質可能流量Gを計算することができる。
 Gを求めるための予備実験において、改質触媒層の温度測定箇所は、1点でも、複数点でもよい。また、改質触媒層の温度としては、複数点の平均値などの代表温度などを用いることができる。
 改質触媒層をガス流通方向に沿って分割した複数個の分割領域を考え、改質触媒層のガス流通方向に相異なる位置にある複数点の温度を測定し、それらの温度に基づいて、複数個の分割領域のうちの少なくとも一部において改質可能な燃料の流量を算出し、算出した流量の合計値を改質触媒層において改質可能な燃料の流量としてもよい。
 工程Aにおいて実運転中の改質触媒層の温度Tを求める際には、Gを求めるための予備実験と同様にして、改質触媒層の温度を測定することが望ましい。つまり、予備実験と同じ個所において改質触媒層の温度を測定することが望ましい。予備実験で代表温度などを用いている場合には、工程Aにおいても、同じ代表温度を改質触媒層の温度Tとすることが望ましい。
 〔その他〕
 負荷追従運転の間、必ずしも同じ種類の改質を行う必要はない。より詳しくは、負荷追従運転の間、炭化水素系燃料の流量を段階的に変更して改質を行なうことができるが、各段階において必ずしも同じ種類の改質を行なう必要はない。
 また、燃料電池を系統電源と連系することで、電力負荷に対する燃料電池の電気出力の不足分を系統電源から供給することができる。
 燃料電池出力要求値Pは、適宜の電力計で測定した電力負荷の値とすることができる。あるいは、他の発電機や蓄電池と連系する場合に、測定した電力負荷の一部を燃料電池出力要求値Pとすることができる。
 工程Dにおいて炭化水素系燃料の流量を定める際に、必要に応じ、これにあわせて炭化水素系燃料以外の間接内部改質型SOFCに供給する流体の流量、SOFCの出力以外の間接内部改質型SOFCへの電気の入出力を、予め求めておいた電気出力Pの関数から計算し、定めることができる。
 本発明は、改質触媒層に供給する炭化水素系燃料が、炭素数が2以上の炭化水素系燃料を含む場合に、特に効果的である。本発明によって、負荷追従運転時においても、改質ガス中の、炭素数2以上の化合物の濃度を、質量基準で50ppb以下とすることができ、これにより、炭素析出による流路閉塞やアノード劣化をさらに確実に防止することができる。
 本発明の方法を行なうために、コンピュータ等の演算手段を含めて適宜の計装制御機器を使用することができる。
 〔炭化水素系燃料〕
 炭化水素系燃料としては、改質ガスの原料として高温型燃料電池の分野で公知の、分子中に炭素と水素を含む(酸素など他の元素を含んでもよい)化合物もしくはその混合物から適宜選んで用いることができ、炭化水素類、アルコール類など分子中に炭素と水素を有する化合物を用いることができる。例えばメタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、ガソリン、ナフサ、灯油、軽油等の炭化水素燃料、また、メタノール、エタノール等のアルコール、ジメチルエーテル等のエーテル等である。
 なかでも灯油やLPGは、入手容易であり好ましい。また独立して貯蔵可能であるため、都市ガスのラインが普及していない地域において有用である。さらに、灯油やLPGを利用した高温型燃料電池発電装置は、非常用電源として有用である。特には、取り扱いも容易である点で、灯油が好ましい。
 〔高温型燃料電池〕
 本発明は、炭素析出による流路閉塞やアノード劣化が生じる可能性のある高温型燃料電池を備えるシステムに好適に適用することができる。このような燃料電池としては、SOFCやMCFCがある。
 SOFCとしては、平板型や円筒型などの各種形状の公知のSOFCから適宜選んで採用できる。SOFCでは、一般的に、酸素イオン導電性セラミックスもしくはプロトンイオン導電性セラミックスが電解質として利用される。
 MCFCについても、公知のMCFCから適宜選んで採用できる。
 SOFCやMCFCは単セルであってもよいが、実用上は複数の単セルを配列させたスタック(円筒型の場合はバンドルと呼ばれることもあるが、本明細書でいうスタックはバンドルも含む)が好ましく用いられる。この場合、スタックは1つでも複数でもよい。
