WO2011001471A1 - 電池の内部状態検出装置、及び方法 - Google Patents

電池の内部状態検出装置、及び方法 Download PDF

Info

Publication number
WO2011001471A1
WO2011001471A1 PCT/JP2009/003065 JP2009003065W WO2011001471A1 WO 2011001471 A1 WO2011001471 A1 WO 2011001471A1 JP 2009003065 W JP2009003065 W JP 2009003065W WO 2011001471 A1 WO2011001471 A1 WO 2011001471A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
internal state
elastic wave
detection device
elastic
Prior art date
Application number
PCT/JP2009/003065
Other languages
English (en)
French (fr)
Inventor
北条勝之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011520671A priority Critical patent/JP5293818B2/ja
Priority to PCT/JP2009/003065 priority patent/WO2011001471A1/ja
Priority to CN200980160144.0A priority patent/CN102473972B/zh
Publication of WO2011001471A1 publication Critical patent/WO2011001471A1/ja
Priority to US13/337,460 priority patent/US8549927B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus and method for detecting a change in the internal state of a battery, and more particularly to a technique for grasping a reaction state inside the battery by accurately detecting an elastic wave generated inside the battery.
  • Patent Document 1 an elastic wave generated inside a battery is detected using an AE (acoustic emission) sensor, a detection device including a device for analyzing a signal from the AE sensor, and the characteristics of the elastic wave are analyzed to detect the battery.
  • AE acoustic emission
  • a technique for detecting the internal state of the computer is disclosed.
  • the detection device described in Patent Document 1 does not sufficiently consider the attenuation of the elastic wave until it is transmitted from the battery to the AE sensor, and a minute elastic wave generated by a chemical reaction or the like inside the battery. It was difficult to reliably detect.
  • An object of the present invention is to provide a battery internal state detection device that can detect a minute elastic wave accompanying a reaction inside a battery and accurately grasp a change in the internal state of the battery.
  • a battery internal state detection device includes a restraining member that applies a pressing force to the battery, a non-metallic plate disposed between the battery and the restraining member, and the non-metallic plate.
  • a plurality of AE sensors fixed to the battery, a pressing force is applied to the battery by the restraining member, and an elastic wave generated in the battery is detected by the plurality of AE sensors.
  • the internal state of the battery is detected by analyzing the elastic wave.
  • the battery internal state detection device further includes storage means for storing a plurality of waveform patterns in advance, and the elastic wave analysis is performed by comparing the detected elastic wave waveform patterns with the plurality of waveform patterns. Is preferably performed.
  • the battery internal state detection device preferably further includes an elastic member disposed between the restraining member and the non-metal plate.
  • the battery internal state detection device preferably further includes a contact medium disposed between the battery and the non-metal plate.
  • the battery internal state detection method includes a non-metallic plate placed in contact with the battery, a pressing force is applied to the battery via the non-metallic plate, A plurality of AE sensors for detecting elastic waves generated in the battery are fixed to a plate, and the internal state of the battery is analyzed by analyzing the elastic waves generated in the battery detected by the plurality of AE sensors. To detect.
  • the analysis of the elastic wave is performed by comparing the waveform pattern of the detected elastic wave with a plurality of waveform patterns prepared in advance.
  • the battery 1 which is one Embodiment of the battery which is the detection object of the internal state detection apparatus which concerns on this invention is demonstrated.
  • the battery 1 is a lithium ion secondary battery.
  • the battery 1 as a detection target is not limited to a lithium ion secondary battery, and may be a nickel hydride battery, a nickel cadmium battery, or the like.
  • the battery 1 includes a power generation element 2, a container 3, and the like, and the power generation element 2 is accommodated in the container 3.
  • the power generation element 2 becomes a charge / discharge element by impregnating an electrolytic solution into a wound body obtained by winding a positive electrode and a negative electrode in a flat shape, or an electrode body formed by laminating a positive electrode and a negative electrode.
  • Examples of the electrolytic solution include EC (ethylene carbonate), DMC (dimethyl carbonate), and the like.
  • the container 3 is a can-shaped container that houses the power generation element 2 and is formed in a shape corresponding to the power generation element 2 (more specifically, a rectangular can shape formed by facing wide surfaces).
  • External terminals 4 and 4 are provided to project outward from the outer peripheral portion of the container 3 excluding the wide surface.
  • the external terminals 4 and 4 are paths electrically connected to the outside, and are electrically connected to the positive electrode and the negative electrode of the power generation element 2 in the container 3, respectively.
  • the configuration of the battery 1 is not limited to the above can shape, and may be any shape as long as it has a shape in which planes formed as wide surfaces are opposed to each other, and may have a laminate shape or the like.
  • a chemical reaction occurs in the power generation element 2 by connecting a power source to the external terminals 4 and 4 and applying appropriate electrical energy to the power generation element 2 with the container 3 restrained from the outside.
  • the battery 1 is charged by this chemical reaction. Specifically, as shown in FIG. 1, the battery 1 is charged in a state where a pressing force is applied to the battery 1 using the restraining plates 5 and 5 that press the wide surface of the container 3 from both sides.
  • the restraining plates 5 and 5 are restraining members that apply a pressing force to the battery 1 and are plate-like members having an area larger than the pressed surface of the battery 1.
  • the minute elastic wave W generated in the battery 1 in the charging process is detected using the detection device 10.
  • the detection device 10 detects an elastic wave W generated in the battery 1, thereby detecting a state change caused by a reaction inside the battery 1, and detecting a position where the change in the internal state has occurred.
  • the detection device 10 includes a hard non-metallic plate 11, a contact medium 12, a plurality of AE sensors 13, 13..., An elastic film 14, and an AE signal analysis device 15.
  • the hard non-metallic plate 11 is a flat member made of a non-magnetic, non-conductive, non-metallic hard material having a shape (rectangular shape) corresponding to the shape of the battery 1 to be detected by the detection device 10.
  • the hard non-metallic plate 11 is arranged in contact with the battery 1.
  • the hard non-metallic plate 11 is a member that suppresses the attenuation of the elastic wave W generated in the battery 1, and has a characteristic of favorably transmitting the elastic wave W to each AE sensor 13. Examples of the material of the hard non-metallic plate 11 include ceramic and glass. Further, as shown in FIG. 1, the size of the hard non-metallic plate 11 as viewed from the restraining direction is larger than that of the battery 1.
  • the detection device 10 by interposing the hard non-metallic plate 11 with respect to the battery 1, it is possible to suppress the attenuation of the elastic wave W generated inside the battery 1 and to transmit it satisfactorily. .
  • a non-magnetic, non-conductive and non-metallic material for the hard non-metallic plate 11 it is possible to reduce the influence of the generation of the magnetic field and the capacitance free current on the internal reaction of the battery 1. It becomes.
  • the contact medium 12 is a member that is interposed between the battery 1 and the hard non-metallic plate 11 and improves the adhesion thereof.
  • the contact medium 12 is provided over the entire contact area between the battery 1 and the hard non-metallic plate 11.
  • the contact medium 12 is preferably made of a material having an acoustic impedance close to the exterior of the battery 1, the hard nonmetal plate 11, etc., in order to efficiently transmit the elastic wave W from the battery 1 to the hard nonmetal plate 11. Examples of the material of the medium 12 include grease and oil.
  • the AE sensors 13, 13... are elastic wave detectors using piezoelectric ceramics or the like as a sensing device, and detect elastic waves W generated inside the battery 1.
  • Each AE sensor 13 is fixed to a predetermined position of the hard non-metallic plate 11.
  • Each AE sensor 13 is electrically connected to the AE signal analysis device 15, and information such as signal intensity, frequency, duration, amplitude, etc. as detection data (AE signal) of the elastic wave W to the AE signal analysis device 15. Is transmitted.
  • four AE sensors 13 are arranged at the four corners of the hard non-metallic plate 11 formed in a rectangular shape.
  • the same elastic wave W is detected by each of the four AE sensors 13, and the generation position of the elastic wave W is accurately detected based on each of the four detection data.
  • means for detecting the elastic wave W generated in the battery 1 is not limited to the AE sensor 13, and any means having the same function can be used.
  • the elastic film 14 is an elastic member having flexibility, and is constituted by a balloon-shaped film.
  • the elastic film 14 is interposed between the restraining plate 5 and the hard non-metallic plate 11.
  • Examples of the material of the elastic film 14 include a polypropylene film generally used as a material for a flexible film.
  • the size of the elastic film 14 viewed from the restraining direction is configured to be approximately the same as that of the battery 1, and the AE sensors arranged at the four corners of the hard non-metallic plate 11. 13, 13, 13, and 13 are located outside the elastic membrane 14.
  • the elastic film 14 is filled with a gas such as air having a different acoustic impedance from the hard non-metallic plate 11.
  • the pressing force from the restraining plate 5 is transmitted to the hard non-metallic plate 11 and the battery 1 through the elastic film 14. That is, the elastic film 14 provides a gap between the constraining plate 5 and the hard non-metallic plate 11, and uniformly transmits the pressure applied from the constraining plate 5 to the hard non-metallic plate 11 according to the Pascal principle.
  • the elastic wave W transmitted from the metal plate 11 is prevented from diffusing outside. Further, by pressing through an elastic film 14 filled with a gas having a different acoustic impedance from that of the hard non-metallic plate 11, the interface between the hard non-metallic plate 11 and the elastic film 14 is shown in FIG. Since the elastic wave W propagating through the hard non-metallic plate 11 is not reflected and attenuated within the hard non-metallic plate 11, it can be efficiently propagated to the AE sensor 13.
  • the battery 1 is restrained by the restraining plates 5 and 5 via the hard non-metallic plate 11, the contact medium 12, and the elastic film 14.
  • the minute elastic wave W generated in the battery 1 is propagated from the battery 1 through the contact medium 12 into the hard non-metallic plate 11 and reflected by the elastic film 14 into the hard non-metallic plate 11. It propagates through the hard non-metallic plate 11 and is transmitted to each AE sensor 13. Therefore, the detection device 10 can satisfactorily transmit the minute elastic wave W generated by the reaction inside the battery 1 to each AE sensor 13, and the elastic wave W is reliably detected by the AE sensor 13. It becomes possible.
  • the AE signal analysis device 15 takes out information (detection data) such as intensity, frequency, duration, amplitude detected by each AE sensor 13 along a time series, estimates initial microtremor occurrence time from the waveform,
  • the reaction position is specified by obtaining the arrival time difference between signals of the same reaction phenomenon from each AE sensor 13.
  • the AE signal analysis device 15 specifies the type of reaction by pattern matching the waveform pattern P of the elastic wave W, and specifies the reaction position using a method for estimating the initial tremor occurrence time.
  • the waveform pattern P is a graphic pattern formed by connecting the vicinity of the outline of the waveform obtained by plotting the detection data obtained by the AE sensor 13 in time series. More specifically, as shown in FIGS. 3 and 4, the analysis is performed in the AE signal analysis device 15 as follows.
  • the AE signal analyzer 15 includes (1) decomposition of the electrolytic solution, (2) formation of an SEI film on the electrode surface, (3) change in the material crystal structure due to lithium ion intercalation, ( 4) Information on elastic waves W generated by various reactions such as a change in interparticle distance is stored as individual waveform patterns P1, P2, P3,. That is, the AE signal analysis device 15 has a function as a storage unit that stores individual waveform patterns P1, P2, P3,. For example, by performing experiments, simulations and the like in advance, as shown in FIG.
  • the elastic wave W1 due to the generation of internal gas resulting from the decomposition of the electrolyte is detected by the AE sensor 13, and the duration t1,
  • a graphic pattern formed by connecting the vicinity of the outline of the waveform formed by the amplitude L1 can be stored in the AE signal analyzer 15 as the waveform pattern P1.
  • the AE signal analyzer 15 stores the waveform patterns P2, P3,... For each reaction.
  • the initial fine movement occurrence timing at this time is the timing indicated by the point t0 in FIG. 4, but the initial fine movement occurrence timing by a general method for setting the threshold Th is the timing indicated by the point t0 ′.
  • a more accurate initial fine movement occurrence time can be estimated.
  • the waveform pattern P of the elastic wave W detected by the AE sensors 13, 13,... And the waveform patterns P1, P2, P3,. .. Are compared with each other, and the reaction is specified, so that it is possible to accurately estimate the initial fine movement occurrence timing of each reaction occurring in the battery 1.
  • “compare waveform patterns” means matching the detected waveform pattern P with a plurality of waveform patterns P1, P2, P3,. It means that the composition of the waveform pattern P is estimated by analyzing whether a certain waveform pattern P is a similar shape of the waveform pattern or a composite shape of a plurality of waveform patterns.
  • the AE signal analysis device 15 extracts the same reaction from each reaction specified by the pattern matching of the waveform pattern P as described above, estimates the occurrence timing of the initial tremor, and the reaction occurs. Identify the location. For example, with respect to the same elastic wave W extracted as the same reaction by each AE sensor 13 and the AE signal analyzer 15, based on the time difference until the initial fine movement occurs, the arrangement position of each AE sensor 13, and the like.
  • a method of two-dimensionally specifying the generation position can be employed by a known position specifying method such as triangulation.
  • the elastic wave W detected by each AE sensor 13 is analyzed by the AE signal analysis device 15, thereby accurately grasping the type of reaction and the reaction position in the battery 1. be able to.
  • a part of the battery 1 with little charging reaction (region A shown in FIG. 5). If there is, it can be determined as a malfunction in the upper process of the charging process in the manufacturing process of the battery 1 (bias of the electrode active material in the power generation element 2, application bias of the electrode material, etc.), and eliminate the malfunction This can contribute to improving the accuracy of the manufacturing process.
  • the power generation element 2 includes a step of producing a mixture by uniformly kneading an electrode active material, a binder, a conductive agent, etc., a step of coating the mixture on a current collector foil, and on the current collector foil. It is manufactured through a step of drying the mixture coated on the surface, a step of roll pressing the current collector foil and the mixture, and the like.
  • the detection device 10 can be used to inspect manufacturing variations in these manufacturing processes related to the power generation element 2, performance variations during charging, and the like. Furthermore, referring to the results detected by the detection device 10, it becomes easy to review the design of each constituent material constituting the battery 1, the manufacturing accuracy in each process of manufacturing the battery 1, and the like.
  • the detection device 20 may be used to detect the elastic wave W generated inside the battery 1. As shown in FIG. 6, the detection device 20 includes a hard non-metallic plate 21, a contact medium 22, AE sensors 23, 23, 23, 23, an elastic film 24, an AE signal analysis device 25, and the like.
  • the hard non-metallic plate 21 has substantially the same shape as the hard non-metallic plate 11 of the detection device 10 and has the same function and effect. As shown in FIG. 6, the size of the hard non-metallic plate 21 viewed from the restraining direction is formed to be approximately the same as that of the battery 1.
  • the contact medium 22 has the same form as that of the contact medium 12 of the detection apparatus 10, and has the same effect.
  • the contact medium 22 is interposed between the battery 1 and the hard non-metallic plate 21.
  • Each AE sensor 23 has the same form as the AE sensor 13 of the detection device 10 and has the same effect. Each AE sensor 23 detects an elastic wave W generated inside the battery 1. Each AE sensor 23 is disposed and fixed at the four corners of the hard non-metallic plate 21. Each AE sensor 23 is electrically connected to the AE signal analyzer 25.
  • the elastic film 24 has the same form as the elastic film 14 of the detection device 10 and has the same function and effect. As shown in FIG. 6, the size of the elastic film 24 viewed from the restraining direction is approximately the same as that of the hard non-metallic plate 21, and four AE sensors 23 are arranged inside the elastic film 24. Yes. That is, in the detection device 20, the AE sensors 23, 23, 23, and 23 are disposed inside the elastic film 24, and the AE sensors 23 are disposed at the four corners of the reaction occurrence location in the battery 1. Thereby, it becomes possible to detect the reaction generated inside the battery 1 more directly, and the detection accuracy can be improved. In addition, although the signal wire
  • the AE signal analysis device 25 has the same form as the AE signal analysis device 15 of the detection device 10 and has the same effect.
  • the AE signal analysis device 25 estimates the initial fine movement occurrence time based on the detection data detected by each AE sensor 23, and obtains the reaction position by obtaining the arrival time difference between the signals of the same reaction phenomenon from each AE sensor 23. Identify.
  • the analysis method in the AE signal analyzer 25 is the same as that in the AE signal analyzer 15.
  • the detection device 30 may be used to detect the elastic wave W generated inside the battery 1.
  • the detection device 30 includes a hard non-metallic plate 11, a contact medium 12, an AE sensor 13, 13, 13, 13 and an elastic film 14 of the detection device 10 on both sides of the wide surface of the battery 1. Each component is provided.
  • the detection device 30 further includes an AE signal analysis device 35.
  • the AE signal analyzer 35 is electrically connected to a total of eight AE sensors 13 and analyzes the elastic wave W based on the detection data from each AE sensor 13. That is, the detection device 30 has a configuration in which minute elastic waves W generated inside the battery 1 are propagated toward both sides of the battery 1 and detected.
  • the reaction position in the battery 1 can be specified three-dimensionally by the AE signal analysis device 35, and the reaction can be grasped more strictly. Further, by disposing the elastic films 14 and 14 on both sides of the battery 1, the restraining plates 5 and 5 and the battery 1 are separated from each other by the elastic films 14 and 14. As a result, the elastic wave W can be prevented from diffusing outside the detectable range of the detection device 30, and the elastic wave W resulting from the reaction inside the battery 1 can be detected more precisely, and the detectable reaction. The number of types increases.
  • the number of arranged AE sensors is not limited, and the same place It is sufficient that the number of locations where the elastic wave W generated from the power source is generated is three or more, and the number of arrangements can be appropriately selected according to the form of the battery 1, the detection capability of the AE sensor, and the like.
  • the detection device of the first to third embodiments shows an example in which a change in the internal state of the battery 1 is detected in the charging process, but the application range of these detection devices 10, 20, 30 is the charging
  • the internal state of the battery 1 in an aging process or the like performed in a state in which the battery 1 has the same function as that of the restraining plates 5 and 5 and is restrained by using another restraining member that applies a pressing force to the battery 1. It is also possible to detect changes.
  • the present invention can be used for a technique for grasping a reaction state inside a battery, and is particularly suitable for a technique for accurately detecting a minute elastic wave generated due to a reaction inside the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 本発明は、電池内部の反応に伴う微小な弾性波を検出し、電池の内部状態の変化を正確に把握することが可能な電池の内部状態検出装置を提供することを課題とする。電池(1)の内部状態検出装置(10)は、電池(1)に押圧力を付与する拘束部材(5・5)と、電池(1)と拘束部材(5)との間に配置される非金属板(11)と、非金属板(11)に固定される複数のAEセンサ(13)と、を具備し、拘束部材(5・5)によって電池(1)に押圧力が付与され、複数のAEセンサ(13)によって、電池(1)内に発生する弾性波(W)を検出し、検出された弾性波(W)を解析することによって電池(1)の内部状態を検出する。

Description

電池の内部状態検出装置、及び方法
 本発明は、電池の内部状態の変化を検出する装置及び方法に関し、より詳細には、電池内部で発生する弾性波を正確に検出することにより、電池内部の反応状態を把握する技術に関する。
 リチウムイオン二次電池、ニッケル水素電池等、充放電可能に構成される電池の内部の状態変化を検出することにより電池内部の反応状態、電池の劣化状態等、電池の内部状態の変化を可視化する技術が用いられている。
 特にリチウムイオン二次電池では、充電時、エージング時等に、電解液の分解、水分混入、電極表面へのSEI皮膜形成等に伴う気泡の発生、リチウムイオンのインターカレーションによる材料結晶構造変化、及び、粒子間距離の変化等、電池の内部状態の変化により電池内部に微小な弾性波が発生することが知られている。
 特許文献1には、電池内部に発生する弾性波をAE(アコースティックエミッション)センサ、AEセンサからの信号を解析する装置を含む検出装置を用いて検出し、弾性波の特徴を解析することにより電池の内部状態を検出する技術が開示されている。前記検出装置によって検出された弾性波の特徴を解析することにより、化学反応に伴う気泡の発生、又は電池劣化に伴う構成物の破壊等、電池の内部状態の変化の有無を検出できる。
 しかしながら、特許文献1に記載の検出装置では、電池からAEセンサに伝達されるまでの間の弾性波の減衰は十分に考慮されておらず、電池内部の化学反応等により発生する微小な弾性波を確実に検出することは困難であった。
 また、電池内部での化学反応は電池性能に大きく関わるため、製造工程において電池内部の化学反応の分布、強度等を局所的に把握することが求められる。特に、反応の位置情報を正確に把握して、不具合を可視化し、電池の材料・設計・製造・制御等に伴う課題を解決することが求められている。
 しかし、特許文献1に開示される検出装置では、電池内部に変化(気泡の発生、破壊等)が生じた位置を正確に把握することは不可能であった。
 以上のように、従来の検出装置では、電池の内部状態の変化を正確に把握することは困難であった。
特開平7-6795号公報
 本発明は、電池内部の反応に伴う微小な弾性波を検出し、電池の内部状態の変化を正確に把握することが可能な電池の内部状態検出装置を提供することを課題とする。
 本発明の第一態様に係る電池の内部状態検出装置は、前記電池に押圧力を付与する拘束部材と、前記電池と前記拘束部材との間に配置される非金属板と、前記非金属板に固定される複数のAEセンサと、を具備し、前記拘束部材によって前記電池に押圧力が付与され、前記複数のAEセンサによって、前記電池内に発生する弾性波を検出し、前記検出された弾性波を解析することによって前記電池の内部状態を検出する。
 前記電池の内部状態検出装置において、予め複数の波形パターンが記憶されている記憶手段をさらに備え、前記弾性波の解析は、前記検出された弾性波の波形パターンと前記複数の波形パターンとを比較することにより行われることが好ましい。
 前記電池の内部状態検出装置において、前記拘束部材と前記非金属板との間に配置される弾性部材をさらに具備することが好ましい。
 前記電池の内部状態検出装置において、前記電池と前記非金属板との間に配置される接触媒質をさらに具備することが好ましい。
 本発明の第二態様に係る電池の内部状態検出方法は、前記電池に非金属板を接触させた状態で配置し、当該非金属板を介して前記電池に押圧力が付与され、前記非金属板に、前記電池内で発生する弾性波を検出するAEセンサを複数固定し、前記複数のAEセンサによって検出される前記電池内で発生する弾性波を解析することによって、前記電池の内部状態を検出する。
 前記電池の内部状態検出方法において、前記弾性波の解析は、当該検出された弾性波の波形パターンと予め用意された複数の波形パターンとを比較することにより行われることが好ましい。
 本発明によれば、電池内部の反応に伴う微小な弾性波を検出し、電池の内部状態の変化を正確に把握することができる。
電池の内部状態検出装置、及びその検出対象である電池を示す図である。 電池内部で発生する弾性波の伝達の様子を示す図である。 AE信号解析装置による弾性波の解析の一形態を示す図である。 AE信号解析装置に用いる波形パターンの一形態を示す図である。 AE信号解析装置によって解析された結果の一例を示す図である。 電池の内部状態検出装置の別形態を示す図である。 電池の内部状態検出装置の別形態を示す図である。
 1   電池
 5   拘束板
 10  検出装置
 11  硬質非金属板
 12  接触媒質
 13  AEセンサ
 14  弾性膜
 15  AE信号解析装置
 以下に、図面を参照して、本発明に係る内部状態検出装置の検出対象である電池の実施の一形態である電池1について説明する。電池1は、リチウムイオン二次電池である。
 なお、検出対象としての電池1は、リチウムイオン二次電池に限定されず、例えばニッケル水素電池、ニッケルカドミウム電池等でも適用可能である。
 図1に示すように、電池1は、発電要素2、容器3等を含み、発電要素2を容器3内に収納してなる。
 発電要素2は、正極と負極とを扁平状に捲回してなる捲回体、又は正極と負極とを積層してなる積層体からなる電極体に電解液を含浸させることによって充放電要素となる。前記電解液としては、EC(エチレンカーボネート)、DMC(ジメチルカーボネート)等が挙げられる。
 容器3は、発電要素2を収納する缶状の容器であり、発電要素2に応じた形状(より具体的には、幅広面を対向させてなる角缶形状)に形成される。容器3の前記幅広面を除いた外周部からは、外部端子4・4が外方に突出して設けられる。
 外部端子4・4は、外部と電気的に接続する経路であり、容器3の内部においてそれぞれ発電要素2の正極及び負極と電気的に接続されている。
 なお、電池1の構成は上記の缶状のものに限定されず、幅広面として形成される平面を対向させた形状を有するものであれば良く、ラミネート状等の形態でも良い。
 電池1の充電時には、容器3を外側から拘束した状態で、外部端子4・4に電源を接続し、発電要素2に適宜の電気エネルギーを加えることによって、発電要素2内で化学反応が起こる。この化学反応により、電池1が充電される。
 具体的には、図1に示すように、容器3の幅広面を両側から押圧する拘束板5・5を用いて、電池1に押圧力を付与した状態で、電池1の充電が行われる。拘束板5・5は、電池1に対して押圧力を付与する拘束部材であり、電池1の被押圧面よりも大きい面積を有する板状の部材である。
 このとき、電池1の内部では、(1)電解液の分解、(2)電極表面へのSEI皮膜形成、(3)リチウムイオンのインターカレーションによる材料結晶構造変化、(4)粒子間距離の変化等の反応が起こり、内部状態に変化が生じる。また、これら(1)~(4)の各反応に伴い、電池1の内部に微小な弾性波Wが発生する。
 [第一実施形態]
