WO2011000360A2 - Elektronische vorrichtung - Google Patents
Elektronische vorrichtung Download PDFInfo
- Publication number
- WO2011000360A2 WO2011000360A2 PCT/DE2010/000745 DE2010000745W WO2011000360A2 WO 2011000360 A2 WO2011000360 A2 WO 2011000360A2 DE 2010000745 W DE2010000745 W DE 2010000745W WO 2011000360 A2 WO2011000360 A2 WO 2011000360A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metallization
- layer
- layer thickness
- metal
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H10W40/255—
-
- H10W72/07331—
-
- H10W72/07336—
-
- H10W72/07337—
-
- H10W72/07351—
-
- H10W72/30—
-
- H10W90/734—
Definitions
- the invention relates to electronic devices or to electronic circuits and / or a module according to the preamble of claim 1.
- DCB method Direct Copper Bond Technology
- metal layers or sheets eg copper sheets or sheets
- metal or copper sheets or metal or copper foils which have on their surface sides a layer or a coating (reflow layer) of a chemical compound of the metal and a reactive gas, preferably oxygen, in this example in US-PS 3744 120 or in DE-PS 23 19 854 described method, this layer or coating (melting layer) forms a eutectic with a melting temperature below the
- Melting temperature of the metal e.g., copper
- the metal e.g., copper
- This DCB method then indicates e.g. the following process steps:
- active soldering method (DE 22 13 1 15; EP-A-153 618), for example, for joining metallizations forming metal layers or metal foils, in particular also of copper layers or copper foils with ceramic material.
- this method which is also used especially for the production of metal-ceramic substrates, at a temperature between about 800 - 1000 0 C, a connection between a metal foil, such as copper foil, and a ceramic substrate, such as aluminum nitride ceramic, using a brazing filler metal, which also contains an active metal in addition to a main component such as copper, silver and / or gold.
- This active metal which is, for example, at least one element of the group Hf, Ti, Zr, Nb, Ce, establishes a connection between the solder and the ceramic by chemical reaction, while the connection between the solder and the metal is a metallic braze joint ,
- the object of the invention is to show electronic devices that are suitable for the cooling of power devices, i. of components that generate a significant power loss and thus high heat during operation, are optimized.
- Claim 1 is formed.
- the inventive design not only optimal cooling of power components in electronic devices, circuits or modules, but also the increase in reliability and life of such devices is taken into account, namely the fact that by the particular design of the at least one, the power device bearing first Metallmaschines Kunststoffs this acts as a cooling effect optimizing heat spreader, but at the same time the volume of the metallic material at this metallization is reduced so far that temperature changes that occur during operation of a device, for example, when switching loads, not to a destruction of the substrate and / or the components leads by thermally induced mechanical forces. Further developments of the invention are the subject of the dependent claims.
- Fig. 1 in a simplified representation and in side view an electronic device
- FIG. 2 is an enlarged view of a portion of the apparatus of FIG. 1;
- FIGS. 3-5 each show the method steps of different methods for producing the
- the electronic device denoted generally by 1 in the figures essentially consists in the illustrated embodiment of a metal insulating layer substrate 2 with a preferably ceramic insulating layer 3, on whose surface side a respective metallization 4 or 5 is provided.
- the upper metallization 4 is structured, as indicated in FIG. 1 with the two metallization regions 4.1 and 4.2.
- the lower metallization 5 is continuous, i. it extends to a free edge area over the entire lower
- Suitable ceramics for the insulating layer 3 consist, for example, of aluminum oxide (Al 2 O 3), aluminum nitride (AlN),
- the thickness of the insulating layer 3 is on the order of between about 0.15 mm and 1 mm.
- Metallization areas 4.1 and 4.2 of the metallization 4 are, for example, copper, copper alloys or aluminum, aluminum alloys. With the insulating layer 3, the metallizations 4 and 5 or the metallization 4.1 and 4.2 by DCB bonding, by active soldering and / or by brazing, for example, under Use of a eutectic copper-silver solder or other suitable manner, for example by gluing connected.
- the component 7 is a
- Power device for example, a power semiconductor device or chip (IC), e.g. Transistor, diode, triac thyristor, etc. with increased power dissipation and increased cooling requirements, while the device 6 is such a low power and thus low power loss, such as a semiconductor circuit or - chip (IC) for driving the device.