 高温型燃料電池のなかでも、間接内部改質型SOFCはシステムの熱効率を高めることができる点で優れている。間接内部改質型SOFCは、水蒸気改質反応を利用して炭化水素系燃料から水素を含む改質ガスを製造する改質器と、SOFCとを有する。この改質器では、水蒸気改質反応を行うことができ、また、水蒸気改質反応に部分酸化反応が伴うオートサーマルリフォーミングを行ってもよい。SOFCの発電効率の観点からは起動完了後、部分酸化反応は起きない方が好ましい。オートサーマルリフォーミングにおいても、起動完了後は水蒸気改質が支配的になるようにされ、従って改質反応はオーバーオールで吸熱になる。そして、改質反応に必要な熱がSOFCから供給される。改質器とSOFCが一つのモジュール容器に収容されモジュール化される。改質器はSOFCから熱輻射を受ける位置に配される。こうすることによって、発電時にSOFCからの熱輻射によって改質器が加熱される。また、SOFCから排出されるアノードオフガスをセル出口で燃焼させることにより、SOFCを加熱することもできる。
 間接内部改質型SOFCにおいて、改質器は、SOFCから改質器の外表面へと直接輻射伝熱可能な位置に配することが好ましい。従って改質器とSOFCとの間には実質的に遮蔽物は配置しないこと、つまり改質器とSOFCとの間は空隙にすることが好ましい。また、改質器とSOFCとの距離は極力短くすることが好ましい。
 各供給ガスは必要に応じて適宜予熱されたうえで改質器もしくはSOFCに供給される。
 モジュール容器としては、SOFCと改質器とを収容可能な適宜の容器を用いることができる。その材料としては、例えばステンレス鋼など、使用する環境に耐性を有する適宜の材料を用いることができる。容器には、ガスの取り合い等のために、適宜接続口が設けられる。
 セル出口がモジュール容器内で開口している場合は特に、モジュール容器の内部と外界(大気)とが連通しないように、モジュール容器が気密性を持つことが好ましい。
 燃焼領域は、SOFCのアノードから排出されるアノードオフガスを燃焼可能な領域である。例えば、アノード出口を筐体内に開放し、アノード出口近傍の空間を燃焼領域とすることができる。酸素含有ガスとして例えばカソードオフガスを用いてこの燃焼を行なうことができる。このために、カソード出口を筐体内に開放することができる。
 燃焼用燃料もしくはアノードオフガスを燃焼させるために、イグナイターなどの着火手段を適宜用いることができる。
 〔改質器〕
 改質器は、炭化水素系燃料から水素を含む改質ガスを製造する。
 改質器においては、水蒸気改質、部分酸化改質、および、水蒸気改質反応に部分酸化反応が伴うオートサーマルリフォーミングのいずれを行ってもよい。
 改質器には、水蒸気改質能を有する水蒸気改質触媒、部分酸化改質能を有する部分酸化改質触媒、部分酸化改質能と水蒸気改質能とを併せ持つ自己熱改質触媒を適宜用いることができる。
 改質器の構造は、改質器として公知の構造を適宜採用できる。例えば、密閉可能な容器内に改質触媒を収容する領域を有し、改質に必要な流体の導入口と改質ガスの排出口を有する構造とすることができる。
 改質器の材質は、改質器として公知の材質から、使用環境における耐性を考慮して適宜選んで採用できる。
 改質器の形状は、直方体状や円管状など適宜の形状とすることができる。
 炭化水素系燃料(必要に応じて予め気化される)および水蒸気、さらに必要に応じて空気等の酸素含有ガスをそれぞれ単独で、もしくは適宜混合した上で改質器(改質触媒層)に供給することができる。また、改質ガスはSOFCのアノードに供給される。
 〔改質触媒〕
 改質器で用いる水蒸気改質触媒、部分酸化改質触媒、オートサーマル改質触媒のいずれも、それぞれ公知の触媒を用いることができる。部分酸化改質触媒の例としては白金系触媒、水蒸気改質触媒の例としてはルテニウム系およびニッケル系、オートサーマル改質触媒の例としてはロジウム系触媒を挙げることができる。
 部分酸化改質反応が進行可能な温度は例えば200℃以上、水蒸気改質反応が進行可能な温度は例えば400℃以上である。
