WO2011001780A1 - 特定分散剤を含有する外水相を利用する二段階乳化法によるリポソームの製造方法、ならびに当該リポソームの製造方法を用いるリポソーム分散液またはその乾燥粉末の製造方法およびそれにより製造されるリポソーム分散液またはその乾燥粉末 - Google Patents
特定分散剤を含有する外水相を利用する二段階乳化法によるリポソームの製造方法、ならびに当該リポソームの製造方法を用いるリポソーム分散液またはその乾燥粉末の製造方法およびそれにより製造されるリポソーム分散液またはその乾燥粉末 Download PDFInfo
- Publication number
- WO2011001780A1 WO2011001780A1 PCT/JP2010/059371 JP2010059371W WO2011001780A1 WO 2011001780 A1 WO2011001780 A1 WO 2011001780A1 JP 2010059371 W JP2010059371 W JP 2010059371W WO 2011001780 A1 WO2011001780 A1 WO 2011001780A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liposome
- emulsification
- producing
- liposomes
- dry powder
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1277—Processes for preparing; Proliposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/14—Liposomes; Vesicles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/28—Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
Definitions
- the present invention relates to a method for producing liposomes or liposome dispersions or dry powders thereof used in the fields of pharmaceuticals, cosmetics, foods and the like by a two-stage emulsification method, and a liposome dispersion liquid produced by a two-step emulsification method or a dry powder thereof.
- a method for producing liposomes or liposome dispersions or dry powders thereof used in the fields of pharmaceuticals, cosmetics, foods and the like by a two-stage emulsification method, and a liposome dispersion liquid produced by a two-step emulsification method or a dry powder thereof.
- Liposomes are closed endoplasmic reticulum consisting of monolayer or multi-layer lipid bilayer membrane (lipid bilayer membrane). Water-soluble drugs and hydrophobic drugs are placed inside the inner aqueous phase and lipid bilayer membrane, respectively. Since the lipid bilayer membrane of liposomes is similar to biological membranes and has high safety in vivo, various drugs such as drugs for DDS (drug delivery system) can be used. R & D is underway with its application being noted.
- DDS drug delivery system
- Non-Patent Document 1 discloses microchannel emulsification using a W / O emulsion as a dispersed phase and a Tris-HCl buffer as an outer aqueous phase.
- the inclusion rate of calcein in liposomes could be increased to about 80% by blending sodium caseinate as an emulsifier in the outer aqueous phase. It is described.
- Casein sodium used in the invention described in Non-Patent Document 1 is generally used as a food additive (stabilizer, emulsifier), but is not used as an additive such as an injection, It is a substance that is concerned about sex problems.
- sodium caseinate is present in the outer aqueous phase of the liposome for a long period of time, and the influence of the liposome on the lipid bilayer becomes apparent, and the leakage of the encapsulated drug tends to be accelerated. Therefore, it is desirable to remove such substances as much as possible after preparing liposomes.
- sodium caseinate forms a molecular assembly (sub micelle) having a volume average particle size of about 15 nm in an aqueous solvent, and further, the molecular assemblies associate to form particles having a volume average particle size of about 100 to 200 nm.
- Such molecular aggregates or particles associated with the molecular aggregates are close to the volume average particle diameter of pharmaceutical liposomes such as injections, and thus there is a problem that it is difficult to separate and remove from the prepared liposome dispersion.
- the present invention can suppress leakage of liposomes such as encapsulated drugs from liposomes even for long-term storage, and can be used stably for a long period of time, and an additive (dispersant for obtaining a dry powder thereof) And a method for producing a liposome or liposome dispersion and its dry powder by a two-stage emulsification method, and a liposome dispersion and its dry powder produced thereby.
- the present inventors can contribute to the long-term stabilization of liposomes or liposome aqueous solutions when specific dispersants such as polysaccharides and gelatin are blended in the outer aqueous phase of the secondary emulsification step.
- specific dispersants such as polysaccharides and gelatin are blended in the outer aqueous phase of the secondary emulsification step.
- the inventors have found that the present invention is a suitable dispersant and have completed the present invention.
- the said specific dispersing agent was separated and removed after liposome formation, and it can contribute to the long-term stabilization of the further liposome or liposome dispersion liquid.
- the liposome production method according to the present invention includes a primary emulsification step for obtaining a primary emulsion, a secondary emulsification step for emulsifying the primary emulsion and an external aqueous phase, and a solvent removal step.
- the outer aqueous phase in the secondary emulsification step forms a self-dispersing agent or a molecular assembly by itself, but the volume average particle size of the molecular assembly is 10 nm. It contains the following dispersant (hereinafter referred to as “specific dispersant”).
- the weight average molecular weight of the specific dispersant is preferably 1,000 or more and 100,000 or less.
- the specific dispersant contains at least one of protein, polysaccharide, ionic surfactant or nonionic surfactant, for example, at least one of gelatin, albumin, dextran or polyalkylene oxide compounds. Preferably it contains seeds.
- the volume average particle size of the liposome is preferably 50 nm or more and 300 nm or less.
- the emulsification method in the secondary emulsification step it is preferable to use a stirring emulsification method, a microchannel emulsification method, or membrane emulsification using an SPG membrane.
- the liposome is preferably a single cell liposome. Furthermore, it is preferable to use medical drugs as the substance encapsulated in the liposome.
- the liposome production method by such a two-stage emulsification method is combined with a separation step of separating the liposome obtained by the secondary emulsification step and the specific dispersant as necessary, and a liposome dispersion or It can be used in the method for producing the dry powder.
- the liposome dispersion liquid or dry powder thereof according to the present invention is manufactured by such a manufacturing method, and contains at least one of gelatin, albumin, dextran, and polyalkylene oxide compounds. May be.
- a "specific dispersant” (dispersant that does not form a molecular aggregate by itself or a molecular aggregate by itself is formed but has a volume average particle size of 10 nm or less.
- the outer water phase containing the agent is used.
- a substance that does not form a molecular assembly no matter how high the concentration is defined as an outer aqueous phase containing a “dispersing agent that does not form a molecular assembly by itself”.
- a dispersing agent at a concentration at which a substance (typically a surfactant having a critical micelle concentration) that forms a molecular aggregate at a certain concentration or higher is not reached. In this case, both cases are referred to.
- an external aqueous phase containing “a dispersing agent that forms a molecular assembly by itself but has a volume average particle size of 10 nm or less” refers to an outer aqueous phase that can form a molecular assembly but has a volume average particle size of 10 nm or less.
- Specified dispersants can be broadly classified into two types in terms of action.
- One is, like a polysaccharide, distributed in the entire outer aqueous phase (W2) because the orientation to the interface between the primary emulsion (W1 / O) and the outer aqueous phase (W2) is relatively small.
- / W2 has a function of stabilizing liposomes by preventing them from sticking to each other.
- the other is the relatively high orientation of the W1 / O / W2 emulsion at the interface, such as proteins and nonionic surfactants, and has the effect of stabilizing by surrounding the emulsion like a protective colloid. Is.
- the specific dispersant can prevent such W1 / O / W2 from being united with each other and increase the particle size, and can suppress the destabilization of the liposome. Contributes to improving the inclusion rate.
- the specific dispersant is oriented at the interface of the W1 / O / W2 emulsion, it becomes easier to dissolve individual liposomes as the liposomes are formed as the solvent is removed. It contributes to the improvement of the inclusion rate.
- multivesicular liposome refers to an artificial micro lipid vesicle comprising a lipid membrane surrounding a plurality of non-concentric inner aqueous phases.
- multilamellar liposomes MLV
- MLV multilamellar liposomes
- a characteristic of multivesicular liposomes and multilamellar liposomes is that the volume average particle size is in the micrometer range, usually 0.5 to 25 ⁇ m.
- UUV monovesicular liposome
- a mononuclear liposome refers to a liposome structure having a single inner aqueous phase, and usually has a volume average particle size in the range of about 20 to 500 nm.
- the specific dispersant performs a predetermined function during the formation of the liposome as described above, the mixed lipid component mainly composed of the phospholipid having hydration ability has the self-organization ability. Even if there is no, a dispersed state can be maintained.
- the specific dispersant in the present invention typically includes proteins, polysaccharides, ionic surfactants and nonionic surfactants, but is not limited thereto, and the specific dispersant Other substances having a predetermined function may be used.
- the specified dispersant is a substance that has been approved as an additive in pharmaceuticals, etc. (it is guaranteed that it will not have a significant effect on the human body even when administered to the body) There is no clinically substantial problem even if a part of the liposome remains in the liposome dispersion.
- the protein examples include gelatin (a soluble protein obtained by denaturing collagen by heating), albumin and trypsin.
- Gelatin usually has a molecular weight distribution of several thousand to several million, but preferably has a weight average molecular weight of 1,000 to 100,000, for example.
- Gelatin commercially available for medical use or food use can be used.
- Albumin includes egg albumin (molecular weight about 45,000), serum albumin (molecular weight about 66,000 ... bovine serum albumin), milk albumin (molecular weight about 14,000 ... ⁇ -lactalbumin), etc. A dry desugared egg white is preferred.
