WO2011001479A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2011001479A1
WO2011001479A1 PCT/JP2009/003860 JP2009003860W WO2011001479A1 WO 2011001479 A1 WO2011001479 A1 WO 2011001479A1 JP 2009003860 W JP2009003860 W JP 2009003860W WO 2011001479 A1 WO2011001479 A1 WO 2011001479A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
room
compartment
defrosting
cooler
Prior art date
Application number
PCT/JP2009/003860
Other languages
English (en)
French (fr)
Inventor
門傳陽平
石渡寛人
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN200980160176.0A priority Critical patent/CN102803876B/zh
Priority to KR1020117028028A priority patent/KR101260277B1/ko
Publication of WO2011001479A1 publication Critical patent/WO2011001479A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0681Details thereof

Definitions

  • the present invention relates to a refrigerator.
  • Patent Documents 1 to 3 Conventionally, there are those described in Patent Documents 1 to 3 as refrigerators for adjusting the amount of cold air supplied to the freezer compartment.
  • Patent Document 1 describes a freezer compartment air passage, a switching compartment air passage and an ice making air passage, and a refrigerator including a freezing compartment damper, a switching compartment damper and an ice making damper.
  • Patent Document 2 describes a refrigerator provided with a cold air adjusting device at the rear of the freezer compartment.
  • Patent Document 3 describes a configuration in which the cold air that has passed through the cold air fan is divided up and down, one of which flows in the direction of the freezer compartment duct damper below the cold air fan, and the other flows in the direction of the twin duct damper above the cold air fan. Has been.
  • Patent Document 3 has a problem that the flow efficiency of the cold air decreases because the cold air passing through the cold air fan flows in different directions, and the energy saving efficiency cannot be improved.
  • the cold air passage and the damper (cold air adjusting device) to the freezing temperature zone chamber are increased in size, and the depth dimension of the cold air passage and the like is increased. Thereby, the subject that storage rooms, such as a freezing temperature zone room, became narrow occurred.
  • An object of this invention is to obtain the refrigerator which energy-saving efficiency improves, suppressing the expansion of the depth dimension of a cold air
  • a refrigerator includes a refrigerator room, an ice making room, a freezer room, and a cooler storage room in which a cooler is disposed at the rear of the freezer room.
  • the refrigerator having a partition plate for partitioning, the internal fan provided above the cooler, and the blower provided between the internal fan and the partition plate and facing the front of the internal fan A cover, an opening provided above the blower cover and above the internal blower, a freezer cooling damper provided at the opening for controlling the amount of cold air to the freezer, and the refrigerator
  • a refrigeration chamber cooling damper that is provided rearward and above the freezer compartment cooling damper and controls the amount of cold air to the refrigeration chamber, and the ice making chamber that is provided above the freezer compartment cooling damper and on the partition plate Blow out cold air Having, and mouth out come.
  • a refrigeration room provided at the top of the refrigerator body, an ice making room provided below the refrigeration room, a freezing room provided below the ice making room, and a cooler disposed behind the freezing room
  • a refrigerator having a partition plate for partitioning the cooler storage chamber, an internal fan provided above the cooler, and the internal fan provided between the internal fan and the partition plate
  • a blower cover that faces the front of the blower, a freezer compartment cooling damper that is provided above the blower cover and above the internal blower and controls the amount of cool air to the freezer compartment, and above the freezer compartment cooling damper and A blowout port provided in the partition plate and for blowing cold air into the ice making chamber.
  • the internal fan is inclined so that the lower part is closer to the blower cover than the upper part.
  • a cold air duct for blowing cold air to the ice making chamber and the freezing chamber is provided between the blower cover and the partition plate.
  • the present invention can provide a refrigerator with improved energy saving efficiency while suppressing an increase in the depth of the cold air passage.
  • FIG. 2 is a cross-sectional view taken along the line XX in FIG. 1 showing a configuration inside the refrigerator. It is a front view showing the structure in the store
  • FIG. 3 is an enlarged explanatory view of a main part of FIG. 2. It is a figure explaining a defrost mode. It is a time chart at the time of defrosting in the defrosting mode 4.
  • FIG. 1 is a front outline view of the refrigerator of the present embodiment.
  • FIG. 2 is a vertical cross-sectional view taken along the line XX in FIG. 1 showing the configuration inside the refrigerator.
  • FIG. 3 is a front view illustrating a configuration inside the refrigerator, and is a diagram illustrating the arrangement of the cold air duct and the outlet.
  • FIG. 4 is an enlarged explanatory view of the main part of FIG.
  • the refrigerator 1 includes a refrigerator compartment 2, an ice making compartment 3, an upper freezer compartment 4, a lower freezer compartment 5, and a vegetable compartment 6 from above.
  • the front opening of the refrigerating room 2 is provided with double-folded refrigerating room doors 2a and 2b (French doors) divided into left and right.
  • the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 include a drawer type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a.
  • the ice making room 3, the upper freezing room 4 and the lower freezing room 5 are each provided with an ice making room door 3a, an upper freezing room door 4a, and a lower freezing room door 5a, but are not partitioned in a heat-insulating manner, and a freezing temperature zone room.
  • the ice making unit may be provided in a part of the freezing temperature zone.
  • the refrigerator 1 also includes door sensors (not shown) that detect the open / closed state of each door.
  • an alarm (not shown) is provided to notify the user when the state determined as “door open” continues for a predetermined time, for example, 1 minute or more.
  • a temperature setter (not shown) for setting the temperature of the refrigerator compartment 2, the upper freezer compartment 4, the lower freezer compartment 5, and the like is provided.
  • the outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material (foamed polyurethane).
  • the heat insulation box 10 of the refrigerator 1 mounts the several vacuum heat insulating material 25, and has aimed at thinning.
  • the refrigerator compartment 2 is separated from the upper freezer compartment 4 and the ice making room 3 (see FIG. 1, the ice making room 3 is not shown in FIG. 2) by a heat insulating partition wall 28. Further, the lower freezer compartment 5 and the vegetable compartment 6 are separated by a heat insulating partition wall 29.
  • a plurality of door pockets 32 are provided on the inner side of the doors 2a and 2b (see FIG. 1).
  • the refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36.
  • the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are respectively moved back and forth integrally with the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a.
  • 5b, 6b are provided. That is, the storage containers 4b, 5b, and 6b can be pulled out by placing the hands on the handle portions (not shown) of the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a and pulling them out to the front side.
  • the ice making chamber 3 is also provided with an unillustrated storage container (indicated by (3b) in FIG. 2) integrally with the ice making chamber door 3a, and pulls the handle 3 (not shown) of the door 3a to the front side.
  • the storage container 3b can be pulled out.
  • the cooler 7 is provided in a cooler storage chamber 8 provided behind the lower freezing chamber 5.
  • Air cooled by heat exchange with the cooler 7 (hereinafter referred to as “cold air”) by an internal fan 9 (blower) provided above the cooler 7 is a refrigerator compartment fan duct 11, a vegetable room whose code is omitted.
  • the amount of air blown to each storage room is controlled by opening and closing the refrigerator compartment cooling damper 20 and the freezer compartment cooling damper 50.
  • the air ducts to the refrigerator compartment 2, the ice making chamber 3, the upper freezer compartment 4, the lower freezer compartment 5 and the vegetable compartment 6 are provided behind the respective storage compartments of the refrigerator 1, as indicated by broken lines in FIG. ing.
  • the cold air is sent to the refrigerating room 2 through the refrigerating room air duct 11 through the outlets 2c provided in multiple stages. And it sends to the vegetable compartment 6 from the blower outlet 6c through the vegetable compartment ventilation duct (refer FIG. 3) branched from the refrigerator compartment ventilation duct 11 (1st structure).
  • the structure which sends cold air to the vegetable compartment 6 may be sufficient because the refrigerator compartment return duct 16 communicates with the vegetable compartment 6 without branching from the refrigerator compartment ventilation duct 11 (2nd structure).
  • the structure which combined said 1st structure and 2nd structure may be sufficient. This is because the vegetable compartment 6 is controlled to be hot and humid as compared to other storage compartments.
  • the cold air that has cooled the refrigerator compartment 2 is, for example, from the refrigerator compartment return port 2 d provided on the lower surface of the refrigerator compartment 2, through the refrigerator compartment return duct 16, and the cooler storage compartment 8. Seen from the front, go back to the bottom right. The return air from the vegetable compartment 6 returns to the lower part of the cooler storage compartment 8 through the return opening 6d.
  • the freezer cooling damper 50 is omitted, but when the freezer cooling damper 50 is in an open state, the cool air passes through the ice making chamber air duct and the upper freezer room air duct 12 not shown by the internal fan 9. Air is blown from the blowout ports 3c and 4c to the ice making chamber 3 and the upper freezing chamber 4, respectively. Further, the air is blown from the outlet 5 c to the upper freezer compartment 4 through the cold air duct 13.
  • the cold air that has cooled the upper freezer room 4, the lower freezer room 5, and the ice making room 3 returns to the cooler storage room 8 via the freezer return port 17 provided in the lower part of the lower freezer room 5.
  • the outlets 3c, 4c, 5c are provided in the partition plate 54.
  • the partition plate 54 divides the upper freezer compartment 4, the lower freezer compartment 5, the ice making chamber 3, and the cooler storage compartment 8.
  • the blower fixing unit 55 partitions the cooler storage chamber 8 and the freezing temperature zone chamber. That is, it is provided between the cooler 7 and the partition plate 54. And the internal fan 9 is attached to this air blower fixing
  • the front of the internal fan 9 is covered with a fan cover 56.
  • the opening 56a is provided in the upper part of the air blower cover 56, and the freezer compartment cooling damper 50 is provided in this opening 56a.
  • the outlet 3 c to the ice making chamber 3 is provided above the freezing chamber cooling damper 50. That is, it arrange
  • the cooler 7, the internal fan 9, the freezer compartment cooling damper 50, and the outlet 3 c to the ice making room 3 are arranged so as not to overlap when viewed from the front of the refrigerator 1. Yes. Thereby, it is possible to smoothly flow into the ice making chamber 3 and to suppress a decrease in the internal volume of the storage chamber.
  • the internal blower 9 is provided with an inclination so that the cold air flow to the ice making chamber 3 is smooth. Specifically, it is provided such that the upper part of the internal fan 9 is located on the back side as viewed from the front of the refrigerator 1 and the lower part is located on the near side. That is, the internal fan 9 is provided so as to be inclined so that the lower part is closer to the blower cover 56 than the upper part. Then, the cool air heat-exchanged by the cooler 7 is blown into the space between the blower cover 56 and the blower fixing portion 55 by the internal blower 9. Then, the cold air flows upward through this space, and then easily flows through the freezing chamber cooling damper 50 to the outlet 3c to the ice making chamber 3.
  • the cold air when the freezer cooling damper 50 is closed, or a part of the cold air when the freezer cooling damper 50 is open does not pass through the freezer cooling damper 50 and is directly placed in the upper freezer cooling damper. 20 is sent to the refrigerated temperature zone.
  • an ice making room air duct (not shown), an upper freezer room air duct 12 and a cold air duct 13 are formed between the blower cover 56 and the partition plate 54.
  • the ice making room air duct, the upper freezer room air duct 12 and the cold air duct 13 are ducts for sending cold air to the ice making room 3, the upper freezer room 4 and the lower freezer room 5, respectively.
  • the cold air that has passed through the freezer cooling damper 50 passes through the ice making fan air duct, the upper freezer air fan duct 12, and the cold air duct 13, and then through the outlets 3c, 4c, and 5c provided in the partition plate 54. They are sent to the ice making chamber 3, the upper freezing chamber 4 and the lower freezing chamber 5, respectively.
  • the ice making chamber air duct, the upper freezer compartment air duct 12 and the cold air duct 13 are provided between the ice making room 3, the upper freezer room 4, the lower freezer room 5 and the cooler storage room 8 which are freezing temperature zones. It is the structure provided.
  • the ice making chamber air duct, the upper freezer chamber air duct 12, and the cool air duct 13 serve as an air insulation layer. Thereby, even if it is during a defrost operation etc., it can suppress receiving the influence of the high temperature from the defrost heater 22, and can suppress that the temperature of a freezing temperature zone room falls.
  • the blower cover 56 has a rectifying unit 56b below the freezer cooling damper 50 and in front of the internal blower 9.
  • the rectifying unit 56 b has a conical shape that is recessed toward the center of the internal fan 9 in order to prevent a vortex that is likely to occur at the center of the internal fan 9.
  • the rectifying unit 56 b rectifies the turbulent flow caused by the cool air blown out by the internal fan 9 hitting the fan cover 56. That is, the flow swirls around the rectifying unit 56b, and then flows upward (in the direction in which the freezer compartment cooling damper 50 and the refrigerator compartment cooling damper 20 are provided). Thereby, a cool air flow becomes smooth and generation
  • the cold air that does not pass through the freezer cooling damper 50 flows to the refrigerating room cooling damper 20 side via the refrigerating room duct 15.
  • the cold air toward either the refrigeration temperature zone chamber or the freezing temperature zone chamber is in the same direction immediately after being sent by the internal fan 9.
  • the flow of cold air becomes smooth.
  • the freezer cooling damper 50 is closed and the refrigerating room cooling damper 20 is opened
  • the freezing room cooling damper 50 is opened and the refrigerating room cooling damper 20 is closed
  • the freezer cooling damper 50 and the refrigerating room cooling damper are provided.
  • the flow of cold air immediately after being sent by the internal fan 9 is in the same direction, so the flow of cold air can be made smooth.
  • the amount of cold air is configured to be sent to the freezer compartment cooling damper 50 side.
  • the amount of cold air distributed is controlled by adjusting the opening degree of the freezer cooling damper 50 or increasing the opening of the freezer cooling damper 50.
  • refrigerator compartment cooling damper 20 is attached to the rear part of the refrigerator compartment 2 as shown in FIG.
  • a defrost heater 22 is installed below the cooler 7, and an upper cover 53 is disposed above the defrost heater 22 in order to prevent defrost water from dripping onto the defrost heater 22. Is provided.
  • the defrosting heater 22 can vary its output by duty control by the control board 31 described later.
  • the defrost water generated by melting the frost adhering to the wall of the cooler 7 and the cooler storage chamber 8 therearound flows into the trough 23 provided at the lower part of the cooler storage chamber 8. Then, it reaches the evaporating dish 21 arranged in the machine room 19 through the drain pipe 27 and evaporates by the heat of the condenser (not shown).
  • a cooler temperature sensor 35 attached to the cooler is located in the upper right portion when viewed from the front of the cooler 7, a refrigerator temperature sensor 33 is provided in the refrigerator compartment 2, and a freezer compartment temperature sensor 34 is provided in the lower freezer compartment 5.
  • each is provided.
  • the temperature of the cooler 7 hereinafter referred to as “cooler temperature”
  • the temperature of the refrigerator compartment 2 hereinafter referred to as “refrigerator compartment temperature”
  • the temperature of the lower freezer compartment 5 hereinafter referred to as “freezer compartment”. Temperature)).
  • the refrigerator 1 is provided with an outside air temperature sensor and an outside air humidity sensor (not shown) that detect a temperature and humidity environment (outside temperature, outside air humidity) outside the refrigerator.
  • the vegetable room temperature sensor 33 a may be arranged in the vegetable room 6.
  • a machine room 19 is provided on the lower back side of the heat insulation box 10.
  • the machine room 19 houses a compressor 24 and a condenser (not shown), and the heat of the condenser is removed by an outside fan (not shown).
  • isobutane is used as a refrigerant, and the amount of refrigerant enclosed is as small as about 80 g.
  • a control board 31 having a CPU, a memory such as ROM and RAM, an interface circuit, and the like is disposed.
  • the control board 31 includes the above-described outside air temperature sensor, outside air humidity sensor, cooler temperature sensor 35, refrigerating room temperature sensor 33, freezing room temperature sensor 34, refrigerating room doors 2a and 2b, ice making room door 3a, and upper freezing room door 4a.
  • the width of the freezer compartment return port 17 is substantially equal to the width of the cooler 7.
  • the refrigerating room cooling damper 20 when the refrigerating room cooling damper 20 is open and the freezing room cooling damper 50 is closed and only the refrigerating temperature zone room (the refrigerating room 2 and the vegetable room 6) is cooled, the return cold air from the refrigerating room 2 3 flows into the cooler storage chamber 8 from the lower side of the cooler storage chamber 8 via the refrigerating chamber return duct 16 and exchanges heat with the cooler 7 as indicated by an arrow d in FIG.
  • the cold air which cooled the vegetable compartment 6 flows into the lower part of the cooler storage chamber 8 through the vegetable compartment return port 6d (refer FIG. 4), as shown in FIG.
  • the amount of air from the vegetable room return port 6d is smaller than the amount of air circulating through the freezing temperature zone and the amount of air circulating through the refrigerator compartment 2. Therefore, since the influence on the flow field (hereinafter referred to as “flow field”) indicating the state of the cold air flow in the cooler storage chamber 8 is relatively small, the description thereof is omitted here.
  • the cooler storage chamber of each return cold air 8 the inflow direction (angle) to the cooler storage chamber 8, the air volume, and the like are different. Therefore, the flow field formed by the return cold air from the freezing temperature zone chamber and the return cold air from the freezing temperature zone chamber cools only the freezing temperature zone chamber when cooling only the freezing temperature zone chamber. In general, there is a difference between the case where the refrigeration temperature zone chamber and the freezing temperature zone chamber are simultaneously cooled.
  • FIG. 5 is a diagram illustrating the defrosting mode.
  • FIG. 6 is a time chart at the time of defrosting in the defrosting mode 4.
  • the state where the compressor 24 is operating is referred to as “compressor ON”, and the state where the compressor 24 is stopped is referred to as “compressor OFF”.
  • the state where the internal fan 9 is operating is referred to as “internal fan ON”, and the state where the internal fan 9 is stopped is referred to as “internal fan OFF”.
  • a state where the defrost heater 22 is energized is referred to as “defrost heater ON”, and a state where the defrost heater 22 is not energized is referred to as “defrost heater OFF”.
  • the state where the refrigerating room cooling damper 20 is in the open state and the air can be sent to the refrigerating temperature zone is “open refrigerating room cooling damper”, and the refrigerating room cooling damper 20 is in the closed state and the air is sent to the refrigerating temperature zone.
  • the blocked state is referred to as “refrigeration chamber cooling damper closed”.
  • the state where the freezer cooling damper 50 is open and air can be sent to the freezing temperature zone chamber is “open freezing room cooling damper”, and the freezing chamber cooling damper 50 is closed and air is sent to the freezing temperature zone chamber.
  • the blocked state is referred to as “freezer compartment cooling damper closed”.
  • a plurality of cooling operation modes are prepared as modes of the normal cooling operation of the refrigerator 1, such as “compressor ON, internal fan ON, refrigerator compartment cooling damper open, freezer compartment cooling damper closed, defrost heater OFF”. This state is referred to as a “refrigeration room cooling operation” mode.
  • the normal cooling operation is a control (ON / OFF control) of the compressor 24, the internal fan 9, and the external fan based on the temperatures detected by the refrigerator temperature sensor, the freezer temperature sensor, and the outside air temperature sensor.
  • the rotation speed control of the refrigerator compartment 20 and the open / close state of the freezer compartment damper 50 are set to a predetermined temperature (for example, the refrigerator compartment is about 3 ° C., the vegetable compartment is about 5 ° C., the freezer compartment is The operation is maintained at about -18 ° C.
  • the vegetable room 6 is treated as a part of the refrigerated room 2, and the description about the vegetable room 6 is omitted.
  • the refrigerator 1 of the present embodiment includes six modes of defrost modes 1 to 6 as modes in the defrost operation.
  • defrosting modes as shown below the table in FIG. 5, “compressor OFF, internal fan ON, refrigerator cooling fan open, freezer cooling damper closed, defrost heater OFF”
  • the defrost mode 1 for performing “defrosting by the internal blower” is referred to as “first defrosting means”.
  • defrosting mode 3 for performing “defrosting with an internal fan + defrost heater” of “compressor OFF, internal fan ON, refrigerator cooling fan open, freezer cooling damper closed, defrost heater ON” This is referred to as “second defrosting means”.
  • defrosting mode 6 for performing “defrosting by the defrosting heater” of “compressor OFF, internal fan OFF, refrigerator cooling cooler close, freezer cooling damper close, defrost heater ON” is described in the claims. Is referred to as “third defrosting means”.
  • the “fourth defrosting means” is a means for performing a defrosting operation by combining one or more of the first defrosting means, the second defrosting means, and the third defrosting means. .
  • the defrost mode 2 is a mode which performs the defrost operation by the defrost mode 3 (2nd defrost means) continuously after the defrost operation by the defrost mode 1 (1st defrost means). is there.
  • the defrosting mode 4 is performed after the defrosting operation in the defrosting mode 1 (first defrosting means), followed by the defrosting mode 3 (second defrosting means) and the defrosting mode 6 (third defrosting means). In this mode, the defrosting operation is performed by the defrosting means.
  • the defrost mode 5 is a mode which performs the defrost operation by the defrost mode 6 (3rd defrost means) continuously after the defrost operation by the defrost mode 3 (2nd defrost means). .
  • the mode of the defrosting operation in the refrigerator 1 of the present embodiment is set to the defrosting mode by combining all or a part of the first to third defrosting means.
  • the “Combination of defrosting means” column in the table of FIG. 5 combinations of the first to third defrosting means are described so that each defrosting mode can be easily understood.
  • the defrosting modes 1 to 6 are under any defrosting completion determination temperature conditions such as the freezer temperature, the refrigerator temperature, and the cooler temperature. Indicates whether each defrost mode is complete.
  • the temperature numerical value applied in each mode differs.
  • the condition of the cooler temperature shown in the “defrost completion determination condition” column of the table of FIG. 5 corresponds to the defrost completion determination temperature.
  • the normal cooling operation has the three types of cooling operation modes described above. Therefore, when continuing the normal cooling operation, in addition to continuing the “freezer compartment cooling operation” mode, two other kinds of cooling operations other than the “freezer compartment cooling operation” mode based on the refrigerator compartment temperature and the freezer compartment temperature. There are also cases where the mode is switched ("refrigeration room cooling operation” mode, "refrigeration room / freezing room simultaneous cooling operation” mode).
  • the mode is switched from the "refrigeration compartment cooling operation” mode to the “refrigeration compartment cooling operation” mode, and the refrigerator compartment 2 is quickly cooled to a predetermined temperature. After that, it shifts to the “freezer cooling operation” mode again.
  • the control shown in FIG. 6 is as follows. That is, the defrosting mode 4 is selected, the section of “freezing room cooling operation”, the section of the defrosting operation by “first defrosting means”, and the section of the defrosting operation by “second defrosting means” TB , The section TC of the defrosting operation by the “third defrosting means”, the sections TD and TE after the completion of the defrosting operation, and the section of the “normal cooling operation”.
  • ON state (160 W) / ON state (80 W) / OFF state of the defrost heater 22 ON / OFF state of the internal fan 9, open / closed state of the cold room cooling damper 20, warehouse
  • the ON / OFF state of the inner blower 9, the open / closed state of the freezer cooling damper 50, and the ON / OFF state of the compressor 24 are shown.
  • the freezer cooling operation is performed until the refrigerator temperature exceeds 5 ° C.
  • the defrosting operation by the first defrosting means (“compressor OFF, internal fan ON, refrigerator compartment cooling damper open, freezer compartment cooling damper closed, defrost heater OFF”) is performed.
  • the refrigerator compartment temperature is cooled by the cold heat of the frost,
  • the cooler temperature rises due to the heat load of the refrigerator compartment, and the difference between the refrigerator compartment and the condenser temperature gradually decreases.
  • the temperature difference between the refrigerator temperature and the cooler temperature becomes small, heat exchange becomes difficult, and therefore, when the defrosting operation by the first defrosting means is continued as it is, the defrosting time becomes long.
  • the temperature of the freezer compartment continues to rise during defrosting.
  • the defrost heater 22 is turned on so that the defrost heater 22 is turned on so that the return air from the refrigerator compartment 2 is heated and defrosted easily.
  • the state of “compressor OFF, internal fan ON, refrigerator freezer cooling damper open, freezer cooler damper closed, defrost heater ON” is the defrosting operation by the second defrosting means in the section TB in FIG.
  • the output of the defrost heater 22 in the second defrosting means is 80 W. If this output is in a state where frost remains in the cooler 7, the air after passing through the cooler 7 cools the refrigerator compartment 2.
  • the output is a temperature of about 0 to 4 ° C.
  • the temperature of the cooler 7 itself at this time is about ⁇ 10 ° C. or less due to evaporation of the liquid refrigerant in the cooler 7.
  • the section TB in FIG. 6 is a temperature including frost attached to the fin surface constituting the cooler 7.
  • the end of the section TB is performed by the previous cooler temperature sensor 35.
  • the rotation speed of the internal fan 9 during the normal cooling operation is about 1600 min ⁇ 1 , and is about 1400 min ⁇ 1 during the defrosting operation by the second defrosting means in the section TB.
  • the rotational speed of the internal fan 9 during the defrosting operation by the second defrosting means is changed from that during the normal cooling operation because the air temperature at which the refrigerator compartment 2 can be cooled is about 0 to 4 ° C. It is for adjusting so that it may be obtained.
  • the defrosting operation by the second defrosting means of the refrigerator 1 of the present embodiment is adjusted so that an air temperature of about 0 to 4 ° C. that can cool the refrigerator compartment 2 is obtained.
  • humidification disclosed in Patent Document 2 and Patent Document 3, it occurred in the case of “compressor OFF, internal fan ON, refrigerator cooling fan open, freezer cooling damper closed, defrost heater ON”.
  • the output of the defrost heater 22 in the defrosting operation of “defrosting by the internal fan + defrost heater” is excessive, the air temperature after passing through the cooler higher than the temperature to be kept in the refrigerator compartment 2 is obtained. This is not preferable because the refrigerator compartment 2 is heated.
  • the defrosting operation by the second defrosting means is intended to suppress an increase in freezer temperature by shortening the defrosting time, this purpose is achieved if the output of the defrosting heater 22 is too small. Not. Therefore, the output of the defrost heater 22 in the second defrosting means must be appropriate.
  • the defrost heater 22 is turned on as well as suppressing the rise in the freezer temperature, the frost is defrosted while cooling the refrigerator room 2 (using the heat load of the refrigerator room 2). Therefore, the amount of energy input from the outside for defrosting can be reduced by the amount using the heat load of the refrigerator compartment 2, and an energy saving effect can be obtained. Furthermore, since the return air from the refrigerator is forced to convection in the cooler 7 by blowing air, the heat transfer efficiency between the air and the frost is good, and there is also an energy saving effect due to the fact that the frost is easily dissolved.
  • the internal fan is turned off and the refrigerating room cooling damper is closed, and the output of the defrost heater 22 is changed from 80 W to 160 W.
  • the defrosting operation by the third defrosting means “defrosting by the defrosting heater” is performed.
  • the cooling heat of the cooler 7 does not have the ability to cool the refrigerator 2 and if the air is further blown, the refrigerator 2 will be warmed.
  • “Defrosting by the defrosting heater” is performed to prevent the refrigerator compartment 2 from being warmed, and the cooler 7 is made free from unmelted frost.
  • the output of the defrosting heater 22 is increased from 80 W to 160 W.
  • section TC of the defrosting operation by the 3rd defrosting means can be shortened, and the rise of the refrigerator compartment temperature and freezer compartment temperature in the meantime can be suppressed small.
  • the defrosting operation by the third defrosting means has a lower heat transfer efficiency due to natural convection between the air and the frost in the cooler housing chamber 8 than the defrosting in the blowing state, and the defrosting operation has low energy saving performance. It is a means. However, since the defrosting operation by the third defrosting means is performed from the state that almost all the frost has been melted, that is, the cooler temperature is higher than the refrigerator temperature maintained at the plus temperature, the defrosting operation is performed. The influence of the decrease in energy saving performance due to the defrosting operation by means is relatively small.
  • the defrosting mode 4 by combining the defrosting operations by the first to third defrosting means, it is possible to perform defrosting with flexibility and energy saving effect, and shorten the defrosting time. In the meantime, the freezer temperature is prevented from rising.
  • the defrosting heater 22 is turned off, and the defrosting operation in the defrosting mode 4 is finished.
  • the section TD in FIG. Wait for 5 minutes in the state of “Blower OFF, refrigeration chamber cooling damper closed, freezer compartment cooling damper closed, defrost heater OFF”. Due to this elapsed section TD, the dripping time from the defrosting water cooler 7 and the upper cover 53 (see FIG. 5) to the eaves 23 is secured, the normal cooling operation is resumed in the middle of dripping, and the ice is frozen again. A situation in which a part of the storage chamber 8 is blocked becomes difficult to occur.
  • section TE After 5 minutes of the elapsed section TD has elapsed, the process proceeds to section TE.
  • this section TE first, only the compressor 24 is turned on (“compressor ON, internal fan OFF, defrost heater OFF, cold room cooling damper closed” , Freezer compartment cooling damper closed “), wait for 2 minutes, and then resume normal cooling operation.
  • the waiting time of 2 minutes is such that the cooler 7 whose temperature is high when the defrosting operation in the defrosting mode 4 is finished and the surrounding air are sent to the respective chambers as they are, and This is to make it difficult for the problem of warming the chamber to occur, and is usually provided to cool the interior of the cooler housing chamber 8 before resuming the cooling operation.
  • the present invention has the configuration as described above, a refrigerator with improved energy saving efficiency can be obtained by controlling the temperature of the freezer compartment while suppressing the expansion of the depth dimension of the cold air passage. Further, it is possible to obtain a refrigerator capable of ensuring energy saving performance while maintaining the food temperature in the refrigerator within a predetermined temperature range and maintaining the food storage temperature.
  • Refrigerator 2 Refrigerated room (refrigerated temperature zone) 3 Ice making room (freezing temperature zone) 4 Upper freezer room (freezing temperature room) 5 Lower freezer compartment (freezing temperature zone) 6 Vegetable room (refrigerated temperature room) 7 Cooler 8 Cooler storage chamber 9 Blower (blower) DESCRIPTION OF SYMBOLS 11 Refrigeration room ventilation duct 12 Upper stage freezing room ventilation duct 13 Cold air duct 15 Refrigeration room duct 17 Freezing room return port 20 Refrigeration room cooling damper 50 Freezer room cooling damper 53 Upper cover 54 Partition plate 55 Blower fixing part 56 Blower cover 56a Opening 56b Rectification Department.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 冷気通路の奥行き寸法の拡大を抑制しつつ、省エネルギー効率が向上する冷蔵庫を得る。 冷蔵庫本体の上部から順に設けられた冷蔵室,製氷室,冷凍室と、前記冷凍室の後方に冷却器が配置される冷却器収納室を区画する仕切板と、を有する冷蔵庫において、前記冷却器の上方に設けられた庫内送風機と、該庫内送風機と前記仕切板との間に設けられ且つ前記庫内送風機の前方に対向する送風機カバーと、該送風機カバーの上部であって且つ前記庫内送風機より上方に設けられた開口と、該開口に設けられ前記冷凍室への冷気量を制御する冷凍室冷却ダンパと、前記冷蔵室の後方且つ該冷凍室冷却ダンパよりも上方に設けられて前記冷蔵室への冷気量を制御する冷蔵室冷却ダンパと、前記冷凍室冷却ダンパより上方であって且つ前記仕切板に設けられ前記製氷室へ冷気を吹き出す吹き出し口と、を有する。

Description

冷蔵庫
 本発明は、冷蔵庫に関する。
 従来、冷凍室に供給する冷気量を調整する冷蔵庫として、特許文献1から3に記載のものがある。
 特許文献1には、冷凍室風路,切替室風路及び製氷室風路、並びに冷凍室ダンパ,切替室ダンパ及び製氷室ダンパを備えた冷蔵庫が記載されている。
 特許文献2には、冷凍室後方に冷気調節装置を備えた冷蔵庫が記載されている。
 特許文献3には、冷気ファンを経た冷気が上下に分流され、その一方は冷気ファンより下方の冷凍室用ダクトダンパ方向へ流れ、他方は冷気ファンよりも上方のツインダクトダンパ方向へ流れる構成が記載されている。
特開2002-031466号公報 特開平11-118317号公報 特開2006-308259号公報
 しかしながら、特許文献1に記載の構成では、風路構造が複雑になるとともに、ダンパを複数有することから、風路が大型化して内容積効率(冷蔵庫の外形容積に対する収納容積の割合)が減少する、という課題があった。
 また、特許文献2に記載の構成では、送風ファンの前方に冷気調節装置が設けられており、冷凍室の容積が減少する、という課題があった。
 また、特許文献3に記載の構成では、冷気ファンを経た冷気が異なる方向へ流れることで、冷気の流れ効率が減少し、省エネルギー効率を向上できない、という課題があった。
 また、冷凍温度帯室を所定温度に制御するためには、時間あたりの冷気供給量をできるだけ多くする必要がある。すると、冷凍温度帯室への冷気通路やダンパ(冷気調節装置)が大型化することになり、当該冷気通路等の奥行き寸法が大きくなる。これにより、冷凍温度帯室等の貯蔵室が狭くなる、という課題があった。
 そこで、本発明は上記課題を解決するためになされたものである。本発明は、冷気通路の奥行き寸法の拡大を抑制しつつ、省エネルギー効率が向上する冷蔵庫を得ることを目的とする。
 前記目的を達成するために、本発明の冷蔵庫は、冷蔵庫本体の上部から順に設けられた冷蔵室,製氷室,冷凍室と、前記冷凍室の後方に冷却器が配置される冷却器収納室を区画する仕切板と、を有する冷蔵庫において、前記冷却器の上方に設けられた庫内送風機と、該庫内送風機と前記仕切板との間に設けられ且つ前記庫内送風機の前方に対向する送風機カバーと、該送風機カバーの上部であって且つ前記庫内送風機より上方に設けられた開口と、該開口に設けられ前記冷凍室への冷気量を制御する冷凍室冷却ダンパと、前記冷蔵室の後方且つ該冷凍室冷却ダンパよりも上方に設けられて前記冷蔵室への冷気量を制御する冷蔵室冷却ダンパと、前記冷凍室冷却ダンパより上方であって且つ前記仕切板に設けられ前記製氷室へ冷気を吹き出す吹き出し口と、を有する。
 また、冷蔵庫本体の上部に設けられた冷蔵室と、該冷蔵室の下方に設けられた製氷室と、該製氷室の下方に設けられた冷凍室と、該冷凍室の後方に冷却器が配置される冷却器収納室を区画する仕切板と、を有する冷蔵庫において、前記冷却器の上方に設けられた庫内送風機と、該庫内送風機と前記仕切板との間に設けられ且つ前記庫内送風機の前方に対向する送風機カバーと、該送風機カバーの上部且つ前記庫内送風機より上方に設けられて前記冷凍室への冷気量を制御する冷凍室冷却ダンパと、該冷凍室冷却ダンパより上方且つ前記仕切板に設けられ前記製氷室へ冷気を吹き出す吹き出し口と、を有する。
 また、前記送風機カバーの前記庫内送風機が対向する位置に設けられて冷気を上方に流す整流部を有する。
 また、前記庫内送風機は上部より下部が前記送風機カバーに近くなるように傾斜して設けられる。
 また、前記送風機カバーと前記仕切板との間に前記製氷室及び前記冷凍室へ夫々冷気を送風する冷気ダクトが設けられる。
 本発明は、冷気通路の奥行き寸法の拡大を抑制しつつ、省エネルギー効率が向上する冷蔵庫を得ることができる。
本発明の実施形態に係る冷蔵庫の正面外形図である。 冷蔵庫の庫内の構成を表す図1のX-X断面図である。 冷蔵庫の庫内の構成を表す正面図である。 図2の要部拡大説明図である。 除霜モードを説明する図である。 除霜モード4における除霜時のタイムチャートである。
 本発明に係る実施の形態の冷蔵庫を、図1から図4を参照しながら説明する。図1は、本実施形態の冷蔵庫の正面外形図である。図2は、冷蔵庫の庫内の構成を表す図1におけるX-X縦断面図である。図3は、冷蔵庫の庫内の構成を表す正面図であり、冷気ダクトや吹き出し口の配置などを示す図である。図4は、図2の要部拡大説明図である。
 図1に示すように、本実施の形態に係る冷蔵庫1は、上方から、冷蔵室2,製氷室3及び上段冷凍室4,下段冷凍室5,野菜室6を有する。
 冷蔵室2の前方開口には、左右に分割された観音開き式の冷蔵室扉2a,2b(フレンチドア)を備える。製氷室3,上段冷凍室4,下段冷凍室5,野菜室6は、それぞれ引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aを備えている。
 なお、製氷室3,上段冷凍室4及び下段冷凍室5は、製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5aをそれぞれ備えつつ、断熱的には区画せず、冷凍温度帯室として設け、当該冷凍温度帯室の一部に製氷部を設ける構成であってもよい。
 また、冷蔵庫1は、上記各扉の開閉状態をそれぞれ検知する図示しない扉センサを備える。また、「扉開放」と判定された状態が所定時間、例えば、1分間以上継続された場合、使用者に報知する図示しないアラームを備える。また、冷蔵室2,上段冷凍室4及び下段冷凍室5等の温度設定をする図示しない温度設定器を備える。
 図2に示すように、冷蔵庫1の庫外と庫内は、発泡断熱材(発泡ポリウレタン)を充填して形成される断熱箱体10によって隔てられる。また、冷蔵庫1の断熱箱体10は、複数の真空断熱材25を実装し、薄壁化を図っている。
 冷蔵室2と上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが、断熱仕切壁28により隔てられている。また、下段冷凍室5と野菜室6とが、断熱仕切壁29により隔てられている。
 扉2a,2b(図1参照)の庫内側には、複数の扉ポケット32が備えられている。また、冷蔵室2は複数の棚36により、縦方向に複数の貯蔵スペースに区画されている。
 図2に示すように、上段冷凍室4,下段冷凍室5及び野菜室6は、上段冷凍室扉4a,下段冷凍室扉5a及び野菜室扉6aとそれぞれ一体に前後に移動する、収納容器4b,5b,6bがそれぞれ設けられている。すなわち、上段冷凍室扉4a,下段冷凍室扉5a及び野菜室扉6aの図示しない取手部に手を掛けて手前側に引き出すことにより、収納容器4b,5b,6bがそれぞれ引き出せるようになっている。同様に、製氷室3も製氷室扉3aと一体に、図示しない収納容器(図2中(3b)で表示)が設けられ、扉3aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器3bが引き出せるようになっている。
 図2に示すように(適宜図3参照)、冷却器7は下段冷凍室5の後方に設けた冷却器収納室8内に設けられている。冷却器7の上方に設けられた庫内送風機9(送風機)により、冷却器7と熱交換して冷やされた空気(以下、「冷気」という)が冷蔵室送風ダクト11,符号省略の野菜室送風ダクト(図3参照),上段冷凍室送風ダクト12,冷気ダクト13及び図示しない製氷室送風ダクトを介して、冷蔵室2,野菜室6,上段冷凍室4,下段冷凍室5及び製氷室3の各貯蔵室へ送られる。各貯蔵室への送風量は、冷蔵室冷却ダンパ20と冷凍室冷却ダンパ50の開閉により制御される。
 ちなみに、冷蔵室2,製氷室3,上段冷凍室4,下段冷凍室5及び野菜室6への各送風ダクトは、図3に破線で示すように、冷蔵庫1の各貯蔵室の後方に設けられている。
 具体的に、冷蔵室冷却ダンパ20が開状態、冷凍室冷却ダンパ50が閉状態の場合、冷気は、冷蔵室送風ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られる。そして、冷蔵室送風ダクト11から分岐した野菜室送風ダクト(図3参照)を経て、吹き出し口6cから野菜室6に送られる(第一の構成)。また、冷蔵室送風ダクト11から分岐せずに、冷蔵室戻りダクト16が野菜室6に連通することで、野菜室6に冷気を送る構成であってもよい(第二の構成)。また、上記第一の構成及び第二の構成を組み合わせた構成であってもよい。これは、野菜室6が他の貯蔵室に比べて高温高湿に制御されることによる。
 次に、上記第一の構成の場合、冷蔵室2を冷却した冷気は、例えば、冷蔵室2の下面に設けられた冷蔵室戻り口2dから冷蔵室戻りダクト16を経て、冷却器収納室8の正面から見て、右側下部に戻る。また、野菜室6からの戻り空気は、戻り口6dを経て、冷却器収納室8の下部に戻る。
 図3では、冷凍室冷却ダンパ50が省略されているが、冷凍室冷却ダンパ50が開状態の場合、冷気が庫内送風機9により図示省略の製氷室送風ダクトや上段冷凍室送風ダクト12を経て吹き出し口3c,4cからそれぞれ製氷室3,上段冷凍室4へ送風される。また、冷気ダクト13を経て、吹き出し口5cから上段冷凍室4へ送風される。
 また、上段冷凍室4,下段冷凍室5及び製氷室3をそれぞれ冷却した冷気は、下段冷凍室5の奥下方に設けられた冷凍室戻り口17を介して、冷却器収納室8に戻る。
 ここで、吹き出し口3c,4c,5cは、仕切板54に設けられている。仕切板54は、上段冷凍室4,下段冷凍室5及び製氷室3と、冷却器収納室8との間を区画する。
 次に、庫内送風機9は送風機固定部55に設けられている。送風機固定部55は、冷却器収納室8と冷凍温度帯室との間を区画している。すなわち、冷却器7と仕切板54との間に設けられている。そして、庫内送風機9は、この送風機固定部55に取り付けられており、冷却器7の上方に設けられている。
 次に、庫内送風機9の前方は、送風機カバー56で覆われている。そして、送風機カバー56の上部に開口56aが設けられ、該開口56aに冷凍室冷却ダンパ50が設けられている。さらに、製氷室3への吹き出し口3cは、冷凍室冷却ダンパ50よりも上方に設けられている。すなわち、下から上に向かって順に冷却器7,庫内送風機9,冷凍室冷却ダンパ50,製氷室3への吹き出し口3cが重ならないように配置されている。これにより、冷却器7を通って熱交換した冷気は、庫内送風機9を運転することで、冷凍室冷却ダンパ50及び吹き出し口3cを通って、製氷室3へスムーズに流れるようになる。
 ここで、製氷室3は、製氷時間の短縮,生成した氷の融解を防ぐ等の観点を考慮すると、冷蔵庫1全体の中で最も低温に維持する必要がある。すなわち、製氷室3への冷気流れがスムーズな送風ダクト構造とすることが重要となる。
 しかし、庫内送風機9,冷凍室冷却ダンパ50及び吹き出し口3cを、上下方向で重なるように、且つ庫内奥行き方向に配置した場合、製氷室3への冷気流れがスムーズになるが、貯蔵室の内容積が減少してしまう。
 そこで、本実施の形態では、上記の如く、冷却器7,庫内送風機9,冷凍室冷却ダンパ50,製氷室3への吹き出し口3cが冷蔵庫1の正面から見て重ならないように配置されている。これにより、製氷室3へスムーズに流れとともに、貯蔵室の内容積の減少を抑えることができる。
 さらに、庫内送風機9は、上記の製氷室3への冷気流れがスムーズになるように、傾斜して設けられている。具体的に、庫内送風機9の上部が冷蔵庫1の正面から見て奥側に、下部が手前側に位置するように設けられている。すなわち、庫内送風機9は上部より下部が送風機カバー56に近くなるように傾斜して設けられている。すると、冷却器7で熱交換した冷気は、庫内送風機9によって送風機カバー56及び送風機固定部55との間の空間に送風される。そして、冷気はこの空間を通って上方へ向かう流れとなり、その後、冷凍室冷却ダンパ50を通り、製氷室3への吹き出し口3cに流れやすくなる。また、冷凍室冷却ダンパ50が閉じている場合の冷気、或いは冷凍室冷却ダンパ50が開いている場合の一部の冷気は、冷凍室冷却ダンパ50を通過せず、そのまま上方の冷蔵室冷却ダンパ20をとおり、冷蔵温度帯室へと送られる。
 次に、送風機カバー56と仕切板54との間には、製氷室送風ダクト(図示なし)、上段冷凍室送風ダクト12及び冷気ダクト13が形成されている。製氷室送風ダクト,上段冷凍室送風ダクト12及び冷気ダクト13は、夫々製氷室3,上段冷凍室4及び下段冷凍室5に冷気を送るダクトである。具体的に、冷凍室冷却ダンパ50を通った冷気は、製氷室送風ダクト,上段冷凍室送風ダクト12及び冷気ダクト13を通って、仕切板54に設けた吹き出し口3c,4c,5cを通ってそれぞれ製氷室3,上段冷凍室4及び下段冷凍室5に送られる。このように、製氷室送風ダクト,上段冷凍室送風ダクト12及び冷気ダクト13は、冷凍温度帯室である製氷室3,上段冷凍室4及び下段冷凍室5と冷却器収納室8との間に設けられる構成である。この構成において、冷却器7の除霜運転中等、冷気が冷凍温度帯室へ送られない場合、製氷室送風ダクト,上段冷凍室送風ダクト12及び冷気ダクト13が空気断熱層の役割を果たす。これにより、除霜運転中等であっても除霜ヒータ22からの高温の影響を受けることを抑制し、冷凍温度帯室の温度が低下することを抑制することができる。
 また、送風機カバー56は、冷凍室冷却ダンパ50の下方であって且つ庫内送風機9の前方に整流部56bを有する。具体的に、整流部56bは、庫内送風機9の中心に発生しやすい渦を防止すべく、庫内送風機9の中心部に向かって窪む円錐形をなしている。整流部56bは、庫内送風機9が吹き出す冷気が送風機カバー56にあたることで起きる乱流を抑制して整流する。すなわち、整流部56b回りに旋回するような流れ、その後、上方(冷凍室冷却ダンパ50及び冷蔵室冷却ダンパ20が設けられた方向)に向かって流れる。これにより、冷気流れがスムーズとなり、騒音等の発生を抑制することができる。
 図4に示すように、冷凍室冷却ダンパ50を通過しない冷気は、冷蔵室ダクト15を経由して冷蔵室冷却ダンパ20側に流れる。冷蔵温度帯室及び冷凍温度帯室のいずれに向かう冷気も、庫内送風機9で送られた直後は同一方向となる。これにより、冷気の流れがスムーズになる。具体的に、冷凍室冷却ダンパ50を閉じ、冷蔵室冷却ダンパ20を開いた場合、冷凍室冷却ダンパ50を開き、冷蔵室冷却ダンパ20を閉じた場合、冷凍室冷却ダンパ50及び冷蔵室冷却ダンパ20を開いた場合のいずれにおいても、庫内送風機9で送られた直後の冷気の流れは同一方向となるので、冷気流れをスムーズにすることができる。
 冷凍室冷却ダンパ50及び冷蔵室冷却ダンパ20を開き、冷凍温度帯室と冷蔵温度帯室へ同時に冷気を送る場合、冷気量としては冷凍室冷却ダンパ50側に多く送られるように構成される。冷気の分配量の制御は、一例として、冷凍室冷却ダンパ50の開度を調整したり、冷凍室冷却ダンパ50の開口を大きくしたりすることにより行う。
 なお、冷蔵室冷却ダンパ20は、図4に示す如く、冷蔵室2の後部に取り付けられている。
 次に、冷却器7の下方に除霜ヒータ22が設置されており、除霜ヒータ22の上方には、除霜水が除霜ヒータ22に滴下することを防止するために、上部カバー53が設けられている。除霜ヒータ22は、後記する制御基板31によるデューティ制御により出力を可変できる。
 冷却器7及びその周辺の冷却器収納室8の壁に付着した霜を融解することで生じた除霜水は、冷却器収納室8の下部に備えられた樋23に流入する。その後、排水管27を介して機械室19に配された蒸発皿21に達し、凝縮器(図示なし)の熱により蒸発させる。
 また、冷却器7の正面から見て右上部には、冷却器に取り付けられた冷却器温度センサ35、冷蔵室2には冷蔵室温度センサ33、下段冷凍室5には冷凍室温度センサ34がそれぞれ備えられている。これら温度センサによって、それぞれ冷却器7の温度(以下、「冷却器温度」という)、冷蔵室2の温度(以下、「冷蔵室温度」という)、下段冷凍室5の温度(以下、「冷凍室温度」という)を検知できるようになっている。
 さらに、冷蔵庫1は、庫外の温湿度環境(外気温度,外気湿度)を検知する図示しない外気温度センサと外気湿度センサを備えている。なお、野菜室6に野菜室温度センサ33aを配置してもよい。
 断熱箱体10の下部背面側には、機械室19が設けられている。機械室19には、圧縮機24及び図示しない凝縮器が収納されており、図示しない庫外送風機により凝縮器の熱が除熱される。ちなみに、本実施の形態では、イソブタンを冷媒として用い、冷媒封入量は約80gと少量にしている。
 冷蔵庫1の天井壁上面側には、CPU,ROMやRAM等のメモリ,インターフェース回路等を搭載した制御基板31が配置されている。制御基板31は、前述の外気温度センサ,外気湿度センサ,冷却器温度センサ35,冷蔵室温度センサ33,冷凍室温度センサ34,冷蔵室扉2a,2b,製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a及び野菜室扉6aの開閉状態をそれぞれ検知する扉センサ、冷蔵室2内壁に設けられた図示しない温度設定器、下段冷凍室5内壁に設けられた図示しない温度設定器等と接続している。そして、前記ROMに予め搭載されたプログラムにより、圧縮機24のON,OFF等の制御、冷蔵室冷却ダンパ20及び冷凍室冷却ダンパ50を個別に駆動する図示省略のそれぞれのアクチュエータの制御、庫内送風機9のON/OFF制御や回転速度制御、前記庫外送風機のON/OFF制御や回転速度制御等の制御、前記した扉開放状態を報知するアラームのON/OFF等の制御を行う。
 次に、冷蔵室冷却ダンパ20が閉、且つ冷凍室冷却ダンパ50が開で、冷凍温度帯室(製氷室3,上段冷凍室4及び下段冷凍室5)のみの冷却が行われている場合、製氷室3に製氷室送風ダクトを介して送風された冷気及び上段冷凍室4に上段冷凍室送風ダクト12(図2参照)を介して送風された冷気は、下段冷凍室5に下降する。そして、下段冷凍室5に冷気ダクト13(図2参照)を介して送風された冷気と混合して、図4中に矢印cで示すように、下段冷凍室5の奥壁下部に配された冷凍室戻り口17から冷却器収納室8に戻る。その後、下部前方から冷却器収納室8に流入し、冷却器配管7aに多数のフィンが取り付けられて構成された冷却器7と熱交換する、いわゆる冷気循環構造である。ちなみに、冷凍室戻り口17の横幅寸法は、冷却器7の幅寸法とほぼ等しい横幅である。
 一方、冷蔵室冷却ダンパ20が開、且つ冷凍室冷却ダンパ50が閉で、冷蔵温度帯室(冷蔵室2及び野菜室6)のみの冷却が行われている場合、冷蔵室2からの戻り冷気は、図3中に矢印dで示すように、冷蔵室戻りダクト16を介して、冷却器収納室8の側方下部から冷却器収納室8に流入し、冷却器7と熱交換する。
 なお、野菜室6を冷却した冷気は、図4に示す如く、野菜室戻り口6d(図4参照)を介して、冷却器収納室8の下部に流入する。野菜室戻り口6dからの風量は、冷凍温度帯室を循環する風量や冷蔵室2を循環する風量に比べて少ない。よって、冷却器収納室8内における冷気流れの状態を示す流れ場(以下、「流れ場」という)に与える影響が比較的小さいので、ここでは説明を省略する。
 本実施の形態の冷蔵庫1の構成に限らず、冷蔵温度帯室と冷凍温度帯室を、共通の冷却器7によって冷却する冷気強制循環方式の冷蔵庫では、それぞれの戻り冷気の、冷却器収納室8への流入箇所、冷却器収納室8への流入方向(角度)、風量等が異なる。そのため、冷凍温度帯室からの戻り冷気と、冷蔵温度帯室からの戻り冷気とが形成する上記流れ場は、冷蔵温度帯室のみを冷却している場合、冷凍温度帯室のみを冷却している場合、冷蔵温度帯室及び冷凍温度帯室を同時に冷却している場合との間で、一般に異なる。
 次に、冷蔵庫1の除霜方法について、図5及び図6を参照しながら説明する。図5は、除霜モードを説明する図である。図6は、除霜モード4における除霜時のタイムチャートである。
 なお、以下の説明では、圧縮機24が稼動している状態を「圧縮機ON」、圧縮機24が停止している状態を「圧縮機OFF」とする。また、庫内送風機9が稼動している状態を「庫内送風機ON」、庫内送風機9が停止している状態を「庫内送風機OFF」とする。また、除霜ヒータ22に通電している状態を「除霜ヒータON」、除霜ヒータ22に通電していない状態を「除霜ヒータOFF」とする。また、冷蔵室冷却ダンパ20が開状態で、冷蔵温度帯室への送風が可能な状態を「冷蔵室冷却ダンパ開」、冷蔵室冷却ダンパ20が閉状態で、冷蔵温度帯室への送風が遮断された状態を「冷蔵室冷却ダンパ閉」とする。また、冷凍室冷却ダンパ50が開状態で、冷凍温度帯室への送風が可能な状態を「冷凍室冷却ダンパ開」、冷凍室冷却ダンパ50が閉状態で、冷凍温度帯室への送風が遮断された状態を「冷凍室冷却ダンパ閉」とする。
 また、冷蔵庫1の通常冷却運転のモードとして、複数の冷却運転モードが用意されており、「圧縮機ON,庫内送風機ON,冷蔵室冷却ダンパ開,冷凍室冷却ダンパ閉,除霜ヒータOFF」の状態を「冷蔵室冷却運転」モードと称する。
 また、「圧縮機ON,庫内送風機ON,冷蔵室冷却ダンパ閉,冷凍室冷却ダンパ開,除霜ヒータOFF」の状態を「冷凍室冷却運転」モードと称する。
 また、「圧縮機ON,庫内送風機ON,冷蔵室冷却ダンパ開,冷凍室冷却ダンパ開,除霜ヒータOFF」の状態を「冷蔵室・冷凍室同時冷却運転」モードと称する。
 ここで、通常冷却運転とは、冷蔵室温度センサ,冷凍室温度センサ及び外気温度センサが検知する温度に基づき、圧縮機24と、庫内送風機9と、庫外送風機の制御(ON/OFF制御や回転速度制御)と、冷蔵室冷却ダンパ20,冷凍室冷却ダンパ50の開閉状態の制御によって、各室を所定温度(例えば、冷蔵室は3℃程度、野菜室は5℃程度、冷凍室は-18℃程度)に維持する運転である。
 なお、以下の除霜方法の説明においては、野菜室6は、冷蔵室2の一部として扱い、野菜室6に関する説明は省略する。
 図5に示すように、本実施の形態の冷蔵庫1は、除霜運転におけるモードとして除霜モード1~6の6つのモードを備える。これらの除霜モードの中で、図5の表の下に示すように、「圧縮機OFF,庫内送風機ON,冷蔵室冷却ダンパ開,冷凍室冷却ダンパ閉,除霜ヒータOFF」の「庫内送風機による除霜」を行う除霜モード1は、「第1の除霜手段」と称する。
 また、「圧縮機OFF,庫内送風機ON,冷蔵室冷却ダンパ開,冷凍室冷却ダンパ閉,除霜ヒータON」の「庫内送風機+除霜ヒータによる除霜」を行う除霜モード3は、「第2の除霜手段」と称する。
 また、「圧縮機OFF,庫内送風機OFF,冷蔵室冷却ダンパ閉,冷凍室冷却ダンパ閉,除霜ヒータON」の「除霜ヒータによる除霜」を行う除霜モード6は、請求項に記載の「第3の除霜手段」と称する。
 また、「第4の除霜手段」は、前記第1の除霜手段,第2の除霜手段及び第3の除霜手段の1つまたは複数を組み合わせて除霜運転を実施する手段である。
 そして、除霜モード2は、除霜モード1(第1の除霜手段)による除霜運転の後、引続いて除霜モード3(第2の除霜手段)による除霜運転を行うモードである。
 また、除霜モード4は、除霜モード1(第1の除霜手段)による除霜運転の後に引続いて除霜モード3(第2の除霜手段),除霜モード6(第3の除霜手段)による除霜運転を行うモードである。
 また、除霜モード5は、除霜モード3(第2の除霜手段)による除霜運転の後に引続いて除霜モード6(第3の除霜手段)による除霜運転を行うモードである。
 このように、本実施の形態の冷蔵庫1における除霜運転のモードは、第1から第3の除霜手段の全て、または一部を組み合わせて除霜モードとしている。
 図5の表の「除霜前条件」欄に示すように、除霜モード1~6に対して適用される除霜運転開始前の冷蔵庫1の冷却運転モード,冷凍室温度や冷蔵室温度の温度に対する条件が異なっている。また、図5の表の「除霜手段の組み合せ」欄には、各除霜モードが分かり易いように、第1~第3の除霜手段の組み合せを記載している。さらに、図5の表の「除霜完了判定条件」欄には、除霜モード1~6が、どのような冷凍室温度や冷蔵室温度や冷却器温度の除霜完了判定温度の条件で、それぞれの除霜モードが完了するか示している。なお、一例として、冷凍室温度で判定する場合であっても、各モードで適用される温度数値が異なっている。なお、図5の表の「除霜完了判定条件」欄に示す冷却器温度の条件は、除霜完了判定温度に対応する。
 通常冷却運転には、前述の3種類の冷却運転モードがある。そのため、通常冷却運転を継続する場合、「冷凍室冷却運転」モードを継続する以外に、冷蔵室温度,冷凍室温度に基づいて、「冷凍室冷却運転」モード以外の他の2種類の冷却運転モード(「冷蔵室冷却運転」モード,「冷蔵室・冷凍室同時冷却運転」モード)に切り替わる場合もある。
 例えば、使用者が冷蔵室2に温度の比較的高い食品を入れる等があった場合、「冷凍室冷却運転」モードから「冷蔵室冷却運転」モードに切り替わり、冷蔵室2を素早く所定温度まで冷却した後に再び「冷凍室冷却運転」モードに移行する。
 次に、図6を参照しながら図5の除霜モード4の作用効果について説明する。なお、図6に示す制御は次のとおりである。すなわち、除霜モード4が選択されて、「冷凍室冷却運転」の区間、「第1の除霜手段」による除霜運転の区間、「第2の除霜手段」による除霜運転の区間TB、「第3の除霜手段」による除霜運転の区間TC、除霜運転完了後の経過の区間TD,TE、「通常冷却運転」の区間に分けられ、その間の冷蔵室温度,冷凍室温度及び冷却器温度の推移、除霜ヒータ22のON状態(160W)/ON状態(80W)/OFF状態,庫内送風機9のON/OFF状態,冷蔵室冷却ダンパ20の開状態/閉状態,庫内送風機9のON/OFF状態,冷凍室冷却ダンパ50の開状態/閉状態,圧縮機24のON状態/OFF状態が示されている。
 図6に示すように、除霜モード4が選択されると、除霜モード4による除霜運転に入る前に、冷蔵室温度が5℃を超えるまで冷凍室冷却運転を実施し、冷蔵室温度が5℃を超えたら、第1の除霜手段による除霜運転(「圧縮機OFF,庫内送風機ON,冷蔵室冷却ダンパ開,冷凍室冷却ダンパ閉,除霜ヒータOFF」)が行われる。
 これは、庫内送風機9によって冷蔵室2に送風することで霜を解かす場合、冷蔵室2の温度はなるべく高い温度であった方が、冷却器7に付いた霜と熱交換しやすいため、予め冷蔵室2の温度を高くしておくものであり、これにより省エネルギー効果が高まる。また、冷蔵室2が庫外からの熱侵入により温度上昇するのを待つ間は、冷凍室冷却運転が実施されているため、除霜時に庫外からの熱侵入で温度上昇しやすい冷凍室を除霜前に十分冷やしておくことができ、除霜時に、冷凍食品が解けるといった不具合の可能性を小さくする効果もある。
 除霜モード4における第1段階として、第1の除霜手段による除霜運転が実施されると、図6中の区間TAに示すように、冷蔵室温度は霜の冷熱によって冷却され、一方、冷却器温度(霜温度)は冷蔵室の熱負荷によって上昇し、次第に冷蔵室と冷却器温度との差が小さくなる。冷蔵室温度と冷却器温度との温度差が小さくなると、熱交換し難くなるため、そのまま第1の除霜手段による除霜運転を継続した場合、除霜時間が長くなってしまう。一方、図6中に示すように、除霜中、冷凍室温度は上昇し続ける。
 したがって、除霜時間が長いと、冷凍食品が解けるといった不具合が生じる可能性があり望ましくないので、冷蔵室温度と冷却器温度との温度差が小さくなったと判断された場合((冷蔵室温度-冷却器温度)≦2℃が満足された場合)除霜時間が長引かないように、除霜ヒータ22をONとすることで、冷蔵室2からの戻り空気を加熱し、除霜しやすくする。この「圧縮機OFF,庫内送風機ON,冷蔵室冷却ダンパ開,冷凍室冷却ダンパ閉,除霜ヒータON」の状態が、図6中の区間TBにおける第2の除霜手段による除霜運転、「庫内送風機+除霜ヒータによる除霜」が実施されている状態である。第2の除霜手段における除霜ヒータ22の出力は80Wであり、この出力は、冷却器7に霜が残っている状態であれば、冷却器7を通過後の空気が冷蔵室2の冷却が可能な0~4℃程度の温度となる出力である。
 なお、この時の冷却器7自体の温度は冷却器7内にある液状冷媒の蒸発により約-10℃以下となっている。換言すると、上記図6中区間TBは冷却器7を構成するフィン表面に付いた霜を含めた温度である。また、本願の場合、区間TBの終了は先の冷却器温度センサ35によって行われる。
 また、通常冷却運転時の庫内送風機9の回転速度は約1600min-1であり、区間TBにおける第2の除霜手段による除霜運転中は約1400min-1としている。このように、第2の除霜手段による除霜運転時に庫内送風機9の回転速度を通常冷却運転時のそれから変えるのは、冷蔵室2の冷却が可能な0~4℃程度の空気温度が得られるように調節するためである。
 このように、本実施の形態の冷蔵庫1の第2の除霜手段による除霜運転は、冷蔵室2の冷却が可能な0~4℃程度の空気温度が得られるように調節されるので、特許文献2や特許文献3に開示されている加湿を目的として「圧縮機OFF,庫内送風機ON,冷蔵室冷却ダンパ開,冷凍室冷却ダンパ閉,除霜ヒータON」とした場合に生じていた、「利用可能な霜の冷熱を冷蔵室の冷却に再利用できていないため、その分省エネルギー性能は低くなる」という問題点を解決でき、省エネルギー性能が高くできている。
 もし、「庫内送風機+除霜ヒータによる除霜」の除霜運転における除霜ヒータ22の出力が過剰であるとすると、冷蔵室2で保つべき温度より高い冷却器を通過後の空気温度となり、冷蔵室2を暖めてしまうため好ましくない。また、第2の除霜手段による除霜運転は、除霜時間の短縮によって冷凍室温度の上昇を抑制することが目的であるため、除霜ヒータ22の出力が過小だと、この目的が達成されない。したがって、第2の除霜手段における除霜ヒータ22の出力は適切なものでなければならない。第2の除霜手段の効果としては、冷凍室温度の上昇抑制とともに、除霜ヒータ22をONとしているものの、冷蔵室2を冷やしながら霜を解かしている(冷蔵室2の熱負荷を使って霜を解かしている)ので、冷蔵室2の熱負荷を利用した分だけ、除霜のための外部からのエネルギー投入量が少なくて済み、省エネルギー効果が得られる。更に、送風によって冷却器7に冷蔵庫からの戻り空気を強制対流させているため、空気と霜との間の熱伝達効率が良く、霜が解けやすくなることによる省エネルギー効果もある。
 このように、第1の除霜手段による除霜運転の後に第2の除霜手段による除霜運転を組み合わせることにより、除霜時間を短くしながらも除霜運転時の省エネルギー効果を得ることができる。
 続いて、冷蔵室温度が冷却器温度以下になった時点で「庫内送風機OFF,冷蔵室冷却ダンパ閉」となり、除霜ヒータ22の出力は80Wから160Wに変わることにより図6の区間TCでは、第3の除霜手段による除霜運転、「除霜ヒータによる除霜」が実施される。冷蔵室温度が冷却器温度以下になると冷却器7が持つ冷熱では、冷蔵室2を冷却する能力はなく、それ以上送風を継続すると冷蔵室2を暖めてしまうことになるために、送風を停止、「除霜ヒータによる除霜」を行うことで冷蔵室2を暖めてしまうことを防ぐとともに、冷却器7に霜の解け残りがないようにする。
 除霜モード4は、霜の解け残りがないようにしなければならないが、前記のとおり、「庫内送風機ON」状態での第1の除霜手段または第2の除霜手段による除霜運転のみでは、霜が解け難い箇所が生じてしまい、霜の解け残りが生じることがあった。そこで、第1の除霜手段及び第2の除霜手段の「庫内送風機ON状態」での除霜の後に、図6の区間TCに示すように「除霜ヒータによる除霜」を実施し、霜の解け残りがないようにしている。
 なお、本実施形態では、第3の除霜手段による除霜運転では、除霜ヒータ22の出力を80Wから160Wに上げている。これにより、第3の除霜手段による除霜運転の区間TCを短くでき、その間の冷蔵室温度及び冷凍室温度の上昇を小さく抑えることができる。
 また、第3の除霜手段による除霜運転は、送風状態での除霜に比べて冷却器収納室8内の空気と霜との自然対流による熱伝達効率が悪く、省エネルギー性能が低い除霜手段ではある。しかし、プラス温度に保たれる冷蔵室温度よりも冷却器温度の方が高いという、ほぼ全ての霜が解けたといえる状態から第3の除霜手段による除霜運転が実施されるので、除霜手段による除霜運転を行うことによる省エネルギー性能の低下の影響は比較的小さい。
 このように、除霜モード4では、第1から第3の除霜手段による除霜運転を組み合わせることにより、柔軟で省エネルギー効果のある、確実な除霜を行え、除霜時間の短縮化も図ってその間に冷凍室温度が上昇するのを抑制している。
 次に、冷却器温度が8℃を超えたとき、除霜ヒータ22をOFFし除霜モード4による除霜運転は終了し、図6の区間TDで示すように、「圧縮機OFF,庫内送風機OFF,冷蔵室冷却ダンパ閉,冷凍室冷却ダンパ閉,除霜ヒータOFF」の状態で5分間待つ。この経過の区間TDによって、除霜水の冷却器7,上部カバー53(図5参照)から樋23への滴下時間が確保され、滴下途中で通常冷却運転が再開されて再び氷結し、冷却器収納室8の一部を閉塞するといった事態が起こり難くなる。
 また、冷却器温度が8℃を超えたときに第3の除霜手段による除霜運転を終了するように、図6に示す第3の除霜手段による除霜運転を含まない他の除霜モードの除霜完了判定温度(冷却器温度>0.5℃)よりも比較的高い温度に設定しているので、略完全な除霜ができる。
 経過の区間TDの5分が経過した後、区間TEに進む、この区間TEではまず圧縮機24のみをONし(「圧縮機ON,庫内送風機OFF,除霜ヒータOFF,冷蔵室冷却ダンパ閉,冷凍室冷却ダンパ閉」)、2分間待ち、その後、通常冷却運転を再開する。この2分間の待ち時間は、除霜モード4による除霜運転が終了した時点で温度が高くなっている冷却器7とその周辺の空気が、そのまま庫内各室に送られて、庫内各室を暖めてしまうという問題が生じ難くするためのものであり、通常冷却運転再開前に、冷却器収納室8内を冷却するために設けられている。
 本発明は以上説明した如き構成を有するものであるから、冷気通路の奥行き寸法の拡大を抑制しつつ、冷凍室の温度制御を行うことで省エネルギー効率が向上する冷蔵庫を得ることができる。また、冷蔵庫内の食品を所定温度範囲に維持しながら省エネルギー性能を確保し、食品の貯蔵温度維持ができる冷蔵庫を得ることができる。
1 冷蔵庫
2 冷蔵室(冷蔵温度帯室)
3 製氷室(冷凍温度帯室)
4 上段冷凍室(冷凍温度帯室)
5 下段冷凍室(冷凍温度帯室)
6 野菜室(冷蔵温度帯室)
7 冷却器
8 冷却器収納室
9 庫内送風機(送風機)
11 冷蔵室送風ダクト
12 上段冷凍室送風ダクト
13 冷気ダクト
15 冷蔵室ダクト
17 冷凍室戻り口
20 冷蔵室冷却ダンパ
50 冷凍室冷却ダンパ
53 上部カバー
54 仕切板
55 送風機固定部
56 送風機カバー
56a 開口
56b 整流部。

Claims (8)

  1.  冷蔵庫本体の上部から順に設けられた冷蔵室,製氷室,冷凍室と、前記冷凍室の後方に冷却器が配置される冷却器収納室を区画する仕切板と、を有する冷蔵庫において、
     前記冷却器の上方に設けられた庫内送風機と、
     該庫内送風機と前記仕切板との間に設けられ且つ前記庫内送風機の前方に対向する送風機カバーと、
     該送風機カバーの上部であって且つ前記庫内送風機より上方に設けられた開口と、
     該開口に設けられ前記冷凍室への冷気量を制御する冷凍室冷却ダンパと、
     前記冷蔵室の後方且つ該冷凍室冷却ダンパよりも上方に設けられて前記冷蔵室への冷気量を制御する冷蔵室冷却ダンパと、
     前記冷凍室冷却ダンパより上方であって且つ前記仕切板に設けられ前記製氷室へ冷気を吹き出す吹き出し口と、を有する冷蔵庫。
  2.  請求項1において、前記送風機カバーの前記庫内送風機が対向する位置に設けられて冷気を上方に流す整流部を有する冷蔵庫。
  3.  請求項1において、前記庫内送風機は上部より下部が前記送風機カバーに近くなるように傾斜して設けられた冷蔵庫。
  4.  請求項1において、前記送風機カバーと前記仕切板との間に前記製氷室及び前記冷凍室へ夫々冷気を送風する冷気ダクトが設けられた冷蔵庫。
  5.  冷蔵庫本体の上部に設けられた冷蔵室と、該冷蔵室の下方に設けられた製氷室と、該製氷室の下方に設けられた冷凍室と、該冷凍室の後方に冷却器が配置される冷却器収納室を区画する仕切板と、を有する冷蔵庫において、
     前記冷却器の上方に設けられた庫内送風機と、
     該庫内送風機と前記仕切板との間に設けられ且つ前記庫内送風機の前方に対向する送風機カバーと、
     該送風機カバーの上部且つ前記庫内送風機より上方に設けられて前記冷凍室への冷気量を制御する冷凍室冷却ダンパと、
     該冷凍室冷却ダンパより上方且つ前記仕切板に設けられ前記製氷室へ冷気を吹き出す吹き出し口と、を有する冷蔵庫。
  6.  請求項5において、前記送風機カバーの前記庫内送風機が対向する位置に設けられて冷気を上方に流す整流部を有する冷蔵庫。
  7.  請求項5において、前記庫内送風機は上部より下部が前記送風機カバーに近くなるように傾斜して設けられた冷蔵庫。
  8.  請求項5において、前記送風機カバーと前記仕切板との間に前記製氷室及び前記冷凍室へ夫々冷気を送風する冷気ダクトが設けられた冷蔵庫。
PCT/JP2009/003860 2009-06-29 2009-08-11 冷蔵庫 WO2011001479A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980160176.0A CN102803876B (zh) 2009-06-29 2009-08-11 冰箱
KR1020117028028A KR101260277B1 (ko) 2009-06-29 2009-08-11 냉장고

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-153179 2009-06-29
JP2009153179A JP5178642B2 (ja) 2009-06-29 2009-06-29 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2011001479A1 true WO2011001479A1 (ja) 2011-01-06

Family

ID=43410580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003860 WO2011001479A1 (ja) 2009-06-29 2009-08-11 冷蔵庫

Country Status (4)

Country Link
JP (1) JP5178642B2 (ja)
KR (1) KR101260277B1 (ja)
CN (1) CN102803876B (ja)
WO (1) WO2011001479A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914115A (zh) * 2012-11-20 2013-02-06 合肥美菱股份有限公司 一种风冷直冷相结合的冰箱
WO2013143449A1 (zh) * 2012-03-26 2013-10-03 海尔集团公司 电冰箱及其工作方法
EP2584295A3 (en) * 2011-10-19 2015-06-10 Indesit Company Beyaz Esya Sanayi ve Ticaret Anonim Sirketi Fluid distribution system providing fluid routing by means of a transfer element
CN110285628A (zh) * 2019-08-01 2019-09-27 长虹美菱股份有限公司 一种冰箱及其制冷控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103930740B (zh) * 2011-11-10 2016-08-24 松下电器产业株式会社 冷藏库
JP5895145B2 (ja) * 2012-02-07 2016-03-30 パナソニックIpマネジメント株式会社 冷蔵庫
JP6071427B2 (ja) * 2012-10-30 2017-02-01 シャープ株式会社 冷蔵庫
JP2015222131A (ja) * 2014-05-22 2015-12-10 ハイアールアジア株式会社 冷蔵庫
CN104990333B (zh) * 2015-05-21 2018-02-02 青岛海尔股份有限公司 冰箱
CN104896828B (zh) * 2015-05-21 2018-02-02 青岛海尔股份有限公司 冰箱
DE102015219326A1 (de) * 2015-10-07 2017-04-13 BSH Hausgeräte GmbH No-Frost-Kältegerät
CN106813440B (zh) * 2015-11-27 2019-10-29 日立环球生活方案株式会社 冰箱
CN107816832B (zh) * 2016-09-12 2021-06-11 松下电器产业株式会社 冰箱
MY201770A (en) * 2017-01-10 2024-03-16 Mitsubishi Electric Corp Refrigerator
AU2017430067B2 (en) * 2017-09-01 2020-11-12 Mitsubishi Electric Corporation Refrigerator
CN108413685A (zh) * 2018-01-24 2018-08-17 青岛海尔股份有限公司 风冷冰箱及其化霜控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210529A (ja) * 1996-01-30 1997-08-12 Mitsubishi Electric Corp 冷蔵庫
JPH1114230A (ja) * 1997-06-26 1999-01-22 Toshiba Corp 冷蔵庫
JP2001221555A (ja) * 1999-12-03 2001-08-17 Mitsubishi Electric Corp 冷蔵庫
JP2006183892A (ja) * 2004-12-27 2006-07-13 Hitachi Home & Life Solutions Inc 冷蔵庫
JP2007132571A (ja) * 2005-11-09 2007-05-31 Toshiba Corp 冷蔵庫

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248491B2 (ja) 2004-12-27 2009-04-02 日立アプライアンス株式会社 冷蔵庫
JP3950904B1 (ja) 2006-03-31 2007-08-01 日立アプライアンス株式会社 冷蔵庫
KR100893865B1 (ko) * 2007-03-31 2009-04-20 엘지전자 주식회사 냉장고
JP4484943B2 (ja) * 2009-02-20 2010-06-16 日立アプライアンス株式会社 冷蔵庫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210529A (ja) * 1996-01-30 1997-08-12 Mitsubishi Electric Corp 冷蔵庫
JPH1114230A (ja) * 1997-06-26 1999-01-22 Toshiba Corp 冷蔵庫
JP2001221555A (ja) * 1999-12-03 2001-08-17 Mitsubishi Electric Corp 冷蔵庫
JP2006183892A (ja) * 2004-12-27 2006-07-13 Hitachi Home & Life Solutions Inc 冷蔵庫
JP2007132571A (ja) * 2005-11-09 2007-05-31 Toshiba Corp 冷蔵庫

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2584295A3 (en) * 2011-10-19 2015-06-10 Indesit Company Beyaz Esya Sanayi ve Ticaret Anonim Sirketi Fluid distribution system providing fluid routing by means of a transfer element
WO2013143449A1 (zh) * 2012-03-26 2013-10-03 海尔集团公司 电冰箱及其工作方法
CN102914115A (zh) * 2012-11-20 2013-02-06 合肥美菱股份有限公司 一种风冷直冷相结合的冰箱
CN110285628A (zh) * 2019-08-01 2019-09-27 长虹美菱股份有限公司 一种冰箱及其制冷控制方法

Also Published As

Publication number Publication date
KR101260277B1 (ko) 2013-05-06
KR20120023699A (ko) 2012-03-13
JP5178642B2 (ja) 2013-04-10
CN102803876A (zh) 2012-11-28
CN102803876B (zh) 2015-06-10
JP2011007452A (ja) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5178642B2 (ja) 冷蔵庫
JP5530852B2 (ja) 冷蔵庫
JP2011058689A (ja) 冷蔵庫
JP4739926B2 (ja) 冷蔵庫
JP2011058684A (ja) ダンパ装置およびダンパ装置を備えた冷蔵庫
WO2013084460A1 (ja) 冷蔵庫
JP6752107B2 (ja) 冷蔵庫
TWI716636B (zh) 冰箱
JP5557661B2 (ja) 冷蔵庫
JP5393283B2 (ja) 冷蔵庫
JP2012057888A (ja) 冷蔵庫
JP2011052910A (ja) 冷蔵庫
JP4982537B2 (ja) 冷蔵庫
JP2008075939A (ja) 冷蔵庫
JP2012237520A (ja) 冷蔵庫
JP6422513B2 (ja) 冷凍冷蔵庫
JP6890502B2 (ja) 冷蔵庫
JP2005195293A (ja) 冷蔵庫
JP2011038714A (ja) 冷蔵庫
JP2012063026A (ja) 冷蔵庫
JP5404549B2 (ja) 冷凍冷蔵庫
JP5376796B2 (ja) 冷蔵庫
JP2011058687A (ja) 冷蔵庫
JP2011052934A (ja) 冷蔵庫
JP2019027649A (ja) 冷蔵庫

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160176.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117028028

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846773

Country of ref document: EP

Kind code of ref document: A1