 上述のように、充電工程において電池1内に発生する微小な弾性波Wを、検出装置10を用いて検出する。
 検出装置10は、電池1内で発生する弾性波Wを検出することにより、電池1の内部での反応に起因する状態変化を検出し、かつ、その内部状態の変化が発生した位置を検出する装置である。
 図1に示すように、検出装置10は、硬質非金属板11、接触媒質12、複数のAEセンサ13・13・・・、弾性膜14、AE信号解析装置15等を具備する。
 硬質非金属板11は、検出装置10の検出対象である電池1の形状に応じた形状(長方形状)を有する非磁性、非導電性、かつ、非金属の硬質材料からなる平板部材である。硬質非金属板11は、電池1に接触した状態で配置される。硬質非金属板11は、電池1内で発生する弾性波Wの減衰を抑制する部材であり、弾性波Wを各AEセンサ13に良好に伝達させる特性を有する。
 硬質非金属板11の材料としては、セラミック、ガラス等が挙げられる。また、図1に示すように、拘束方向から見た硬質非金属板11の大きさは電池1のものよりも大きく形成されている。
 このように、検出装置10において、電池1に対して硬質非金属板11を介在させることにより、電池1の内部で発生した弾性波Wの減衰を抑制し、良好に伝達することが可能となる。また、硬質非金属板11に非磁性、非導電性、かつ、非金属の材料を用いることによって、磁界、静電容量遊動電流の発生が電池1の内部反応に及ぼす影響を軽減することが可能となる。
 接触媒質12は、電池1と硬質非金属板11との間に介在し、これらの密着性を向上させる部材である。接触媒質12は、電池1と硬質非金属板11との接触領域の全域に亘って設けられている。
 接触媒質12は、電池1から硬質非金属板11に弾性波Wを効率的に伝達するために、電池1の外装、硬質非金属板11等と音響インピーダンスの近い材料からなることが好ましく、接触媒質12の材料としては、グリス、オイル等が挙げられる。
 AEセンサ13・13・・・は、圧電セラミックス等をセンシングデバイスとする弾性波検出器であり、電池1内部で発生する弾性波Wを検出する。各AEセンサ13は、硬質非金属板11の所定位置に固定される。各AEセンサ13は、AE信号解析装置15と電気的に接続されるとともに、AE信号解析装置15に弾性波Wの検出データ(AE信号)として、信号強度、周波数、持続時間、振幅等の情報を伝送する。
 本実施形態では、四つのAEセンサ13を、矩形状に形成される硬質非金属板11の四隅に配置している。つまり、四つのAEセンサ13のそれぞれにより同一の弾性波Wを検出し、四つそれぞれの検出データに基づいて弾性波Wの発生位置を正確に検出する構成である。
 なお、電池1内で発生した弾性波Wを検出する手段は、AEセンサ13に限定されるものではなく、同様の機能を有するものであれば代用可能である。
 弾性膜14は、可撓性を有する弾性部材であり、風船状の膜により構成される。弾性膜14は、拘束板5と硬質非金属板11との間に介装される。
 弾性膜14の材料としては、一般的に可撓性膜の材料として用いられるポリプロピレンフィルム等が挙げられる。また、図1に示すように、拘束方向から見た弾性膜14の大きさは電池1のものと同程度の大きさに構成されており、硬質非金属板11の四隅に配置されるAEセンサ13・13・13・13は、弾性膜14の外側に位置する。
 また、弾性膜14の内部には、硬質非金属板11と音響インピーダンスの異なる空気等のガスが充填されている。
 検出装置10において、拘束板5からの押圧力は弾性膜14を介して硬質非金属板11及び電池1に伝達される構成である。つまり、弾性膜14は、拘束板5と硬質非金属板11との間に空隙を設け、拘束板5から付与される圧力をパスカルの原理により均一に硬質非金属板11に伝えるとともに、硬質非金属板11から伝達される弾性波Wが外部に拡散することを抑制する。
 また、内部に硬質非金属板11と音響インピーダンスの異なるガスが充填される弾性膜14を介して押圧することにより、図2に示すように、硬質非金属板11と弾性膜14との界面において、硬質非金属板11内を伝播してきた弾性波Wが硬質非金属板11内に反射し、減衰することがないため、効率よくAEセンサ13へと伝播させることができる。
 以上のように、電池1は、硬質非金属板11、接触媒質12、弾性膜14を介して拘束板5・5に拘束されている。これにより、電池1内で発生する微小な弾性波Wは、電池1から接触媒質12を介して硬質非金属板11内に伝播され、弾性膜14によって硬質非金属板11内に反射されながら、硬質非金属板11内を伝播し、各AEセンサ13に伝達される。
 従って、検出装置10において、電池1内部の反応に伴って発生する微小な弾性波Wを各AEセンサ13に良好に伝達することが可能となり、AEセンサ13にて弾性波Wを確実に検出することが可能となる。
 AE信号解析装置15は、各AEセンサ13によって検出される強度、周波数、持続時間、振幅等の情報(検出データ)を時系列に沿って取り出し、その波形から初期微動発生時期を推定するとともに、各AEセンサ13から同一反応現象の信号の到達時間差を求めることによって反応位置を特定する。
 AE信号解析装置15は、弾性波Wの波形パターンPをパターンマッチングすることにより、反応の種類を特定するとともに、その初期微動発生時期を推定する方法を用いて、反応位置を特定するものである。波形パターンPは、AEセンサ13により得られる検出データを時系列に沿ってプロットした波形の外郭付近を結んで出来る図形パターンである。
 より具体的には、図3及び図4に示すように、AE信号解析装置15内では、以下のように解析が行われる。
 図3に示すように、AE信号解析装置15には、(1)電解液の分解、(2)電極表面へのSEI皮膜形成、(3)リチウムイオンのインターカレーションによる材料結晶構造変化、(4)粒子間距離の変化等の各種反応によって発生する弾性波Wの情報が個別の波形パターンP1・P2・P3・・・として記憶されている。つまり、AE信号解析装置15は、個別の波形パターンP1・P2・P3・・・を記憶する記憶手段としての機能を備えている。
 例えば、予め実験、シミュレーション等を行うことにより、図4に示すように、(1)電解液の分解に起因する内部ガスの発生による弾性波W1を、AEセンサ13により検出し、持続時間t1、振幅L1により形成される波形の外郭付近を結んで出来る図形パターンを波形パターンP1としてAE信号解析装置15に記憶することが可能である。このようにして、AE信号解析装置15は、反応毎に波形パターンP2・P3・・・を記憶している。
 なお、このときの初期微動発生時期は図4中に点t0で示すタイミングであるが、閾値Thを設定する一般的な手法による初期微動発生時期は点t0’で示すタイミングとなる。このように、波形パターンP1・P2・・・を用いたパターンマッチングによればより正確な初期微動発生時期を推定できる。