- polysaccharide examples include dextran, starch, glycogen, agarose, pectin, chitosan, sodium carboxymethylcellulose, xanthan gum, locust bean gum, guar gum, maltotriose, amylose, pullulan, heparin, dextrin, and the like. Is preferably from 1,000 to 100,000.
- Examples of the ionic surfactant include sodium cholate and sodium deoxycholate.
- nonionic surfactant examples include alkyl glycosides such as octyl glucoside, polyalkylene oxide compounds such as “Tween 80” (Tokyo Chemical Industry Co., Ltd., polyoxyethylene sorbitan monooleate, molecular weight 1309.68) and “Pluronic”.
- F-68 "(BASF, polyoxyethylene (160) polyoxypropylene (30) glycol, number average molecular weight 9600), polyethylene glycols having a weight average molecular weight of 1000 to 100,000, and the like.
- Polyethylene glycol (PEG) products are "Unilube” (Nippon Oil Co., Ltd.), GL4-400NP, GL4-800NP (Nippon Oil Corporation), PEG200,000 (Wako Pure Chemical Industries), Macrogol (Sanyo Chemical Industries Co., Ltd.) Company).
- TEM transmission electron microscope
- the amount of the specific dispersant added to the outer aqueous phase may be adjusted within an appropriate range depending on the type.
- concentration of the specific dispersant may be adjusted within an appropriate range depending on the type.
- concentration is adjusted within a range not reaching the concentration.
- concentration is too high, the measurement by the particle size distribution system may be hindered. Therefore, it is preferable to adjust the concentration within a low range that does not cause such a hindrance.
- the volume average particle size of the self-assembled molecular aggregate or the aggregate of the specific dispersant is preferably 1/10 or less of the volume average particle size of the liposome. 1/100 or less is more preferable.
- the weight average molecular weight of a specific dispersing agent exists in the range of 1,000 or more and 100,000 or less. Moreover, when the weight average molecular weight is in this range, the drug encapsulation rate of the liposome is good.
- the mixed lipid component (F1) used in the primary emulsification step mainly constitutes the inner membrane of the lipid bilayer membrane of the liposome.
- the mixed lipid component (F2) mainly constitutes the outer membrane.
- the mixed lipid components (F1) and (F2) may have the same composition or different compositions.
- composition of these mixed lipid components is not particularly limited, but is generally phospholipid (lecithin derived from animals and plants; phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid or fatty acid esters thereof) Glycerophospholipids; sphingophospholipids; derivatives thereof, etc.) and sterols (cholesterol, phytosterol, ergosterol, derivatives thereof, etc.) that contribute to the stabilization of lipid membranes, and glycolipids, glycols, Aliphatic amines, long chain fatty acids (oleic acid, stearic acid, palmitic acid, etc.) and other compounds that impart various functions may be blended.
- phospholipid lecithin derived from animals and plants
- neutral phospholipids such as dipalmitoyl phosphatidylcholine (DPPC) and dioleyl phosphatidylcholine (DOPC) are commonly used as the phospholipid.
- F2 contains a lipid component necessary for imparting functionality as a DDS, such as PEGylated phospholipid, so that the liposome surface can be efficiently modified.
- the blending ratio of the mixed lipid component may be appropriately adjusted according to the application while taking into consideration properties such as the stability of the lipid membrane and the behavior of the liposome in vivo.
- Aqueous solvent (W1) / (W2), organic solvent (O) As the aqueous solvents (W1) and (W2) and the organic solvent (O), known general solvents can be used.
- the aqueous solvent (W1) and the organic solvent (O) used in the primary emulsification step form an aqueous phase and an oil phase of the W1 / O emulsion, respectively.
- the aqueous solvent (W2) used in the secondary emulsification step is W1 / O. /
- the outer water phase of the W2 emulsion is formed.
- the aqueous solvent include pure water containing other solvents mixed with water as necessary, salts / sugars for adjusting osmotic pressure, buffers for adjusting pH, and the like.
- the organic solvent examples include those composed of a compound that is not mixed with an aqueous solvent such as hexane (n-hexane) and chloroform.
- the organic solvent containing hexane as a main component (50% by volume or more) is obtained as a nano-sized organic solvent. This is preferable because the monodispersibility of the W1 / O emulsion is good.
- substances to be encapsulated in liposomes are not particularly limited, and are known in the fields of pharmaceuticals, cosmetics, foods, etc. depending on the use of liposomes. Various substances can be used.
- water-soluble drugs for medical use include, for example, contrast agents (nonionic iodine compounds for X-ray contrast, complexes composed of gadolinium and chelating agents for MRI contrast), anticancer agents, and the like.
- contrast agents nonionic iodine compounds for X-ray contrast, complexes composed of gadolinium and chelating agents for MRI contrast
- anticancer agents and the like.
- RNA vaccines as antigens
- diphtheria Japanese encephalitis, polio, rubella, mumps, hepatitis and other viruses as antigens
- DNA or RNA vaccines DNA or RNA vaccines
- pharmacologically active substances dyes / fluorescent dyes (calcein)
- dyes / fluorescent dyes calcein
- chelating agents stabilization
- pharmaceutical aids such as preservatives and preservatives.
- the method for producing liposomes by the two-stage emulsification method of the present invention includes the following steps (1) to (3). Since this production method forms liposomes in an external aqueous phase containing a specific dispersant, it naturally becomes a method for producing a dispersion of liposomes. Furthermore, it can be set as the manufacturing method of the dispersion liquid of a liposome, or its dry powder by combining suitably the other processes (5), such as a isolation
- the primary emulsification step is a step of preparing a W1 / O emulsion by emulsifying the organic solvent (O), the aqueous solvent (W1), and the mixed lipid component (F1).
- the method for preparing the W1 / O emulsion is not particularly limited, and can be performed using an apparatus such as an ultrasonic emulsifier, a stirring emulsifier, a membrane emulsifier, or a high-pressure homogenizer.
- a premix membrane emulsification method may be used in which a W1 / O emulsion having a large particle size is prepared in advance and then a W1 / O emulsion having a smaller particle size is prepared by passing through a membrane having a small pore size. Good.
- the pH of the aqueous solvent (W1) is usually in the range of 3 to 10, and can be adjusted to a preferable range according to the mixed lipid component.
- the pH is preferably 6 to 8.5.
- An appropriate buffer may be used to adjust the pH.
- the volume average particle size of the W1 / O emulsion, the ratio of the mixed lipid component (F1) added to the organic solvent (O), the volume ratio of the organic solvent (O) and the aqueous solvent (W1), and other operations can be appropriately adjusted according to the emulsification method to be adopted, taking into consideration the conditions of the subsequent secondary emulsification step, the aspect of the liposome to be finally prepared, and the like.
- the ratio of the mixed lipid component (F1) is 1 to 50% by mass with respect to the organic solvent (O)
- the volume ratio of the organic solvent (O) and the aqueous solvent (W1) is 100: 1 to 1: 2. is there.
- the water-soluble drug in order to encapsulate the water-soluble drug in the liposome, (i) the water-soluble drug is previously dissolved or suspended in the aqueous solvent (W1) in the primary emulsification step, and the secondary emulsification step is completed.
- Fat-soluble drugs are also added in advance at the time of the primary emulsification step as in (i) above, or are added after obtaining empty liposomes as in (ii) above to encapsulate in the liposomes. be able to.
- the secondary emulsification step is a step of preparing a W1 / O / W2 emulsion using the W1 / O emulsion obtained by the above step (1).
- an outer aqueous phase (W2) containing a specific dispersant is used in the secondary emulsification step.
- an aqueous solvent forming an outer aqueous phase and a specific dispersant are mixed to prepare the outer aqueous phase (W2) first, and the W1 / O emulsion is dispersed therein.
- the method for preparing the W1 / O / W2 emulsion in the secondary emulsification step is not particularly limited, and a membrane emulsification method (e.g. an emulsification method using an SPG film), a microchannel emulsification method, a stirring emulsification method, a liquid
- a membrane emulsification method e.g. an emulsification method using an SPG film
- a microchannel emulsification method e.g. an emulsification method using an SPG film
- a stirring emulsification method e.g. an emulsification method using an SPG film
- a liquid e.g. an emulsification method using an SPG film
- a microchannel emulsification method e.g. an emulsification method using an SPG film
- a stirring emulsification method e.g. an emulsification method using an SPG film
- the microchannel emulsification method and the membrane emulsification method using an SPG membrane are characterized in that a W1 / O / W2 emulsion having a uniform particle diameter can be prepared as compared with other emulsification methods. Therefore, it is preferable from the viewpoint of suppressing the collapse of the droplet during the emulsification operation and the leakage of the encapsulated substance from the droplet.
- the terrace length, channel depth and channel width of the microchannel substrate, and the pore diameter of the SPG film can be appropriately adjusted according to the size of the W1 / O / W2 emulsion to be formed.
- the pore diameter of the SPG film Is usually 0.1 to 100 ⁇ m.
- a W1 / O / W2 emulsion having a large particle size is prepared in advance, and then a premix that prepares a W1 / O / W2 emulsion having a smaller particle size by passing through a membrane having a small pore size.
- a membrane permeation method such as a membrane emulsification method may be used.
- the premix membrane emulsification method is preferable because it requires a small amount of energy, requires a large amount of treatment, and can speed up the preparation of liposomes.
