WO2010150957A1 - 비휘발성 저항 변화 메모리 소자 - Google Patents

비휘발성 저항 변화 메모리 소자 Download PDF

Info

Publication number
WO2010150957A1
WO2010150957A1 PCT/KR2010/000128 KR2010000128W WO2010150957A1 WO 2010150957 A1 WO2010150957 A1 WO 2010150957A1 KR 2010000128 W KR2010000128 W KR 2010000128W WO 2010150957 A1 WO2010150957 A1 WO 2010150957A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
reactive metal
oxide
electrode
oxide film
Prior art date
Application number
PCT/KR2010/000128
Other languages
English (en)
French (fr)
Inventor
황현상
성동준
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2010150957A1 publication Critical patent/WO2010150957A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Definitions

  • the present invention relates to a nonvolatile memory device, and more particularly to a nonvolatile resistance change memory device.
  • Flash memory which is currently commercially available as a nonvolatile memory, uses a change in threshold voltage due to storing or removing charge in the charge storage layer.
  • the charge storage layer may be a floating gate that is a polysilicon layer or a charge trap layer that is a silicon nitride layer.
  • new nonvolatile memory devices having low power consumption and high integration compared to the flash memory devices have been studied. Examples of such new nonvolatile memory devices include phase change RAMs, magnetic RAMs, and resistance RAMs.
  • the resistance change memory device has a metal-insulator-metal (MIM) structure in which a metal oxide thin film is interposed between metal electrodes, and utilizes a resistance change, that is, a switching characteristic, of the metal oxide thin film.
  • MIM metal-insulator-metal
  • Such switching mechanisms include a conductive filament model, a charge trap model, and the like, but are not yet fully identified.
  • the on / off resistance ratio is large, operates at a high speed, and has a high temperature retention characteristic, but has a low switching reproducibility and uniformity.
  • a switching device for example, a diode or a transistor must be additionally connected to the resistance change memory device. In this case, the process is complicated and the process cost can be increased.
  • the problem to be solved by the present invention is to provide a nonvolatile resistance change memory device that can simplify the process and exhibit I-V curve asymmetry.
  • the device has a first electrode and a second electrode.
  • An oxide film is positioned between the first electrode and the second electrode.
  • a reactive metal film is positioned between the oxide film and the second electrode, and the reactive metal film contains a metal having a standard free energy change amount of -100 kJ or less during an oxide formation reaction based on 300K.
  • the reactive metal film may contain a metal having a standard free energy change amount of -100 kJ to -1100 kJ or more during an oxide formation reaction based on 300K.
  • the reactive metal film may be an Mo film, a Ta film, a Ti film, or an Al film.
  • the reactive metal film may have a thickness of 2 to 15 nm.
  • the oxide film may be a perovskite film.
  • a reactive metal oxide film which is an oxide of a reactive metal for forming the reactive metal film, may be disposed between the oxide film and the reactive metal film.
  • the oxide film may have a higher density of oxygen vacancy in a region adjacent to the reactive metal oxide layer than in a region adjacent to the first electrode.
  • the oxide film may be disposed on the reactive metal film, and a reactive metal oxide film, which is an oxide of a reactive metal that forms the reactive metal film between the reactive metal film and the oxide film, may be positioned.
  • the nonvolatile resistance change memory device has an IV curve asymmetry by providing a reactive metal film and an oxide film containing a metal having a standard free energy change of -100 kJ or less during an oxide formation reaction between a pair of electrodes based on 300K. Sex may appear.
  • FIG. 1 is a cross-sectional view illustrating a structure of a resistance change memory device according to an exemplary embodiment of the present invention.
  • FIG. 2 is an ellingham diagram showing the change in standard free energy with respect to the metal oxide formation reaction.
  • 3 and 4 are cross-sectional views illustrating a method of operating a resistance change memory device according to an exemplary embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a resistance change memory device according to another exemplary embodiment of the present invention.
  • 6 and 7 are cross-sectional views illustrating a method of operating the resistance change memory device described with reference to FIG. 5.
  • FIG. 10 is a graph showing I-V characteristics of resistance change memory devices according to Preparation Example 1, Preparation Example 4, Preparation Example 5, and Comparative Example 2, respectively.
  • FIG. 1 is a cross-sectional view illustrating a structure of a resistance change memory device according to an exemplary embodiment of the present invention.
  • the first electrode 11 is positioned on the substrate 10.
  • the substrate 10 may be a silicon substrate or a silicon on insulator (SOI) substrate.
  • An interlayer insulating film (not shown) may be disposed between the substrate 10 and the first electrode 11.
  • the second electrode 17 facing the first electrode 11 may be positioned on the first electrode 11.
  • the first electrode 11 and the second electrode 17 may be a W film, a Pt film, a Ru film, an Ir film, an Al film, a Mo film, or a TiN film regardless of each other.
  • the oxide film 13 may be a perovskite film. More specifically, the perovskite film SrTiO 3 -X, SrTiO 3 -X a Nb-doped (Nb: STO), Cr-doped SrTiO 3 -X (Cr: STO) , BaTiO 3 -X, LaMnO 3 - X, SrMnO 3 -X, PrTiO 3 -X, PbZrO 3 -X, Pr 3 - may contain a Y Ca Y MnO 3 -X (LCMO ) - Y Ca Y MnO 3 -X (PCMO), or La 3 .
  • LCMO Y Ca Y MnO 3 -X
  • PCMO Y Ca Y MnO 3 -X
  • the oxide film 13 is Pr 3 as an oxide film having a P-type semiconductor characteristics - Y Y Ca MnO 3 -X (PCMO), or La 3 It may contain.
  • the oxide film 13 may be a film having an atomic ratio of oxygen smaller than a value that satisfies a stoichiometric ratio or a stoichiometric ratio.
  • the oxide film 13 may be a non-stoichiometry layer having oxygen vacancy.
  • X and Y are 0 ⁇ X ⁇ 1 and 0.1 ⁇ Y ⁇ 1.5, respectively.
  • the oxide film 13 may be a monocrystalline, epitaxy, polycrystalline or amorphous film.
  • the oxide film 13 is not only monocrystalline or epitaxy but also a polycrystalline or amorphous film, the device yield can be excellent.
  • the oxide film 13 is preferably a polycrystalline or amorphous film because the polycrystalline or amorphous film may exhibit uniform characteristics even in a large area compared to the monocrystalline or epitaxy.
  • the oxide layer 13 may have a thickness of 5 to 200 nm. As an example, the oxide layer 13 may have a thickness of about 50 nm.
  • the oxide layer 13 may be formed by physical vapor deposition (PVD), such as sputtering, pulsed laser deposition (PLD), thermal evaporation, and electron-beam evaporation. Vapor Deposition), Molecular Beam Epitaxy (MBE), or Chemical Vapor Deposition (CVD).
  • PVD physical vapor deposition
  • PLD pulsed laser deposition
  • MBE Molecular Beam Epitaxy
  • CVD Chemical Vapor Deposition
  • the reactive metal film 15 is positioned between the oxide film 13 and the second electrode 17.
  • the reactive metal film 15 is an electrode adjacent thereto, and is a film having a higher reactivity with oxygen than the second electrode 17.
  • the reactive metal film 15 may be oxidized by reaction with oxygen ions transferred from the oxide film 13 to form a reactive metal oxide according to a voltage applied to the device. It may be reduced again.
  • the reactive metal film 15 may contain a metal having a standard free energy change amount of about -100 or less in an oxide formation reaction based on 300K.
  • the standard free energy change amount in an oxide formation reaction based on 300K is about-.
  • the reactive metal film 15 may form a Schottky junction at the interface with the oxide film 13.
  • FIG. 2 is an ellingham diagram showing the change in standard free energy with respect to the metal oxide formation reaction.
  • the reactive metal film 15 may include Mo, Ta, Ti, or Al, which is a metal having a standard free energy change amount of ⁇ 100 to ⁇ 1100 kJ during an oxide formation reaction.
  • the reactive metal oxide of the reactive metal film 15 may be MoO X , TaO X , TiO X or AlO X.
  • X is an integer of 1-3.
  • Such reactive metal oxides have N-type semiconductor characteristics, but may be regarded as insulating films due to their large resistance.
  • the reactive metal film 15 may be formed in a film shape instead of a particle shape, and may have a thickness of 2 to 15 nm, specifically, a thickness of 3 to 7 nm to improve device efficiency. In detail, it may have a thickness of 3 to 5nm.
  • the second electrode 17 is formed without being exposed to air containing oxygen. Specifically, after the reactive metal film 15 is formed, the second electrode 17 is formed without breaking the vacuum.
  • the oxide layer 13 may include an oxygen depletion region 13a having a higher oxygen vacancy density than a region adjacent to the first electrode 11 in a region adjacent to the reactive metal layer 15.
  • the oxygen depletion region 13a may be formed by reducing the partial pressure of oxygen in the chamber in the process of forming the oxide film 13.
  • 3 and 4 are cross-sectional views illustrating a method of operating a resistance change memory device according to an exemplary embodiment of the present invention.
  • the reactive metal oxide 15a that is, MO X may be formed in the portion adjacent to the oxide film 13.
  • an oxygen depletion region 13a having a higher oxygen vacancy density is formed in a region adjacent to the reactive metal film 15 than in a region adjacent to the first electrode 11, or
  • the oxygen depletion region 13a may be further expanded.
  • the device may be changed (reset) from the low resistance state LRS to the high resistance state HRS.
  • the reactive metal film 15 is in the form of a film which is not in the form of particles but is very thin, for example, having a thickness of 3 to 5 nm, the entirety of the reactive metal film 15 is changed to the reactive metal oxide 15a. Can be.
  • oxygen ions O 2 ⁇ may be separated from the reactive metal oxide 15a. Specifically, the oxide film 13 moves to the oxygen depletion region 13a. As a result, the reactive metal oxide 15a can be reduced back to the reactive metal, and the oxygen depletion region 13a can be extinguished or its width reduced. Accordingly, the device may be changed (set) from the high resistance state to the low resistance state.
  • a Schottky junction diode may be generated between the oxide layer 13 and the reactive metal layer 15, and a forward bias may be applied to the Schottky junction diode in the set operation.
  • reactive metal oxide 15a close to the insulating film is generated. Accordingly, the current flowing through the device when the reset operation is completed, that is, the reset current may be smaller than the current flowing through the device when the reset operation is completed, that is, the set current. Therefore, the asymmetry of the I-V curve appears, and in this case, even when a separate diode or transistor is not connected, the cross point device array can be configured.
  • FIG. 5 is a cross-sectional view illustrating a resistance change memory device according to another exemplary embodiment of the present invention.
  • the first electrode 21 and the second electrode 27 are positioned on the substrate 20, and the first electrode 21 is positioned on the second electrode 27.
  • the substrate 20 may be a silicon substrate or a silicon on insulator (SOI) substrate.
  • An interlayer insulating film (not shown) may be positioned between the substrate 20 and the second electrode 27.
  • An element insulating layer 30 may be positioned on the second electrode 27.
  • the device insulating layer 30 may include a contact hole 30a exposing a portion of the upper portion of the second electrode 27.
  • the reactive metal layer 25 may be positioned on the second electrode 27 exposed in the contact hole 30a.
  • An oxide layer 23 may be positioned on the reactive metal layer 25.
