WO2011001688A1 - 導電性組成物 - Google Patents

導電性組成物 Download PDF

Info

Publication number
WO2011001688A1
WO2011001688A1 PCT/JP2010/004339 JP2010004339W WO2011001688A1 WO 2011001688 A1 WO2011001688 A1 WO 2011001688A1 JP 2010004339 W JP2010004339 W JP 2010004339W WO 2011001688 A1 WO2011001688 A1 WO 2011001688A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conductive polymer
phenolic compound
conductive
conjugated conductive
Prior art date
Application number
PCT/JP2010/004339
Other languages
English (en)
French (fr)
Inventor
中村師健
山尾忍
板東徹
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2011520793A priority Critical patent/JP5731974B2/ja
Publication of WO2011001688A1 publication Critical patent/WO2011001688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a conductive composition.
  • Patent Document 1 and Patent Document 2 describe a method of polymerizing aniline on an electrode.
  • electrolytic oxidation polymerization a film having excellent electrical characteristics and the like can be obtained.
  • the production cost is higher than that of chemical oxidative polymerization, it is not suitable for mass production, and it is difficult to obtain a molded article having a complicated shape.
  • Non-Patent Document 1 describes that excellent electrical characteristics are exhibited by using a proton acid having affinity for an organic solvent, such as dodecylbenzene sulfonic acid and camphor sulfonic acid (CSA), as a dopant.
  • Patent Document 3 describes a method in which polyaniline in a non-conductive base state is dissolved in m-cresol using, for example, adamantane sulfonic acid as a dopant.
  • Non-Patent Document 2 for example, in a special solvent (halogen-based strong acid) such as 2,2-dichloroacetic acid, with 2-acrylamido-2-methyl-propanesulfonic acid as a dopant, a non-conductive base state
  • a special solvent halogen-based strong acid
  • 2,2-dichloroacetic acid is used as a solvent
  • di (2-ethylhexyl) ester of sulfosuccinic acid is used as a dopant to dope polyaniline in a nonconductive base state.
  • a method is described.
  • Patent Document 5 reports that a doped polyaniline can be easily obtained by using an anionic surfactant as a dopant in a two-phase polymerization system of a solvent and water substantially immiscible with water. Has been. However, it cannot be said that a molded article made of conductive polyaniline obtained by these methods is excellent in electrical characteristics such as electrical conductivity.
  • the present invention aims to provide a conductive composition that gives a conductive molded body having high electrical conductivity.
  • the following conductive compositions and the like are provided.
  • solvent A ⁇ -conjugated conductive polymer doped with a dopant dissolved in the solvent, and a phenolic compound represented by the following formula (X) having an LD50 of 500 [mg / kg] or more,
  • Conductive composition having a weight ratio of the phenolic compound to the ⁇ -conjugated conductive polymer (phenolic compound [kg] / ⁇ -conjugated conductive polymer [kg]) of 0.01 to 10.0 .
  • R 1 is a group having a function of donating electrons to the benzene ring in formula (X).
  • the weight ratio of the following phenolic compound (c) to the following ⁇ -conjugated conductive polymer (b) is 0.01 to 10.0.
  • Compound (In the formula, R 1 is a group having a function of donating electrons to the benzene ring in formula (X).) 3.
  • the weight ratio of the following phenolic compound (c) to the following ⁇ -conjugated conductive polymer (b) is 0.01 to 10.0.
  • Solvent (b) A ⁇ -conjugated conductive polymer doped with a dopant and dissolved in the solvent
  • a phenolic compound represented by the following formula (2) (Wherein R 2 represents an alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group having 1 to 20 carbon atoms.) 5.
  • the doped ⁇ -conjugated conductive polymer is either a protonated substituted or unsubstituted polyaniline, a protonated substituted or unsubstituted polypyrrole, or a protonated substituted or unsubstituted polythiophene 1 to The electrically conductive composition in any one of 5. 7). 7.
  • the weight ratio of the phenolic compound to the ⁇ -conjugated conductive polymer is 0.01 to 10.0
  • the ⁇ -conjugated conductive polymer is a protonated substituted or unsubstituted polyaniline
  • R is an alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group having 1 to 20 carbon atoms.
  • the first conductive composition of the present invention includes a solvent, a ⁇ -conjugated conductive polymer doped with a dopant dissolved in the solvent, and an LD50 of 500 [mg / kg] or more.
  • a phenolic compound represented by (X) is included.
  • the weight ratio of the phenolic compound to the ⁇ -conjugated conductive polymer (phenolic compound [kg] / ⁇ -conjugated conductive polymer [kg]) is 0.01 to 10.0.
  • R 1 is a group having a function of donating electrons to the benzene ring in formula (X).
  • the doped ⁇ -conjugated conductive polymer is dissolved in the solvent in the composition in the composition.
  • being dissolved means that the ⁇ -conjugated conductive polymer is uniformly dissolved in a solvent in molecular units.
  • the LD50 is a half-lethal dose. When 50 chemicals are administered to 50 rats (taken by mouth), half of the rats die during the test period. The dose at which 50% dies is expressed as the amount per body weight (mg / kg). In practice, a dose-mortality graph is drawn from animal experimental data to determine the dose (LD50) corresponding to 50% mortality.
  • the LD50 of the phenolic compound is 500 [mg / kg] or more.
  • LD50 is 30000 [mg / kg] or less, for example.
  • the group having a function of donating electrons is a group having a function of donating electrons to the benzene ring in formula (X) and increasing the electron density in the benzene ring.
  • Examples thereof include hydrocarbon groups such as alkyl groups, alkenyl groups, cycloalkyl groups, aryl groups, and arylalkyl groups, alkoxy groups such as methoxy groups, ethoxy groups, and propoxy groups, and aryloxy groups such as phenoxy groups.
  • the LD50 of the phenolic compound represented by the formula (X) is 500 [mg / kg] or more.
  • Examples of compounds having an LD50 of 500 [mg / kg] or more and the LD50 value thereof include, for example, the LD50 value of 3-methoxyphenol is 597, the LD50 value of 4-methoxyphenol is 1600, and the LD50 value of t-amylphenol. The value of is 1830, and the LD50 value of 3-phenoxyphenol is 5000.
  • the second conductive composition of the present invention is produced using at least the following (a) to (c) as raw materials.
  • the weight ratio of the following phenolic compound (c) to the following ⁇ -conjugated conductive polymer (b) (phenolic compound [kg] / ⁇ -conjugated conductive polymer [kg]) is 0.01 to 10.0. is there.
  • Compound (In the formula, R 1 is a group having a function of donating electrons to the benzene ring in formula (X).)
  • the third conductive composition of the present invention includes a solvent, a ⁇ -conjugated conductive polymer doped with a dopant dissolved in the solvent, a phenolic compound represented by the following formula (2), including.
  • the weight ratio of the phenolic compound to the ⁇ -conjugated conductive polymer is 0.01 to 10.0.
  • R 2 represents an alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group having 1 to 20 carbon atoms.
  • the fourth conductive composition of the present invention is produced using at least the following (a) to (c) as raw materials.
  • the weight ratio of the following phenolic compound (c) to the following ⁇ -conjugated conductive polymer (b) (phenolic compound [kg] / ⁇ -conjugated conductive polymer [kg]) is 0.01 to 10.0. is there.
  • the LD50 of the phenolic compound (c) in the third and fourth conductive compositions is preferably 500 [mg / kg] or more. LD50 is 30000 [mg / kg] or less, for example.
  • the fifth conductive composition of the present invention comprises a phenolic compound represented by the following formula (1) and a ⁇ -conjugated conductive polymer.
  • the weight ratio of the phenolic compound to the ⁇ -conjugated conductive polymer is 0.01 to 10.0, and the ⁇ -conjugated conductive polymer is A substituted or unsubstituted polyaniline that is protonated, and the ⁇ -conjugated conductive polymer is doped with an organic sulfonic acid.
  • R is an alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group having 1 to 20 carbon atoms.
  • a conductive composition having high electrical conductivity can be obtained.
  • the above compounds are not toxic and have no odor. Therefore, unlike m-cresol and the like, it is suitable for industrial production of conductive compositions.
  • R in the formula (1), and for R 2 of formula (2) the alkyl group having 1 to 20 carbon atoms, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertiary butyl and the like.
  • alkenyl group include those having an unsaturated bond in the molecule of the alkyl group described above.
  • examples of the cycloalkyl group include cyclopentane and cyclohexane.
  • Examples of the aryl group include phenyl and naphthyl.
  • Examples of the alkylaryl group and the arylalkyl group include groups obtained by combining the above-described alkyl group and aryl group. Of these groups, a methyl or ethyl group is preferred.
  • the weight ratio of the phenolic compound to the solvent is preferably 0.0004 or more and 0.75 or less. . More preferably, it is 0.002 or more and 0.45 or less.
  • the ⁇ -conjugated conductive polymer contained in the first to fifth conductive compositions of the present invention preferably has a weight average molecular weight of 1,000 or more, more preferably 1,000 to 1,000,000. It is.
  • Specific examples of the ⁇ -conjugated conductive polymer include substituted or unsubstituted polyaniline, polypyrrole, polythiophene, poly (p-phenylene), poly (p-phenylene vinylene), and derivatives thereof.
  • the ⁇ -conjugated conductive polymer is doped with a dopant that is an electron-accepting substance such as Bronsted acid or Lewis acid.
  • a doping rate with respect to the degree of doping.
  • the doping rate is generally defined by (number of moles of dopant molecules doped in conductive polymer) / (monomer unit of conductive polymer).
  • a dopant doping rate a of 0.5 means that one molecule of dopant is doped per two molecules of nitrogen.
  • the conductivity is highest at this value and in the vicinity thereof.
  • the composition of the present invention preferably satisfies the formula (XXX). 0.2 ⁇ S 1 / N 1 ⁇ 0.7 (XXX) (S 1 is the total number of moles of sulfur atoms of the ⁇ -conjugated conductive polymer doped with the dopant contained in the composition, and N 1 is the ⁇ -conjugated system doped with the dopant contained in the composition. (The total number of moles of nitrogen atoms in the conductive polymer.)
  • the electrical conductivity of the molded body of ⁇ -conjugated conductive polymer doped with a dopant is 0.01 S / cm or more.
  • Conductivity is measured by the 4-terminal method.
  • a molded object can be obtained as follows. “500 mg of ⁇ -conjugated conductive polymer doped with a dopant” is dissolved in 10 g of toluene to prepare a solution for measuring conductivity. As shown in FIG. 1, 1 ml of a conductivity measuring solution is applied to the upper surface of a glass substrate 1 on which an indium tin oxide (ITO) electrode 2 is formed by patterning. Specifically, it is applied by spin coating.
  • ITO indium tin oxide
  • the application by spin coating is performed in a nitrogen atmosphere.
  • the rotation time of the glass substrate after dropping the conductivity measuring solution on the glass substrate by spin coating is 15 seconds.
  • the glass substrate rotation speed of the spin coating method is 500 rpm.
  • the glass substrate is dried to form a ⁇ -conjugated polymer thin film.
  • the drying is performed in a nitrogen atmosphere.
  • the drying time is 5 minutes.
  • the drying temperature is 80 ° C.
  • the molded product refers to a molded product itself of a ⁇ -conjugated conductive polymer formed on a glass substrate.
  • the conductivity is obtained as follows, for example. After drying the ⁇ -conjugated polymer thin film, as shown in FIG. 2, the portion of the ⁇ -conjugated polymer thin film 3 covering the terminal of the ITO electrode is scraped off in a nitrogen atmosphere to expose the terminal of the ITO electrode on the surface. Using the ITO electrode terminal exposed on the surface, the conductivity is measured by a 4-terminal method using a resistivity meter manufactured by Mitsubishi Chemical Corporation.
  • the doped ⁇ -conjugated conducting polymer is either a protonated substituted or unsubstituted polyaniline, a protonated substituted or unsubstituted polypyrrole, or a protonated substituted or unsubstituted polythiophene.
  • a protonated substituted or unsubstituted polyaniline is preferred.