- a method / apparatus used for mixing two or more fluids can be used.
- stirrers there are various shapes.
- a bar, plate, or propeller-like stirrer is simply rotated in a tank at a constant speed in one direction.
- the stirrer may be intermittently rotated or reversely rotated.
- various devices such as arranging a plurality of stirrers in reverse and alternately rotating, or attaching a protrusion or plate combined with a stirrer on the tank side to enhance the shear stress generated by the stirrer are made.
- There are various ways to transmit power to the stirrer and most of them rotate the stirrer via a rotating shaft.
- a stirrer with a magnet enclosed and coated with Teflon registered trademark
- Teflon registered trademark
- a low-viscosity fluid such as a small ornamental water tank aeration device or industrial spray drying device does not use a stirrer, but the tank fluid and outside air can be pressurized with a pump installed outside the tank and flow into the tank.
- a pump installed outside the tank and flow into the tank.
- an apparatus that stirs the inside of the tank by blowing well.
- hammer mills, pin mills, ong mills, cobol mills, Aspec mills, ball mills, jet mills, roll mills, colloid mills, disper mills, etc. as pulverizers called mills. Fluids are mixed by the action of mechanical forces such as shear force, impact force, and cavitation force.
- an electric stirring method can also be used.
- the mixing mode (addition order, etc.) of the aqueous solvent (W2), W1 / O emulsion, mixed lipid component (F2) and specific dispersant is not particularly limited, and an appropriate mode may be selected.
- F2 is mainly composed of water-soluble lipids
- such F2 and a specific dispersant can be added to W2 in advance, and a W1 / O emulsion can be added thereto for emulsification.
- F2 is mainly composed of a fat-soluble lipid
- oil phase of the W1 / O emulsion in advance, and this is added to the W2 to which the specific dispersant is added. It can be added and emulsified.
- the volume average particle diameter of the W1 / O / W2 emulsion, the ratio of the mixed lipid component (F2) added to the organic solvent (O) of the aqueous solvent (W2) to the W1 / O emulsion, W1 / O emulsion The volume ratio of the aqueous solvent (W2), the addition amount of the specific dispersant, and other operating conditions can be appropriately adjusted in consideration of the use of the liposome to be finally prepared.
- the solvent removal step is a step of removing the organic solvent phase (O) contained in the W1 / O / W2 emulsion obtained by the secondary emulsification step (2) to form a liposome dispersion. It is.
- the solvent removal method include a method of evaporating with an evaporator and a method of drying in liquid.
- the in-liquid drying method is a method in which the organic solvent (O) contained in the W1 / O / W2 emulsion is evaporated and removed by collecting the W1 / O / W2 emulsion, transferring it to an open container and allowing it to stand or stir. Yes, by such an operation, a lipid membrane composed of the mixed lipid membrane components (F1) and (F2) can be formed around the inner aqueous phase to obtain a liposome dispersion. At this time, the evaporation of the solvent can be further promoted by heating or reduced pressure.
- the temperature condition and the reduced pressure condition may be appropriately adjusted according to the type of the organic solvent to be used and the like according to a conventional method.
- the temperature condition is set in a range in which the solvent does not suddenly boil, for example, a range of 0 to 60 ° C. is preferable, and 0 to 25 ° C. is more preferable.
- the decompression condition is preferably set within the range of the saturated vapor pressure of the solvent to atmospheric pressure, and more preferably within the range of + 1% to 10% of the saturated vapor pressure of the solvent.
- conditions that match the solvent species having a higher saturated vapor pressure are preferred.
- These removal conditions may be combined within a range in which the solvent does not suddenly boil. For example, when using a heat-sensitive chemical, it is preferable to distill off the solvent at a lower temperature and under reduced pressure.
- the steps (2) and (3) may be continuously performed so that stirring is further continued to remove the solvent. it can.
- the liposomes obtained by the production method of the present invention may contain a certain percentage of W1 / O / W2 emulsion-derived multivesicular liposomes.
- stirring or decompression preferably, It is effective to perform in combination. What is important is that the pressure reduction and stirring are performed longer than the time required for most of the solvent to escape.
- hydration of the lipids constituting the liposome proceeds, the multivesicular liposome is dissolved, and it is considered that the liposome state of the single vesicle is separated. Even more surprisingly, these operations do not cause leakage of inclusions. If there are multivesicular liposomes remaining after such an operation, the multivesicular liposomes can be removed by a filter using the difference in particle diameter.
- the volume average particle diameter of the liposome finally obtained by the above production method is not particularly limited, but when used as a medical liposome preparation Is preferably 50 nm or more and 1,000 nm or less, and more preferably 50 nm or more and 300 nm or less. Liposomes with such a size have little risk of occluding capillaries and can pass through gaps formed in blood vessels in the vicinity of cancer tissue, so they are convenient for use by being administered to the human body as pharmaceuticals. is there.
- the separation step is a step for separating the specific dispersant and the liposome and removing the specific dispersant from the liposome dispersion.
- MF membrane microfiltration membrane
- UF membrane ultrafiltration membrane
- a molecular aggregate eg, volume average
- the particle size of the prepared liposome can be adjusted to a desired range by the sizing step.
- a hydrostatic extrusion device equipped with a polycarbonate membrane or cellulose membrane having a pore size of 0.1 to 0.4 ⁇ m as a filter (such as “Extruder” manufactured by NOF Liposome Co., Ltd., “Liponizer” manufactured by Nomura Micro Science Co., Ltd., etc.) Liposomes having a central particle size of about 50 to 500 nm can be obtained efficiently. If the above “extruder” or the like is used, the multivesicular liposomes secondary formed from the W1 / O / W2 emulsion can be separated into single vesicle liposomes.
- the liposome dispersion is dried and powdered by freeze-drying or the like and made into a form suitable for storage until use. Freeze-drying can be performed using the same means and apparatus as in the case of producing conventional liposomes. For example, in accordance with an indirect heating freezing method, a refrigerant direct expansion method, a heat medium circulation method, a triple heat exchange method, an overlapping refrigeration method, etc., under appropriate conditions (temperature: ⁇ 120 to ⁇ 20 ° C., pressure: 1 to 15 Pa, time: It may be lyophilized in 16 to 26 hours). If the lyophilized product thus obtained is poured into water, a liposome dispersion can be prepared again.
- volume average particle diameter of the liposomes in Examples and Comparative Examples described below was measured according to the following method.
- the W1 / O emulsion was diluted 10 times with a chloroform / hexane mixed solvent (volume ratio: 4/6, the same specific gravity as the inner aqueous phase), and a dynamic light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso) was used to measure the particle size distribution, and based on this, the volume average particle size was calculated.
- a chloroform / hexane mixed solvent volume ratio: 4/6, the same specific gravity as the inner aqueous phase
- UPA-EX150 dynamic light scattering nanotrack particle size analyzer
- the volume average particle diameter of the specific dispersant forming the molecular assembly was measured as it was for the liposome dispersion liquid (hereinafter, also referred to as suspension) prepared in the following Examples using the same apparatus. That is, the prepared liposome particle suspension was diluted 25 times with phosphate buffered saline (PBS), and the particle size distribution was measured using a dynamic light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso Co., Ltd.). Was measured, and based on this, the volume average particle size was calculated.
- PBS phosphate buffered saline
- Example 1 (Production of W1 / O emulsion by primary emulsification process) 15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) ( O) and 5 mL of Tris-HCl buffer solution (pH 8, 50 mmol / L) containing calcein (0.4 mM) was used as the aqueous dispersion phase (W1) for the inner aqueous phase.
- COATSOME NC-50 egg yolk lecithin
- OA oleic acid
- the microchannel substrate of the module was made of silicon, and the terrace length, channel depth, and channel width of the microchannel substrate were about 60 ⁇ m, about 11 ⁇ m, and about 16 ⁇ m, respectively.
- a glass plate is pressure-bonded to the microchannel substrate to form a channel, and a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2), on the outlet side of the channel
- W2 a tris-hydrochloric acid buffer containing 3% alkali-treated gelatin (an isoelectric point of about 5), which is an external aqueous phase solution (W2)
- W2 aqueous phase solution
- Example 2 In Example 1, in the production of the W1 / O / W2 emulsion by the secondary emulsification step, the dispersing agent of the outer aqueous phase was changed from alkali-treated gelatin to “Tween 80” (Tokyo Chemical Industry Co., Ltd., polyoxyethylene sorbitan monooleate, The production was carried out in the same manner as in Example 1 except that the molecular weight was changed to 1309.68) and the concentration was 1%. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Teween 80 Tokyo Chemical Industry Co., Ltd., polyoxyethylene sorbitan monooleate
- Example 3 In Example 1, in the production of the W1 / O / W2 emulsion by the secondary emulsification process, except that the dispersant in the outer aqueous phase is changed from alkali-treated gelatin to albumin (Kupy Corporation, also known as dry desugared egg white). Then, the production was carried out in the same manner as in Example 1. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 4 In Example 1, in the production of the W1 / O / W2 emulsion by the secondary emulsification step, except that the dispersant for the outer aqueous phase is changed from alkali-treated gelatin to carboxydextran, the same as in Example 1, Manufacturing was carried out. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 5 In Example 1, in the production of the W1 / O / W2 emulsion by the secondary emulsification process, the dispersant in the outer aqueous phase is changed from alkali-treated gelatin to purified gelatin (Nippi, Nippi High Grade Gelatin Type AP). Except for this, the production was carried out in the same manner as in Example 1. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 6 the production was carried out in the same manner as in Example 5 except that the production of the W1 / O / W2 emulsion by the secondary emulsification step was changed from the microchannel emulsification method to the membrane emulsification using the SPG membrane. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. That is, the W1 / O emulsion obtained by the primary emulsification step was used as a dispersed phase, and a W1 / O / W2 emulsion was produced by the SPG membrane emulsification method.