  • the first electrode 21 may be positioned on the oxide layer 23. To this end, the reactive metal film 25, the oxide film 23, and the first electrode 21 are sequentially formed on the interlayer insulating film 30 including the contact hole 30a, and then patterned. Can be.
  • the reactive metal film 25 is a film having a higher reactivity with oxygen than an electrode adjacent thereto, that is, the second electrode 27.
  • the reactive metal film 25 may be oxidized by reaction with oxygen ions transferred from the oxide film 23 to form a reactive metal oxide according to a voltage applied to the device. It may be reduced again.
  • the reactive metal film 25 may contain a metal having a standard free energy change amount of about ⁇ 100 kJ or less during the oxide formation reaction based on 300 K.
  • the standard free energy change amount during the oxide formation reaction based on 300 K is about ⁇ Metal from 100 to about -1100 kJ, metal from about -500 to about -1100 kJ, and even metal from about -1000 to about -1100 kJ.
  • the reactive metal layer 25 may contain Mo, Ta, Ti, or Al.
  • the reactive metal oxide of the reactive metal layer 25 may be MoO X , TaO X , TiO X or AlO X.
  • X is an integer of 1-3.
  • Such reactive metal oxides have N-type semiconductor characteristics, but may be regarded as insulating films due to their large resistance.
  • the reactive metal film 25 may be formed in a film shape instead of a particle shape, and may have a thickness of 2 to 15 nm, specifically, a thickness of 3 to 7 nm, and more specifically, a thickness of 3 to 5 nm to improve device efficiency. It can have
  • the oxide layer 23 may be a perovskite layer. More specifically, the perovskite film SrTiO 3 -X, SrTiO 3 -X a Nb-doped (Nb: STO), Cr-doped SrTiO 3 -X (Cr: STO) , BaTiO 3 -X, LaMnO 3 - X, SrMnO 3 -X, PrTiO 3 -X, PbZrO 3 -X, Pr 3 - may contain a Y Ca Y MnO 3 -X (LCMO ) - Y Ca Y MnO 3 -X (PCMO), or La 3 .
  • LCMO Y Ca Y MnO 3 -X
  • PCMO Y Ca Y MnO 3 -X
  • the oxide film 23 is Pr 3 as an oxide film having a P-type semiconductor characteristic-containing Y Ca MnO 3 -X Y (LCMO) - Y Y Ca MnO 3 -X (PCMO), or La 3 can do.
  • the atomic ratio of oxygen in the oxide film 23 may be smaller than the value satisfying the stoichiometric ratio or the stoichiometric ratio.
  • the oxide film 23 may be a non-stoichiometry layer having oxygen vacancy.
  • X and Y are 0 ⁇ X ⁇ 1 and 0.1 ⁇ Y ⁇ 1.5, respectively.
  • the oxide film 23 may be a monocrystalline, epitaxy, polycrystalline or amorphous film.
  • the oxide film 23 is not only monocrystalline or epitaxy but also a polycrystalline or amorphous film, the device yield can be excellent.
  • the oxide film 23 is preferably a polycrystalline or amorphous film because the polycrystalline or amorphous film may exhibit uniform characteristics even in a large area compared to the single crystal or epitaxy.
  • the oxide film 23 may have a thickness of about 5 nm to about 200 nm. As an example, the oxide layer 23 may have a thickness of about 50 nm.
  • the oxide layer 23 may be formed by physical vapor deposition (PVD), such as sputtering, pulsed laser deposition (PLD), thermal evaporation, and electron-beam evaporation. Vapor Deposition), Molecular Beam Epitaxy (MBE), or Chemical Vapor Deposition (CVD).
  • PVD physical vapor deposition
  • PLD pulsed laser deposition
  • MBE Molecular Beam Epitaxy
  • CVD Chemical Vapor Deposition
  • an oxide of the reactive metal constituting the reactive metal film 25, that is, the reactive metal oxide film 25a may be additionally formed on the reactive metal film 25.
  • the reactive metal oxide layer 25a is further supplied with oxygen into a chamber in which the reactive metal layer 25 is formed. in situ).
  • the reactive metal oxide film 25a may be reduced to a reactive metal while discharging oxygen ions according to a voltage applied to the device, and may be converted back into a reactive metal oxide by reaction with oxygen ions transferred from the oxide film 23. Can be oxidized.
  • the reactive metal oxide layer 25a may serve to prevent the reactive metal layer 25 from being damaged at a relatively high temperature forming the oxide layer 23. This is especially the case when the reactive metal film 25 is an aluminum film having a relatively low melting point. Meanwhile, the reactive metal oxide layer 25a may be an amorphous layer.
  • the oxide layer 23 is a polycrystalline layer, grain size in the oxide layer 23 may be increased. As a result, since the probability that grain boundaries are located in the effective region 23f during the device operation of the oxide film 23 can be reduced, the uniformity of devices can be improved when a plurality of devices are formed.
  • the oxide film 23 When the reactive metal oxide film 25a is formed, the oxide film 23 has a higher oxygen vacancy density in the region adjacent to the reactive metal oxide layer 25a than the region adjacent to the first electrode 21.
  • the depletion region 23a may be provided.
  • the oxygen depletion region 23a may absorb the released oxygen ions when the reactive metal oxide layer 25a is reduced to the reactive metal while releasing oxygen ions according to a voltage applied to the device.
  • 6 and 7 are cross-sectional views illustrating a method of operating the resistance change memory device described with reference to FIG. 5.
  • oxygen ions O 2 ⁇ may be formed from the reactive metal oxide 25a.
  • the oxide film 23 moves to the oxygen depletion region 23a.
  • the reactive metal oxide 25a can be reduced to the reactive metal, and the oxygen depletion region 23a can be extinguished or the width thereof can be reduced. Accordingly, the device may be changed (set) from the high resistance state to the low resistance state.
  • the reactive metal oxide 25a that is, MO X may be formed again in the portion of the reactive metal film 25 adjacent to the oxide film 23, and the reactive metal film 25 may be formed in the oxide film 23.
  • the oxygen depletion region 23a having a higher oxygen vacancy density than the portion adjacent to the first electrode 21 may be formed again.
  • the device can be changed (reset) from a low resistance state to a high resistance state.
  • a Schottky junction diode may be generated between the oxide layer 23 and the reactive metal layer 25, and a forward bias may be applied to the Schottky junction diode in the set operation.
  • reactive metal oxide 15a close to the insulating film is generated. Accordingly, the current flowing through the device when the reset operation is completed, that is, the reset current may be smaller than the current flowing through the device when the reset operation is completed, that is, the set current. Therefore, the asymmetry of the I-V curve appears, and in this case, even when a separate diode or transistor is not connected, the cross point device array can be configured.
  • an oxide film on the Pt film was formed PCMO film of 50nm of Pr 0 .7 Ca 0 .3 MnO 3 -X (0 ⁇ X ⁇ 1).
  • the silicon substrate to form remains 650 °C of 30nm and the process proceeds to deposition from 50W while injecting oxygen 4sccm and Ar 20sccm Pr 0 .7 Ca 0 .3 MnO 3 films
  • the partial pressure of oxygen A Pr 0.7 Ca 0.3 MnO 3-X (0 < X ⁇ 1) film was formed with a high oxygen vacancy density of 20 nm while slowly decreasing the partial pressure of oxygen until zero.
  • An Al film was deposited on the PCMO film as a reactive metal film for 3 minutes at room temperature, 60 W, and 20 sccm Ar. Thereafter, a Pt film was formed on the Al film as a second electrode in an Ar atmosphere without breaking the vacuum to fabricate a resistance change memory device.
  • the device can reach a high resistance state to a low resistance state (set operation). Thereafter, when the absolute value of the voltage applied to the second electrode decreases, the current decreases according to process 4 (P 4 ).
  • the set current of the device according to Preparation Example 1 that is, the current flowing when the set operation is completed, is two orders or more larger than the reset current, that is, the current flowing when the reset operation is completed.
  • the device according to Preparation Example 2 also exhibits a hysteresis curve similar to the resistance change memory device of Preparation Example 1. However, the set current of the device according to Preparation Example 2 is about one order larger than the reset current.
  • a cross-point device array can be configured even when a separate diode or transistor is not connected. It can be said that the devices according to Preparation Example 1 and Preparation Example 2 both exhibit asymmetry of the I-V curve.
  • the device according to Preparation Example 1 having a high oxygen vacancy density region in the region adjacent to the Al film, which is a reactive metal film, among the PCMO film, which is an oxide film has oxygen vacancies in all regions in the PCMO film, which is an oxide film. It can be said that the asymmetry of the IV curve is superior to the device according to Preparation Example 2 having a uniform density.
  • the LRS / HRS current ratio of the device according to Preparation Example 1 (R 1) that can be seen that much larger than the LRS / HRS current ratio (R 2) of a device according to Production example 2. Accordingly, it can be said that the device according to Preparation Example 1 exhibits more stable switching characteristics.
  • the device was manufactured under the same conditions as in Preparation Example 1, except that the Al film was deposited on the PCMO film as a reactive metal film at room temperature, 60 W, and 20 sccm of Ar for 2 minutes.
  • the device was manufactured under the same conditions as in Preparation Example 1, except that the Al film was deposited on the PCMO film as a reactive metal film at room temperature, 60 W, and Ar scc for 1 minute.
  • the device according to Comparative Example 1 does not exhibit switching characteristics. This is because the reactive metal film has a particle shape, not a film shape, when the deposition time is very short, such as 1 minute, and it is understood that a direct contact, that is, an ohmic contact, is generated between the upper and lower films, that is, the PCMO film and the Pt film.
  • the device according to Preparation Example 1 exhibits switching characteristics, it can be seen that the device according to Preparation Example 1 more stable switching characteristics than the device according to Preparation Example 3.
  • the reactive metal film is formed in the form of a film so that a Schottky contact is formed between the PCMO film and the reactive metal film.
  • the Al film is expected to be about 3 to about 4 nm, and in the case of the device according to Preparation Example 3, the Al film is expected to be about 2 to about 2.5 nm.
  • the thickness of the reactive metal film may be formed to be 2 nm or more so that the film may be formed in a particle shape instead of a particle shape.
  • the thickness of the reactive metal film may be formed to be 3 nm or more.
  • the device was manufactured under the same conditions as in Preparation Example 1, except that the Ti film was deposited on the PCMO film as a reactive metal film at room temperature, 60 W, and Ar scsc for 3 minutes.
  • the device was manufactured under the same conditions as in Preparation Example 1, except that the Mo film was deposited on the PCMO film at room temperature, 60 W, and 20 sccm of Ar for 3 minutes.
  • the device was manufactured under the same conditions as in Preparation Example 1, except that the Ag film was deposited on the PCMO film at room temperature, 60 W, and 20 sccm of Ar for 3 minutes.
  • FIG. 10 is a graph showing I-V characteristics of resistance change memory devices according to Preparation Example 1, Preparation Example 4, Preparation Example 5, and Comparative Example 2, respectively.
  • the device (using Al) according to Comparative Example 2 does not exhibit switching characteristics.
  • the difference between the set current and the reset current that is, the IV curve asymmetry increases in the order of Preparation Example 5 (using Mo), Preparation Example 4 (using Ti), and Preparation Example 1 (using Al).
  • the LRS / HRS current ratio at -0.5V also increased.
  • a metal of -100 to -1100 kJ preferably a metal of -500 to -1100 kJ, more preferably -1000 to- Metals of 1100 kJ can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