  • the weight average molecular weight of polyaniline is preferably 20,000 or more, more preferably 50,000 or more. If the weight molecular weight of polyaniline is less than 20,000, the strength and stretchability of the conductive article obtained from the composition may be reduced.
  • the molecular weight distribution is, for example, 1.5 to 10.0 or less. From the viewpoint of electrical conductivity, a smaller molecular weight distribution is preferable, but from the viewpoint of solubility in a solvent and moldability, a wider molecular weight distribution may be preferable.
  • the molecular weight and molecular weight distribution can be measured by gel permeation chromatograph (GPC).
  • substituent of the substituted polyaniline examples include linear or branched hydrocarbon groups such as methyl group, ethyl group, hexyl group and octyl group; alkoxyl groups such as methoxy group and phenoxy group; aryloxy group; CF 3 group and the like And halogen-containing hydrocarbon groups.
  • the dopant preferably used in the present invention is an organic sulfonic acid, and can be used without any particular chemical structure limitation as long as the ⁇ -conjugated conductive polymer has sufficient acidity to generate carriers.
  • examples include alkyl sulfonic acids such as methane sulfonic acid and ethane sulfonic acid, aromatic sulfonic acids such as paratoluene sulfonic acid, dodecylbenzene sulfonic acid, isopropyl naphthalene sulfonic acid, and succinic sulfonic acids.
  • a salt of these acids (such as a sodium salt) may be used.
  • the ⁇ -conjugated conductive polymer is preferably doped with succinic sulfonic acids represented by the following (XX).
  • M (O 3 SCH (CH 2 COOR 12 ) COOR 13 ) m (XX)
  • M is a hydrogen atom, an organic radical or an inorganic radical
  • m is a valence of M
  • R 12 and R 13 are each independently a hydrocarbon group or — (R 14 O) r —R 15
  • R 14 is a hydrocarbon group or a silylene group
  • R 15 is a hydrogen atom, a hydrocarbon group, or a group represented by R 16 3 Si—
  • R 16 is a hydrocarbon group
  • three R 16 may be the same or different
  • r is an integer of 1 or more.
  • the weight ratio of the above-described phenolic compound to the ⁇ -conjugated conductive polymer is 0.01 to 10.0, That is, it is 0.01 or more and 10.0 or less. If it is less than 0.01, the effect obtained by adding the phenolic compound may not be sufficiently exhibited. On the other hand, if it exceeds 10.0, the strength of the film obtained from the composition may be lowered. Within this range, the composition ratio can be arbitrarily set according to the required characteristics for each application, but 0.05 to 5.0 is preferable from the viewpoint of the balance between conductivity and film strength.
  • the weight ratio of the above-described phenolic compound to the ⁇ -conjugated conductive polymer is, for example, 2.5 or more and 5.0 or less, 2.5 or more and 4.0 or less. .
  • the composition of the present invention contains a solvent in addition to the above-described phenolic compound and ⁇ -conjugated conductive polymer.
  • the solvent may be an inorganic solvent or an organic solvent, and is preferably an organic solvent.
  • an organic solvent for example, a coating material for forming a conductive film can be obtained.
  • the organic solvent may be an organic solvent that is substantially immiscible with water (a water-immiscible organic solvent) or a water-soluble organic solvent.
  • water-immiscible organic solvents include hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; halogen-containing solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and tetrachloroethane; ethyl acetate and the like And ester solvents.
  • hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin
  • halogen-containing solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and tetrachloroethane
  • ethyl acetate and the like
  • ester solvents ethyl acetate and the like
  • a mixed organic solvent of a water-immiscible organic solvent and a water-soluble organic solvent is preferably used in a mass ratio of 99 to 50: 1 to 50.
  • a low polar organic solvent can be used as the water-immiscible organic solvent of the mixed organic solvent.
  • toluene and chloroform are preferable.
  • a highly polar organic solvent can be used as a water-soluble organic solvent of a mixed organic solvent.
  • methanol, ethanol, isopropyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran or diethyl ether are preferable.
  • the ratio of the ⁇ -conjugated conductive polymer in the organic solvent is usually 900 g / L or less, preferably 0.01 to 300 g / L or less, depending on the type of the organic solvent. If the content of the ⁇ -conjugated conductive polymer is too large, the solution state cannot be maintained, handling the molded body becomes difficult, the uniformity of the molded body is impaired, and consequently the electrical properties of the molded body And mechanical strength and transparency are reduced. On the other hand, if the content of the ⁇ -conjugated conductive polymer is too small, only a very thin film can be produced when the film is formed by the method described later, which may make it difficult to produce a uniform conductive film.
  • composition of the present invention may comprise, for example, 1% by weight or more, 15% by weight or more, 45% by weight or more, and 100% by weight of the above-described ⁇ -conjugated conductive polymer, phenolic compound, and solvent.
  • the composition of the present invention may contain other resins, inorganic materials, curing agents, plasticizers and the like as long as the effects of the present invention are not impaired.
  • resins are added as, for example, a binder base material, a plasticizer, a matrix base material, etc., and specific examples thereof include, for example, polyolefins such as polyethylene and polypropylene, chlorinated polyolefins, polystyrenes, polyesters, polyamides, polyacetals, polyethylenes. Examples include terephthalate, polycarbonate, polyethylene glycol, polyethylene oxide, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, and polyvinyl alcohol. A chlorinated polyolefin is preferred. Moreover, you may use the precursor which can form thermosetting resins, such as an epoxy resin, a urethane resin, a phenol resin, with resin instead of resin.
  • Inorganic materials are added for the purpose of, for example, improving strength, surface hardness, dimensional stability and other mechanical properties.
  • Specific examples thereof include silica (silicon dioxide), titania (titanium oxide), alumina ( Aluminum oxide) and the like.
  • the curing agent is added for the purpose of, for example, improving strength, surface hardness, dimensional stability and other mechanical properties, and specific examples thereof include, for example, thermosetting agents such as phenol resins, acrylate monomers and photopolymerization. Examples thereof include a photo-curing agent using a property initiator.
  • the plasticizer is added for the purpose of improving mechanical properties such as tensile strength and bending strength, and specific examples thereof include phthalates and phosphates.
  • composition of the present invention can be prepared by a known method, for example, by the method disclosed in WO05 / 052058.
  • a conductive molded body is obtained from the composition of the present invention.
  • a conductive laminate surface conductive article having a conductive film by applying the composition of the present invention to a substrate such as glass, a resin film, a sheet or a nonwoven fabric having a desired shape and removing the solvent.
  • a conductive article can be obtained by processing the conductive laminate of the present invention into a desired shape by a known method such as vacuum forming or pressure forming. From the viewpoint of molding, the substrate is preferably a resin film or sheet.
  • a method for applying the composition to the substrate known methods such as a casting method, a spray method, a dip coating method, a doctor blade method, a barcode method, a spin coating method, an electrospinning method, screen printing, and gravure printing Can be used.
  • the coating film When drying the coating film, the coating film may be heated depending on the type of the solvent. For example, heating is performed at a temperature of 250 ° C. or less, preferably 50 to 200 ° C. in an air stream, and further, heating is performed under reduced pressure as necessary.
  • the heating temperature and the heating time are not particularly limited and may be appropriately selected depending on the material to be used.
  • a conductive film can be produced by removing the solvent from the composition of the present invention.
  • the thickness thereof is usually 1 mm or less, preferably in the range of 10 nm to 50 ⁇ m.
  • a film having a thickness in this range is advantageous in that it does not easily crack during film formation and has uniform electrical characteristics.
  • composition of the present invention may be mixed with a base material to form a conductive article.
  • Thermoplastics such as polyolefin such as polyethylene and polypropylene, chlorinated polyolefin, polystyrene, polyester, polyamide, polyacetal, polycarbonate, polyethylene glycol, polyethylene oxide, polyacrylic acid, polyacrylic ester, polymethacrylic ester, polyvinyl alcohol
  • the resin include thermosetting resins such as epoxy resins, phenol resins, and urethane resins.
  • the composition of the present invention can be a self-supporting molded article having no substrate.
  • a self-supporting molded body preferably, if the composition contains the other resin described above, a molded body having a desired mechanical strength can be obtained.
  • the reaction was carried out while maintaining the internal temperature of the solution at 5 ° C. for 18 hours from the start of dropping. Thereafter, 125 mL of toluene was added, the reaction temperature was raised to 25 ° C., and the reaction was continued for 4 hours. Then, the aqueous phase side separated into two phases by standing was separated, and the toluene phase side was washed twice with 50 mL of ion-exchanged water and once with 50 mL of 1N hydrochloric acid to give a polyaniline complex (protonated polyaniline). ) A toluene solution was obtained.
  • LD50 400 mg / kg
  • the portion of the conductive polyaniline thin film 4 covering the terminal of the ITO electrode was scraped off under a nitrogen atmosphere to expose the terminal of the ITO electrode on the surface.
  • the intrinsic conductivity was measured using a Lorester GP (Mitsubishi Chemical Co., Ltd .; resistivity meter by the four-terminal method).
  • Example 2 A film was formed in the same manner as in Example 1 except that the amount of 4-methoxyphenol added was 0.4 g, and the intrinsic conductivity was measured.
  • Example 3 A film was formed in the same manner as in Example 1 except that the amount of 4-methoxyphenol added was 0.001 g, and the intrinsic conductivity was measured.
  • Example 4 A film was formed in the same manner as in Example 1 except that the amount of 4-methoxyphenol added was 1.0 g, and the intrinsic conductivity was measured.
  • LD50 597 mg / kg
  • Example 6 A film was formed in the same manner as in Example 3 except that 0.4 g of 3-methoxyphenol was used, and the intrinsic conductivity was measured.
  • LD50 5000 mg / kg
  • Example 8 A film was formed in the same manner as in Example 5 except that 0.4 g of 3-phenoxyphenol was used, and the intrinsic conductivity was measured.
  • Example 9 0.1 g of polyaniline complex 2 obtained in Production Example 2 was redissolved in toluene to prepare a 5 wt% solution. To this, 0.02 g of 4-methoxyphenol was added and mixed with stirring at room temperature for 30 minutes. This solution was formed into a film by a spin coat method, formed on an ITO (indium tin oxide) substrate by a spin coat method, and the intrinsic conductivity was measured by a four-terminal method.
  • Comparative Example 1 A film was formed in the same manner as in Example 1 except that 4-methoxyphenol was not added, and the intrinsic conductivity was measured.
  • Comparative Example 2 A film was formed in the same manner as in Example 1 except that the amount of 4-methoxyphenol added was 0.0005 g, and the intrinsic conductivity was measured.
  • Comparative Example 3 A film was formed in the same manner as in Example 1 except that the amount of 4-methoxyphenol added was 2.0 g. However, the film itself was extremely fragile and the conductivity could not be measured.
  • the conductive composition of the present invention is used in the field of power electronics and optoelectronics. Electrostatic and antistatic materials, transparent electrodes and conductive film materials, electroluminescent element materials, circuit materials, electromagnetic wave shielding materials, capacitor dielectrics and It can be used for electrolytes, solar cell and secondary battery electrode materials, fuel cell separator materials, etc., plating bases, rust inhibitors, and the like.