 AE信号解析装置15では、波形パターンP1・P2・P3・・・を用いて、AEセンサ13・13・・・により検出される弾性波Wの波形パターンPと、波形パターンP1・P2・P3・・・とを比較し、反応を特定することによって、電池1内で発生する各反応の初期微動発生時期を的確に推定することが可能となる。
 本実施形態において、「波形パターンを比較する」とは、検出された波形パターンPと予め用意された複数の波形パターンP1・P2・P3・・・とのマッチングを行うことを意味し、例えば、ある波形パターンPが波形パターンの相似形である、又は複数の波形パターンの複合形である等を解析し、波形パターンPの組成を推定することを意味する。
 また、AE信号解析装置15は、上記のような波形パターンPのパターンマッチングにより特定される各反応から、同一の反応を抽出するとともに、その初期微動の発生時期を推定し、係る反応が発生した位置を特定する。
 例えば、各AEセンサ13及びAE信号解析装置15によって同一の反応として抽出された同一の弾性波Wに対して、初期微動が発生するまでの時間差、及び各AEセンサ13の配置位置等に基づいて、三角測量法等の公知の位置特定手法により、その発生位置を二次元的に特定する方法が採用できる。
 以上のように、検出装置10では、各AEセンサ13によって検出される弾性波WをAE信号解析装置15により解析することによって、電池1内での反応の種類、及び反応位置について正確に把握することができる。
 電池1の充電工程において検出装置10によって検出された検出結果の活用手段としては、例えば、図5に示すように、電池1の一部に充電反応の少ない箇所(図5中に示す領域A)がある場合に、電池1の製造工程における充電工程の上工程における不具合(発電要素2における電極活物質の偏り、電極材料の塗工偏り等)として判定することができ、係る不具合を解消することによって製造工程の精度向上に寄与できる。
 ここで、発電要素2は、電極活物質、結着剤、導電剤等を均一に混練して合剤を製造する工程、前記合剤を集電箔に塗工する工程、前記集電箔上に塗工された前記合剤を乾燥する工程、前記集電箔及び合剤をロールプレスする工程等を経て製造されている。
 つまり、発電要素2に関するこれらの製造工程における製造バラツキ、充電時の性能バラツキ等を検査するために、検出装置10を活用することができる。さらに、検出装置10によって検出された結果を参考にして、電池1を構成する各構成材料の設計、電池1を製造する各工程での製造精度等を見直すことが容易となる。
 [第二実施形態]
 電池1の内部に発生する弾性波Wを検出するために検出装置20を用いても良い。
 検出装置20は、図6に示すように、硬質非金属板21、接触媒質22、AEセンサ23・23・23・23、弾性膜24、AE信号解析装置25等を具備する。
 硬質非金属板21は、検出装置10の硬質非金属板11と略同形態のものであり、同様の作用効果を奏するものである。図6に示すように、拘束方向から見た硬質非金属板21の大きさは電池1のものと同程度に形成されている。
 接触媒質22は、検出装置10の接触媒質12と同形態のものであり、同様の作用効果を奏するものである。接触媒質22は、電池1と硬質非金属板21との間に介在する。
 各AEセンサ23は、検出装置10のAEセンサ13と同形態のものであり、同様の作用効果を奏するものである。各AEセンサ23は、電池1内部で発生する弾性波Wを検出する。各AEセンサ23は、硬質非金属板21の四隅に配置され、固定されている。各AEセンサ23は、AE信号解析装置25と電気的に接続されている。
 弾性膜24は、検出装置10の弾性膜14と同形態のものであり、同様の作用効果を奏するものである。図6に示すように、拘束方向から見た弾性膜24の大きさは硬質非金属板21のものと同程度に構成されており、弾性膜24の内部に四つのAEセンサ23が配置されている。
 つまり、検出装置20では、AEセンサ23・23・23・23を弾性膜24の内側に配置し、各AEセンサ23が電池1での反応発生箇所の四隅に位置するように配置している。これにより、電池1の内部で発生する反応をより直接的に検出することが可能となり、検出精度を向上できる。
 なお、各AEセンサ23から延出される信号線は弾性膜24を貫通するが、係る貫通箇所における気密性は十分に確保されているものとする。
 AE信号解析装置25は、検出装置10のAE信号解析装置15と同形態のものであり、同様の作用効果を奏するものである。AE信号解析装置25は、各AEセンサ23によって検出される検出データに基づいて、初期微動発生時期を推定するとともに、各AEセンサ23から同一反応現象の信号の到達時間差を求めることによって反応位置を特定する。
 AE信号解析装置25における解析手法は、AE信号解析装置15と同一である。
 [第三実施形態]
 電池1の内部に発生する弾性波Wを検出するために検出装置30を用いても良い。
 検出装置30は、図7に示すように、電池1の幅広面の両面側に、検出装置10の硬質非金属板11、接触媒質12、AEセンサ13・13・13・13、弾性膜14の各構成を具備する。検出装置30は、さらにAE信号解析装置35を具備する。AE信号解析装置35は、合計八つのAEセンサ13と電気的に接続され、各AEセンサ13からの検出データに基づいて弾性波Wを解析する。
 つまり、検出装置30は、電池1の内部で発生する微小な弾性波Wを、電池1の両面側に向けて伝播させて検出する構成である。これによれば、AE信号解析装置35によって電池1内部の反応位置を三次元的に特定することが可能となり、反応をより厳密に把握することが可能となる。
 また、電池1の両面側に弾性膜14・14を配置することによって、拘束板5・5と電池1とが弾性膜14・14によって隔離された状態となる。これにより、弾性波Wが検出装置30の検出可能範囲外に拡散することを抑止でき、電池1の内部の反応に起因する弾性波Wをより厳密に検出することが可能となり、検出可能な反応の種類が増加する。
 なお、第一~第三実施形態において、AEセンサを電池1の幅広面の一面に対して四つ配置する形態について示しているが、AEセンサの配置個数は限定されるものではなく、同一箇所から発生する弾性波Wの発生箇所を特定可能とされる三つ以上であれば良く、その配置個数は、電池1の形態、AEセンサの検出能力等に応じて適宜選択可能である。
 また、第一~第三実施形態の検出装置は、充電工程における電池1の内部状態の変化を検出している例を示しているが、これら検出装置10・20・30の適用範囲は、充電工程に限らず、例えば拘束板5・5と同様の機能を有し、電池1に押圧力を付与する別の拘束部材を用いて拘束した状態で行われるエージング工程等における電池1の内部状態の変化を検出することも可能である。
 本発明は、電池内部の反応状態を把握する技術に利用でき、特に、電池内部での反応に伴って発生する微小な弾性波を的確に検出する技術に適している。

Claims (6)

  1.  電池の内部状態を検出する装置であって、
     前記電池に押圧力を付与する拘束部材と、
     前記電池と前記拘束部材との間に配置される非金属板と、
     前記非金属板に固定される複数のAEセンサと、を具備し、
     前記拘束部材によって前記電池に押圧力が付与され、
     前記複数のAEセンサによって、前記電池内に発生する弾性波を検出し、
     前記検出された弾性波を解析することによって前記電池の内部状態を検出する電池の内部状態検出装置。
  2.  前記電池の内部状態検出装置は、予め複数の波形パターンが記憶されている記憶手段をさらに備え、
     前記弾性波の解析は、前記検出された弾性波の波形パターンと前記複数の波形パターンとを比較することにより行われる請求項1に記載の電池の内部状態検出装置。
  3.  前記拘束部材と前記非金属板との間に配置される弾性部材をさらに具備する請求項1又は2に記載の電池の内部状態検出装置。
  4.  前記電池と前記非金属板との間に配置される接触媒質をさらに具備する請求項1~3の何れか一項に記載の電池の内部状態検出装置。
  5.  電池の内部状態を検出する方法であって、
     前記電池に非金属板を接触させた状態で配置し、当該非金属板を介して前記電池に押圧力が付与され、
     前記非金属板に、前記電池内で発生する弾性波を検出するAEセンサを複数固定し、
     前記複数のAEセンサによって検出される前記電池内で発生する弾性波を解析することによって、前記電池の内部状態を検出する電池の内部状態検出方法。
  6.  前記弾性波の解析は、当該検出された弾性波の波形パターンと予め用意された複数の波形パターンとを比較することにより行われる請求項5に記載の電池の内部状態検出方法。
PCT/JP2009/003065 2009-07-02 2009-07-02 電池の内部状態検出装置、及び方法 WO2011001471A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011520671A JP5293818B2 (ja) 2009-07-02 2009-07-02 電池の内部状態検出装置、及び方法
PCT/JP2009/003065 WO2011001471A1 (ja) 2009-07-02 2009-07-02 電池の内部状態検出装置、及び方法
CN200980160144.0A CN102473972B (zh) 2009-07-02 2009-07-02 电池的内部状态检测装置和方法
US13/337,460 US8549927B2 (en) 2009-07-02 2011-12-27 Device and method to sense battery internal state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/003065 WO2011001471A1 (ja) 2009-07-02 2009-07-02 電池の内部状態検出装置、及び方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/337,460 Continuation US8549927B2 (en) 2009-07-02 2011-12-27 Device and method to sense battery internal state

Publications (1)

Publication Number Publication Date
WO2011001471A1 true WO2011001471A1 (ja) 2011-01-06

Family

ID=43410573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003065 WO2011001471A1 (ja) 2009-07-02 2009-07-02 電池の内部状態検出装置、及び方法

Country Status (4)

Country Link
US (1) US8549927B2 (ja)
JP (1) JP5293818B2 (ja)
CN (1) CN102473972B (ja)
WO (1) WO2011001471A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2575205A1 (fr) 2011-09-30 2013-04-03 IFP Energies Nouvelles Procédé et système de diagnostic de l'état interne d'une batterie par émission acoustique
KR20140027370A (ko) * 2011-04-29 2014-03-06 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Li-이온 배터리 모니터링 방법 및 방법의 구현을 위한 모니터링 장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568583B2 (ja) * 2012-03-08 2014-08-06 株式会社日立製作所 リチウムイオン二次電池システム、リチウムイオン二次電池の検査方法、リチウムイオン二次電池の制御方法
CN103376171B (zh) * 2012-04-20 2015-04-01 希姆通信息技术(上海)有限公司 电子产品电池异常检测装置及其检测方法
US9267993B2 (en) * 2012-05-23 2016-02-23 Lawrence Livermore National Security, Llc Battery management system with distributed wireless sensors
JP7293197B2 (ja) * 2017-09-01 2023-06-19 リミナル・インサイト・インコーポレーテッド 音響信号を用いた電気化学システムの特性の決定
JP6917872B2 (ja) * 2017-11-22 2021-08-11 株式会社Gsユアサ 蓄電装置及びその使用方法
CN111384461A (zh) * 2018-12-29 2020-07-07 中信国安盟固利动力科技有限公司 一种离子电池多参数集成装置及其制备方法
CN110274815B (zh) * 2019-05-06 2020-10-09 中国汽车技术研究中心有限公司 一种锂离子电池内部结构机械强度的分析方法
JP7238841B2 (ja) * 2020-03-31 2023-03-14 トヨタ自動車株式会社 加圧検査方法および加圧検査装置
US20220074997A1 (en) 2020-09-04 2022-03-10 Analog Devices, Inc. Measuring ac frequency response in wireless battery management systems
FR3118312B1 (fr) * 2020-12-22 2023-06-09 Commissariat Energie Atomique Accumulateur électrochimique muni d'un capteur de détection d'un signal acoustique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076795A (ja) * 1993-06-21 1995-01-10 Nissan Motor Co Ltd 電池内部状態検出装置
JPH0785892A (ja) * 1993-09-14 1995-03-31 Nissan Motor Co Ltd 蓄電池の充電方法及びこの充電方法に適合した蓄電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215312B1 (en) * 1999-11-09 2001-04-10 Steven Hoenig Method and apparatus for analyzing an AgZn battery
JP3889938B2 (ja) * 2001-05-18 2007-03-07 シャープ株式会社 太陽電池の内部割れ検査装置
US7593823B2 (en) * 2006-11-21 2009-09-22 The Furukawa Electric Co., Ltd Method and device for determining state of battery, and battery power supply system therewith
JP4703593B2 (ja) * 2007-03-23 2011-06-15 株式会社豊田中央研究所 二次電池の状態推定装置
JP4872743B2 (ja) * 2007-03-23 2012-02-08 トヨタ自動車株式会社 二次電池の状態推定装置
JP5365119B2 (ja) * 2008-09-25 2013-12-11 日産自動車株式会社 電池状態判定装置、車両および電池状態判定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076795A (ja) * 1993-06-21 1995-01-10 Nissan Motor Co Ltd 電池内部状態検出装置
JPH0785892A (ja) * 1993-09-14 1995-03-31 Nissan Motor Co Ltd 蓄電池の充電方法及びこの充電方法に適合した蓄電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027370A (ko) * 2011-04-29 2014-03-06 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Li-이온 배터리 모니터링 방법 및 방법의 구현을 위한 모니터링 장치
JP2014512661A (ja) * 2011-04-29 2014-05-22 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Liイオン電池の監視方法及びこれを実現した監視デバイス
US20140159674A1 (en) * 2011-04-29 2014-06-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for Monitoring a Li-ion Battery and Monitoring Device for the Implementation Thereof
KR101962981B1 (ko) * 2011-04-29 2019-03-27 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Li-이온 배터리 모니터링 방법 및 방법의 구현을 위한 모니터링 장치
EP2575205A1 (fr) 2011-09-30 2013-04-03 IFP Energies Nouvelles Procédé et système de diagnostic de l'état interne d'une batterie par émission acoustique
FR2980850A1 (fr) * 2011-09-30 2013-04-05 IFP Energies Nouvelles Procede et systeme de diagnotic de l'etat interne d'une batterie par emission acoustique.
JP2013080703A (ja) * 2011-09-30 2013-05-02 IFP Energies Nouvelles アコースティックエミッションによって蓄電池の内部状態を診断する方法およびシステム
US8984944B2 (en) 2011-09-30 2015-03-24 IFP Energies Nouvelles Method and system for diagnosis of the internal state of a battery through acoustic emission

Also Published As

Publication number Publication date
US20120090402A1 (en) 2012-04-19
CN102473972A (zh) 2012-05-23
CN102473972B (zh) 2014-07-23
JP5293818B2 (ja) 2013-09-18
US8549927B2 (en) 2013-10-08
JPWO2011001471A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5293818B2 (ja) 電池の内部状態検出装置、及び方法
US11527783B2 (en) Battery state monitoring using ultrasonic guided waves
TWI775862B (zh) 電池壽命評估和容量恢復
US20190072614A1 (en) Determination of characteristics of electrochemical systems using acoustic signals
US20210194070A1 (en) Diagnosis of batteries
JP5915182B2 (ja) 空中超音波探傷装置
KR20120030966A (ko) 전지 내부 상태 검출 장치
JP2013137249A (ja) 二次電池の劣化診断方法および電池システム
Ladpli et al. Design of multifunctional structural batteries with health monitoring capabilities
Siegl et al. An electromagnetic acoustic transducer for generating acoustic waves in lithium-ion pouch cells
JP6492950B2 (ja) 超音波測定装置及び超音波測定方法
JP5381623B2 (ja) 測定対象物の物性値検知方法、及び、測定対象物の物性値検知システム
KR20200081109A (ko) 배터리 두께 측정 장치 및 이를 이용한 배터리 두께 측정 방법
EP2565642B1 (en) L-mode guided wave sensor
CN210956888U (zh) 方便进行声学检测的电池组
Zeng et al. Novel Sensing Techniques for Lithium-ion Battery Modeling and States Estimation
McGee Ultrasonic inspection of lithium-ion batteries to determine battery safety
US20240091884A1 (en) Device And Method For Inspecting Welded State
KR20220169787A (ko) 미세 진동을 이용한 전극 탭 단선 검출 장치
JP5535969B2 (ja) 二次電池
US20220039748A1 (en) Piezoelectric sensor
JP2016081741A (ja) 二次電池の測定装置
Guillet et al. In-operando techniques for battery monitoring and safety issues prevention
Li et al. Battery state characterization based on a contactless electromagnetic ultrasound testing method
Nguyen et al. Ultrasonic Nondestructive Diagnosis of Cylindrical Batteries Under Various Charging Rates

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160144.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520671

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846766

Country of ref document: EP

Kind code of ref document: A1