 〔改質器の運転条件〕
 以下、水蒸気改質、オートサーマル改質、部分酸化改質のそれぞれにつき、改質器における負荷追従運転時の条件について説明する。
 水蒸気改質では、灯油等の改質原料にスチームが添加される。水蒸気改質の反応温度は例えば400℃~1000℃、好ましくは500℃~850℃、さらに好ましくは550℃~800℃の範囲で行うことができる。反応系に導入するスチームの量は、炭化水素系燃料に含まれる炭素原子モル数に対する水分子モル数の比(スチーム/カーボン比)として定義され、この値は好ましくは1~10、より好ましくは1.5~7、さらに好ましくは2~5とされる。炭化水素系燃料が液体の場合、この時の空間速度(LHSV)は炭化水素系燃料の液体状態での流速をA(L/h)、触媒層体積をB(L)とした場合A/Bで表すことができ、この値は好ましくは0.05~20h-1、より好ましくは0.1~10h-1、さらに好ましくは0.2~5h-1の範囲で設定される。
 オートサーマル改質ではスチームの他に酸素含有ガスが改質原料に添加される。酸素含有ガスとしては純酸素でも良いが入手容易性から空気が好ましい。水蒸気改質反応に伴う吸熱反応をバランスし、かつ、改質触媒層やSOFCの温度を保持もしくはこれらを昇温できる発熱量が得られるように酸素含有ガスを添加することができる。酸素含有ガスの添加量は、炭化水素系燃料に含まれる炭素原子モル数に対する酸素分子モル数の比(酸素/カーボン比)として好ましくは0.005~1、より好ましくは0.01~0.75、さらに好ましくは0.02~0.6とされる。オートサーマル改質反応の反応温度は例えば400℃~1000℃、好ましくは450℃~850℃、さらに好ましくは500℃~800℃の範囲で設定される。炭化水素系燃料が液体の場合、この時の空間速度(LHSV)は、好ましくは0.05~20h-1、より好ましくは0.1~10h-1、さらに好ましくは0.2~5h-1の範囲で選ばれる。反応系に導入するスチームの量は、スチーム/カーボン比として好ましくは1~10、より好ましくは1.5~7、さらに好ましくは2~5とされる。
 部分酸化改質では酸素含有ガスが改質原料に添加される。酸素含有ガスとしては純酸素でも良いが入手容易性から空気が好ましい。反応を進めるための温度を確保するため、熱のロス等において適宜添加量は決定される。その量は、炭化水素系燃料に含まれる炭素原子モル数に対する酸素分子モル数の比(酸素/カーボン比)として好ましくは0.1~3、より好ましくは0.2~0.7とされる。部分酸化反応の反応温度は、例えば450℃~1000℃、好ましくは500℃~850℃、さらに好ましくは550℃~800℃の範囲で設定することができる。炭化水素系燃料が液体の場合、この時の空間速度(LHSV)は、好ましくは0.1~30h-1の範囲で選ばれる。反応系においてすすの発生を抑制するためにスチームを導入することができ、その量は、スチーム/カーボン比として好ましくは0.1~5、より好ましくは0.1~3、さらに好ましくは1~2とされる。
 〔他の機器〕
 本発明で用いる高温型燃料電池システムにおいて、高温型燃料電池システムの公知の構成要素は、必要に応じて適宜設けることができる。具体例を挙げれば、炭化水素系燃料に含まれる硫黄分を低減する脱硫器、液体を気化させる気化器、各種流体を加圧するためのポンプ、圧縮機、ブロワなどの昇圧手段、流体の流量を調節するため、あるいは流体の流れを遮断/切り替えるためのバルブ等の流量調節手段や流路遮断/切り替え手段、熱交換・熱回収を行うための熱交換器、気体を凝縮する凝縮器、スチームなどで各種機器を外熱する加熱/保温手段、炭化水素系燃料や可燃物の貯蔵手段、計装用の空気や電気系統、制御用の信号系統、制御装置、出力用や動力用の電気系統などである。
 本発明は、例えば定置用もしくは移動体用の発電システムに、またコージェネレーションシステムに利用される高温型燃料電池システムに適用できる。
 1 水気化器
 2 水気化器に付設された電気ヒータ
 3 改質器
 4 改質触媒層
 5 燃焼領域
 6 SOFC
 7 イグナイター
 8 モジュール容器
 9 改質器に付設された電気ヒータ