Abstract

 溶剤、前記溶剤に溶解した、ドーパントによりドープされたπ共役系導電性高分子、及びLD50が500[mg/kg]以上である、下記式(X)で表わされるフェノール性化合物(式中、Rは、式(X)中のベンゼン環へ電子を供与する働きを有する基である)を含み、前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が、0.01~10.0である導電性組成物。

Description

導電性組成物
 本発明は導電性組成物に関する。
 導電性高分子として、ポリアニリン等は周知の材料である。ポリアニリンは、その電気的特性に加え、安価なアニリンから比較的簡便に合成でき、且つ導電性を示す状態で、空気等に対して優れた安定性を示すという利点を有する。
 ポリアニリンの製造方法としては、アニリン又はアニリン誘導体を電解酸化重合する方法又は化学酸化重合する方法が知られている。
 電解酸化重合については、電極上でアニリンを重合する方法が、特許文献1や特許文献2に記載されている。電解酸化重合では、電気的特性等に優れたフィルムが得られる。しかしながら、一般に、化学酸化重合に比べて製造コストが高く、大量生産には適しておらず、また、複雑な形状の成形体を得ることも困難である。
 一方、化学酸化重合によって、アニリン又はアニリン誘導体の導電性重合体を得るためには、一般に、非導電性塩基状態(いわゆるエメラルディン塩基状態)のポリアニリンにドーパント(ドーピング剤)を加えてプロトネーションする工程が必要である。
 しかしながら、非導電性塩基状態のポリアニリンは、大部分の有機溶剤に殆ど溶解しないため、工業的な製造に適するものではない。また、プロトネーション後に生成する導電性のポリアニリン(いわゆるエメラルディン塩状態)は、実質的に不溶不融であり、導電性の複合材料及びその成形体を簡便に製造することは難しい。
 このような状況下、非導電性塩基状態のポリアニリンのドーピング、及びドーピング後の導電性ポリアニリンの有機溶剤に対する親和性を改善する方法として、幾つかの提案がなされている。
 例えば、非特許文献1では、ドデシルベンゼンスルフォン酸や、ショウノウスルフォン酸(CSA)等の、有機溶剤に親和性のあるプロトン酸をドーパントとして使用することで優れた電気的特性を示すことが記載されている。
 特許文献3には、非導電性塩基状態のポリアニリンを、例えば、アダマンタンスルフォン酸をドーパントとし、これをm-クレゾールに溶解する方法が記載されている。
 非特許文献2には、例えば、2,2-ジクロロ酢酸のような特殊な溶媒(ハロゲン系の強酸)中で、2-アクリルアミド-2-メチル-プロパンスルフォン酸をドーパントとして、非導電性塩基状態のポリアニリンをドーピングする方法が記載されている。
 特許文献4には、例えば、特許文献2と同様に、溶媒として2,2-ジクロロ酢酸を用い、スルホコハク酸のジ(2-エチルヘキシル)エステルをドーパントとして、非導電性塩基状態のポリアニリンをドーピングする方法が記載されている。
 一方、特許文献5には、実質的に水に混和しない溶剤と水の、二相重合系において、ドーパントとしてアニオン系界面活性剤を用いることにより、簡便にドープされたポリアニリンが得られることが報告されている。
 しかしながら、これらの方法で得られた導電性ポリアニリンからなる成形体は、電気伝導率等の電気的特性が必ずしも優れているとは言えない。
特開昭62-230825号公報 特開昭62-149724号公報 特開平7-70312号公報 特開2003-183389号公報 国際公開WO05/052058
Synthetic metals,48,1992,91-97頁 J.Phys.:Condens.Matter,10,1998,8293-8303頁
 本発明は、上記現状に鑑み、高い電気伝導率を有する導電性成形体を与える導電性組成物の提供を目的とする。
 本発明によれば、以下の導電性組成物等が提供される。
1.溶剤、
 前記溶剤に溶解した、ドーパントによりドープされたπ共役系導電性高分子、及び
 LD50が500[mg/kg]以上である、下記式(X)で表わされるフェノール性化合物を含み、
 前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が、0.01~10.0である導電性組成物。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、式(X)中のベンゼン環へ電子を供与する働きを有する基である。)
2.少なくとも下記(a)~(c)を原料として用い、
 下記フェノール性化合物(c)と下記π共役系導電性高分子(b)の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が0.01~10.0である導電性組成物。
(a)溶剤
(b)前記溶剤に溶解する、ドーパントによりドープされたπ共役系導電性高分子
(c)LD50が500[mg/kg]以上である、下記式(X)で表わされるフェノール性化合物
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、式(X)中のベンゼン環へ電子を供与する働きを有する基である。)
3.溶剤、
 前記溶剤に溶解した、ドーパントによりドープされたπ共役系導電性高分子、及び
 下記式(2)で表わされるフェノール性化合物を含み、
 前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が、0.01~10.0である導電性組成物。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
4.少なくとも下記(a)~(c)を原料として用い、
 下記フェノール性化合物(c)と下記π共役系導電性高分子(b)の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が0.01~10.0である導電性組成物。
(a)溶剤
(b)前記溶剤に溶解する、ドーパントによりドープされたπ共役系導電性高分子
(c)下記式(2)で表わされるフェノール性化合物
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
5.前記フェノール性化合物(c)のLD50が500[mg/kg]以上である3又は4に記載の導電性組成物。
6.前記ドープされたπ共役系導電性高分子が、プロトネーションされた置換もしくは非置換ポリアニリン、プロトネーションされた置換もしくは非置換ポリピロール、又はプロトネーションされた置換もしくは非置換ポリチオフェンのいずれかである1~5のいずれかに記載の導電性組成物。
7.前記π共役系導電性高分子のドーパントが有機スルホン酸である1~6のいずれかに記載の導電性組成物。
8.前記π共役系導電性高分子のドーパントが、下記(XX)で表されるコハクスルホン酸類である1~7のいずれかに記載の導電性組成物。
M(OSCH(CHCOOR12)COOR13    (XX)
(式(XX)において、
 Mは、水素原子、有機遊離基又は無機遊離基であり、
 mはMの価数であり、
 R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15で表される基であり、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-で表される基であり、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよく、rは1以上の整数である。)
9.前記フェノール性化合物と前記溶剤の重量比(フェノール性化合物[kg]/溶剤[kg])が、0.0004以上0.75以下である1~8のいずれかに記載の導電性組成物。
10.基材、及び
 前記基材上に積層された1~9のいずれかに記載の導電性組成物から製造された導電層を含む導電性積層体。
11.前記基材が樹脂フィルムである10に記載の導電性積層体。
12.10又は11に記載の導電性積層体を成形して得られる導電性物品。
13.1~9のいずれかに記載の導電性組成物を用いて製造されるコンデンサ。
14.1~9のいずれかに記載の導電性組成物を成形してなる導電性フィルム。
15.1~9のいずれかに記載の導電性組成物を成形してなる導電性膜。
16.1~9のいずれかに記載の導電性組成物と基材を混合してなる導電性物品。
17.π共役系導電性高分子、及び
 下記式(1)で表わされるフェノール性化合物を含み、
 前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物/π共役系導電性高分子)が、0.01~10.0であり、
 前記π共役系導電性高分子が、プロトネーションされた置換もしくは非置換ポリアニリンであり、
 前記π共役系導電性高分子が、有機スルホン酸でドープされている導電性組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
 本発明によれば、高い電気伝導率を有する導電性成形体を与える導電性組成物を得ることができる。
インジウム錫酸化物(ITO)電極が表面に形成されたガラス基板の上面を示す図である。 π共役高分子薄膜を削り、ITO電極の端子を表面に露出させたガラス基板の上面を示す図である。 導電性ポリアニリン薄膜を削り、ITO電極の端子を表面に露出させたガラス基板の上面を示す図である。
 本発明の第1の導電性組成物は、溶剤と、前記溶剤に溶解している、ドーパントによりドープされたπ共役系導電性高分子と、LD50が500[mg/kg]以上である下記式(X)で表わされるフェノール性化合物を含む。
 前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])は、0.01~10.0である。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、式(X)中のベンゼン環へ電子を供与する働きを有する基である。)
 本発明において、ドープされたπ共役系導電性高分子は、組成物において、組成物中の溶剤に溶解している。ここで、溶解しているとは、π共役系導電性高分子が分子単位で均一に溶剤に溶けることを意味する。これにより、導電性組成物を乾燥した際に、粒界がない、均一なπ共役系導電性高分子の被膜が得られる。
 LD50とは、半数致死量のことであり、化学物質をラット50匹に投与した(口から摂取させた)場合に、そのラットの半数が試験期間に死亡する用量のことで、投与したラットの50%が死亡する用量を体重当たりの量(mg/kg)として表したものを意味する。
 実際には、動物実験のデータから用量-死亡率のグラフを描き、死亡率50%に相当する用量(LD50)を求める。
 東京化成工業株式会社製品安全データシートに開示されたLD50を意味するが、東京化成工業株式会社製品安全データシートに開示されていない物質に関しては、前記測定方法により定まる。
 前記フェノール性化合物のLD50は、500[mg/kg]以上である。LD50は例えば30000[mg/kg]以下である。
 電子を供与する働きを有する基は、式(X)中のベンゼン環へ電子を供与し、ベンゼン環内の電子密度を高める働きを有する基である。例えば、アルキル基、アルケニル基、シクロアルキル基、アリール基、アリールアルキル基等の炭化水素基、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基等が挙げられる。
 ここで、式(X)で表されるフェノール性化合物のLD50は、500[mg/kg]以上である。LD50が500[mg/kg]以上の化合物およびそのLD50の値を例示すると、例えば、3-メトキシフェノールのLD50の値は597、4-メトキシフェノールのLD50の値は1600、t-アミルフェノールのLD50の値は1830、3-フェノキシフェノールのLD50の値は5000である。
 本発明の第2の導電性組成物は、少なくとも下記(a)~(c)を原料として用いて製造したものである。
 下記フェノール性化合物(c)と下記π共役系導電性高分子(b)の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が0.01~10.0である。
(a)溶剤
(b)前記溶剤に溶解する、ドーパントによりドープされたπ共役系導電性高分子
(c)LD50が500[mg/kg]以上である、下記式(X)で表わされるフェノール性化合物
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、式(X)中のベンゼン環へ電子を供与する働きを有する基である。)
 本発明の第3の導電性組成物は、溶剤と、前記溶剤に溶解している、ドーパントによりドープされたπ共役系導電性高分子と、下記式(2)で表わされるフェノール性化合物と、を含む。
 前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が、0.01~10.0である。
Figure JPOXMLDOC01-appb-C000008
(式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
 本発明の第4の導電性組成物は、少なくとも下記(a)~(c)を原料として用いて製造したものである。
 下記フェノール性化合物(c)と下記π共役系導電性高分子(b)の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が0.01~10.0である。
(a)溶剤
(b)前記溶剤に溶解する、ドーパントによりドープされたπ共役系導電性高分子
(c)下記式(2)で表わされるフェノール性化合物
Figure JPOXMLDOC01-appb-C000009
(式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
 上記第3及び第4の導電性組成物におけるフェノール性化合物(c)のLD50は、500[mg/kg]以上であることが好ましい。LD50は例えば30000[mg/kg]以下である。
 本発明の第5の導電性組成物は、下記式(1)で表わされるフェノール性化合物とπ共役系導電性高分子を含むことを特徴とする。
 前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物/π共役系導電性高分子)が、0.01~10.0であり、前記π共役系導電性高分子が、プロトネーションされた置換もしくは非置換ポリアニリンであり、前記π共役系導電性高分子が、有機スルホン酸でドープされている。
Figure JPOXMLDOC01-appb-C000010
(式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
 上記のフェノール性化合物を使用することによって、高い電気伝導率を有する導電性組成物が得られる。また、上記の化合物は毒性がなく、臭気もない。そのため、m-クレゾール等と異なり、導電性組成物の工業的生産に適している。
 上記式(1)のR、及び式(2)のRについて、炭素数1~20のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ターシャルブチル等が挙げられる。
 アルケニル基としては、上述したアルキル基の分子内に不飽和結合を有するものが挙げられる。
 シクロアルキル基としては、シクロペンタン、シクロヘキサン等が挙げられる。
 アリール基としては、フェニル、ナフチル等が挙げられる。
 アルキルアリール基、及びアリールアルキル基としては、上述したアルキル基とアリール基を組み合わせて得られる基等が挙げられる。
 これらの基のうち、メチル又はエチル基が好ましい。
 式(X)において-R、式(1)において-OR、式(2)において-ORの置換位置は、フェノール性水酸基に対し、メタ位、又はパラ位であることが好ましい。これにより、フェノール性水酸基の立体障害が低減され、より高い導電性を有する組成物が得られる。
 第1ないし第5の導電性組成物は、上記フェノール性化合物と上記溶剤の重量比(フェノール性化合物[kg]/溶剤[kg])が、0.0004以上0.75以下であることが好ましい。0.002以上0.45以下がさらに好ましい。
 本発明の、第1ないし第5の導電性組成物が含むπ共役系導電性高分子は、好ましくは重量平均分子量が1,000以上であり、より好ましくは1,000~1,000,000である。
 上記π共役系導電性高分子の具体例としては、置換又は無置換の、ポリアニリン、ポリピロール、ポリチオフェン、ポリ(p-フェニレン)、ポリ(p-フェニレンビニレン)、及びこれらの誘導体等が挙げられる。
 π共役系導電性高分子は、ブレンステッド酸、ルイス酸などの電子受容性物質であるドーパントによってドープされている。
 ここで、ドープの度合いについてドープ率がある。ドープ率とは、一般に(導電性高分子にドープしているドーパント分子のモル数)/(導電性高分子のモノマーユニット)で定義される。ドープされたπ共役系導電性高分子がポリアニリン複合体である場合に、ドーパントのドープ率aが、0.5であることは、窒素2分子に対して1分子のドーパントがドープすることを意味し、好ましくはこの値及びその近傍において、導電率が最も高くなる。
 ここで、π共役系導電性高分子が窒素原子を含み、ドーパントがスルホン酸である場合には、本発明の組成物が式(XXX)を満たすことが好ましい。
0.2≦S/N≦0.7・・・(XXX)
(Sは組成物に含まれる前記ドーパントによりドープされたπ共役系導電性高分子の硫黄原子のモル数の合計であり、Nは組成物に含まれる前記ドーパントによりドープされたπ共役系導電性高分子の窒素原子のモル数の合計である。)
 また、ドーパントによりドープされたπ共役系導電性高分子の成形体の導電度が0.01S/cm以上となることが好ましい。導電度は4端子法により測定する。ここで、成形体は以下のようにして得ることができる。
 「ドーパントによりドープされたπ共役系導電性高分子500mg」をトルエン10gに溶解し、導電度測定用溶液を作成する。図1に示す、パターニングによりインジウム錫酸化物(ITO)電極2が表面に形成されたガラス基板1の上面に、導電度測定用溶液1mlを塗布する。具体的には、スピンコート法により塗布する。
 ここでスピンコート法による塗布は、窒素雰囲気下で行う。また、スピンコート法の、ガラス基板に導電度測定用溶液を滴下した後のガラス基板回転時間は、15秒間である。また、スピンコート法のガラス基板回転速度は、500rpmである。
 その後、ガラス基板を乾燥してπ共役高分子薄膜を形成する。ここで乾燥は、窒素雰囲気下で行う。また、乾燥時間は5分間である。また、乾燥温度は80℃である。
 ここでの成形体とは、ガラス基板上に形成されたπ共役系導電性高分子の成形体自体をいう。尚、導電率は、例えば以下のようにして得られる。
 π共役高分子薄膜を乾燥後、図2に示すように、π共役高分子薄膜3のITO電極の端子を覆っている部分を、窒素雰囲気下で削り取り、ITO電極の端子を表面に露出させる。表面に露出したITO電極の端子を用いて、三菱化学社製の抵抗率計を用いて4端子法で導電度を測定する。
 本発明において、ドープされたπ共役導系電性高分子は、プロトネーションされた置換もしくは非置換ポリアニリン、プロトネーションされた置換もしくは非置換ポリピロール、又はプロトネーションされた置換もしくは非置換ポリチオフェンのいずれかであることが好ましく、特に、プロトネーションされた置換もしくは非置換ポリアニリンが好ましい。
 π共役系導電性高分子がポリアニリンである場合、ポリアニリンの重量平均分子量は、好ましくは20,000以上であり、より好ましくは50,000以上である。ポリアニリンの重量分子量が20,000未満であると、組成物から得られる導電性物品の強度や延伸性が低下するおそれがある。
 また、分子量分布は、例えば1.5~10.0以下である。導電率の観点から、分子量分布は小さい方が好ましいが、溶剤への溶解性及び成形性の観点では、分子量分布が広い方が好ましい場合もある。
 上記分子量及び分子量分布は、ゲルパーミエーションクロマトグラフ(GPC)により測定できる。
 置換ポリアニリンの置換基としては、例えば、メチル基、エチル基、ヘキシル基、オクチル基等の直鎖又は分岐の炭化水素基;メトキシ基、フェノキシ基等のアルコキシル基;アリーロキシ基;CF基等の含ハロゲン炭化水素基等が挙げられる。
 本発明で好適に使用されるドーパントは有機スルホン酸であり、π共役系導電性高分子にキャリアを発生させるに十分な酸性を有していれば、特に化学構造上の制限なく使用できる。一例としては、メタンスルホン酸、エタンスルホン酸等のアルキルスルホン酸類、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、イソプロピルナフタレンスルホン酸等の芳香族スルホン酸類、あるいはコハクスルホン酸類等が挙げられる。これら酸の塩(ナトリウム塩等)でもよい。
 これらドーパントはその構造を変えることにより、π共役系導電性高分子の導電性や、溶剤への溶解性をコントロールできることが知られている(特許第3384566号)。本発明においては、用途毎の要求特性によって最適なドーパントを選択できる。
 前記π共役系導電性高分子が、下記(XX)で表されるコハクスルホン酸類でドープされていることが好ましい。
M(OSCH(CHCOOR12)COOR13    (XX)
(式(XX)において、Mは、水素原子、有機遊離基又は無機遊離基であり、mはMの価数であり、R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15で表される基であり、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-で表される基であり、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよく、rは1以上の整数である。)
 本発明の導電性組成物において、上述したフェノール性化合物と、π共役系導電性高分子との重量比(フェノール性化合物/π共役系導電性高分子)は、0.01~10.0、即ち0.01以上10.0以下である。0.01未満の場合、フェノール性化合物を添加することで得られる効果が十分に発現しない場合がある。また、10.0を越えると組成物から得られる膜の強度が低下する場合がある。この範囲であれば、用途毎の要求特性に応じて組成比を任意に設定できるが、導電性と膜強度のバランスの観点から、0.05~5.0が好ましい。
 本発明の導電性組成物において、上述したフェノール性化合物と、π共役系導電性高分子との重量比は、例えば、2.5以上5.0以下、2.5以上4.0以下である。
 本発明の組成物は、上述したフェノール性化合物及びπ共役系導電性高分子の他に、溶剤を含む。溶剤は、無機溶剤であっても有機溶剤であってもよく、有機溶剤であることが好ましい。有機溶剤を含有させることにより、例えば、導電膜成膜用の塗料等とすることができる。
 有機溶剤としては、実質的に水に混和しない有機溶剤(水不混和性有機溶剤)でも、水溶性有機溶剤でもよい。
 水不混和性有機溶剤としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の炭化水素系溶剤;塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン等の含ハロゲン系溶剤;酢酸エチル等のエステル系溶剤等が挙げられる。これらの中では、ドープされたポリアニリンの溶解性に優れる点でトルエン、キシレン、クロロホルム、トリクロロエタン及び酢酸エチルが好ましい。
 水溶性有機溶剤としては、アルコール類;アセトン、メチルエチルケトンのようなケトン類;テトラヒドロフラン、ジオキサン等の極性エーテル類;Nメチルピロリドン等の非プロトン性極性溶剤等が挙げられる。
 有機溶剤には、水不混和性有機溶剤と水溶性有機溶剤との混合有機溶剤を99~50:1~50の質量比で用いることが好ましい。これにより、本発明の組成物を保存する際に、ゲル等の発生を防止できる場合がある。
 混合有機溶剤の水不混和性有機溶剤としては、低極性有機溶剤が使用できる。例えば、トルエンやクロロホルムが好ましい。また、混合有機溶剤の水溶性有機溶剤としては、高極性有機溶剤が使用できる。例えば、メタノール,エタノール,イソプロピルアルコール,2-メトキシエタノール,2-エトキシエタノール,アセトン,メチルエチルケトン,メチルイソブチルケトン,テトラヒドロフラン又はジエチルエーテルが好ましい。
 有機溶剤中のπ共役系導電性高分子の割合は、有機溶剤の種類によるが、通常、900g/L以下であり、好ましくは0.01~300g/L以下の範囲である。π共役系導電性高分子の含有量が多すぎると、溶液状態が保持できなくなり、成形体を成形する際の取り扱いが困難になり、成形体の均一性が損なわれ、ひいては成形体の電気特性や機械的強度、透明性の低下を生じる。一方、π共役系導電性高分子の含有量が少なすぎると、後述する方法により成膜したとき、非常に薄い膜しか製造できず、均一な導電性膜の製造が難しくなるおそれがある。
 本発明の組成物は、例えば1重量%以上、15重量%以上、45重量%以上、100重量%が上述したπ共役系導電性高分子、フェノール性化合物、及び溶剤からなってもよい。
 これら成分の他に、本発明の組成物は、本発明の効果を損なわない範囲で、他の樹脂、無機材料、硬化剤、可塑剤等を含んでもよい。
 他の樹脂は、例えば、バインダー基材や可塑剤、マトリックス基材等として添加され、その具体例としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン、塩素化ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレングリコール、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリビニルアルコール等が挙げられる。好ましくは塩素化ポリオレフィンである。
 また樹脂の代わりに、また樹脂と共に、エポキシ樹脂、ウレタン樹脂、フェノール樹脂等の熱硬化性樹脂を形成し得る前駆体を用いてもよい。
 無機材料は、例えば、強度、表面硬度、寸法安定性その他の機械的物性の向上等の目的で添加され、その具体例としては、例えば、シリカ(二酸化ケイ素)、チタニア(酸化チタン)、アルミナ(酸化アルミニウム)等が挙げられる。
 硬化剤は、例えば、強度、表面硬度、寸法安定性その他の機械的物性の向上等の目的で添加され、その具体例としては、例えば、フェノール樹脂等の熱硬化剤、アクリレート系モノマーと光重合性開始剤による光硬化剤等が挙げられる。
 可塑剤は、例えば、引張強度や曲げ強度等の機械的特性の向上等の目的で添加され、その具体例としては、例えば、フタル酸エステル類やリン酸エステル類等が挙げられる。
 本発明の組成物は、公知の方法で調製することができ、例えばWO05/052058に開示の方法により調製することができる。
 本発明の組成物から導電性成形体が得られる。
 例えば、本発明の組成物を、所望の形状を有するガラスや樹脂フィルム、シート、不織布等の基材に塗布し、溶剤を除去することによって導電性膜を有する導電性積層体(表面導電性物品)を製造できる。
 例えば、本発明の導電性積層体を真空成型や圧空成形等、公知の方法により所望の形状に加工することにより、導電性物品が得られる。成形の観点からは、基材は樹脂フィルム又はシートが好ましい。
 組成物を基材に塗布する方法としては、キャスト法、スプレー法、ディップコート法、ドクターブレード法、バーコード法、スピンコート法、エレクトロスピニング法、スクリーン印刷、グラビア印刷法等、公知の一般的な方法を用いることができる。
 塗布膜を乾燥する際、溶剤の種類によっては、塗布膜を加熱してもよい。例えば、空気気流下250℃以下、好ましくは50~200℃の温度で加熱し、さらに、必要に応じて、減圧下に加熱する。加熱温度及び加熱時間は、特に制限されず、用いる材料に応じて適宜選択すればよい。
 また、例えば、本発明の組成物から溶剤を除去することによって導電性フィルムを製造できる。本発明の成形体が膜又はフィルムである場合、これらの厚さは、通常1mm以下、好ましくは10nm~50μmの範囲である。この範囲の厚みの膜は、成膜時にひび割れが生じにくく、電気特性が均一である等の利点を有する。
 また、本発明の組成物は、基材と混合して導電性物品としてもよい。基材としてポリエチレンやポリプロピレン等のポリオレフィン、塩素化ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、ポリアセタール、ポリカーボネート、ポリエチレングリコール、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリビニルアルコール等の熱可塑性樹脂、又はエポキシ樹脂、フェノール樹脂、ウレタン樹脂等の熱硬化性樹脂が挙げられる。
 さらに、本発明の組成物は、基材を有しない自己支持型成形体とすることもできる。自己支持型成形体とする場合には、好ましくは、組成物が上述した他の樹脂を含むようにすると、所望の機械的強度を有する成形体を得ることができる。
製造例1
[ポリアニリン複合体1の製造]
 AOT(ジイソオクチルスルホコハク酸ナトリウム)1.8gをトルエン50mLに溶解し、窒素気流下においた500mLのセパラブルフラスコに溶液を入れ、さらにこの溶液に、1.8mLのアニリンを加えた。その後、1N塩酸150mLを溶液に添加し、溶液温度を5℃に冷却した。
 溶液内温が5℃に到達した時点で、3.6gの過硫酸アンモニウムを1N塩酸50mLに溶解した溶液を、滴下ロートを用いて2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、トルエン125mLを追加し、反応温度を25℃まで上昇させ4時間、反応を継続した。
 その後、静置により二相に分離した水相側を分液し、トルエン相側をイオン交換水50mLで2回、1N塩酸50mLで1回洗浄を行うことでポリアニリン複合体(プロトネーションされたポリアニリン)トルエン溶液を得た。
 この複合体溶液に含まれる若干の不溶物を#5Cの濾紙により除去し、ポリアニリン複合体のトルエン溶液を回収した。この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、1.25gのポリアニリン複合体を得た。
製造例2
[ポリアニリン複合体2の製造]
(1)3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウムの合成
 アルゴンガス気流下、4-シクロヘキセン-1,2-ジカルボン酸ジ(2-エチルヘキシル)エステル(東京化成社製)80gとイソプロピルアルコール900mLを仕込み、亜硫酸水素ナトリウム(和光純薬製)42.3gの水660mL溶液を添加した。この溶液を還流の温度まで加熱し、80~83℃で16時間攪拌した。この間、還流開始から、1~5時間後までの1時間毎、その後、9時間後、10時間後に2,2’-アゾビス(イソブチロニトリル)(和光純薬製)1.66gをそれぞれ添加した。反応液を室温まで冷却したのち、減圧下に濃縮を行った。濃縮残渣を酢酸エチル/ヘキサン混合溶液に1Lに溶解し、シリカゲル250gを加えて攪拌し、溶液を濾別した。
 さらに、シリカゲルから1Lの酢酸エチル/ヘキサン溶液で2回抽出を行い、濾液を合せて減圧下に濃縮した。この濃縮液をカラムクロマトグラフィ(シリカゲル1500g、展開溶媒:酢酸エチル/ヘキサン)で精製し、精製物を無水硫酸ナトリウムで乾燥後、溶剤を減圧留去することで、3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウム(下記式に示す化合物AのNa塩)52.4gを得た。
Figure JPOXMLDOC01-appb-C000011
(2)ポリアニリン複合体の製造
 製造例1にてAOT1.8gの代わりに、上記(1)で合成した3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウム2.0gを用いた他は、製造例1と同様の操作、手順にてポリアニリン複合体を1.32g得た。
実施例1
 製造例1で得られたポリアニリン複合体1を0.1g、トルエンに再溶解し、5重量%の溶液を調整した。ここに4-メトキシフェノール(LD50=1600mg/kg)を0.02g添加し、室温で30分間、攪拌混合した。この溶液をスピンコート法により製膜し、ITO(インジウム錫酸化物)基板上にスピンコート法で製膜し、4端子法により固有伝導率を測定した。
 具体的には、この溶液約1mlを、図1に示す、パターニングによりITO電極2が表面に形成されたガラス基板1の上面に塗布した。ここでスピンコート法による塗布は窒素雰囲気下で行った。また、スピンコート法の、ガラス基板にこの溶液を滴下した後のガラス基板回転時間は15秒間とした。また、スピンコート法のガラス基板回転速度は500rpmとした。その後、ガラス基板を乾燥して導電性ポリアニリン薄膜を形成した。ここで乾燥は、窒素雰囲気下で行った。また、乾燥時間は5分間とした。また、乾燥温度は80℃とした。
 導電性ポリアニリン薄膜を乾燥後、図3に示すように、導電性ポリアニリン薄膜4のITO電極の端子を覆っている部分を、窒素雰囲気下で削り取り、ITO電極の端子を表面に露出させた。表面に露出したITO電極の端子を用いて、ロレスターGP(三菱化学社製;四端子法による抵抗率計)を用いて固有伝導率を測定した。
実施例2
 4-メトキシフェノールの添加量を0.4gとした以外は、実施例1と同様にして製膜し、固有伝導率を測定した。
実施例3
 4-メトキシフェノールの添加量を0.001gとした以外は、実施例1と同様にして製膜し、固有伝導率を測定した。
実施例4
 4-メトキシフェノールの添加量を1.0gとした以外は、実施例1と同様にして製膜し、固有伝導率を測定した。
実施例5
 4-メトキシフェノールの代わりに3-メトキシフェノール(LD50=597mg/kg)を0.02g用いたこと以外は、実施例1と同様にして製膜し、固有伝導率を測定した。
実施例6
 3-メトキシフェノールを0.4g用いたこと以外は、実施例3と同様にして製膜し、固有伝導率を測定した。
実施例7
 4-メトキシフェノールの代わりに3-フェノキシフェノール(LD50=5000mg/kg)を0.02g用いたこと以外は、実施例1と同様にして製膜し、固有伝導率を測定した。
実施例8
 3-フェノキシフェノールを0.4g用いたこと以外は、実施例5と同様にして製膜し、固有伝導率を測定した。
実施例9
 製造例2で得られたポリアニリン複合体2を0.1g、トルエンに再溶解し、5重量%の溶液を調製した。ここに4-メトキシフェノールを0.02g添加し、室温で30分間、攪拌混合した。この溶液をスピンコート法により製膜し、ITO(インジウム錫酸化物)基板上にスピンコート法で製膜し、4端子法により固有伝導率を測定した。
比較例1
 4-メトキシフェノールを添加しなかったこと以外は、実施例1と同様にして製膜し、固有伝導率を測定した。
比較例2
 4-メトキシフェノールの添加量を0.0005gとした以外は、実施例1と同様にして製膜し、固有伝導率を測定した。
比較例3
 4-メトキシフェノールの添加量を2.0gとした以外は、実施例1と同様にして製膜したが、膜自体が著しく脆く導電性の測定が不可能であった。
比較例4
 4-メトキシフェノールの代わりにm-クレゾール(LD50=242mg/kg)を0.4g添加した以外は、実施例1と同様にして製膜し、固有伝導率を測定した。
 上述した実施例及び比較例の導電性組成物の組成及び固有伝導率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の導電性組成物は、パワーエレクトロニクス、オプトエレクトロニクス分野において、静電及び帯電防止材料、透明電極及び導電性フィルム材料、エレクトロルミネッセンス素子の材料、回路材料、電磁波遮蔽材料、コンデンサの誘電体及び電解質、太陽電池及び二次電池の極材料、燃料電池セパレータ材料等に、又はメッキ下地、防錆剤等に利用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (17)

  1.  溶剤、
     前記溶剤に溶解した、ドーパントによりドープされたπ共役系導電性高分子、及び
     LD50が500[mg/kg]以上である、下記式(X)で表わされるフェノール性化合物を含み、
     前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が、0.01~10.0である導電性組成物。
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rは、式(X)中のベンゼン環へ電子を供与する働きを有する基である。)
  2.  少なくとも下記(a)~(c)を原料として用い、
     下記フェノール性化合物(c)と下記π共役系導電性高分子(b)の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が0.01~10.0である導電性組成物。
    (a)溶剤
    (b)前記溶剤に溶解する、ドーパントによりドープされたπ共役系導電性高分子
    (c)LD50が500[mg/kg]以上である、下記式(X)で表わされるフェノール性化合物
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rは、式(X)中のベンゼン環へ電子を供与する働きを有する基である。)
  3.  溶剤、
     前記溶剤に溶解した、ドーパントによりドープされたπ共役系導電性高分子、及び
     下記式(2)で表わされるフェノール性化合物を含み、
     前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が、0.01~10.0である導電性組成物。
    Figure JPOXMLDOC01-appb-C000014
    (式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
  4.  少なくとも下記(a)~(c)を原料として用い、
     下記フェノール性化合物(c)と下記π共役系導電性高分子(b)の重量比(フェノール性化合物[kg]/π共役系導電性高分子[kg])が0.01~10.0である導電性組成物。
    (a)溶剤
    (b)前記溶剤に溶解する、ドーパントによりドープされたπ共役系導電性高分子
    (c)下記式(2)で表わされるフェノール性化合物
    Figure JPOXMLDOC01-appb-C000015
    (式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
  5.  前記フェノール性化合物(c)のLD50が500[mg/kg]以上である請求項3又は4に記載の導電性組成物。
  6.  前記ドープされたπ共役系導電性高分子が、プロトネーションされた置換もしくは非置換ポリアニリン、プロトネーションされた置換もしくは非置換ポリピロール、又はプロトネーションされた置換もしくは非置換ポリチオフェンのいずれかである請求項1~5のいずれか一項に記載の導電性組成物。
  7.  前記π共役系導電性高分子のドーパントが有機スルホン酸である請求項1~6のいずれか一項に記載の導電性組成物。
  8.  前記π共役系導電性高分子のドーパントが、下記(XX)で表されるコハクスルホン酸類である請求項1~7のいずれか一項に記載の導電性組成物。
    M(OSCH(CHCOOR12)COOR13    (XX)
    (式(XX)において、
     Mは、水素原子、有機遊離基又は無機遊離基であり、
     mはMの価数であり、
     R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15で表される基であり、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-で表される基であり、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよく、rは1以上の整数である。)
  9.  前記フェノール性化合物と前記溶剤の重量比(フェノール性化合物[kg]/溶剤[kg])が、0.0004以上0.75以下である請求項1~8のいずれか一項に記載の導電性組成物。
  10.  基材、及び
     前記基材上に積層された請求項1~9のいずれか一項に記載の導電性組成物から製造された導電層を含む導電性積層体。
  11.  前記基材が樹脂フィルムである請求項10に記載の導電性積層体。
  12.  請求項10又は11に記載の導電性積層体を成形して得られる導電性物品。
  13.  請求項1~9のいずれか一項に記載の導電性組成物を用いて製造されるコンデンサ。
  14.  請求項1~9のいずれか一項に記載の導電性組成物を成形してなる導電性フィルム。
  15.  請求項1~9のいずれか一項に記載の導電性組成物を成形してなる導電性膜。
  16.  請求項1~9のいずれか一項に記載の導電性組成物と基材を混合してなる導電性物品。
  17.  π共役系導電性高分子、及び
     下記式(1)で表わされるフェノール性化合物を含み、
     前記フェノール性化合物と前記π共役系導電性高分子の重量比(フェノール性化合物/π共役系導電性高分子)が、0.01~10.0であり、
     前記π共役系導電性高分子が、プロトネーションされた置換もしくは非置換ポリアニリンであり、
     前記π共役系導電性高分子が、有機スルホン酸でドープされている導電性組成物。
    Figure JPOXMLDOC01-appb-C000016
    (式中、Rは炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
PCT/JP2010/004339 2009-07-02 2010-07-01 導電性組成物 WO2011001688A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011520793A JP5731974B2 (ja) 2009-07-02 2010-07-01 導電性組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009157976 2009-07-02
JP2009-157976 2009-07-02