비휘발성 저항 변화 메모리 소자를 제공한다. 상기 소자는 제1 전극과 제2 전극을 구비한다. 상기 제1 전극과 상기 제2 전극 사이에 산화물막이 위치한다. 상기 산화물막과 상기 제2 전극 사이에 반응성 금속막이 위치하되, 상기 반응성 금속막은 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 -100 kJ 이하인 금속을 함유한다.

Description

비휘발성 저항 변화 메모리 소자
본 발명은 비휘발성 메모리 소자에 관한 것으로, 보다 상세하게는 비휘발성저항 변화 메모리 소자에 관한 것이다.
현재 비휘발성 메모리로 상용화된 플래시 메모리의 경우, 전하저장층 내에 전하를 저장 또는 제거함에 따른 문턱 전압의 변화를 사용한다. 상기 전하저장층은 폴리 실리콘막인 부유 게이트 또는 실리콘 질화막인 전하 트랩층일 수 있다. 최근, 상기 플래시 메모리 소자에 비해 소비전력이 낮고 집적도가 높은 새로운 비휘발성 메모리 소자들이 연구되고 있다. 이러한 새로운 비휘발성 메모리 소자들의 예로는 상변화형 메모리 소자(phase change RAM), 자기 메모리 소자(magnetic RAM) 및 저항 변화 메모리 소자(resistance RAM)가 있다.
상기 저항 변화 메모리 소자는 금속 산화물 박막을 금속 전극들 사이에 개재한 MIM(Metal-Insulator-Metal)구조를 가지며, 상기 금속 산화물 박막에서 나타나는 저항 변화 즉, 스위칭 특성을 이용한다. 이러한 스위칭 메커니즘은 전도성 필라멘트 모델(conductive filament model), 전하 트랩 모델(charge trap model) 등이 있으나, 아직 완전하게 규명되지 않았다. 상기 전도성 필라멘트 모델의 경우, 온/오프 저항비가 크고, 빠른 속도로 동작하며, 고온 리텐션(retention) 특성이 우수한 장점이 있는 반면, 스위칭 재현성과 균일성이 매우 낮은 단점이 있다.
또한 저항 변화 메모리 소자를 어레이 형태로 구성하기 위해서는 상기 저항 변화 메모리 소자에 스위칭 소자 예를 들어, 다이오드 또는 트랜지스터를 추가로 연결시켜야 한다. 이 경우, 공정이 복잡하고 공정 단가가 증가될 수 있다.
본 발명이 해결하고자 하는 과제는 공정이 단순화되고 I-V 커브 비대칭성을 나타낼 수 있는 비휘발성 저항 변화 메모리 소자를 제공함에 있다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 비휘발성 저항 변화 메모리 소자를 제공한다. 상기 소자는 제1 전극과 제2 전극을 구비한다. 상기 제1 전극과 상기 제2 전극 사이에 산화물막이 위치한다. 상기 산화물막과 상기 제2 전극 사이에 반응성 금속막이 위치하되, 상기 반응성 금속막은 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 -100 kJ 이하인 금속을 함유한다.
상기 반응성 금속막은 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 -100 kJ 내지 -1100 kJ 이상인 금속을 함유할 수 있다. 상기 반응성 금속막은 Mo막, Ta막, Ti막 또는 Al막일 수 있다. 상기 반응성 금속막은 2 내지 15㎚의 두께를 가질 수 있다.
상기 산화물막은 페로브스카이트막일 수 있다. 상기 산화물막은 Pr3 -YCaYMnO3-X(PCMO) 또는 La3 - YCaYMnO3 -X(LCMO)를 함유하는 층이며, 상기 X 및 Y는 각각 0≤X≤1 및 0.1≤Y≤1.5일 수 있다. 또는, 상기 산화물막은 SrTiO3 -X, Nb가 도핑된 SrTiO3-X(Nb:STO), Cr이 도핑된 SrTiO3 -X(Cr:STO), BaTiO3 -X, LaMnO3 -X, SrMnO3 -X, PrTiO3-X, 또는 PbZrO3 -X를 함유하는 층이며, 상기 X는 0≤X≤1일 수 있다.
상기 산화물막과 상기 반응성 금속막 사이에 상기 반응성 금속막을 형성하는 반응성 금속의 산화물인 반응성 금속 산화물막이 위치할 수 있다. 이 때, 상기 산화물막은 제1 전극에 인접한 영역에 비해 상기 반응성 금속 산화물막과 인접한 영역에서 산소 공공 밀도가 높을 수 있다.
상기 반응성 금속막 상에 상기 산화물막이 위치하고, 상기 반응성 금속막과 상기 산화물막 사이에 상기 반응성 금속막을 형성하는 반응성 금속의 산화물인 반응성 금속 산화물막이 위치할 수 있다.
본 발명에 따른 비휘발성 저항 변화 메모리 소자는 한쌍의 전극들 사이에 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 -100 kJ 이하인 금속을 함유하는 반응성 금속막과 산화물막을 구비함으로써, I-V 커브 비대칭성이 나타날 수 있다.
도 1은 본 발명의 일 실시예에 따른 저항 변화 메모리 소자의 구조를 나타낸 단면도이다.
도 2는 금속산화물 형성반응과 관련하여 온도에 대한 표준자유에너지 변화를 나타낸 엘링감 도표(ellingham diagram)이다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 저항 변화 메모리 소자의 동작방법을 설명하기 위한 단면도들이다.
도 5는 본 발명의 다른 실시예에 따른 저항 변화 메모리 소자를 나타낸 단면도이다.
도 6 및 도 7은 도 5를 참조하여 설명한 저항 변화 메모리 소자의 동작방법을 설명하기 위한 단면도들이다.
도 8은 제조예 1 및 제조예 2에 따른 저항 변화 메모리 소자들에 대한 I-V특성을 각각 나타낸 그래프이다.
도 9는 제조예 1, 제조예 3 및 비교예 1에 따른 저항 변화 메모리 소자들에 대한 I-V특성을 각각 나타낸 그래프이다.
도 10은 제조예 1, 제조예 4, 제조예 5 및 비교예 2에 따른 저항 변화 메모리 소자들에 대한 I-V특성을 각각 나타낸 그래프이다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면들에 있어서, 층이 다른 층 또는 기판 "상"에 있다고 언급되어지는 경우에 그것은 다른 층 또는 기판 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 층이 개재될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 저항 변화 메모리 소자의 구조를 나타낸 단면도이다.
도 1을 참조하면, 기판(10) 상에 제1 전극(11)이 위치한다. 상기 기판(10)은 실리콘 기판 또는 SOI(Silicon On Insulator)기판일 수 있다. 상기 기판(10)과 상기 제1 전극(11) 사이에는 층간절연막(미도시)이 위치할 수 있다.
상기 제1 전극(11) 상에 상기 제1 전극(11)을 마주보는 제2 전극(17)이 위치할 수 있다. 상기 제1 전극(11)과 제2 전극(17)은 서로에 관계없이 W막, Pt막, Ru막, Ir막, Al막, Mo막 또는 TiN막일 수 있다.
상기 제1 전극(11)과 상기 제2 전극(17) 사이에 산화물막(13)이 위치할 수 있다. 상기 산화물막(13)은 페로브스카이트막일 수 있다. 구체적으로, 상기 페로브스카이트막은 SrTiO3 -X, Nb가 도핑된 SrTiO3 -X(Nb:STO), Cr이 도핑된 SrTiO3 -X(Cr:STO), BaTiO3 -X, LaMnO3 -X, SrMnO3 -X, PrTiO3 -X, PbZrO3 -X, Pr3 - YCaYMnO3 -X(PCMO), 또는 La3 - YCaYMnO3 -X(LCMO)를 함유할 수 있다. 더 구체적으로는, 상기 산화물막(13)은 P형 반도체 특성을 갖는 산화물막으로서 Pr3 - YCaYMnO3 -X(PCMO), 또는 La3 - YCaYMnO3 -X(LCMO)을 함유할 수 있다.