- a cylindrical SPG membrane having a diameter of 10 mm, a length of 20 mm, and a pore diameter of 2.0 ⁇ m was used for an SPG membrane emulsifying device (trade name “external pressure type micro kit” manufactured by SPG Techno Co., Ltd.).
- SPG membrane emulsifying device trade name “external pressure type micro kit” manufactured by SPG Techno Co., Ltd..
- the pressure required for membrane emulsification was about 25 kPa.
- Example 7 In Example 5, the production was carried out in the same manner as in Example 5 except that the production of the W1 / O / W2 emulsion by the secondary emulsification step was changed from the microchannel emulsification method to the stirring emulsification method. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. That is, in the stirring emulsification, the W1 / O emulsion was supplied to the place where W2 was vigorously stirred with a stirrer to produce a W1 / O / W2 emulsion.
- Example 8 In Example 1, in the production of the W1 / O / W2 emulsion by the secondary emulsification step, the dispersant in the outer aqueous phase was changed from alkali-treated gelatin to sodium cholate (molecular weight 430), and the concentration was 0.1%. Production was carried out in the same manner as in Example 1 except that. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 9 In Example 6, in the production of the W1 / O / W2 emulsion by the secondary emulsification process, the dispersant in the outer aqueous phase is changed from purified gelatin to sodium cholate (molecular weight 430), and the concentration is 0.1%. Except for, the production was carried out in the same manner as in Example 6. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 10 in Example 7, in the production of the W1 / O / W2 emulsion by the secondary emulsification step, the outer aqueous phase dispersant is changed from purified gelatin to sodium cholate (molecular weight 430), and the concentration is 0.1%. Except for, the production was carried out in the same manner as in Example 7. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 11 In Example 1, in the production of the W1 / O / W2 emulsion by the secondary emulsification step, the dispersant in the outer aqueous phase is changed from alkali-treated gelatin to octylglucoside (molecular weight 292), and the concentration is set to 1%. Except for this, the production was carried out in the same manner as in Example 1. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 12 In Example 6, production was carried out in the same manner as in Example 6 except that the drug to be included was changed from calcein to cytarabine. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
- Example 13 In Example 7, production was carried out in the same manner as in Example 6 except that the drug to be included was changed from calcein to cytarabine. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
- Example 14-23 In Example 1, in the production of the W1 / O / W2 emulsion by the secondary emulsification step, except that the dispersant in the outer aqueous phase was changed from the alkali-treated gelatin to the specific dispersant described in Table 1, respectively. In the same manner as in Example 1, Examples 14 to 23 were produced. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 24 the production was carried out in the same manner as in Example 23 except that the production of the W1 / O / W2 emulsion by the secondary emulsification step was changed from the microchannel emulsification method to the membrane emulsification using the SPG membrane. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 25 the production was carried out in the same manner as in Example 23 except that the production of the W1 / O / W2 emulsion by the secondary emulsification step was changed from the microchannel emulsification method to the stirring emulsification method. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 1 in the production of the W1 / O / W2 emulsion by the secondary emulsification step, except that the dispersant in the outer aqueous phase was changed from the alkali-treated gelatin to the specific dispersant described in Table 1, respectively.
- the production of Examples 26 to 30 was carried out. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 31 In Example 30, the production was carried out in the same manner as in Example 30 except that the production of the W1 / O / W2 emulsion by the secondary emulsification step was changed from the microchannel emulsification method to the membrane emulsification using the SPG membrane. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 32 In Example 2, the production was carried out in the same manner as in Example 2 except that the production of the W1 / O / W2 emulsion by the secondary emulsification step was changed from the microchannel emulsification method to the membrane emulsification using the SPG membrane. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 33 In Example 32, in the production of the W1 / O / W2 emulsion by the secondary emulsification step, except that the dispersing agent of the outer aqueous phase was changed from Tween 80 to the specific dispersing agent described in Table 1, respectively. In the same manner as in Example 1, production of Examples 33 to 35 was carried out. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Example 36 In Example 1, the production was carried out in the same manner as in Example 1 except that the drug to be included was changed from calcein to cytarabine. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
- Example 37 In Example 2, production was carried out in the same manner as in Example 2 except that the drug to be included was changed from calcein to cytarabine. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
- Example 38 In Example 3, the production was carried out in the same manner as in Example 3 except that the drug to be included was changed from calcein to cytarabine. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
- Example 39 In Example 4, the production was carried out in the same manner as in Example 4 except that the drug to be included was changed from calcein to cytarabine. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
- Example 40 In Example 5, production was carried out in the same manner as in Example 5 except that the drug to be included was changed from calcein to cytarabine. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
- Comparative Example 1 (Production of W1 / O emulsion by primary emulsification process) 15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) ( O) and 5 mL of Tris-HCl buffer solution (pH 8, 50 mmol / L) containing calcein (0.4 mM) was used as the aqueous dispersion phase (W1) for the inner aqueous phase.
- COATSOME NC-50 egg yolk lecithin
- OA oleic acid
- the microchannel substrate of the module was made of silicon, and the terrace length, channel depth, and channel width of the microchannel substrate were about 60 ⁇ m, about 11 ⁇ m, and about 16 ⁇ m, respectively.
- a glass plate is pressure-bonded to the microchannel substrate to form a channel, and a tris-hydrochloric acid buffer solution (pH 8, 50 mmol / L) containing 3% sodium caseinate as an outer aqueous phase solution (W2) on the outlet side of the channel.
- W1 / O emulsion was supplied from the inlet side of the channel to produce a W1 / O / W2 emulsion.
- Comparative Example 3 In the production of a W1 / O / W2 emulsion by the secondary emulsification step, a tris-hydrochloric acid buffer solution (pH 8, 50 mmol / L) containing 3% sodium caseinate as an outer aqueous phase solution (W2) was added to 3% dodecylbenzenesulfonic acid. Production was carried out in the same manner as in Comparative Example 1 except that a Tris-HCl buffer solution (pH 8, 50 mmol / L) containing sodium was used, and a suspended liquid was obtained.
- a Tris-HCl buffer solution pH 8, 50 mmol / L
- Comparative Example 4 In Comparative Example 1, the production was carried out in the same manner as in Comparative Example 1 except that the production of the W1 / O / W2 emulsion by the secondary emulsification process was changed from the microchannel emulsification method to the membrane emulsification using the SPG membrane. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Comparative Example 5 In Comparative Example 4, production was carried out in the same manner as in Comparative Example 4 except that the drug to be included was changed from calcein to cytarabine. A suspension of fine liposome particles was obtained, and it was confirmed that cytarabine was contained in the particles.
- Comparative Example 6 In Comparative Example 1, production was carried out in the same manner as in Comparative Example 1 except that the production of the W1 / O / W2 emulsion by the secondary emulsification step was changed from the microchannel emulsification method to the stirring emulsification method. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
- Decrease rate of encapsulation (%) 100 ⁇ (encapsulation rate after 1 month / encapsulation rate at the time of liposome formation) ⁇ 100 ⁇ : Decrease rate of inclusions from 0% to less than 5% ⁇ : Decrease rate of inclusions from 5% to less than 15% ⁇ : Decrease rate of inclusions from 15% to less than 35% ⁇ : Decrease rate of inclusions from 35% to 100% % Or less (Liposome encapsulation rate (%))
- the encapsulation rate at the time of formation of the liposomes obtained in Examples 1 to 40 and Comparative Examples 1 to 6 and after one month was measured according to the following method. The results are shown in Table 1.
- the fluorescence intensity (F total ) of the entire liposome particle suspension (3 mL) was measured with a spectrophotometer (U-3310, JASCO Corporation). Next, the fluorescence intensity (F in ) in the liposome was measured by adding 30 ⁇ L of 0.01 M CoCl 2 Tris-HCl buffer and quenching the fluorescence of the encapsulated drug calcein leaked into the outer aqueous phase with Co 2+ . Furthermore, liposomes were prepared under the same conditions as the sample without adding calcein, and the fluorescence (F 1 ) emitted by the lipids themselves was measured.
- Inclusion rate E (%) (F in ⁇ F l ) / (F total ⁇ F l ) ⁇ 100 (Measurement method of inclusion rate when inclusion is cytarabine) Components of the suspension of liposome particles were separated using an ultracentrifuge under ultracentrifugation conditions, and the amount of cytarabine contained in the solid content (liposome) and supernatant solution was determined by HPLC (column: VarianPolaris C18-A (3 ⁇ m , 2 ⁇ 40 mm)).