Claims (4)

  1.  炭化水素系燃料を改質して水素を含有する改質ガスを製造する、改質触媒層を有する改質器と、該改質ガスを用いて発電を行う高温型燃料電池とを有する燃料電池システムの負荷追従運転方法であって、
     予め、該燃料電池の電気出力Pと、該電気出力Pを燃料電池で出力するために改質触媒層に供給することが必要な炭化水素系燃料の流量Fとの関数F=f(P)およびP=f-1(F)を求めておき、
    ただし、P=f-1(F)はF=f(P)の逆関数であり、
    該燃料電池の最大電気出力をPと表し、
    Pが0以上P以下の範囲にあるときの、関数F=f(P)によって定まる炭化水素系燃料の流量の最小値をFminと表し、
     かつ、予め、改質触媒層の複数の温度T(jは1以上N以下の整数、ただしNは2以上の整数)と、各Tに対応する炭化水素系燃料の流量Gと、を設定しておき、
    ただし、各Gは対応する改質触媒層温度Tにおいて改質触媒層において改質可能な炭化水素系燃料の流量であり、各Gは0より大きく、jの増加に伴ってGは同じ値であるか増加し、
     A)改質触媒層の温度Tを測定する工程、
     B)温度Tの改質触媒層において改質可能な炭化水素系燃料の流量である改質可能流量Fとして、前記温度T以下で最も大きいTに対応するGを採用する工程、
     C)前記改質可能流量Fが、前記最小値Fminより小さい場合、燃料電池における発電を停止する工程、
     D)前記改質可能流量Fが、前記最小値Fmin以上である場合に、
     燃料電池出力要求値Pが、前記最大電気出力P以下であれば工程d1を行ない、燃料電池出力要求値Pが、前記最大電気出力Pを超えていれば工程d2を行なう工程、
     d1)前記関数F=f(P)を用いて、燃料電池出力要求値Pを燃料電池で出力するために改質触媒層に供給することが必要な炭化水素系燃料の流量f(P)を算出し、
     f(P)が前記改質可能流量F以下であれば、燃料電池の電気出力をPとし、改質触媒層に供給する炭化水素系燃料の流量をf(P)とし、
     f(P)が前記改質可能流量Fを超えていれば、燃料電池の電気出力を、P=f-1(F)から計算されるPの値のうちのP未満で最大の値とし、改質触媒層に供給する炭化水素系燃料の流量をFとする工程、
     d2)前記関数F=f(P)を用いて、前記最大電気出力Pを燃料電池で出力するために改質触媒層に供給することが必要な改質触媒層に供給する炭化水素系燃料の流量f(P)を算出し、
     f(P)が、前記改質可能流量F以下であれば、燃料電池の電気出力をPとし、改質触媒層に供給する炭化水素系燃料の流量をf(P)とし、
     f(P)が、前記改質可能流量Fを超えていれば、燃料電池の電気出力を、P=f-1(F)から計算されるPの値のうちの最大の値とし、改質触媒層に供給する炭化水素系燃料の流量をFとする工程
    を有する燃料電池システムの負荷追従運転方法。
  2.  負荷追従運転の間、前記工程A~Dを繰り返して行なう請求項1記載の方法。
  3.  前記炭化水素系燃料が、炭素数が2以上の炭化水素系燃料を含む請求項1または2記載の方法。
  4.  前記改質ガス中の、炭素数2以上の化合物の濃度が、質量基準で50ppb以下である請求項3記載の方法。
PCT/JP2010/060819 2009-07-02 2010-06-25 燃料電池システムの負荷追従運転方法 WO2011001909A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10794078.5A EP2450993A4 (en) 2009-07-02 2010-06-25 METHOD FOR MONITORING THE CHARGE OF A FUEL CELL SYSTEM
US13/379,759 US8865358B2 (en) 2009-07-02 2010-06-25 Method for load following operation of fuel cell system
CN201080029700.3A CN102473944B (zh) 2009-07-02 2010-06-25 燃料电池系统的负荷跟踪运转方法
CA2767081A CA2767081A1 (en) 2009-07-02 2010-06-25 Method for load following operation of fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009157809A JP5433323B2 (ja) 2009-07-02 2009-07-02 燃料電池システムの負荷追従運転方法
JP2009-157809 2009-07-02

Publications (1)

Publication Number Publication Date
WO2011001909A1 true WO2011001909A1 (ja) 2011-01-06

Family

ID=43410985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060819 WO2011001909A1 (ja) 2009-07-02 2010-06-25 燃料電池システムの負荷追従運転方法

Country Status (7)

Country Link
US (1) US8865358B2 (ja)
EP (1) EP2450993A4 (ja)
JP (1) JP5433323B2 (ja)
KR (1) KR20120031021A (ja)
CN (1) CN102473944B (ja)
CA (1) CA2767081A1 (ja)
WO (1) WO2011001909A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6332621B2 (ja) * 2014-05-30 2018-05-30 Toto株式会社 燃料電池モジュール

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314769A (ja) * 1987-06-18 1988-12-22 Fuji Electric Co Ltd 燃料電池発電装置
JP2001185196A (ja) 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2002231287A (ja) * 2001-01-26 2002-08-16 Equos Research Co Ltd 燃料電池装置及び燃料電池装置の制御方法
JP2004319420A (ja) 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法
JP2006032262A (ja) 2004-07-21 2006-02-02 Tokyo Gas Co Ltd 燃料電池システム及び制御方法
JP2007311288A (ja) * 2006-05-22 2007-11-29 Mitsubishi Materials Corp 燃料電池発電装置及び制御プログラム並びに燃料電池発電装置の制御方法
JP2008300069A (ja) * 2007-05-29 2008-12-11 Nissan Motor Co Ltd 燃料電池システム及びその制御方法
JP2008311030A (ja) * 2007-06-13 2008-12-25 Nippon Oil Corp 燃料電池システムの起動方法
JP2009137778A (ja) * 2007-12-04 2009-06-25 Nippon Oil Corp 燃料電池システムの起動方法
JP2009238591A (ja) * 2008-03-27 2009-10-15 Nippon Oil Corp 燃料電池システムの負荷追従運転方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056374A (ja) 1983-09-07 1985-04-01 Toshiba Corp 燃料電池の燃料流量制御装置
US6893757B2 (en) 2001-01-26 2005-05-17 Kabushikikaisha Equos Research Fuel cell apparatus and method of controlling fuel cell apparatus
CN1241829C (zh) * 2001-06-12 2006-02-15 松下电器产业株式会社 氢气发生装置、燃料电池系统、氢气发生装置的控制方法
JP4265173B2 (ja) 2002-08-23 2009-05-20 日産自動車株式会社 発電装置
US7255848B2 (en) * 2002-10-01 2007-08-14 Regents Of The Univeristy Of Minnesota Production of hydrogen from alcohols
JP2004178962A (ja) 2002-11-27 2004-06-24 Hitachi Ltd 燃焼器を有する水素製造装置を用いた燃料電池発電システム
US8277524B2 (en) 2004-03-16 2012-10-02 Delphi Technologies, Inc. Reformer start-up strategy for use in a solid oxide fuel cell control system
JP4721650B2 (ja) 2004-03-25 2011-07-13 株式会社日立製作所 固体高分子形燃料電池発電システムおよび家庭用定置分散電源システム
JP2006008458A (ja) 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd 水素生成装置、および燃料電池システム
JP4627420B2 (ja) * 2004-08-31 2011-02-09 株式会社日立製作所 燃料電池発電システムとその制御方法
JP2006107956A (ja) 2004-10-06 2006-04-20 Toshiba Fuel Cell Power Systems Corp 燃料電池システム
US7659019B2 (en) 2005-09-16 2010-02-09 Idatech, Llc Thermally primed hydrogen-producing fuel cell system