Publications (1)

Publication Number Publication Date
WO2011001688A1 true WO2011001688A1 (ja) 2011-01-06

Family

ID=43410774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004339 WO2011001688A1 (ja) 2009-07-02 2010-07-01 導電性組成物

Country Status (3)

Country Link
JP (1) JP5731974B2 (ja)
TW (1) TWI512025B (ja)
WO (1) WO2011001688A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5827203B2 (ja) * 2012-09-27 2015-12-02 三ツ星ベルト株式会社 導電性組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256176A (ja) * 1989-03-29 1990-10-16 Furukawa Electric Co Ltd:The 電池
JPH10501017A (ja) * 1994-06-08 1998-01-27 ネステ・オサケユキデュア 加工性導電性ポリアニリン組成物およびその調製方法
JP2005068166A (ja) * 2003-06-30 2005-03-17 Tomiyama Pure Chemical Industries Ltd 導電性高分子物質の有機溶剤分散液及びその製造方法
WO2005052058A1 (ja) * 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
JP2006131873A (ja) * 2004-10-08 2006-05-25 Shin Etsu Polymer Co Ltd 導電性組成物及びその製造方法
WO2008018420A1 (fr) * 2006-08-10 2008-02-14 Idemitsu Kosan Co., Ltd. Composition de polyaniline conductrice et procédé pour la produire
JP2009126949A (ja) * 2007-11-22 2009-06-11 Idemitsu Kosan Co Ltd 導電性ポリアニリン組成物、その製造方法及びそれから得られる成形体
WO2009084418A1 (ja) * 2007-12-27 2009-07-09 Idemitsu Kosan Co., Ltd. ポリアニリン複合体、その組成物及び成形体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256176A (ja) * 1989-03-29 1990-10-16 Furukawa Electric Co Ltd:The 電池
JPH10501017A (ja) * 1994-06-08 1998-01-27 ネステ・オサケユキデュア 加工性導電性ポリアニリン組成物およびその調製方法
JP2005068166A (ja) * 2003-06-30 2005-03-17 Tomiyama Pure Chemical Industries Ltd 導電性高分子物質の有機溶剤分散液及びその製造方法
WO2005052058A1 (ja) * 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
JP2006131873A (ja) * 2004-10-08 2006-05-25 Shin Etsu Polymer Co Ltd 導電性組成物及びその製造方法
WO2008018420A1 (fr) * 2006-08-10 2008-02-14 Idemitsu Kosan Co., Ltd. Composition de polyaniline conductrice et procédé pour la produire
JP2009126949A (ja) * 2007-11-22 2009-06-11 Idemitsu Kosan Co Ltd 導電性ポリアニリン組成物、その製造方法及びそれから得られる成形体
WO2009084418A1 (ja) * 2007-12-27 2009-07-09 Idemitsu Kosan Co., Ltd. ポリアニリン複合体、その組成物及び成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO, Y. ET AL.: "Effect of solvents and co- solvents on the processibility of polyaniline: I. Solubility and conductivity studies", SYNTHETIC METALS, vol. 69, no. 1-3, 1995, pages 187 - 90, XP002091335, DOI: doi:10.1016/0379-6779(94)02412-R *

Also Published As

Publication number Publication date
JPWO2011001688A1 (ja) 2012-12-10
TWI512025B (zh) 2015-12-11
TW201111428A (en) 2011-04-01
JP5731974B2 (ja) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5701761B2 (ja) 導電性組成物
JP6129371B2 (ja) ポリアニリン複合体、その製造方法及び組成物
JP4959192B2 (ja) 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
EP2942372B1 (en) Conductive polymer composition
JPWO2009084419A1 (ja) ポリアニリン複合体、その組成物及び成形体
US10872709B2 (en) Method for producing polyaniline complex composition and polyaniline complex composition
JP2015199969A (ja) π共役高分子組成物
JP5492413B2 (ja) 導電性ポリアニリン組成物及びその製造方法
JPWO2009084418A1 (ja) ポリアニリン複合体、その組成物及び成形体
JP5608443B2 (ja) 導電性組成物
JP5731974B2 (ja) 導電性組成物
JP2009120762A (ja) ポリアニリン複合体、その組成物及び成形体
US20240084134A1 (en) Electric conductive polymer composition
JP2009126949A (ja) 導電性ポリアニリン組成物、その製造方法及びそれから得られる成形体
JP2010100838A (ja) 導電性コーティング組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520793

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793860

Country of ref document: EP

Kind code of ref document: A1