- the amount of cytarabine encapsulated in the liposome ie the amount of cytarabine encapsulated in the liposome, and the amount of cytarabine not encapsulated in the liposome, which is the total amount of cytarabine encapsulated in the liposome.
- the value obtained by dividing the amount of cytarabine is multiplied by 100 to calculate the inclusion rate (%) of cytarabine.
- liposomes produced using the specific dispersant of the present invention are stable for a long time with almost no decrease in the encapsulation rate of the encapsulated drug even after one month.
- liposomes produced using other than the specific dispersant of the present invention have a significant decrease in the encapsulation rate and lack the stability of the liposomes.
- all the liposomes described in Table 1 were single-cell liposomes.
- Examples 41-49 From the suspension of liposome particles produced in Examples 1, 2, 3, 4, 6, 11, 19, 23, and 30, the liposomes of Examples 41 to 49 were subjected to the micro / ultrafiltration process described below. A suspension was prepared.
- Comparative Examples 7 and 8 From the liposome particle suspensions produced in Comparative Examples 1 and 3 above, the below-described precision / ultrafiltration step was performed to produce the liposome suspensions of Comparative Examples 7 and 8.
- the liposome suspension obtained by separating the specific dispersant from the suspension of liposome particles produced using the specific dispersant of the present invention has a decrease in the encapsulation rate for one month. It can be seen that it is suppressed compared with that of the liposome suspension that was not separated, and the rate of decrease is less than 5%. Since the comparative example which did not use the specific dispersant of the present invention could not be separated and removed, the inclusion rate after one month did not change even if a separation step was provided. The reason why the separation and removal could not be performed is presumed to be the existence of molecular aggregates by itself.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Birds (AREA)
- Dispersion Chemistry (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Virology (AREA)
- Medicinal Preparation (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Colloid Chemistry (AREA)
- General Preparation And Processing Of Foods (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Cosmetics (AREA)
Abstract
Description
・特定分散剤
本発明では、二次乳化工程において「特定分散剤」(自己による分子集合体を形成しない分散剤または自己による分子集合体を形成するがその体積平均粒径が10nm以下である分散剤)を含有する外水相を用いる。
一次乳化工程で用いる混合脂質成分(F1)は主としてリポソームの脂質二重膜の内膜を構成する。混合脂質成分(F2)は主として外膜を構成する。混合脂質成分(F1)および(F2)は、同一の組成であっても、異なる組成であってもよい。
水性溶媒(W1)および(W2)ならびに有機溶媒(O)は公知の一般的なものを用いることができる。一次乳化工程で用いられる水性溶媒(W1)および有機溶媒(O)は、それぞれW1/Oエマルションの水相および油相をなし、二次乳化工程で用いられる水性溶媒(W2)は、W1/O/W2エマルションの外水相をなす。水性溶媒としては、たとえば純水に必要に応じて水と混合する他の溶媒、浸透圧調整のための塩類・糖類、pH調整のための緩衝液などを配合したものが挙げられる。有機溶媒としては、たとえばヘキサン(n-ヘキサン)やクロロホルムなど、水性溶媒と混合しない化合物からなるものが挙げられるが、ヘキサンを主成分(50体積%以上)とする有機溶媒は、得られるナノサイズのW1/Oエマルションの単分散性が良好であるため好ましい。
本発明において、リポソームに内包させるべき物質(薬剤類と総称する)は特に限定されるものではなく、リポソームの用途に応じて医薬品、化粧品、食品などの分野で知られている各種の物質を用いることができる。
本発明の二段階乳化法によるリポソームの製造方法は、下記工程(1)~(3)を有する。この製造方法は、特定分散剤を含有する外水相中でリポソームを形成するので、自ずとリポソームの分散液の製造方法となる。さらに、必要に応じて分離工程(4)および乾燥粉末化工程等のその他の工程(5)を適宜組み合わせることにより、リポソームの分散液またはその乾燥粉末の製造方法とすることができる。
一次乳化工程は、有機溶媒(O)、水性溶媒(W1)、および混合脂質成分(F1)を乳化してW1/Oエマルションを調製する工程である。
二次乳化工程は、上記工程(1)により得られたW1/Oエマルションを用いて、W1/O/W2エマルションを調製する工程である。
溶媒除去工程は、上記二次乳化工程(2)により得られたW1/O/W2エマルションに含まれる有機溶媒相(O)を除去し、リポソームの分散液を形成させる工程である。溶媒除去の方法としては、たとえばエバポレータで蒸発させる方法や液中乾燥法などが挙げられる。
分離工程は、特定分散剤とリポソームとを分離し、リポソーム分散液中から特定分散剤を除去するための工程である。たとえば、精密濾過膜(MF膜,孔径50nm~10μm程度)または限外濾過膜(UF膜,孔径2~200nm程度)の特定孔径のものを用いれば、リポソームと自己による分子集合体(たとえば体積平均粒径10nm以下)を形成した特定分散剤とを効率よく分離することができる。なお、製品の用途に鑑みて、特定分散剤とリポソームとを分離しなくとも問題がない場合には、この分離工程は設けなくともよい。分離工程を設けることで、内包薬剤等のリポソームからの漏えいをさらに抑制でき、長期的に安定したリポソームが形成できる。
必要に応じて行われるその他の工程としては、たとえば整粒工程や乾燥粉末化工程が挙げられる。
以下に述べる実施例および比較例におけるリポソームの体積平均粒径は、下記の方法に従って測定した。
(一次乳化工程によるW1/Oエマルションの製造)
ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを含むヘキサン15mLを有機溶媒相(O)とし、カルセイン(0.4mM)を含むトリス-塩酸緩衝液(pH8、50mmol/L)5mLを内水相用の水分散相(W1)とした。50mLのビーカーにこれらの混合液を入れ、直径20mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、25℃にて15分間超音波を照射し(出力5.5)、乳化処理を行った。上記方法に従って測定したところ、この一次乳化工程で得られたW1/Oエマルションは体積平均粒径約220nmの単分散W/Oエマルションであることが確認された。
続いて、上記一次乳化工程により得られたW1/Oエマルションを分散相とし、実験用デッドエンド型マイクロチャネル乳化装置モジュールを使用して、マイクロチャネル乳化法によるW1/O/W2エマルションの製造を行った。
次に、上記W1/O/W2エマルションを蓋のない開放ガラス製容器に移し替え、室温下で約20時間、撹拌子により撹拌し、ヘキサンを揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例1において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をアルカリ処理ゼラチンから「Tween 80」(東京化成工業株式会社,ポリオキシエチレンソルビタンモノオレアート,分子量1309.68)に変更し、その濃度を1%とすることを除いては、実施例1と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例1において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をアルカリ処理ゼラチンからアルブミン(キューピー株式会社,別名:乾燥脱糖卵白)に変更することを除いては、実施例1と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例1において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をアルカリ処理ゼラチンからカルボキシデキストランに変更することを除いては、実施例1と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例1において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をアルカリ処理ゼラチンから精製ゼラチン(株式会社ニッピ,ニッピ ハイグレードゼラチンタイプAP)に変更することを除いては、実施例1と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例5において、二次乳化工程によるW1/O/W2エマルションの製造をマイクロチャネル乳化法からSPG膜を用いた膜乳化に変更した以外は、実施例5と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。すなわち、一次乳化工程により得られたW1/Oエマルションを分散相とし、SPG膜乳化法によるW1/O/W2エマルションの製造を行った。SPG膜乳化装置(SPGテクノ社製、商品名「外圧式マイクロキット」)に直径10mm、長さ20mm、細孔径2.0μmの円筒形SPG膜を用い、装置出口側に外水相溶液(W2)である精製ゼラチン(株式会社ニッピ,ニッピ ハイグレードゼラチンタイプAP)を含むトリス-塩酸緩衝液(pH8、50mmol/L)を満たしておき、装置入口側から上記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。膜乳化に必要とした圧力は約25kPaであった。
実施例5において、二次乳化工程によるW1/O/W2エマルションの製造をマイクロチャネル乳化法から撹拌乳化法に変更した以外は、実施例5と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。すなわち、撹拌乳化は、スターラーによりW2を強く撹拌しているところに、上記W1/Oエマルションを供給し、W1/O/W2エマルションを製造した。
実施例1において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をアルカリ処理ゼラチンからコール酸ナトリウム(分子量430)に変更し、その濃度を0.1%とすることを除いては、実施例1と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例6において、二次乳化工程によるW1/O/W2エマルションの製造で外水相の分散剤を精製ゼラチンからコール酸ナトリウム(分子量430)に変更し、その濃度を0.1%とすることを除いては、実施例6と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例7において、二次乳化工程によるW1/O/W2エマルションの製造で外水相の分散剤を精製ゼラチンからコール酸ナトリウム(分子量430)に変更し、その濃度を0.1%とすることを除いては、実施例7と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例1において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をアルカリ処理ゼラチンからオクチルグルコシド(分子量292)に変更し、その濃度を1%とすることを除いては、実施例1と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例6において、内包する薬剤をカルセインからシタラビンに変更した以外は、実施例6と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。
実施例7において、内包する薬剤をカルセインからシタラビンに変更した以外は、実施例6と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。