- IC power semiconductor device or chip
- a special feature of the device 1 or of the metal insulating layer substrate 2 is that the structured metallization 4 essentially only in a partial area 4.2.1 below the respective power component 7, i. in the illustrated embodiment below the device 7 has an increased layer thickness D, otherwise the layer thickness d of the metallization 4 and their
- Metallization region 4.2 can thus be so in terms of its shape
- the partial area 4.2.1 with the layer thickness D and the partial area 4.2.2 surrounding the partial area 4.2.1 of the metallization area 4.2 is designed to be stepped at its edge 8, in such a way that the element 7 extends from the edge of the at the top level or from the edge of the sub-area 4.2.1 has a distance a1 which is at least equal to or slightly larger than the difference b of the layer thicknesses D and d, ie a1 ⁇ b.
- the width a2 of the step formed by the stepped edge 8 is at least equal to the layer thickness d.
- This formation or shaping of the metallization region 4.2 ensures that it can optimally act as a heat spreader for optimal cooling of the component 7, as indicated in FIG. 2 by the broken lines 9, which are opposite at an angle of 45 ° the plane of the surface sides of the insulating layer 3 or the metal insulating layer substrate 2 extend.
- the metal volume of the metallization region 4.2 ensures that it can optimally act as a heat spreader for optimal cooling of the component 7, as indicated in FIG. 2 by the broken lines 9, which are opposite at an angle of 45 ° the plane of the surface sides of the insulating layer 3 or the metal insulating layer substrate 2 extend.
- Metallization 4.2 and the insulating layer 3 is set to a life of the device 1 not impairing value.
- the layer thickness, in particular of the metallization 4, outside of the power component 7 is selected such that a sufficiently large cross section is achieved for the conductor tracks produced by the structuring of the metallization 4 or for the currents to be expected.
- the layer thickness D of the metallization 4 is chosen to be sufficiently large below the power component 7 for optimal cooling and in particular for optimal heat spreading.
- the layer thicknesses D and d are chosen such that their difference b is equal to or greater than d / 2.
- the relationship holds that the sum of the distances a1 and a2 is at least equal to, but preferably greater than, the layer thickness D which the metallization region 4.2 has under the component 7, that is to say a!
- the layer thicknesses d of the metallization 4 outside the subsection 4.2.1 and the metallization 5 is, for example, in the order of magnitude between 0.05 mm and 0.8 mm; the layer thickness D then lies, for example, in the order of magnitude between 0.1 mm and 1.6 mm.
- the surface area of the surface under the device 7 is about 5mm 2 to 180mm 2 , preferably 9mm 2 to 150mm 2 , which is more common for the arrangement
- Semiconductor devices such as power transistors and diodes is sufficient, especially for such semiconductor devices, which are integrated
- Semiconductor circuits consist of a control or switching element and a diode.
- the device 1 is at least thermally connected to a cooler or a heat sink, as indicated in the figure 1 with the broken line.
- the radiator 10 is for example a passive radiator, the heat loss via cooling surfaces, for example in the form of cooling fins
- the at least one of a cooling medium for example, formed by a liquid cooling medium flow-through cooling channel.
- connection between the metallization 5 and the radiator 10 is realized for example by gluing, sintering, soldering, DCB bonding.
- gluing sintering, soldering, DCB bonding.
- waiving the metallization 5 to provide the radiator 10 directly on the side facing away from the metallization 4 underside of the insulating layer 3, again by DCB bonding, active soldering, gluing, etc.
- the described embodiment of the metal insulating layer substrate 2 furthermore has the advantage that due to the reduced layer thickness of the metallization 4 outside the subregion 4.2.1, fine structuring, in particular of the metallization region 4.1, is possible, specifically for the formation of finely structured conductor tracks.
- Metallization region 4.2 is also a bending of the metal insulating layer substrate when heating due to the bimetallic effect avoided, but at least so far avoided that damage to the components 6 and 7 does not occur.
- FIG. 3 shows, in positions a) -c), the steps of a production method for producing the metal insulating layer substrate 2.
- a metal layer in the form of a metal foil 4 ' (eg copper or copper foil) is applied to the upper side of the insulating layer 3 Aluminum foil) with the layer thickness D and on the underside of the insulating layer 3, a metal layer in the form of a metal foil 5 'applied (for example, copper or aluminum foil) with the layer thickness d.
- the metal foil 4 ' is masked there, where the metallization 4 of the finished substrate 2 is to have the layer thickness D, with a lacquer or photoresist or etching resist 11 (position a)).
- the metal foil 4 ' is etched off until it then has the layer thickness d outside the etching resist 11 in accordance with the position b).
- Metallization 4 is not provided, ie, except for the spaces between the metallization 4.1 and 4.2, so that after a further etching and removing the ⁇ tzresists 1 1, the structuring of the metallization 4 is reached (position c)).
- the metallization 5 forming metal foil 5 'with the layer thickness d is protected during the entire structuring process, for example by covering with the ⁇ tzresists 1 1 or in any other suitable manner.
- FIG. 4 shows, in positions a) -c), the steps of a production method in which first of all metal layers in the form of metal foils 4 'and 5' (eg copper or aluminum foil) with layer thickness d are applied to both surface sides of insulating layer ( Position a)).
- metal foils 4 'and 5' eg copper or aluminum foil
- the metal foil 4 ' is patterned into the foil region 4a', which forms the metallization region 4.1, and into the foil region 4b '.
- a suitable method for example by galvanic and / or chemical
- the metal of the additional metal layer 4b is, for example, the metal of
- Metal foil 4 ' e.g. Copper, copper alloy, aluminum or aluminum alloy.
- a metal which is different from the metal foil 4 ' may also be used for the additional metal layer 4b
- Metal layer 4b "also be produced by laser sintering using a sintered metal material as a sintered layer.
- the metal foil 5 'forming the metallization 5 is in turn protected during the entire process, for example by covering with a protective layer or in some other way.
- FIG. 5 shows, in positions a) -c), the steps of a production method in which metal layers in the form of metal layers are firstly formed on both surface sides of the insulating layer 3 of metal foils 4 'and 5' (eg copper or aluminum foil) are applied with the layer thickness d.
- the metal foil 4 is then structured in the foil regions 4a 'and 4b', for example by masking and etching (positions a) and b)).
- Metal plate applied which is connected for example by DIRECT bonding or DCB bonding, by soldering, preferably by brazing with the metal layer 4b 'and so together with the film portion 4b' forms the subsection 4.2.1.
- the application of the metal layer 4b "forming metal plate is particularly when the metal insulating layer substrate is prepared together with a variety of other substrates using a large-sized ceramic plate in multiple use, applied using a mask and / or in which the further metal layer 4b "forming platelets is part of a
- the metallization 4 forms only two metallization regions 4.1 and 4.2.
- the metallization 4 may of course also have a plurality of metallization regions 4.1 of lesser layer thickness and, in particular, also a plurality of metallization regions 4.2 for a plurality of power components 7.
- the electronic device or its metal insulating layer substrate has only one or more metallization regions 4.2.
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
- Structure Of Printed Boards (AREA)
Abstract
Description
Claims
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012516512A JP2012531728A (ja) | 2009-07-02 | 2010-06-29 | 電子装置 |
| CN201080029496.5A CN102484104B (zh) | 2009-07-02 | 2010-06-29 | 电子器件 |
| EP10744841.7A EP2449586B1 (de) | 2009-07-02 | 2010-06-29 | Elektronische vorrichtung |
| US13/381,518 US8749052B2 (en) | 2009-07-02 | 2010-06-29 | Electronic device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102009033029.1 | 2009-07-02 | ||
| DE102009033029A DE102009033029A1 (de) | 2009-07-02 | 2009-07-02 | Elektronische Vorrichtung |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2011000360A2 true WO2011000360A2 (de) | 2011-01-06 |
| WO2011000360A3 WO2011000360A3 (de) | 2011-03-17 |
Family
ID=42983560
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/DE2010/000745 Ceased WO2011000360A2 (de) | 2009-07-02 | 2010-06-29 | Elektronische vorrichtung |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US8749052B2 (de) |
| EP (1) | EP2449586B1 (de) |
| JP (1) | JP2012531728A (de) |
| KR (1) | KR20120098575A (de) |
| CN (1) | CN102484104B (de) |
| DE (1) | DE102009033029A1 (de) |
| WO (1) | WO2011000360A2 (de) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012182279A (ja) * | 2011-03-01 | 2012-09-20 | Showa Denko Kk | 絶縁回路基板およびその製造方法、パワーモジュール用ベースおよびその製造方法 |
| WO2013059746A1 (en) | 2011-10-19 | 2013-04-25 | Nugen Technologies, Inc. | Compositions and methods for directional nucleic acid amplification and sequencing |
| CN104412720A (zh) * | 2012-05-02 | 2015-03-11 | 陶瓷技术有限责任公司 | 由具有金属填充的过孔的陶瓷基底制造陶瓷电路板的方法 |
Families Citing this family (68)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102012102611B4 (de) * | 2012-02-15 | 2017-07-27 | Rogers Germany Gmbh | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates |
| EP2838325B1 (de) * | 2013-08-16 | 2021-06-16 | NGK Insulators, Ltd. | Keramikleiterplatte und elektronische Vorrichtung |
| KR20160108307A (ko) * | 2014-01-10 | 2016-09-19 | 후루카와 덴키 고교 가부시키가이샤 | 전자회로장치 |
| JP6192561B2 (ja) * | 2014-02-17 | 2017-09-06 | 三菱電機株式会社 | 電力用半導体装置 |
| JP6341822B2 (ja) | 2014-09-26 | 2018-06-13 | 三菱電機株式会社 | 半導体装置 |
| US11437304B2 (en) | 2014-11-06 | 2022-09-06 | Semiconductor Components Industries, Llc | Substrate structures and methods of manufacture |
| US9397017B2 (en) | 2014-11-06 | 2016-07-19 | Semiconductor Components Industries, Llc | Substrate structures and methods of manufacture |
| US9408301B2 (en) | 2014-11-06 | 2016-08-02 | Semiconductor Components Industries, Llc | Substrate structures and methods of manufacture |
| JPWO2016163135A1 (ja) * | 2015-04-08 | 2017-04-27 | 三菱電機株式会社 | 電子モジュール及び電子装置 |
| JP6370257B2 (ja) | 2015-04-27 | 2018-08-08 | 三菱電機株式会社 | 半導体装置 |
| JP6706253B2 (ja) * | 2015-05-27 | 2020-06-03 | Ngkエレクトロデバイス株式会社 | パワーモジュール用基板およびパワーモジュール用基板集合体およびパワーモジュール用基板の製造方法 |
| JP6582783B2 (ja) * | 2015-09-16 | 2019-10-02 | 富士電機株式会社 | 半導体装置 |
| EP3210956B1 (de) | 2016-02-26 | 2018-04-11 | Heraeus Deutschland GmbH & Co. KG | Kupfer-keramik-verbund |
| EP3210957B1 (de) | 2016-02-26 | 2019-01-02 | Heraeus Deutschland GmbH & Co. KG | Kupfer-keramik-verbund |
| JP6540587B2 (ja) * | 2016-04-28 | 2019-07-10 | 三菱電機株式会社 | パワーモジュール |
| US10453783B2 (en) * | 2016-05-19 | 2019-10-22 | Mitsubishi Materials Corporation | Power module substrate |
| EP3261119A1 (de) * | 2016-06-21 | 2017-12-27 | Infineon Technologies AG | Leistungshalbleitermodulkomponenten und additive fertigung davon |
| KR101872257B1 (ko) | 2016-06-29 | 2018-06-28 | 박남철 | 마그넷 발전기 |
| KR101872262B1 (ko) | 2016-07-06 | 2018-08-02 | 박남철 | 마그넷 발전기 |
| JP7125931B2 (ja) | 2017-03-31 | 2022-08-25 | ローム株式会社 | パワーモジュールおよびその製造方法 |
| CN208369332U (zh) * | 2017-05-17 | 2019-01-11 | 德昌电机(深圳)有限公司 | 一种电机、电路板及应用该电机的引擎冷却模组 |
| EP3595002A1 (de) * | 2018-07-12 | 2020-01-15 | Heraeus Deutschland GmbH & Co KG | Metall-keramik-substrat mit einer zur direkten kühlung geformten folie als substratunterseite |
| DE102018212272A1 (de) * | 2018-07-24 | 2020-01-30 | Robert Bosch Gmbh | Keramischer Schaltungsträger und Elektronikeinheit |
| DE102018123681A1 (de) | 2018-09-26 | 2020-03-26 | Rogers Germany Gmbh | Trägersubstrat für elektrische, insbesondere elektronische Bauteile und Verfahren zum Herstellen eines Trägersubstrats |
| JP7147502B2 (ja) | 2018-11-19 | 2022-10-05 | 三菱電機株式会社 | 半導体装置、電力変換装置および半導体装置の製造方法 |
| DE102019108594A1 (de) | 2019-04-02 | 2020-10-08 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Subtrats und ein solches Metall-Keramik-Substrat. |
| DE102019113308A1 (de) | 2019-05-20 | 2020-11-26 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik- Substrat, hergestellt mit einem solchen Verfahren |
| US11387373B2 (en) * | 2019-07-29 | 2022-07-12 | Nxp Usa, Inc. | Low drain-source on resistance semiconductor component and method of fabrication |
| DE102019126954B4 (de) * | 2019-10-08 | 2024-12-05 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats, Lötsystem und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren |
| DE102019135099A1 (de) | 2019-12-19 | 2021-06-24 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren |
| DE102019135097A1 (de) | 2019-12-19 | 2021-06-24 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat, hergestellt mit einem solchen Verfahren |
| DE102019135171A1 (de) | 2019-12-19 | 2021-06-24 | Rogers Germany Gmbh | Lotmaterial, Verfahren zur Herstellung eines solchen Lotmaterials und Verwendung eines solchen Lotmaterials zur Anbindung einer Metallschicht an eine Keramikschicht |
| DE102019135146B4 (de) | 2019-12-19 | 2022-11-24 | Rogers Germany Gmbh | Metall-Keramik-Substrat |
| DE102020202607A1 (de) | 2020-02-28 | 2021-09-02 | Siemens Aktiengesellschaft | Elektronikmodul, Verfahren zur Herstellung eines Elektronikmoduls und Industrieanlage |
| DE102020106521A1 (de) | 2020-03-10 | 2021-09-16 | Rogers Germany Gmbh | Elektronikmodul und Verfahren zur Herstellung eines Elektronikmoduls |
| DE102020111700B4 (de) | 2020-04-29 | 2024-12-05 | Rogers Germany Gmbh | Trägersubstrat und Verfahren zur Herstellung eines Trägersubstrats |
| DE102020111698A1 (de) | 2020-04-29 | 2021-11-04 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und ein Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
| DE102020111697A1 (de) | 2020-04-29 | 2021-11-04 | Rogers Germany Gmbh | Trägersubstrat und Verfahren zur Herstellung eines Trägersubstrats |
| DE102020112276A1 (de) * | 2020-05-06 | 2021-11-11 | Danfoss Silicon Power Gmbh | Leistungsmodul |
| DE102020205979A1 (de) | 2020-05-12 | 2021-11-18 | Robert Bosch Gesellschaft mit beschränkter Haftung | Leistungsmodul mit einer Wärmesenke |
| DE102020119208A1 (de) | 2020-07-21 | 2022-01-27 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
| DE102020119209A1 (de) | 2020-07-21 | 2022-01-27 | Rogers Germany Gmbh | Leistungsmodul und Verfahren zur Herstellung eines Leistungsmoduls |
| DE102020120188B4 (de) | 2020-07-30 | 2024-08-01 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Trägersubstrats und ein Trägersubstrat hergestellt mit einem solchen Verfahren |
| DE102020120189A1 (de) | 2020-07-30 | 2022-02-03 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und ein Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
| WO2022044541A1 (ja) * | 2020-08-28 | 2022-03-03 | 富士電機株式会社 | 半導体装置 |
| DE102021100463A1 (de) | 2021-01-13 | 2022-07-14 | Rogers Germany Gmbh | Verfahren zum Herstellen eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
| WO2022162875A1 (ja) * | 2021-01-29 | 2022-08-04 | サンケン電気株式会社 | 半導体パワーモジュール |
| DE102021107690A1 (de) | 2021-03-26 | 2022-09-29 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
| DE102021107872A1 (de) | 2021-03-29 | 2022-09-29 | Rogers Germany Gmbh | Trägersubstrat für elektrische, insbesondere elektronische Bauteile und Verfahren zum Herstellen eines Trägersubstrats |
| DE102021125557A1 (de) | 2021-10-01 | 2023-04-06 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats |
| DE102021126529B4 (de) | 2021-10-13 | 2025-11-13 | Rogers Germany Gmbh | Verfahren zur Herstellung von Metall-Keramik-Substraten |
| DE102022104156A1 (de) | 2022-02-22 | 2023-08-24 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats |
| EP4273928A1 (de) * | 2022-05-02 | 2023-11-08 | Infineon Technologies AG | Halbleitergehäuse mit leistung und logik auf einer einzelnen keramikplate |
| EP4294135A1 (de) * | 2022-06-14 | 2023-12-20 | CeramTec GmbH | Metallische struktur als vorprodukt für elektrische schaltungen und verfahren zur herstellung einer elektrischen schaltung |
| DE102022119688B3 (de) | 2022-08-05 | 2024-02-08 | Rogers Germany Gmbh | Verfahren zum Herstellen eines Metall-Keramik-Substrats und Anlage für ein solches Verfahren |
| DE102022122799A1 (de) | 2022-09-08 | 2024-03-14 | Rogers Germany Gmbh | Elektronikmodul und Verfahren zur Herstellung eines solchen Elektronikmoduls |
| DE102022129493A1 (de) | 2022-11-08 | 2024-05-08 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung von Metall-Keramik-Substraten |
| DE102022134661A1 (de) | 2022-12-23 | 2024-07-04 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats, Keramikelement sowie Metallschicht für ein solches Verfahren und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
| DE102023103509A1 (de) | 2023-02-14 | 2024-08-14 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und ein Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
| DE102023103508A1 (de) | 2023-02-14 | 2024-08-14 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und ein Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren |
| DE102023103850A1 (de) | 2023-02-16 | 2024-08-22 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats |
| DE102023113513A1 (de) | 2023-05-24 | 2024-11-28 | Rogers Germany Gmbh | Metall-Keramik-Substrat und Verfahren zur Herstellung eines Metall-Keramik-Substrats |
| DE102023113512A1 (de) | 2023-05-24 | 2024-11-28 | Rogers Germany Gmbh | Trägersubstrat und Verfahren zur Herstellung eines Trägersubstrats |
| US20250022770A1 (en) * | 2023-07-12 | 2025-01-16 | Delta Electronics, Inc. | Power module structure |
| DE102023126070A1 (de) | 2023-09-26 | 2025-03-27 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat |
| EP4576199A1 (de) * | 2023-12-20 | 2025-06-25 | Infineon Technologies AG | Substrat und verfahren zur herstellung eines substrats |
| WO2025216198A1 (ja) * | 2024-04-08 | 2025-10-16 | 株式会社Niterra Materials | セラミックス銅接合体、セラミックス銅回路基板、およびセラミックス銅接合体の製造方法 |
| US20260011629A1 (en) * | 2024-07-02 | 2026-01-08 | Semiconductor Components Industries, Llc | Substrate with stepped conductive layer surface |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3744120A (en) | 1972-04-20 | 1973-07-10 | Gen Electric | Direct bonding of metals with a metal-gas eutectic |
| DE2213115A1 (de) | 1972-03-17 | 1973-09-27 | Siemens Ag | Verfahren zum hochfesten verbinden von karbiden, einschliesslich des diamanten, boriden, nitriden, siliziden mit einem metall nach dem trockenloetverfahren |
| DE2319854A1 (de) | 1972-04-20 | 1973-10-25 | Gen Electric | Verfahren zum direkten verbinden von metallen mit nichtmetallischen substraten |
| EP0153618A2 (de) | 1984-02-24 | 1985-09-04 | Kabushiki Kaisha Toshiba | Verfahren zur Herstellung eines hochwärmeleitenden Substrates und Kupferleiterblech verwendbar in diesem Verfahren |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3922485C1 (de) | 1989-07-08 | 1990-06-13 | Doduco Gmbh + Co Dr. Eugen Duerrwaechter, 7530 Pforzheim, De | |
| EP0525644A1 (de) * | 1991-07-24 | 1993-02-03 | Denki Kagaku Kogyo Kabushiki Kaisha | Schaltungssubstrat zum Montieren von einem Halbleiterelement |
| JPH07202063A (ja) | 1993-12-28 | 1995-08-04 | Toshiba Corp | セラミックス回路基板 |
| JP3957341B2 (ja) * | 1996-04-18 | 2007-08-15 | 日本インター株式会社 | 複合半導体装置 |
| US6232657B1 (en) * | 1996-08-20 | 2001-05-15 | Kabushiki Kaisha Toshiba | Silicon nitride circuit board and semiconductor module |
| JP3512977B2 (ja) | 1996-08-27 | 2004-03-31 | 同和鉱業株式会社 | 高信頼性半導体用基板 |
| US6207221B1 (en) * | 1997-03-01 | 2001-03-27 | Jürgen Schulz-Harder | Process for producing a metal-ceramic substrate and a metal-ceramic substrate |
| US6261703B1 (en) * | 1997-05-26 | 2001-07-17 | Sumitomo Electric Industries, Ltd. | Copper circuit junction substrate and method of producing the same |
| JP4756200B2 (ja) * | 2000-09-04 | 2011-08-24 | Dowaメタルテック株式会社 | 金属セラミックス回路基板 |
| JP2002203942A (ja) * | 2000-12-28 | 2002-07-19 | Fuji Electric Co Ltd | パワー半導体モジュール |
| ES2717849T3 (es) * | 2001-03-08 | 2019-06-25 | Alstom Transp Tech | Sustrato para circuito electrónico de potencia y módulo electrónico de potencia que utiliza dicho sustrato |
| JP2004128510A (ja) * | 2002-10-05 | 2004-04-22 | Semikron Elektron Gmbh | 向上された絶縁強度を有するパワー半導体モジュール |
| DE10261402A1 (de) * | 2002-12-30 | 2004-07-15 | Schulz-Harder, Jürgen, Dr.-Ing. | Wärmesenke in Form einer Heat-Pipe sowie Verfahren zum Herstellen einer solchen Wärmesenke |
| CA2520241C (en) * | 2003-04-15 | 2013-05-28 | Naomi Yonemura | Metal base circuit board and its production process |
| DE10327530A1 (de) * | 2003-06-17 | 2005-01-20 | Electrovac Gesmbh | Vorrichtung mit wenigstens einer von einem zu kühlenden Funktionselement gebildeten Wärmequelle, mit wenigstens einer Wärmesenke und mit wenigstens einer Zwischenlage aus einer thermischen leitenden Masse zwischen der Wärmequelle und der Wärmesenke sowie thermische leitende Masse, insbesondere zur Verwendung bei einer solchen Vorrichtung |
| JP4765110B2 (ja) * | 2005-03-31 | 2011-09-07 | Dowaメタルテック株式会社 | 金属−セラミックス接合基板およびその製造方法 |
| JP4595665B2 (ja) * | 2005-05-13 | 2010-12-08 | 富士電機システムズ株式会社 | 配線基板の製造方法 |
| DE102005032076B3 (de) * | 2005-07-08 | 2007-02-08 | Infineon Technologies Ag | Verfahren zum Herstellen eines Schaltungsmoduls |
| TWI449137B (zh) * | 2006-03-23 | 2014-08-11 | 製陶技術創新製陶工程股份公司 | 構件或電路用的攜帶體 |
-
2009
- 2009-07-02 DE DE102009033029A patent/DE102009033029A1/de not_active Withdrawn
-
2010
- 2010-06-29 EP EP10744841.7A patent/EP2449586B1/de active Active
- 2010-06-29 KR KR1020127001415A patent/KR20120098575A/ko not_active Ceased
- 2010-06-29 JP JP2012516512A patent/JP2012531728A/ja active Pending
- 2010-06-29 CN CN201080029496.5A patent/CN102484104B/zh active Active
- 2010-06-29 WO PCT/DE2010/000745 patent/WO2011000360A2/de not_active Ceased
- 2010-06-29 US US13/381,518 patent/US8749052B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2213115A1 (de) | 1972-03-17 | 1973-09-27 | Siemens Ag | Verfahren zum hochfesten verbinden von karbiden, einschliesslich des diamanten, boriden, nitriden, siliziden mit einem metall nach dem trockenloetverfahren |
| US3744120A (en) | 1972-04-20 | 1973-07-10 | Gen Electric | Direct bonding of metals with a metal-gas eutectic |
| DE2319854A1 (de) | 1972-04-20 | 1973-10-25 | Gen Electric | Verfahren zum direkten verbinden von metallen mit nichtmetallischen substraten |
| EP0153618A2 (de) | 1984-02-24 | 1985-09-04 | Kabushiki Kaisha Toshiba | Verfahren zur Herstellung eines hochwärmeleitenden Substrates und Kupferleiterblech verwendbar in diesem Verfahren |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012182279A (ja) * | 2011-03-01 | 2012-09-20 | Showa Denko Kk | 絶縁回路基板およびその製造方法、パワーモジュール用ベースおよびその製造方法 |
| WO2013059746A1 (en) | 2011-10-19 | 2013-04-25 | Nugen Technologies, Inc. | Compositions and methods for directional nucleic acid amplification and sequencing |
| CN104412720A (zh) * | 2012-05-02 | 2015-03-11 | 陶瓷技术有限责任公司 | 由具有金属填充的过孔的陶瓷基底制造陶瓷电路板的方法 |
| JP2015520944A (ja) * | 2012-05-02 | 2015-07-23 | セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH | 金属が充填されたビアを有するセラミック基板からなるセラミックプリント基板を製造する方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| US8749052B2 (en) | 2014-06-10 |
| EP2449586A2 (de) | 2012-05-09 |
| JP2012531728A (ja) | 2012-12-10 |
| KR20120098575A (ko) | 2012-09-05 |
| EP2449586B1 (de) | 2020-10-21 |
| CN102484104A (zh) | 2012-05-30 |
| WO2011000360A3 (de) | 2011-03-17 |
| CN102484104B (zh) | 2016-01-27 |
| DE102009033029A1 (de) | 2011-01-05 |
| US20120134115A1 (en) | 2012-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2449586B1 (de) | Elektronische vorrichtung | |
| DE102012214901B4 (de) | Halbleiteranordnung mit einer Diffusionslotschicht auf einer gesinterten Silberschicht und Verfahren zu deren Herstellung | |
| DE102009029577B3 (de) | Verfahren zur Herstellung eines hochtemperaturfesten Leistungshalbleitermoduls | |
| EP3559989B1 (de) | Trägersubstrat für elektrische bauteile und verfahren zur herstellung eines trägersubstrats | |
| DE102012103786B4 (de) | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates | |
| WO2010136017A1 (de) | Gekühlte elektrische baueinheit | |
| DE102013102540B4 (de) | Metall-Keramik-Substrat, Modulanordnung sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates | |
| EP1514459B1 (de) | Metall-keramik-substrat für elektische schaltkreise- oder module, verfahren zum herstellen eines solchen substrates sowie modul mit einem solchen substrat | |
| DE102012102090A1 (de) | Thermoelektrisches Generatormodul, Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates | |
| DE102021107690A1 (de) | Verfahren zur Herstellung eines Metall-Keramik-Substrats und Metall-Keramik-Substrat hergestellt mit einem solchen Verfahren | |
| DE102013105528A1 (de) | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates | |
| DE19956565A1 (de) | Verfahren zum Herstellen einer Wärmesenke für elektrische Bauelemente sowie Wärmesenke oder Kühler für elektrische Bauelemente | |
| DE102004058806B4 (de) | Verfahren zur Herstellung von Schaltungsstrukturen auf einem Kühlkörper und Schaltungsstruktur auf einem Kühlkörper | |
| EP3682474B1 (de) | Verbund aus mehreren adapterelementen und verfahren zur herstellung eines solchen verbunds | |
| DE19614501C2 (de) | Verfahren zum Herstellen eines Keramik-Metall-Substrates sowie Keramik-Metall-Substrat | |
| EP0862209B1 (de) | Verfahren zum Herstellen eines Metall-Keramik-Substrates | |
| DE102013102637A1 (de) | Metall-Keramik-Substrat sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates | |
| EP1515595B1 (de) | Schaltungsträger | |
| DE102015115133B3 (de) | Verfahren zum Verbinden eines Kühlkörpers mit wenigstens einem Schaltungsträger durch Aufschrumpfen | |
| DE10301682B4 (de) | Temperaturbelastbarer Shunt-Widerstand und Verfahren zur Herstellung eines solchen Shunt-Widerstandes | |
| EP4073837B1 (de) | Elektronikmodul, verfahren zur herstellung eines elektronikmoduls und industrieanlage | |
| EP4530277A1 (de) | Metallisiertes keramiksubstrat für niederinduktives leistungsmodul und verfahren zu dessen herstellung | |
| DE102019113714B4 (de) | Adapterelement zum Anbinden eines Elektronikbauteils an ein Kühlkörperelement, System mit einem solchen Adapterelement und Verfahren zum Herstellen eines solchen Adapterelements | |
| EP3901996A2 (de) | Verfahren zur verbindung von komponenten bei der herstellung leistungselektronischer module oder baugruppen mit direktem bonden glatter metallischer oberflächenschichten sowie entsprechendes leistungselektronsiches modul und entsprechende leistungselektronische baugruppe | |
| WO2020011905A1 (de) | Metall-keramik-substrat mit einer zur direkten kühlung geformten folie als substratunterseite |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201080029496.5 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10744841 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012516512 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010744841 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 20127001415 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13381518 Country of ref document: US |