상기 산화물막(13)은 산소의 원자비가 화학양론비를 만족하거나 화학양론비를 만족하는 값보다 작은 막일 수 있다. 다시 말해서, 상기 산화물막(13)은 산소 공공(oxygen vacancy)이 있는 비화학양론적(non-stoichiometry layer)인 막일 수 있다. 일 예로서, 상기 페로브스카이트막의 예들에서 상기 X 및 Y는 각각 0≤X≤1 및 0.1≤Y≤1.5이다.
상기 산화물막(13)은 단결정질, 에피택시, 다결정질 또는 비정질 막일 수 있다. 상기 산화물막(13)이 단결정질 또는 에피택시일 뿐만 아니라, 다결정질 또는 비정질막인 경우에도 소자 수율이 우수할 수 있다. 그러나, 다결정질 또는 비정질막인 경우 단결정질 또는 에피택시에 비해 대면적에서도 균일한 특성을 나타낼 수 있으므로, 상기 산화물막(13)은 다결정질 또는 비정질막인 것이 바람직하다.
상기 산화물막(13)은 5 내지 200㎚의 두께를 가질 수 있다. 일 예로서, 상기 산화물막(13)은 약 50㎚의 두께를 가질 수 있다. 또한, 상기 산화물막(13)은 스퍼터링(Sputtering), 펄스레이저 증착법 (PLD, Pulsed Laser Deposition), 증발법(Thermal Evaporation), 전자빔 증발법(Electron-beam Evaporation) 등과 같은 물리기상증착법(PVD, Physical Vapor Deposition), 분자선 에피탁시 증착법(MBE, Molecular Beam Epitaxy), 또는 화학기상증착법(CVD, Chemical Vapor Deposition)을 사용하여 형성할 수 있다.
상기 산화물막(13)과 상기 제2 전극(17) 사이에 반응성 금속막(15)이 위치한다. 상기 반응성 금속막(15)은 이에 인접한 전극 일 예로서, 제2 전극(17)에 비해 산소와의 반응성이 더 우수한 막이다. 이러한 반응성 금속막(15)은 소자에 인가되는 전압에 따라, 상기 산화물막(13)으로부터 이동되는 산소이온과의 반응으로 산화되어 반응성 금속 산화물을 형성할 수 있으며, 산소이온을 배출하면서 반응성 금속으로 다시 환원될 수도 있다.
상기 반응성 금속막(15)은 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 약 -100 이하인 금속을 함유할 수 있으며, 일 예로서 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 약 -100 내지 약 -1100 kJ인 금속, 약 -500 내지 약 -1100 kJ인 금속, 나아가 약 -1000 내지 약 -1100 kJ인 금속을 함유할 수 있다. 또한, 상기 반응성 금속막(15)은 상기 산화물막(13)과의 계면에서 쇼트키 접합을 형성할 수 있다.
도 2는 금속산화물 형성반응과 관련하여 온도에 대한 표준자유에너지 변화를 나타낸 엘링감 도표(ellingham diagram)이다.
도 1 및 도 2를 참조하면, 상기 반응성 금속막(15)은 산화물 형성 반응시 표준자유에너지 변화량이 -100 내지 -1100 kJ인 금속인 Mo, Ta, Ti 또는 Al을 함유할 수 있다. 상기 반응성 금속막(15)의 반응성 금속 산화물은 MoOX, TaOX, TiOX 또는 AlOX일 수 있다. 여기서, 상기 X 는 1 내지 3의 정수이다. 이러한 반응성 금속 산화물은 N형 반도체 특성을 가지나, 저항이 커서 절연막으로 간주될 수 있다.
다시 도 1을 참조하면, 상기 반응성 금속막(15)은 입자형태가 아닌 막형태로 형성될 수 있고 소자 효율을 향상시킬 수 있도록 2 내지 15㎚의 두께, 자세하게는 3 내지 7㎚의 두께, 더 자세하게는 3 내지 5nm의 두께를 가질 수 있다. 상기 반응성 금속막(15)을 형성한 후, 산소를 포함하는 공기에 노출시키지 않은 상태에서 상기 제2 전극(17)을 형성한다. 구체적으로, 상기 반응성 금속막(15)을 형성한 후, 진공을 깨지 않은 상태에서 상기 제2 전극(17)을 형성한다.
상기 산화물막(13)은 상기 반응성 금속막(15)에 인접한 영역 내에 상기 제1 전극(11)에 인접한 영역에 비해 산소 공공 밀도가 높은 산소 결핍 영역(13a)을 구비할 수 있다. 상기 산소 결핍 영역(13a)은 상기 산화물막(13)을 형성하는 과정에서 챔버 내의 산소의 분압을 감소시킴으로써 형성할 수 있다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 저항 변화 메모리 소자의 동작방법을 설명하기 위한 단면도들이다.
도 3을 참조하면, 제1 전극(11)에 기준전압을 인가하고 제2 전극(17)에 양의 전압(Vp)을 인가하면, 상기 산화물막(13)의 산소 이온(O2 -)이 상기 반응성 금속막(15)으로 이동한다. 이에 따라 상기 반응성 금속막(15)이 상기 산화물막(13)과 인접한 부분에서는 반응성 금속 산화물(15a) 즉, MOX가 형성될 수 있다. 또한, 상기 산화물막(13) 내에서, 상기 반응성 금속막(15)에 인접한 영역에서는 상기 제1 전극(11)에 인접한 영역에 비해 산소 공공 밀도가 더 높은 산소 결핍 영역(13a)이 형성되거나, 소자 제조과정에서 이미 산소 결핍 영역(13a)이 형성된 경우에는 상기 산소 결핍 영역(13a)이 더 확장될 수 있다. 그 결과, 상기 소자는 저저항 상태(LRS)에서 고저항 상태(HRS)로 변화(리셋, reset)될 수 있다. 상기 반응성 금속막(15)이 입자 형태가 아닌 막의 형태를 가지면서도 매우 얇은 경우 예를 들어 3 내지 5nm의 두께를 갖는 경우, 상기 반응성 금속막(15)의 전체는 반응성 금속 산화물(15a)로 변화될 수 있다.
도 4를 참조하면, 제1 전극(11)에 기준전압을 인가하고 제2 전극(17)에 음의 전압(Vm)을 인가하면, 산소 이온(O2 -)은 반응성 금속 산화물(15a)로부터 상기 산화물막(13) 구체적으로는 상기 산소 결핍 영역(13a)으로 이동한다. 그 결과, 반응성 금속 산화물(15a)은 반응성 금속으로 다시 환원되고, 상기 산소 결핍 영역(13a)은 소멸되거나 그 폭이 감소될 수 있다. 이에 따라 소자는 고저항 상태에서 저저항 상태로 변화(셋, set)될 수 있다.
상술한 바와 같이 상기 산화물막(13)과 상기 반응성 금속막(15) 사이에는 쇼트키 접합 다이오드가 생성될 수 있고, 상기 셋 동작에서 상기 쇼트키 접합 다이오드에는 순전계(forward bias)가 걸릴 수 있다. 그러나, 상기 리셋 동작에서는 절연막에 가까운 반응성 금속 산화물(15a)이 생성된다. 따라서, 상기 리셋 동작이 완료되었을 때 소자에 흐르는 전류 즉, 리셋 전류는 상기 셋 동작이 완료되었을 때 소자에 흐르는 전류 즉, 셋 전류에 비해 작을 수 있다. 따라서, I-V 커브의 비대칭성이 나타나고, 이 경우 별도의 다이오드 또는 트랜지스터를 연결하지 않는 경우에도 크로스 포인트 소자 어레이를 구성할 수 있다.
도 5는 본 발명의 다른 실시예에 따른 저항 변화 메모리 소자를 나타낸 단면도이다.
도 5를 참조하면, 기판(20) 상에 제1 전극(21) 및 제2 전극(27)이 위치하되, 상기 제2 전극(27) 상에 상기 제1 전극(21)이 위치한다. 상기 기판(20)은 실리콘 기판 또는 SOI(Silicon On Insulator)기판일 수 있다. 상기 기판(20)과 상기 제2 전극(27) 사이에는 층간절연막(미도시)이 위치할 수 있다.
상기 제2 전극(27) 상에 소자절연막(30)이 위치할 수 있다. 상기 소자절연막(30)은 상기 제2 전극(27)의 상부 일부를 노출시키는 콘택홀(30a)을 구비할 수 있다. 상기 콘택홀(30a) 내에 노출된 상기 제2 전극(27) 상에 반응성 금속막(25)이 위치할 수 있다. 상기 반응성 금속막(25) 상에 산화물막(23)이 위치할 수 있다. 상기 산화물막(23) 상에 상기 제1 전극(21)이 위치할 수 있다. 이를 위해, 상기 콘택홀(30a)을 구비하는 층간절연막(30) 상에 상기 반응성 금속막(25), 상기 산화물막(23), 상기 제1 전극(21)을 차례로 형성한 후, 이들을 패터닝할 수 있다.