実施例1において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をアルカリ処理ゼラチンから各々表1に記載の特定分散剤に変更することを除いては、実施例1と同様にして、実施例14~23の製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例23において、二次乳化工程によるW1/O/W2エマルションの製造をマイクロチャネル乳化法からSPG膜を用いた膜乳化に変更した以外は、実施例23と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例23において、二次乳化工程によるW1/O/W2エマルションの製造をマイクロチャネル乳化法から撹拌乳化法に変更した以外は、実施例23と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例1において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をアルカリ処理ゼラチンから各々表1に記載の特定分散剤に変更することを除いては、実施例1と同様にして、実施例26~30の製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例30において、二次乳化工程によるW1/O/W2エマルションの製造をマイクロチャネル乳化法からSPG膜を用いた膜乳化に変更した以外は、実施例30と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例2において、二次乳化工程によるW1/O/W2エマルションの製造をマイクロチャネル乳化法からSPG膜を用いた膜乳化に変更した以外は、実施例2と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例32において、二次乳化工程によるW1/O/W2エマルションの製造で、外水相の分散剤をTween 80から各々表1に記載の特定分散剤に変更することを除いては、実施例1と同様にして、実施例33~35の製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
実施例1において、内包する薬剤をカルセインからシタラビンに変更した以外は、実施例1と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。
実施例2において、内包する薬剤をカルセインからシタラビンに変更した以外は、実施例2と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。
実施例3において、内包する薬剤をカルセインからシタラビンに変更した以外は、実施例3と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。
実施例4において、内包する薬剤をカルセインからシタラビンに変更した以外は、実施例4と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。
実施例5において、内包する薬剤をカルセインからシタラビンに変更した以外は、実施例5と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。
(一次乳化工程によるW1/Oエマルションの製造)
ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを含むヘキサン15mLを有機溶媒相(O)とし、カルセイン(0.4mM)を含むトリス-塩酸緩衝液(pH8、50mmol/L)5mLを内水相用の水分散相(W1)とした。50mLのビーカーにこれらの混合液を入れ、直径20mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、25℃にて15分間超音波を照射し(出力5.5)、乳化処理を行った。上記方法に従って測定したところ、この一次乳化工程で得られたW1/Oエマルションは体積平均粒径約220nmの単分散W/Oエマルションであることが確認された。
続いて、上記一次乳化工程により得られたW1/Oエマルションを分散相とし、実験用デッドエンド型マイクロチャネル乳化装置モジュールを使用して、マイクロチャネル乳化法によるW1/O/W2エマルションの製造を行った。
次に、上記W1/O/W2エマルションを蓋のない開放ガラス製容器に移し替え、室温下で約20時間静置し、ヘキサンを揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
二次乳化工程によるW1/O/W2エマルションの製造において、外水相溶液(W2)である3%のカゼインナトリウムを含むトリス-塩酸緩衝液(pH8、50mmol/L)をトリス-塩酸緩衝液(pH8、50mmol/L)にすることを除いては、比較例1と同様にして、製造を実施した。しかし、W1/O/W2エマルションが一旦は形成するものの、すぐに合一してしまい、安定なW1/O/W2エマルションは得られなかった。そのため、次の工程に実験を進めることができなかった。
二次乳化工程によるW1/O/W2エマルションの製造において、外水相溶液(W2)である3%のカゼインナトリウムを含むトリス-塩酸緩衝液(pH8、50mmol/L)を3%ドデシルベンゼンスルホン酸ナトリウムを含むトリス-塩酸緩衝液(pH8、50mmol/L)にすることを除いては、比較例1と同様にして、製造を実施し、懸濁した液を得た。
比較例1において、二次乳化工程によるW1/O/W2エマルションの製造をマイクロチャネル乳化法からSPG膜を用いた膜乳化に変更した以外は、比較例1と同様にして、製造を実施した。微細リポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
比較例4において、内包する薬剤をカルセインからシタラビンに変更した以外は、比較例4と同様にして、製造を実施した。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはシタラビンが含まれていることが確認された。
比較例1において、二次乳化工程によるW1/O/W2エマルションの製造をマイクロチャネル乳化法から撹拌乳化法に変更した以外は、比較例1と同様にして、製造を実施した。微細リポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。
上記実施例1~40、比較例1~6について、リポソーム形成時、及び1ヶ月後の内包率を求め、1ヵ月後のリポソームの安定性を評価した。結果を表1に示す。
内包の低下率(%)=100-(1ヵ月後内包率/リポソーム形成時内包率)×100
◎:内包の低下率が0%以上5%未満
○:内包の低下率が5%以上15%未満
△:内包の低下率が15%以上35%未満
×:内包の低下率が35%以上100%以下
(リポソームの内包率(%))
上記実施例1~40および比較例1~6で得られたリポソームの形成時、及び1ヶ月後の内包率は、下記の方法に従って測定した。結果は表1に示した。
リポソーム粒子の懸濁液(3mL)全体の蛍光強度(Ftotal)を分光光度計(U-3310、日本分光株式会社)により測定した。次に0.01M,CoCl2トリス塩酸緩衝液30μLを加えて外水相に漏出した内包薬剤カルセインの蛍光をCo2+により消光することで、リポソーム内の蛍光強度(Fin)を測定した。さらに、カルセインを加えないでサンプルと同じ条件でリポソームを作製し、脂質自身が発する蛍光(Fl)を測定した。内包率は下記式より算出した;
内包率E(%) = (Fin-Fl)/(Ftotal-Fl)×100
(内包物がシタラビンの場合の内包率の測定方法)
リポソーム粒子の懸濁液を超遠心条件のもと超遠心装置を用い成分分離し、固形分(リポソーム)と上澄溶液とに含まれるシタラビンの量をそれぞれHPLC(カラム:VarianPolaris C18-A(3μm,2×40mm))で定量した。固形分(リポソーム)の定量値、すなわちリポソームに内包されているシタラビンの量と、上澄溶液の定量値、すなわちリポソームに内包されていないシタラビンの量との合計値で、前者のリポソームに内包されているシタラビンの量を除した値に100を乗じて、シタラビンの内包率(%)を算出した。
1ヵ月間、リポソーム粒子の懸濁液を恒温器中(20℃)にて、静置し保存した。
上記実施例1,2,3,4,6,11,19,23、及び30で製造したリポソーム粒子の懸濁液から、後述の精密/限外ろ過工程を行い、実施例41~49のリポソーム懸濁液を製造した。
上記比較例1及び3で製造したリポソーム粒子の懸濁液から、後述の精密/限外ろ過工程を行い、比較例7及び8のリポソーム懸濁液を製造した。
精密/限外ろ過による分離は、加圧ろ過装置(デッドエンド型)に適宜設定した孔径のフィルターを装着し、リポソーム粒子の懸濁液を、トリス-塩酸緩衝液(pH=8、50mmol/L)で10倍に希釈した液を処理した。このろ液に含まれる分散剤の量を分析することで分離可能かを調べた。8割以上分離できたものを「分離できた」、1割以下しか分離できなかったものを「ほとんど分離できなかった」とした。また、その間のものはなかった。
上述したリポソームの安定性の評価と同様にして、実施例41~49及び比較例7、8で得られたリポソームの安定性を評価した。結果は表2に示した。
Claims (14)
- 一次乳化物を得る一次乳化工程と、前記一次乳化物と外水相とを乳化する二次乳化工程と、溶媒除去工程とを有する二段階乳化法によるリポソームの製造方法において、前記二次乳化工程における前記外水相は、自己による分子集合体を形成しない分散剤または自己による分子集合体を形成するがその分子集合体の体積平均粒径が10nm以下である分散剤(以下「特定分散剤」という。)を含有することを特徴とする二段階乳化法によるリポソームの製造方法。
- 前記特定分散剤の重量平均分子量は1,000以上100,000以下であることを特徴とする請求項1に記載の二段階乳化法によるリポソームの製造方法。
- 前記特定分散剤は、タンパク質、多糖類、イオン性界面活性剤または非イオン性界面活性剤の少なくとも1種を含有することを特徴とする請求項1または2に記載の二段階乳化法によるリポソームの製造方法。
- 前記特定分散剤は、ゼラチン、アルブミン、デキストランまたはポリアルキレンオキサイド系化合物の少なくとも1種を含有することを特徴とする請求項1~3のいずれかに記載の二段階乳化法によるリポソームの製造方法。
- 前記リポソームの体積平均粒径は50nm以上300nm以下であることを特徴とする請求項1~4のいずれかに記載の二段階乳化法によるリポソームの製造方法。
- 前記二次乳化工程の乳化方法として撹拌乳化法を用いることを特徴とする請求項1~5にいずれかに記載の二次乳化法によるリポソームの製造方法。
- 前記二次乳化工程の乳化方法としてマイクロチャネル乳化法を用いることを特徴とする請求項1~5のいずれかに記載の二段階乳化法によるリポソームの製造方法。
- 前記二次乳化工程の乳化方法としてSPG膜を用いた膜乳化を用いることを特徴とする請求項1~5のいずれかに記載の二段階乳化法によるリポソームの製造方法。
- 前記リポソームは、単胞リポソームであることを特徴とする請求項1~8に記載の二段階乳化法によるリポソームの製造方法。
- 前記リポソームに内包されるべき物質として、医療用の薬剤類を用いることを特徴とする請求項1~9に記載の二段階乳化法によるリポソームの製造方法。
- 請求項1~10のいずれかに記載の二段階乳化法によるリポソームの製造方法を含むことを特徴とするリポソーム分散液またはその乾燥粉末の製造方法。
- 前記二次乳化工程により得られたリポソームと前記特定分散剤とを分離する分離工程をさらに有することを特徴とする請求項11に記載のリポソーム分散液またはその乾燥粉末の製造方法。
- 請求項11または12に記載のリポソーム分散液またはその乾燥粉末の製造方法により製造されたことを特徴とするリポソーム分散液またはその乾燥粉末。
- ゼラチン、アルブミン、デキストランまたはポリアルキレンオキサイド系化合物の少なくとも1種を含有することを特徴とする請求項13に記載のリポソーム分散液またはその乾燥粉末。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10793951.4A EP2450031B1 (en) | 2009-07-02 | 2010-06-02 | Method for producing liposomes by two-stage emulsification method using outer aqueous phase containing specific dispersing agent, method for producing liposome dispersion or dry powder thereof using the method for producing liposomes, and liposome dispersion or dry powder thereof produced thereby |
US13/380,225 US20120100207A1 (en) | 2009-07-02 | 2010-06-02 | Process for producing liposomes by two-step emulsification method utilizing outer aqueous phase containing specific dispersing agent, process for producing liposome dispersion or dry powder thereof using the process for producing liposomes, and liposome dispersion or dry powder thereof produced thereby |
JP2011520844A JP4900536B2 (ja) | 2009-07-02 | 2010-06-02 | 特定の分散剤を含有する外水相を利用する二段階乳化法による単胞リポソームの製造方法、ならびに当該単胞リポソームの製造方法を用いる単胞リポソーム分散液またはその乾燥粉末の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009157626 | 2009-07-02 | ||
JP2009-157626 | 2009-07-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/380,225 Substitution US20120100207A1 (en) | 2009-07-02 | 2010-06-02 | Process for producing liposomes by two-step emulsification method utilizing outer aqueous phase containing specific dispersing agent, process for producing liposome dispersion or dry powder thereof using the process for producing liposomes, and liposome dispersion or dry powder thereof produced thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011001780A1 true WO2011001780A1 (ja) | 2011-01-06 |
Family