JP4839821B2 (ja) 2005-12-19 2011-12-21 カシオ計算機株式会社 電源システム、電源システムの制御装置及び電源システムの制御方法
JP4945145B2 (ja) 2006-02-20 2012-06-06 株式会社Eneosセルテック 燃料電池発電装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314769A (ja) * 1987-06-18 1988-12-22 Fuji Electric Co Ltd 燃料電池発電装置
JP2001185196A (ja) 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2002231287A (ja) * 2001-01-26 2002-08-16 Equos Research Co Ltd 燃料電池装置及び燃料電池装置の制御方法
JP2004319420A (ja) 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法
JP2006032262A (ja) 2004-07-21 2006-02-02 Tokyo Gas Co Ltd 燃料電池システム及び制御方法
JP2007311288A (ja) * 2006-05-22 2007-11-29 Mitsubishi Materials Corp 燃料電池発電装置及び制御プログラム並びに燃料電池発電装置の制御方法
JP2008300069A (ja) * 2007-05-29 2008-12-11 Nissan Motor Co Ltd 燃料電池システム及びその制御方法
JP2008311030A (ja) * 2007-06-13 2008-12-25 Nippon Oil Corp 燃料電池システムの起動方法
JP2009137778A (ja) * 2007-12-04 2009-06-25 Nippon Oil Corp 燃料電池システムの起動方法
JP2009238591A (ja) * 2008-03-27 2009-10-15 Nippon Oil Corp 燃料電池システムの負荷追従運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450993A4 *

Also Published As

Publication number Publication date
CN102473944B (zh) 2014-06-25
KR20120031021A (ko) 2012-03-29
CN102473944A (zh) 2012-05-23
US20120100448A1 (en) 2012-04-26
US8865358B2 (en) 2014-10-21
EP2450993A4 (en) 2013-11-13
CA2767081A1 (en) 2011-01-06
EP2450993A1 (en) 2012-05-09
JP5433323B2 (ja) 2014-03-05
JP2011014386A (ja) 2011-01-20

Similar Documents

Publication Publication Date Title
US8574775B2 (en) Fuel cell system and method for starting up the same
JP5164441B2 (ja) 燃料電池システムの起動方法
JP5214230B2 (ja) 燃料電池システムの起動方法
JP5078696B2 (ja) 燃料電池システムの負荷追従運転方法
WO2009096221A1 (ja) 間接内部改質型固体酸化物形燃料電池とその停止方法
JP5078698B2 (ja) 燃料電池システムの負荷追従運転方法
WO2009119187A1 (ja) 燃料電池システムとその負荷追従運転方法
JP5078697B2 (ja) 燃料電池システムの負荷追従運転方法
WO2011065320A1 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5461834B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5433323B2 (ja) 燃料電池システムの負荷追従運転方法
JP5281996B2 (ja) 燃料電池システムの負荷追従運転方法
WO2011024899A1 (ja) 燃料電池システムの負荷追従運転方法
JP5281997B2 (ja) 燃料電池システムの負荷追従運転方法
JP5281998B2 (ja) 燃料電池システムの負荷追従運転方法
JP5281991B2 (ja) 燃料電池システムの負荷追従運転方法
JP5325661B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029700.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13379759

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117031165

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2767081

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010794078

Country of ref document: EP