상기 반응성 금속막(25)은 이에 인접하는 전극 즉, 상기 제2 전극(27)에 비해 산소와의 반응성이 더 우수한 막이다. 이러한 반응성 금속막(25)은 소자에 인가되는 전압에 따라, 상기 산화물막(23)으로부터 이동되는 산소이온과의 반응으로 산화되어 반응성 금속 산화물을 형성할 수 있으며, 산소이온을 배출하면서 반응성 금속으로 다시 환원될 수도 있다. 상기 반응성 금속막(25)은 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 약 -100kJ 이하인 금속을 함유할 수 있으며, 일 예로서 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 약 -100 내지 약 -1100 kJ인 금속, 약 -500 내지 약 -1100 kJ인 금속, 나아가 약 -1000 내지 약 -1100 kJ인 금속을 함유할 수 있다. 일 예로서, 상기 반응성 금속막(25)은 Mo, Ta, Ti 또는 Al을 함유할 수 있다. 상기 반응성 금속막(25)의 반응성 금속 산화물은 MoOX, TaOX, TiOX 또는 AlOX일 수 있다. 여기서, 상기 X 는 1 내지 3의 정수이다. 이러한 반응성 금속 산화물은 N형 반도체 특성을 가지나, 저항이 커서 절연막으로 간주될 수 있다. 상기 반응성 금속막(25)은 입자형태가 아닌 막형태로 형성될 수 있고 소자 효율을 향상시킬 수 있도록 2 내지 15㎚의 두께, 자세하게는 3 내지 7㎚의 두께, 더 자세하게는 3 내지 5nm의 두께를 가질 수 있다.
상기 산화물막(23)은 페로브스카이트막일 수 있다. 구체적으로, 상기 페로브스카이트막은 SrTiO3 -X, Nb가 도핑된 SrTiO3 -X(Nb:STO), Cr이 도핑된 SrTiO3 -X(Cr:STO), BaTiO3 -X, LaMnO3 -X, SrMnO3 -X, PrTiO3 -X, PbZrO3 -X, Pr3 - YCaYMnO3 -X(PCMO), 또는 La3 - YCaYMnO3 -X(LCMO)를 함유할 수 있다. 더 구체적으로, 상기 산화물막(23)은 P형 반도체 특성을 갖는 산화물막으로서 Pr3 - YCaYMnO3 -X(PCMO), 또는 La3 - YCaYMnO3 -X(LCMO)을 함유할 수 있다.
상기 산화물막(23)에서 산소의 원자비는 화학양론비를 만족하거나 화학양론비를 만족하는 값보다 작을 수 있다. 다시 말해서, 상기 산화물막(23)은 산소 공공(oxygen vacancy)이 있는 비화학양론적(non-stoichiometry layer)인 막일 수 있다. 일 예로서, 상기 페로브스카이트막의 예들에서 상기 X 및 Y는 각각 0≤X≤1 및 0.1≤Y≤1.5이다.
상기 산화물막(23)은 단결정질, 에피택시, 다결정질 또는 비정질 막일 수 있다. 상기 산화물막(23)이 단결정질 또는 에피택시일 뿐만 아니라, 다결정질 또는 비정질막인 경우에도 소자 수율이 우수할 수 있다. 그러나, 다결정질 또는 비정질막인 경우 단결정질 또는 에피택시에 비해 대면적에서도 균일한 특성을 나타낼 수 있으므로, 상기 산화물막(23)은 다결정질 또는 비정질막인 것이 바람직하다.
상기 산화물막(23)은 5 내지 200㎚의 두께를 가질 수 있다. 일 예로서, 상기 산화물막(23)은 약 50㎚의 두께를 가질 수 있다. 또한, 상기 산화물막(23)은 스퍼터링(Sputtering), 펄스레이저 증착법 (PLD, Pulsed Laser Deposition), 증발법(Thermal Evaporation), 전자빔 증발법(Electron-beam Evaporation) 등과 같은 물리기상증착법(PVD, Physical Vapor Deposition), 분자선 에피탁시 증착법(MBE, Molecular Beam Epitaxy), 또는 화학기상증착법(CVD, Chemical Vapor Deposition)을 사용하여 형성할 수 있다.
상기 산화물막(23)을 형성하기 전, 상기 반응성 금속막(25) 상에 상기 반응성 금속막(25)을 구성하는 반응성 금속의 산화물 즉, 반응성 금속 산화물막(25a)을 추가적으로 형성할 수 있다. 상기 반응성 금속 산화물막(25a)은 상기 반응성 금속막(25)을 형성한 후, 상기 반응성 금속막(25)을 형성시키는 챔버 내에 산소를 추가로 공급하여 상기 반응성 금속막(25)과 인시츄(in situ)로 형성할 수 있다. 상기 반응성 금속 산화물막(25a)은 소자에 인가되는 전압에 따라, 산소이온을 배출하면서 반응성 금속으로 환원될 수 있으며, 상기 산화물막(23)으로부터 이동되는 산소이온과의 반응으로 반응성 금속 산화물로 다시 산화될 수 있다.
이러한 반응성 금속 산화물막(25a)은 상기 산화물막(23)을 형성하는 비교적 높은 온도에서 상기 반응성 금속막(25)이 손상되는 것을 막는 역할을 할 수 있다. 상기 반응성 금속막(25)이 녹는점이 비교적 낮은 알루미늄막인 경우에 특히 그러하다. 한편, 상기 반응성 금속 산화물막(25a)는 비정질막일 수 있는데, 상기 산화물막(23)이 다결정질막인 경우 상기 산화물막(23) 내의 그레인 사이즈를 키울 수 있다. 그 결과, 상기 산화물막(23) 중 소자 동작시 유효 영역(23f) 내에 그레인 바운더리가 위치할 확율을 감소시킬 수 있으므로, 복수 개의 소자들이 형성된 경우 소자들의 균일성(uniformity)이 향상될 수 있다.
상기 반응성 금속 산화물막(25a)을 형성한 경우, 상기 산화물막(23)은 상기 반응성 금속 산화물막(25a)에 인접한 영역 내에 상기 제1 전극(21)에 인접한 영역에 비해 산소 공공 밀도가 높은 산소 결핍 영역(23a)을 구비할 수 있다. 상기 산소 결핍 영역(23a)은 소자에 인가되는 전압에 따라 상기 반응성 금속 산화물막(25a)이 산소이온을 배출하면서 반응성 금속으로 환원될 때, 배출된 산소 이온을 흡수할 수 있다.
도 6 및 도 7은 도 5를 참조하여 설명한 저항 변화 메모리 소자의 동작방법을 설명하기 위한 단면도들이다.
도 6을 참조하면, 제1 전극(21)에 기준전압을 인가하고 제2 전극(27)에 음의 전압(Vm)을 인가하면, 산소 이온(O2 -)은 반응성 금속 산화물(25a)로부터 상기 산화물막(23) 구체적으로는 상기 산소 결핍 영역(23a)으로 이동한다. 그 결과, 반응성 금속 산화물(25a)은 반응성 금속으로 환원되고, 상기 산소 결핍 영역(23a)은 소멸되거나 그 폭이 감소될 수 있다. 이에 따라 소자는 고저항 상태에서 저저항 상태로 변화(셋, set)될 수 있다.
도 7을 참조하면, 제1 전극(21)에 기준전압을 인가하고 제2 전극(27)에 양의 전압(Vp)을 인가하면, 상기 산화물막(23)의 산소 이온(O2 -)이 상기 반응성 금속막(25)으로 이동한다. 이에 따라 상기 반응성 금속막(25)이 상기 산화물막(23)에 인접한 부분에서는 반응성 금속 산화물(25a) 즉, MOX가 다시 형성될 수 있고, 상기 산화물막(23) 내에서 상기 반응성 금속막(25)에 인접한 부분에서는 상기 제1 전극(21)과 인접한 부분에 비해 산소 공공 밀도가 더 높은 산소 결핍 영역(23a)이 다시 형성될 수 있다. 그 결과, 상기 소자는 저저항 상태에서 고저항 상태로 변화(리셋, reset)될 수 있다.
상술한 바와 같이 상기 산화물막(23)과 상기 반응성 금속막(25) 사이에는 쇼트키 접합 다이오드가 생성될 수 있고, 상기 셋 동작에서 상기 쇼트키 접합 다이오드에는 순전계(forward bias)가 걸릴 수 있다. 그러나, 상기 리셋 동작에서는 절연막에 가까운 반응성 금속 산화물(15a)이 생성된다. 따라서, 상기 리셋 동작이 완료되었을 때 소자에 흐르는 전류 즉, 리셋 전류는 상기 셋 동작이 완료되었을 때 소자에 흐르는 전류 즉, 셋 전류에 비해 작을 수 있다. 따라서, I-V 커브의 비대칭성이 나타나고, 이 경우 별도의 다이오드 또는 트랜지스터를 연결하지 않는 경우에도 크로스 포인트 소자 어레이를 구성할 수 있다.
<실험예들; examples>
<제조예 1>
실리콘 기판 상에 제1 전극으로서 Pt막을 형성한 후, 상기 Pt막 상에 산화물 막으로서 50nm의 Pr0 .7Ca0 .3MnO3 -X(0≤X≤1)의 PCMO막을 형성하였다. 상기 PCMO막을 형성할 때, 실리콘 기판을 650℃로 유지하고 산소 4sccm 및 Ar 20sccm을 주입하면서 50W에서 증착을 진행하여 30nm의 Pr0 .7Ca0 .3MnO3막을 형성한 후, 산소의 분압이 제로가 될 때까지 산소의 분압을 천천히 감소시키면서 20nm의 산소 공공 밀도가 높은 Pr0.7Ca0.3MnO3-X(0〈X≤1)막을 형성하였다. 상기 PCMO막 상에 반응성 금속막으로서 Al막을 상온, 60W, Ar 20sccm 공급 조건에서 3분 동안 증착하였다. 이 후, 진공을 깨지 않은 상태에서 상기 Al막 상에 제2 전극으로서 Pt막을 Ar 분위기에서 형성하여 저항 변화 메모리 소자를 제조하였다.
<제조예 2>
산화물 막으로서 50nm의 Pr0 .7Ca0 .3MnO3 -X(0≤X≤1)의 PCMO막을 형성함에 있어서 실리콘 기판을 650℃로 유지하고 산소 4sccm 및 Ar 20sccm을 주입하면서 50W에서 증착을 연속적으로 진행하여 50nm의 산소 조성비가 균일한 Pr0 .7Ca0 .3MnO3막을 형성한 것을 제외하고는 제조예 1과 동일한 조건에서 소자를 제조하였다.
도 8은 제조예 1 및 제조예 2에 따른 저항 변화 메모리 소자들에 대한 I-V특성을 각각 나타낸 그래프이다.
도 8을 참조하면, 제조예 1에 따른 저항 변화 메모리 소자의 제2 전극에 양의 전압을 인가하면, PCMO막의 산소 이온이 Al막과의 계면으로 이동하여 AlOX을 형성함으로써 소자는 저저항 상태에서 고저항 상태에 이르게 된다(리셋 동작). 이 과정에서 전류는 전압의 증가에 의해 과정 1(P1)을 따라 증가한다. 그 후, 상기 제2 전극에 인가되는 전압이 감소하면 전류는 과정 2(P2)을 따라 감소한다. 이 후, 상기 제2 전극에 음의 전압을 인가하면, AlOX막 내의 산소 이온(O2 -)은 상기 PCMO막으로 이동되어, Al막으로 다시 환원되면서 전류는 과정 3(P3)을 따라 증가하고 소자는 고저항 상태에서 저저항 상태에 이를 수 있다(셋 동작). 그 후, 상기 제2 전극에 인가되는 전압의 절대값이 감소하면 전류는 과정 4(P4)을 따라 감소한다. 이 때, 제조예 1에 따른 소자의 셋 전류 즉 셋 동작이 완료되었을 때 흐르는 전류는 리셋 전류 즉 리셋 동작이 완료되었을 때 흐르는 전류에 비해 2 오더 이상 크다.
제조예 2에 따른 소자 또한 제조예 1의 저항 변화 메모리 소자와 유사하게 히스테리시스 곡선을 나타낸다. 다만, 제조예 2에 따른 소자의 셋 전류는 리셋 전류에 비해 약 1 오더 정도 크다.
셋 전류와 리셋 전류의 차이 즉, I-V 커브의 비대칭성이 나타나는 경우 별도의 다이오드 또는 트랜지스터를 연결하지 않는 경우에도 크로스 포인트 소자 어레이를 구성할 수 있다. 제조예 1 및 제조예 2에 따른 소자들은 모두 I-V 커브의 비대칭성이 나타난다고 할 수 있다. 다만, 산화물막인 PCMO막 중 반응성 금속막인 Al막에 인접하는 영역에 나머지 부분에 비해 산소 공공 밀도가 높은 영역을 구비하는 제조예 1에 따른 소자는 산화물막인 PCMO막 내의 전체 영역에서 산소 공공 밀도가 균일한 제조예 2에 따른 소자에 비해 I-V 커브의 비대칭성이 더 우수하다고 할 수 있다.
이와 더불어서, 예를 들어 -0.5V에서의 저저항 상태(LRS)/고저항 상태(HRS)의 전류비(R1, R2)를 비교하면, 제조예 1에 따른 소자의 LRS/HRS 전류비(R1)가 제조예 2에 따른 소자의 LRS/HRS 전류비(R2)에 비해 훨씬 큰 것을 알 수 있다. 따라서, 제조예 1에 따른 소자는 보다 안정한 스위칭 특성을 나타낸다고 할 수 있다.
<제조예 3>
PCMO막 상에 반응성 금속막으로서 Al막을 상온, 60W, Ar 20sccm 공급 조건에서 2분 동안 증착한 것을 제외하고는 제조예 1과 동일한 조건에서 소자를 제조하였다.
<비교예 1>
PCMO막 상에 반응성 금속막으로서 Al막을 상온, 60W, Ar 20sccm 공급 조건에서 1분 동안 증착한 것을 제외하고는 제조예 1과 동일한 조건에서 소자를 제조하였다.
도 9는 제조예 1, 제조예 3 및 비교예 1에 따른 저항 변화 메모리 소자들에 대한 I-V특성을 각각 나타낸 그래프이다.
도 9를 참조하면, 비교예 1에 따른 소자는 스위칭 특성이 나타나지 않는다. 이는 증착 시간이 1분 정도로 매우 짧은 경우 반응성 금속막이 막의 형태가 아닌 입자 형태를 갖게 되어, 이의 상하부의 막들 즉, PCMO막과 Pt막 사이에 직접적인 접촉 즉, 오믹 접촉이 생성되기 때문인 것으로 파악된다.
한편, 제조예 3와 제조예 1에 따른 소자들은 모두 스위칭 특성이 나타나되, 제조예 3에 따른 소자에 비해 제조예 1에 따른 소자가 더욱 안정한 스위칭 특성이 나타나는 것을 볼 수 있다. 제조예 1에 따른 소자와 제조예 3에 따른 소자 모두 반응성 금속막이 막형태로 형성되어 PCMO막과 반응성 금속막 사이에 쇼트키 접촉이 형성된 것으로 예측된다. 또한 제조예 1에 따른 소자의 경우 Al막이 약 3 내지 약 4nm인 것으로 예측되고, 제조예 3에 따른 소자의 경우 Al막이 약 2 내지 약 2.5nm인 것으로 예측된다. 따라서, 입자형태가 아닌 막형태로 형성될 수 있도록 상기 반응성 금속막의 두께는 2nm 이상으로 형성할 수 있으며, 안정한 스위칭 특성을 고려하면 상기 반응성 금속막의 두께는 3nm 이상으로 형성할 수 있다.
<제조예 4>
PCMO막 상에 반응성 금속막으로서 Ti막을 상온, 60W, Ar 20sccm 공급 조건에서 3분 동안 증착한 것을 제외하고는 제조예 1과 동일한 조건에서 소자를 제조하였다.
<제조예 5>
PCMO막 상에 반응성 금속막으로서 Mo막을 상온, 60W, Ar 20sccm 공급 조건에서 3분 동안 증착한 것을 제외하고는 제조예 1과 동일한 조건에서 소자를 제조하였다.
<비교예 2>
PCMO막 상에 Ag막을 상온, 60W, Ar 20sccm 공급 조건에서 3분 동안 증착한 것을 제외하고는 제조예 1과 동일한 조건에서 소자를 제조하였다.
도 10은 제조예 1, 제조예 4, 제조예 5 및 비교예 2에 따른 저항 변화 메모리 소자들에 대한 I-V특성을 각각 나타낸 그래프이다.
도 10을 참조하면, 비교예 2에 따른 소자(Al 사용)는 스위칭 특성이 나타나지 않는다. 또한, 제조예 5(Mo 사용), 제조예 4(Ti 사용), 제조예 1(Al 사용)의 순으로 셋 전류와 리셋 전류의 차이 즉, I-V 커브의 비대칭성이 증가하며, 또한 예를 들어 -0.5V에서의 LRS/HRS 전류비 또한 증가하는 것으로 나타났다.
도 2의 엘링감 도표 상에서 300K를 기준으로한 표준자유에너지 변화량이, Ag가 약 -20kJ이고, Mo가 약 -550kJ이고, Ti가 약 -900kJ이고, Al이 약 -1050 kJ인 것으로 미루어볼 때, 반응성 금속막의 반응성이 향상될 수록 I-V 커브의 비대칭성과 LRS/HRS 전류비가 증가하는 것을 알 수 있다. 따라서, I-V 커브의 비대칭성과 LRS/HRS 전류비를 증가시키기 위해서는 반응성 금속막으로서, -100 내지 -1100 kJ인 금속, 바람직하게는 -500 내지 -1100 kJ인 금속, 더 바람직하게는 -1000 내지 -1100 kJ인 금속을 사용할 수 있다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.

Claims (10)

  1. 제1 전극;
    제2 전극;
    상기 제1 전극과 상기 제2 전극 사이에 위치하는 산화물막; 및
    상기 산화물막과 상기 제2 전극 사이에 위치하며, 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 -100 kJ 이하인 금속을 함유하는 반응성 금속막을 포함하는 비휘발성 저항 변화 메모리 소자.
  2. 제1항에 있어서,
    상기 반응성 금속막은 300K를 기준으로 산화물 형성 반응시 표준자유에너지 변화량이 -100 kJ 내지 -1100 kJ 이상인 금속을 함유하는 비휘발성 저항 변화 메모리 소자.
  3. 제1항에 있어서,
    상기 반응성 금속막은 Mo막, Ta막, Ti막 또는 Al막인 저항 변화 메모리 소자.
  4. 제1항에 있어서,
    상기 반응성 금속막은 2 내지 15㎚의 두께를 갖는 비휘발성 저항 변화 메모리 소자.
  5. 제1항에 있어서,
    상기 산화물막은 페로브스카이트막인 저항 변화 메모리 소자.
  6. 제5항에 있어서,
    상기 산화물막은 Pr3 - YCaYMnO3 -X(PCMO) 또는 La3 - YCaYMnO3 -X(LCMO)를 함유하는 층이며, 상기 X 및 Y는 각각 0≤X≤1 및 0.1≤Y≤1.5인 비휘발성 저항 변화 메모리 소자.
  7. 제5항에 있어서,
    상기 산화물막은 SrTiO3 -X, Nb가 도핑된 SrTiO3 -X(Nb:STO), Cr이 도핑된 SrTiO3-X(Cr:STO), BaTiO3 -X, LaMnO3 -X, SrMnO3 -X, PrTiO3 -X, 또는 PbZrO3 -X를 함유하는 층이며, 상기 X는 0≤X≤1인 비휘발성 저항 변화 메모리 소자.
  8. 제1항에 있어서,
    상기 산화물막과 상기 반응성 금속막 사이에 상기 반응성 금속막을 형성하는 반응성 금속의 산화물인 반응성 금속 산화물막을 더 포함하는 비휘발성 저항 변화 메모리 소자.
  9. 제1항에 있어서,
    상기 산화물막은 제1 전극에 인접한 영역에 비해 상기 반응성 금속 산화물막과 인접한 영역에서 산소 공공 밀도가 높은 비휘발성 저항 변화 메모리 소자.
  10. 제1항에 있어서,
    상기 반응성 금속막 상에 상기 산화물막이 위치하고,
    상기 반응성 금속막과 상기 산화물막 사이에 상기 반응성 금속막을 형성하는 반응성 금속의 산화물인 반응성 금속 산화물막을 더 포함하는 비휘발성 저항 변화 메모리 소자.
PCT/KR2010/000128 2009-06-23 2010-01-08 비휘발성 저항 변화 메모리 소자 WO2010150957A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0055732 2009-06-23
KR1020090055732A KR101176422B1 (ko) 2009-06-23 2009-06-23 비휘발성 저항 변화 메모리 소자

Publications (1)

Publication Number Publication Date
WO2010150957A1 true WO2010150957A1 (ko) 2010-12-29

Family

ID=43386710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000128 WO2010150957A1 (ko) 2009-06-23 2010-01-08 비휘발성 저항 변화 메모리 소자

Country Status (2)

Country Link
KR (1) KR101176422B1 (ko)
WO (1) WO2010150957A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203022B2 (en) 2013-07-23 2015-12-01 Globalfoundries Inc. Resistive random access memory devices with extremely reactive contacts
WO2016130134A1 (en) * 2015-02-13 2016-08-18 Hewlett Packard Enterprise Development Lp Multilayered memristors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136886B1 (ko) * 2010-01-08 2012-04-20 광주과학기술원 비휘발성 저항 변화 메모리 소자의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669854B1 (ko) * 2005-07-05 2007-01-16 삼성전자주식회사 단위 셀 구조물과 그 제조 방법 및 이를 갖는 비휘발성메모리 소자 및 그 제조 방법
KR100680563B1 (ko) * 2004-01-14 2007-02-08 샤프 가부시키가이샤 불휘발성 반도체 기억장치
KR100755409B1 (ko) * 2006-08-28 2007-09-04 삼성전자주식회사 저항 메모리 소자의 프로그래밍 방법
KR100785509B1 (ko) * 2006-06-19 2007-12-13 한양대학교 산학협력단 ReRAM 소자 및 그 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153721B2 (en) 2004-01-28 2006-12-26 Micron Technology, Inc. Resistance variable memory elements based on polarized silver-selenide network growth
KR101187374B1 (ko) 2006-12-19 2012-10-02 후지쯔 가부시끼가이샤 저항 변화 소자 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680563B1 (ko) * 2004-01-14 2007-02-08 샤프 가부시키가이샤 불휘발성 반도체 기억장치
KR100669854B1 (ko) * 2005-07-05 2007-01-16 삼성전자주식회사 단위 셀 구조물과 그 제조 방법 및 이를 갖는 비휘발성메모리 소자 및 그 제조 방법
KR100785509B1 (ko) * 2006-06-19 2007-12-13 한양대학교 산학협력단 ReRAM 소자 및 그 제조 방법
KR100755409B1 (ko) * 2006-08-28 2007-09-04 삼성전자주식회사 저항 메모리 소자의 프로그래밍 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203022B2 (en) 2013-07-23 2015-12-01 Globalfoundries Inc. Resistive random access memory devices with extremely reactive contacts
WO2016130134A1 (en) * 2015-02-13 2016-08-18 Hewlett Packard Enterprise Development Lp Multilayered memristors
US10026896B2 (en) 2015-02-13 2018-07-17 Hewlett Packard Enterprise Development Lp Multilayered memristors

Also Published As

Publication number Publication date
KR20100137608A (ko) 2010-12-31
KR101176422B1 (ko) 2012-08-30

Similar Documents

Publication Publication Date Title
WO2010055988A1 (ko) 투명 전자소자용 투명 메모리
WO2014148872A1 (ko) 양방향 스위칭 특성을 갖는 2-단자 스위칭 소자 및 이를 포함하는 저항성 메모리 소자 크로스-포인트 어레이, 및 이들의 제조방법
US9105576B2 (en) Multi-level memory arrays with memory cells that employ bipolar storage elements and methods of forming the same
US8981331B2 (en) Memory cells having storage elements that share material layers with steering elements and methods of forming the same
WO2012057499A2 (ko) 정류특성 또는 오믹 접합층을 가지는 저항변화 메모리
KR20180076369A (ko) 강유전성 커패시터, 강유전성 전계 효과 트랜지스터, 및 전도성 재료와 강유전성 재료를 포함하는 전자 부품의 형성에 사용되는 방법
JP2010016381A (ja) 酸化物膜と固体電解質膜を備える抵抗変化メモリ素子およびこれの動作方法
KR20130007572A (ko) 금속 산화물 저항률 전환층과 함께 사용하기 위한 하부 전극
WO2010126232A2 (ko) 저항변화 메모리 소자 및 이의 제조방법
JP2013531383A (ja) 薄膜トランジスタ
US6365913B1 (en) Dual gate field effect transistor utilizing Mott transition materials
KR101136886B1 (ko) 비휘발성 저항 변화 메모리 소자의 제조방법
WO2016153172A1 (ko) 높은 전계 효과 이동도를 가지는 basno3 박막 트랜지스터 및 그의 제조 방법
WO2020159214A1 (ko) 다결정 금속 산화물층을 포함하는 선택소자 및 이를 포함하는 크로스포인트 메모리
WO2010150957A1 (ko) 비휘발성 저항 변화 메모리 소자
US20120085985A1 (en) Electrically actuated device
WO2017121216A1 (en) Thin film transistor array panel
US20120091418A1 (en) Bipolar storage elements for use in memory cells and methods of forming the same
KR20220148640A (ko) 비휘발성 메모리 소자 및 이를 포함하는 크로스 포인트 어레이 장치
WO2018012868A1 (ko) 스위칭 원자 트랜지스터 및 이의 동작방법
WO2021054737A1 (ko) 저항 스위칭 소자 및 이를 포함하는 메모리 장치
WO2013002601A2 (ko) 그래핀을 이용한 메모리 소자 및 이의 제조방법
WO2019177347A1 (ko) 비휘발성 메모리 기능을 갖는 트랜지스터 및 이의 작동 방법
KR20120012915A (ko) 강유전체 메모리 소자 및 이의 동작방법
WO2018174514A1 (ko) 다중레벨 저항 및 정전용량 메모리 특성을 갖는 비휘발성 메모리 소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792239

Country of ref document: EP

Kind code of ref document: A1