ID=43410860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059371 WO2011001780A1 (ja) | 2009-07-02 | 2010-06-02 | 特定分散剤を含有する外水相を利用する二段階乳化法によるリポソームの製造方法、ならびに当該リポソームの製造方法を用いるリポソーム分散液またはその乾燥粉末の製造方法およびそれにより製造されるリポソーム分散液またはその乾燥粉末 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120100207A1 (ja) |
EP (1) | EP2450031B1 (ja) |
JP (2) | JP4900536B2 (ja) |
WO (1) | WO2011001780A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130195969A1 (en) * | 2010-08-31 | 2013-08-01 | Novartis Ag | Small liposomes for delivery of immunogen encoding rna |
JP2013539402A (ja) * | 2010-06-23 | 2013-10-24 | ブライトサイド イノベーションズ,インコーポレイティド | レシチン担体小胞とその作製方法 |
JP2016086747A (ja) * | 2014-11-05 | 2016-05-23 | キユーピー株式会社 | W/o/w型乳化調味料 |
JP2016086748A (ja) * | 2014-11-05 | 2016-05-23 | キユーピー株式会社 | W/o/w型乳化調味料 |
US11291635B2 (en) | 2010-07-06 | 2022-04-05 | Glaxosmithkline Biological Sa | Virion-like delivery particles for self-replicating RNA molecules |
US11291682B2 (en) | 2010-07-06 | 2022-04-05 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US20220125723A1 (en) | 2010-07-06 | 2022-04-28 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
US11639370B2 (en) | 2010-10-11 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Antigen delivery platforms |
US11655475B2 (en) | 2010-07-06 | 2023-05-23 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11759422B2 (en) | 2010-08-31 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding RNA |
US11896636B2 (en) | 2011-07-06 | 2024-02-13 | Glaxosmithkline Biologicals Sa | Immunogenic combination compositions and uses thereof |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120100207A1 (en) * | 2009-07-02 | 2012-04-26 | Konica Minolta Holdings, Inc. | Process for producing liposomes by two-step emulsification method utilizing outer aqueous phase containing specific dispersing agent, process for producing liposome dispersion or dry powder thereof using the process for producing liposomes, and liposome dispersion or dry powder thereof produced thereby |
AU2012267531B2 (en) | 2011-06-08 | 2017-06-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
JP5834114B1 (ja) * | 2014-06-25 | 2015-12-16 | 日本食品化工株式会社 | 乳化剤および乳化食品 |
WO2019066649A1 (en) * | 2017-09-26 | 2019-04-04 | Nanomi B.V. | PROCESS FOR THE PREPARATION OF MICROPARTICLES BY A DOUBLE EMULSION TECHNIQUE |
EP3946449A4 (en) * | 2019-03-25 | 2022-11-09 | Ohio State Innovation Foundation | COMBINED IMMUNOREGULATION AND ITS USES |
JP7271374B2 (ja) * | 2019-09-10 | 2023-05-11 | 株式会社東芝 | 分析方法、分析基体、分析キット及び分析装置。 |
CN111388423A (zh) * | 2020-03-23 | 2020-07-10 | 江苏永达药业有限公司 | 一种盐酸莫西沙星脂质体的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001181213A (ja) * | 1999-12-27 | 2001-07-03 | Kaiso Shigen Kenkyusho:Kk | 標的指向性を有するベシクル及びその調製法 |
JP2003001097A (ja) * | 2001-06-22 | 2003-01-07 | Techno Network Shikoku Co Ltd | ナノサイズ脂質ベシクルの製造方法 |
WO2005053643A1 (ja) * | 2003-12-01 | 2005-06-16 | Mitsubishi Pharma Corporation | リポソーム |
JP2006272196A (ja) * | 2005-03-29 | 2006-10-12 | Toshiba Corp | 複合型微粒子の製造方法及び複合型微粒子の製造装置 |
WO2008108324A1 (ja) * | 2007-03-02 | 2008-09-12 | University Of Tsukuba | ベシクルの製造方法、この製造方法によって得られるベシクル、ベシクルの製造に用いられる凍結粒子の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4938965A (en) * | 1987-07-22 | 1990-07-03 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Ocular delivery of prophylactic agents |
US5853755A (en) * | 1993-07-28 | 1998-12-29 | Pharmaderm Laboratories Ltd. | Biphasic multilamellar lipid vesicles |
US6106858A (en) * | 1997-09-08 | 2000-08-22 | Skyepharma, Inc. | Modulation of drug loading in multivescular liposomes |
EP1030652B1 (en) * | 1997-11-14 | 2012-04-25 | Pacira Pharmaceuticals, Inc. | Production of multivesicular liposomes |
US20020114829A1 (en) * | 1998-12-18 | 2002-08-22 | Hayat Onyuksel | Materials and methods for making improved liposome compositions |
DE60026571T2 (de) * | 1999-11-19 | 2006-12-14 | MGI Pharma Biologics, Inc., Lexington | Durchflussverfahren zur herstellung von mikropartikeln |
JP3908579B2 (ja) * | 2002-03-28 | 2007-04-25 | 第一工業製薬株式会社 | W/o/w型多相エマルジョン |
GB0307428D0 (en) * | 2003-03-31 | 2003-05-07 | Medical Res Council | Compartmentalised combinatorial chemistry |
US8246984B2 (en) * | 2005-12-06 | 2012-08-21 | Rigel Pharmaceuticals, Inc. | Formulation of insoluble small molecule therapeutics in lipid-based carriers |
US20090232730A1 (en) * | 2006-04-24 | 2009-09-17 | Immune Disease Institute, Inc. | Method of producing immunoliposomes and compositions thereof |
JP5532921B2 (ja) * | 2007-05-14 | 2014-06-25 | コニカミノルタ株式会社 | リポソーム |
AU2008321174A1 (en) * | 2007-11-14 | 2009-05-22 | The Regents Of The University Of California | Sterol-modified amphiphilic lipids |
US9445975B2 (en) * | 2008-10-03 | 2016-09-20 | Access Business Group International, Llc | Composition and method for preparing stable unilamellar liposomal suspension |
WO2010110118A1 (ja) * | 2009-03-23 | 2010-09-30 | コニカミノルタホールディングス株式会社 | リポソームの製造方法 |
US20120100207A1 (en) * | 2009-07-02 | 2012-04-26 | Konica Minolta Holdings, Inc. | Process for producing liposomes by two-step emulsification method utilizing outer aqueous phase containing specific dispersing agent, process for producing liposome dispersion or dry powder thereof using the process for producing liposomes, and liposome dispersion or dry powder thereof produced thereby |
-
2010
- 2010-06-02 US US13/380,225 patent/US20120100207A1/en not_active Abandoned
- 2010-06-02 WO PCT/JP2010/059371 patent/WO2011001780A1/ja active Application Filing
- 2010-06-02 EP EP10793951.4A patent/EP2450031B1/en not_active Not-in-force
- 2010-06-02 JP JP2011520844A patent/JP4900536B2/ja not_active Expired - Fee Related
-
2011
- 2011-09-20 JP JP2011204585A patent/JP5754319B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001181213A (ja) * | 1999-12-27 | 2001-07-03 | Kaiso Shigen Kenkyusho:Kk | 標的指向性を有するベシクル及びその調製法 |
JP2003001097A (ja) * | 2001-06-22 | 2003-01-07 | Techno Network Shikoku Co Ltd | ナノサイズ脂質ベシクルの製造方法 |
WO2005053643A1 (ja) * | 2003-12-01 | 2005-06-16 | Mitsubishi Pharma Corporation | リポソーム |
JP2006272196A (ja) * | 2005-03-29 | 2006-10-12 | Toshiba Corp | 複合型微粒子の製造方法及び複合型微粒子の製造装置 |
WO2008108324A1 (ja) * | 2007-03-02 | 2008-09-12 | University Of Tsukuba | ベシクルの製造方法、この製造方法によって得られるベシクル、ベシクルの製造に用いられる凍結粒子の製造方法 |
Non-Patent Citations (2)
Title |
---|
TAKASHI KUROIWA; MITSUTOSHI NAKAJIMA; SOSAKU ICHIKAWA: "Influences of Aqueous Phase Composition in Lipid Capsule Formation Using Multiphase Emulsion as Base", SUMMARY OF THE 74TH ANNUAL MEETING OF THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN, March 2009 (2009-03-01) |
TAKAYUKI OHWAKI ET AL., INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 85, 1992, pages 19 - 28, XP023725478 * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013539402A (ja) * | 2010-06-23 | 2013-10-24 | ブライトサイド イノベーションズ,インコーポレイティド | レシチン担体小胞とその作製方法 |
US11839686B2 (en) | 2010-07-06 | 2023-12-12 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
US11324770B2 (en) | 2010-07-06 | 2022-05-10 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11913001B2 (en) | 2010-07-06 | 2024-02-27 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11707482B2 (en) | 2010-07-06 | 2023-07-25 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11291635B2 (en) | 2010-07-06 | 2022-04-05 | Glaxosmithkline Biological Sa | Virion-like delivery particles for self-replicating RNA molecules |
US11730754B2 (en) | 2010-07-06 | 2023-08-22 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US20220125723A1 (en) | 2010-07-06 | 2022-04-28 | Glaxosmithkline Biologicals Sa | Lipid formulations with viral immunogens |
US11717529B2 (en) | 2010-07-06 | 2023-08-08 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11596645B2 (en) | 2010-07-06 | 2023-03-07 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11905514B2 (en) | 2010-07-06 | 2024-02-20 | Glaxosmithkline Biological Sa | Immunisation of large mammals with low doses of RNA |
US11638694B2 (en) | 2010-07-06 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Vaccine for eliciting immune response comprising lipid formulations and RNA encoding multiple immunogens |
US11638693B2 (en) | 2010-07-06 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Vaccine for eliciting immune response comprising RNA encoding an immunogen and lipid formulations comprising mole percentage of lipids |
US11655475B2 (en) | 2010-07-06 | 2023-05-23 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11666534B2 (en) | 2010-07-06 | 2023-06-06 | Glaxosmithkline Biologicals Sa | Methods of administering lipid formulations with viral immunogens |
US11690864B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11690862B1 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11690861B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11690865B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11690863B2 (en) | 2010-07-06 | 2023-07-04 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11696923B2 (en) | 2010-07-06 | 2023-07-11 | Glaxosmithkline Biologicals, Sa | Delivery of RNA to trigger multiple immune pathways |
US11891608B2 (en) | 2010-07-06 | 2024-02-06 | Glaxosmithkline Biologicals Sa | Immunization of large mammals with low doses of RNA |
US11883534B2 (en) | 2010-07-06 | 2024-01-30 | Glaxosmithkline Biologicals Sa | Immunisation with lipid formulations with RNA encoding immunogens |
US11291682B2 (en) | 2010-07-06 | 2022-04-05 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11739334B2 (en) | 2010-07-06 | 2023-08-29 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11865080B2 (en) | 2010-07-06 | 2024-01-09 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11759475B2 (en) | 2010-07-06 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US11766401B2 (en) | 2010-07-06 | 2023-09-26 | Glaxosmithkline Biologicals Sa | Methods of administering lipid formulations with immunogens |
US11773395B1 (en) | 2010-07-06 | 2023-10-03 | Glaxosmithkline Biologicals Sa | Immunization of large mammals with low doses of RNA |
US11786467B2 (en) | 2010-07-06 | 2023-10-17 | Glaxosmithkline Biologicals Sa | Lipid formulations with immunogens |
US11857681B2 (en) | 2010-07-06 | 2024-01-02 | Glaxosmithkline Biologicals Sa | Lipid formulations with RNA encoding immunogens |
US11845925B2 (en) | 2010-07-06 | 2023-12-19 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11850305B2 (en) | 2010-07-06 | 2023-12-26 | Glaxosmithkline Biologicals Sa | Method of making lipid formulations with RNA encoding immunogens |
US11851660B2 (en) | 2010-07-06 | 2023-12-26 | Glaxosmithkline Biologicals Sa | Immunisation of large mammals with low doses of RNA |
US11857562B2 (en) | 2010-07-06 | 2024-01-02 | Glaxosmithkline Biologicals Sa | Delivery of RNA to trigger multiple immune pathways |
US20130195969A1 (en) * | 2010-08-31 | 2013-08-01 | Novartis Ag | Small liposomes for delivery of immunogen encoding rna |
US11759422B2 (en) | 2010-08-31 | 2023-09-19 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding RNA |
US9254265B2 (en) * | 2010-08-31 | 2016-02-09 | Novartis Ag | Small liposomes for delivery of immunogen encoding RNA |
US11639370B2 (en) | 2010-10-11 | 2023-05-02 | Glaxosmithkline Biologicals Sa | Antigen delivery platforms |
US11896636B2 (en) | 2011-07-06 | 2024-02-13 | Glaxosmithkline Biologicals Sa | Immunogenic combination compositions and uses thereof |
JP2016086748A (ja) * | 2014-11-05 | 2016-05-23 | キユーピー株式会社 | W/o/w型乳化調味料 |
JP2016086747A (ja) * | 2014-11-05 | 2016-05-23 | キユーピー株式会社 | W/o/w型乳化調味料 |
Also Published As
Publication number | Publication date |
---|---|
EP2450031A4 (en) | 2013-05-08 |
JP2012055885A (ja) | 2012-03-22 |
JP5754319B2 (ja) | 2015-07-29 |
US20120100207A1 (en) | 2012-04-26 |
JP4900536B2 (ja) | 2012-03-21 |
JPWO2011001780A1 (ja) | 2012-12-13 |
EP2450031B1 (en) | 2018-08-29 |
EP2450031A1 (en) | 2012-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754319B2 (ja) | 特定の分散剤を含有する外水相を利用する二段階乳化法によるリポソームの製造方法、ならびに当該リポソームの製造方法を用いるリポソーム分散液またはその乾燥粉末の製造方法 | |
Tsai et al. | Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes | |
JP5983608B2 (ja) | 溶解助剤を利用したリポソーム含有製剤およびその製造方法 | |
JP5741442B2 (ja) | リポソームの製造方法 | |
JP2006508126A (ja) | 薬学的製剤のタンパク質安定化されたリポソーム製剤 | |
Zoghi et al. | Process variables and design of experiments in liposome and nanoliposome research | |
JP5853453B2 (ja) | リポソームを製造する方法 | |
JP5494054B2 (ja) | 二段階乳化によるリポソーム製造方法 | |
US10485760B2 (en) | Method for producing liposome | |
JP5487666B2 (ja) | 内水相を固定化することを特徴とするリポソームの製造方法 | |
JP2011104572A (ja) | リポソームの製造方法およびフロー製造装置 | |
WO2011062255A1 (ja) | 混合有機溶媒を油相として用いる二段階乳化によるリポソームの製造方法 | |
JP5838970B2 (ja) | 水溶性脂質を内水相に添加する二段階乳化法による単胞リポソームの製造方法およびその製造方法により得られる単胞リポソーム | |
de La Torre et al. | Lipid matrices for nanoencapsulation in food: liposomes and lipid nanoparticles | |
JP2012102043A (ja) | 単胞リポソームの製造方法、単胞リポソームの分散液とその乾燥粉末及びそれらの製造方法 | |
JP5649074B2 (ja) | ナノサイズの一次乳化物を利用する二段階乳化によるリポソーム製造方法 | |
Gopi et al. | Liposomes for Functional Foods and Nutraceuticals: From Research to Application | |
Aragão et al. | Liposomes: Methods and Protocols | |
WO2012098937A1 (ja) | リポソームの製造方法 | |
WO2019010521A1 (en) | THIN FILM VORTEX FLUID MANUFACTURING OF LIPOSOMES | |
Tsai | Characterization And Applications Of Liposomes Microencapsulated By A Novel Supercritical Fluid Process | |
Çağdaş | Liposomes for encapsulating drugs and complexing DNA | |
Gouri Jayachandran | PHARMACEUTICAL SCIENCES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10793951 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011520844 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13380225 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010793951 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |