WO2010150866A1 - 圧電発電装置及び無線センサネットワーク装置 - Google Patents

圧電発電装置及び無線センサネットワーク装置 Download PDF

Info

Publication number
WO2010150866A1
WO2010150866A1 PCT/JP2010/060803 JP2010060803W WO2010150866A1 WO 2010150866 A1 WO2010150866 A1 WO 2010150866A1 JP 2010060803 W JP2010060803 W JP 2010060803W WO 2010150866 A1 WO2010150866 A1 WO 2010150866A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
substrate
piezoelectric element
resonance frequency
vibration
Prior art date
Application number
PCT/JP2010/060803
Other languages
English (en)
French (fr)
Inventor
藤本 克己
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011519944A priority Critical patent/JP5652396B2/ja
Publication of WO2010150866A1 publication Critical patent/WO2010150866A1/ja
Priority to US13/310,869 priority patent/US8604674B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • H02N2/188Vibration harvesters adapted for resonant operation

Definitions

  • the present invention relates to a piezoelectric power generation device, and more particularly to a piezoelectric power generation device for taking out electric power by changing kinetic energy into electric energy using a piezoelectric element, and a wireless sensor network device including the piezoelectric power generation device.
  • a piezoelectric power generation device that converts kinetic energy input from the outside into electric energy using a piezoelectric element to extract electric power and supplies the electric power to a power storage device has a basic configuration and operating principle of Patent Literature 1.
  • This document 1 describes that the free vibration frequency of the free vibration member is set in a region where the frequency component of acceleration to be excited is high, and when the frequency component of acceleration is known in advance, the element It is described that the output can be maximized by adjusting the dimensions of the above and setting the natural frequency in an appropriate region.
  • the piezoelectric power generation device described in Patent Document 1 outputs a large amount of electric power by applying a large stress change to the piezoelectric element for a moment when an instantaneous impact is applied.
  • a large stress change to the piezoelectric element for a moment when an instantaneous impact is applied.
  • continuous vibration is necessary, and it is necessary to use a relatively large rectifier or capacitor having a high withstand voltage, or to connect a plurality of components. This will increase the number of parts or increase the size of the equipment.
  • since it is necessary to apply kinetic energy to all of the piezoelectric elements there is a problem in that stress is dispersed and power generation efficiency is lowered.
  • an object of the present invention is to provide a piezoelectric power generation device that can efficiently transmit vibrations acting from the outside to the piezoelectric element, extend the power generation possible time, and increase the power generation efficiency.
  • an object of the present invention is to provide a wireless sensor network device that can be reduced in size by including the piezoelectric power generation device.
  • the piezoelectric power generation apparatus is In a piezoelectric power generation apparatus including a piezoelectric element that converts vibration into electricity and a substrate on which the piezoelectric element is mounted, The resonance frequency of the piezoelectric element and the resonance frequency of the substrate match, It is characterized by.
  • the piezoelectric power generation device external vibrations acting on the substrate are transmitted to the piezoelectric element through the substrate, and electric power is generated. Since the resonance frequency of the piezoelectric element coincides with the resonance frequency of the substrate, the piezoelectric element vibrates efficiently as long as the substrate vibrates, and the power generation possible time becomes longer and the power generation efficiency becomes higher.
  • the wireless sensor network device is: A substrate, A piezoelectric generator mounted on the substrate and having a piezoelectric element for converting vibration into electricity; A wireless communication device mounted on the substrate; A sensor element mounted on the substrate; With The resonance frequency of the piezoelectric element and the resonance frequency of the substrate match, It is characterized by.
  • the wireless sensor network device communicates information detected by the sensor to an external host device through a wireless communication device.
  • the piezoelectric power generation device functions as a wireless communication device and / or a power source for the sensor. In this piezoelectric power generation device, vibration is efficiently transmitted in relation to the substrate, and a wireless communication device, a sensor element, and the like are mounted on the substrate, so that high-density mounting and miniaturization of components are realized. .
  • a piezoelectric power generation device that can increase power generation efficiency.
  • a small wireless sensor network device can be obtained.
  • FIG. 1 is a perspective view showing a first embodiment of a wireless sensor network device according to the present invention. It is a perspective view which shows 2nd Example of the wireless sensor network apparatus which concerns on this invention. It is a block diagram which shows the circuit structure of a wireless sensor network apparatus.
  • FIG. 1 shows first to fourth embodiments of a piezoelectric power generating apparatus according to the present invention.
  • Each of these piezoelectric power generation devices includes a piezoelectric laminate 10 including a piezoelectric element that converts vibration into electricity, and a substrate 40 on which the piezoelectric laminate 10 is mounted.
  • the resonance frequency of the piezoelectric element and the resonance frequency of the substrate 40 are the same.
  • the substrate 40 is, for example, a paper phenol substrate (FR-1, 2), a paper epoxy substrate (FR-3), a glass composite substrate (CEM-3), a glass epoxy substrate (FR-4), a glass polyimide substrate, a fluorine substrate. , A glass PPO substrate, a metal substrate, or a ceramic substrate.
  • the piezoelectric laminate 10 may include a single piezoelectric element or may include a plurality of piezoelectric elements, as will be described below with reference to FIGS. When a plurality of piezoelectric elements are incorporated, the resonance frequency of each piezoelectric element may be the same or different.
  • FIG. 1 (A) shows a first embodiment in which the resonance frequency of the plate-like substrate 40 itself having a rectangular main surface facing each other matches the resonance frequency of the piezoelectric element.
  • FIG. 1B shows a second embodiment in which a vibration part 51 formed by a notch 41 penetrating the front and back of a substrate 40 is provided, and the resonance frequency of the vibration part 51 and the resonance frequency of the piezoelectric element coincide with each other. Indicates.
  • FIG. 1 (C) shows a third embodiment having vibrating portions 51 and 52 formed by notches 41 and 42 penetrating the substrate 40 on the front and back sides.
  • the vibration parts 51 and 52 have resonance frequencies different from each other, and the piezoelectric laminate 10 includes a piezoelectric element having a resonance frequency that matches the resonance frequency of each of the vibration parts 51 and 52.
  • FIG. 1D shows a fourth embodiment having vibrating portions 53 and 54 formed by notches 43 and 44 provided on both sides of the substrate 40.
  • the vibration parts 53 and 54 have resonance frequencies different from each other in the vicinity of the notches 43 and 44, respectively, and the piezoelectric laminate 10 has a piezoelectric element having a resonance frequency that matches the resonance frequency of each of the vibration parts 53 and 54. Is built-in.
  • the vibration energy accumulated in the vibration part of the substrate 40 is piezoelectric.
  • the vibration energy of each vibration part of the laminate 10 can be made larger.
  • vibration energy is efficiently transmitted from the vibration part of the substrate 40 to the vibration part of the piezoelectric laminate 10 by a resonance phenomenon, which is preferable in that the power generation efficiency of the piezoelectric power generation device can be increased.
  • the vibration part of the substrate 40 and the vibration part of the piezoelectric laminate 10 have a flexural vibration mode having the same resonance frequency in that the vibration modes are matched so that vibration energy can be exchanged more smoothly.
  • a node or a fixed end in the vibration of the vibration part 51 formed on the substrate 40 by the through groove 41 is disposed in the vicinity of the piezoelectric laminate 10, and the vibration part
  • the antinodes or free ends of 51 are arranged away from the piezoelectric laminate 10
  • the antinodes or free ends of the vibration unit 51 are arranged in the vicinity of the piezoelectric laminate 10
  • the nodes or fixed ends of the oscillation unit 51 are Since the transmission distance of the vibration energy transmitted from the vibration part 51 to the piezoelectric multilayer body 10 via the substrate 40 can be reduced as compared with the case where the piezoelectric multilayer body 10 is arranged away from the piezoelectric multilayer body 10.
  • the vibration energy transmitted from the substrate 40 to the piezoelectric laminate 10 is preferable in that the transmission efficiency can be increased.
  • the external vibration applied to the substrate 40 vibrates the vibrating parts 51 and 52 and the vibrating parts 53 and 54, and the vibrating part 51 , 52 and the vibration parts 53, 54 are transmitted to the piezoelectric laminate 10 to generate electric power.
  • the function and effect are the same as in the first and second embodiments.
  • by providing two vibrating portions 51, 52 and 53, 54 having mutually different resonance frequencies it is possible to cope with vibrations of different frequencies from the outside and to generate power with higher efficiency.
  • the shape and the number of vibration parts provided on the substrate are arbitrary.
  • a weight may be disposed on the antinodes or free ends of the vibration parts 51, 52, 53, 54. This is preferable because an increase in vibration energy or a decrease in resonance frequency can be realized relatively easily.
  • the surfaces of the vibrating portions 51, 52, 53, and 54 are not necessarily flat, and a step (including depressions and protrusions, which may be integrated with or separate from the substrate 40, not shown) or on the surface. A through hole (not shown) may be provided.
  • the rigidity of the substrate 40 may be changed by the step or the through hole, and the vibration mode and the resonance frequency of the vibration parts 51, 52, 53, 54 may be adjusted.
  • the weight may be formed by the level difference itself, or may be formed in a space formed in the depression or groove.
  • the piezoelectric laminate 10 includes a piezoelectric element layer 11 having a vibrating portion 21 having power extraction electrodes 22 and 23 formed on the front and back surfaces, and upper and lower portions of the piezoelectric element layer 11.
  • the separator layers 12 and 13 are stacked and have a cavity 31 that can vibrate the vibration portion 21, and the lid layers 14 and 15 are stacked on the upper and lower portions of the separator layers 12 and 13.
  • the piezoelectric element layer 11 is formed with a through groove portion 25 having a substantially U shape in a plan view penetrating through the front and back so that the vibration portion 21 is located at a substantially central portion. 22 is led out to the left side surface and is electrically connected to the external electrode 35. The power extraction electrode 23 on the back surface is led out to the right side surface and is electrically connected to the external electrode 36. External electrodes 35, 36 are also formed on the side surfaces of the separator layers 12, 13 and the lid layers 14, 15. These external electrodes 35, 36 are integrally formed after the piezoelectric laminate 10 is formed as a laminate. It has been done.
  • the piezoelectric element layer 11, the separator layers 12 and 13, and the lid layers 14 and 15 are made of ceramics.
  • Ceramic materials have a relatively high melting point, and in devices where heat capacity tends to decrease due to miniaturization, for example, in the mounting process such as reflow soldering, it is possible to suppress the occurrence of heat capacity and thermal deformation compared to resin materials. In addition, it is possible to obtain a piezoelectric power generation device that is excellent in heat resistance even in a small size and excellent in the effect of suppressing the variation of the resonance frequency caused by the dimensional variation and the stiffness variation due to the temperature change.
  • the vibrating portion 21 is polarized, and when an external force is applied to the piezoelectric laminate 10, the vibrating portion 21 has a length due to a change in external force or a change in acceleration.
  • the vibration mode or the bending vibration mode By resonating in the vibration mode or the bending vibration mode, electric power is extracted from the external electrodes 35 and 36.
  • the length vibration mode In the vibration of the vibration part having the same dimension, the length vibration mode has a relatively high resonance frequency, and the bending vibration mode has a relatively low resonance frequency.
  • the resonance frequency of the vibration part 21 tends to increase. If the flexural vibration mode is used, it is possible to further reduce the size at the same resonance frequency.
  • an intermediate electrode (not shown) is required in addition to the front and back electrodes 22 and 23.
  • the intermediate electrode functions as an electrode for polarization, it forms a so-called series bimorph, and also forms a parallel bimorph that generates charges between the front and back electrodes 22 and 23 short-circuited by isotropic polarization and the intermediate electrode. Any of them can be realized by the laminated structure technology.
  • the piezoelectric laminated body 10 has a simple structure of a laminated structure of the piezoelectric element layer 11, the separator layers 12 and 13, and the lid layers 14 and 15, and can be easily downsized, and each layer is made of ceramics. It can manufacture easily by baking integrally using a lamination method.
  • the piezoelectric element layer 11, the separator layers 12 and 13, and the lid layers 14 and 15 are formed from ceramics.
  • the piezoelectric laminated body 10 having a small and simple structure can be easily manufactured by a lamination method using a ceramic sheet.
  • each layer is made of ceramic materials having substantially the same coefficient of thermal expansion (preferably having the same composition)
  • the stress due to the difference in thermal expansion is reduced and the durability is improved.
  • the shrinkage difference in the firing process is also reduced, the dimensional accuracy is improved and the stress concentration is also reduced, so that the durability against repeated loads is improved and the size can be further reduced.
  • the load-bearing conditions in the design can be relaxed, the degree of freedom in design such as material selection and shape selection can be increased.
  • the piezoelectric element layer 11 can be formed with various shapes of the vibrating portion 21, and can have different resonance frequencies depending on the shape of the vibrating portion 21.
  • a plurality of vibrating portions 21 having the same shape or different shapes may be formed on one piezoelectric element layer 11.
  • a plurality of piezoelectric element layers 11 having the vibrating portions 21 having different resonance frequencies may be stacked via the separator layers 12 and 13, respectively.
  • the vibrating parts 21 may be electrically connected in parallel or may be connected in series.
  • FIG. 5 shows a first embodiment of a wireless sensor network device according to the present invention.
  • the wireless sensor network device includes a rectifier circuit 61 that rectifies an alternating current output from a piezoelectric element into a direct current, a power storage device 62 that stores power rectified by the rectifier circuit 61, a sensor 63,
  • the module 60 includes an A / D conversion circuit 64 that converts a signal output from the sensor 63 into a digital signal, a signal conversion transmission circuit 65, the piezoelectric laminate 10, and the substrate 40.
  • the piezoelectric laminate 10 is mounted on the substrate 40, and the module 60 is mounted on the piezoelectric laminate 10.
  • an antenna 66 (see FIGS. 5 and 6) for transmitting a signal to a host device (not shown) is provided on the surface of the substrate 40.
  • This wireless sensor network device is attached to, for example, a tire wheel in order to detect the internal pressure of a tire of an automobile.
  • the vibration of the wheel is transmitted to the piezoelectric element through the substrate 40, and the generated electric power is stored in the power storage device 62.
  • Stored in Necessary electric power is supplied from the power storage device 62 to the sensor 63, the A / D conversion circuit 64, and the signal conversion transmission circuit 65.
  • the piezoelectric laminate 10, the module 60, and the antenna 66 are integrally mounted on the substrate 40, so that high-density mounting, miniaturization, and cost reduction of components are realized.
  • the resonance frequency of the substrate 40 and the resonance frequency of the piezoelectric element coincide with each other, effects such as improvement in power generation efficiency are as described above.
  • the vibration part 51 is formed on the substrate 40, and the operation and effect thereof are as described in FIG. Of course, a plurality of vibrating portions may be formed on the substrate 40.
  • piezoelectric power generation device and the wireless sensor network device according to the present invention are not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.
  • sensors provided in the wireless sensor network device, and sensors that detect temperature, humidity, illuminance, or vibration may be used.
  • the present invention is useful for piezoelectric power generation devices and wireless sensor network devices, and is particularly excellent in that the power generation efficiency can be increased, the device can be further downsized, and the cost can be further reduced. .

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 外部から作用する振動を効率よく圧電素子に伝達できて発電可能時間を長くし、発電効率を高めることのできる圧電発電装置、及び、小型化を実現できる無線センサネットワーク装置を得る。 振動を電気に変換する圧電素子を内蔵した圧電積層体(10)と、該圧電積層体(10)を搭載する基板(40)とを備えた圧電発電装置。圧電素子の共振周波数と基板(40)の共振周波数とが一致しており、圧電素子が効率よく振動する。基板(40)に振動部(51),(52),(53),(54)を設けることで種々の共振周波数に設定することができる。

Description

圧電発電装置及び無線センサネットワーク装置
 本発明は、圧電発電装置、特に、圧電素子を利用して運動エネルギーを電気エネルギーに変化させて電力を取り出すための圧電発電装置、及び、該圧電発電装置を備えた無線センサネットワーク装置に関する。
 従来から、圧電素子を利用して外部から入力される運動エネルギーを電気エネルギーに変換して電力を取り出し、蓄電装置に電力を供給する圧電発電装置としては、その基本的構成や動作原理が特許文献1に記載されている。この文献1には、自由振動部材の自由振動周波数を、励振する加速度の周波数成分の頻度の多い領域に設定することが記載されており、さらに、加速度の周波数成分が予め判っているときには、素子の寸法を調整して固有振動数を適切な領域に設定することで出力を最大にすることができる、と記載されている。
 特許文献1に記載の圧電発電装置は、瞬間的な衝撃が作用したとき、圧電素子に一瞬大きな応力変化が加わり、大きな電力を出力する。しかしながら、持続して安定な電力を取り出すためには、継続した振動が必要であり、かつ、耐電圧の高い比較的大きな整流器やコンデンサを用いたり、複数の部品を接続したりする必要があり、部品点数の増加あるいは装置の大型化を招来する。また、圧電素子の全てに運動エネルギーを作用させる必要があるため、応力が分散して発電効率が低くなる問題点を有していた。
特許第3170965号公報
 そこで、本発明の目的は、外部から作用する振動を効率よく圧電素子に伝達できて発電可能時間を長くし、発電効率を高めることのできる圧電発電装置を提供することにある。
 さらに、本発明の目的は、前記圧電発電装置を備えることで、小型化を実現できる無線センサネットワーク装置を提供することにある。
 本発明の第1の形態である圧電発電装置は、
 振動を電気に変換する圧電素子と、該圧電素子を搭載する基板とを備えた圧電発電装置において、
 前記圧電素子の共振周波数と前記基板の共振周波数とが一致していること、
 を特徴とする。
 前記圧電発電装置において、基板に作用した外部からの振動が該基板を介して圧電素子に伝達され、電力が発生する。圧電素子の共振周波数と基板の共振周波数とが一致しているため、基板が振動している限り圧電素子も効率よく振動することになり、発電可能時間が長くなって発電効率が高くなる。
 本発明の第2の形態である無線センサネットワーク装置は、
 基板と、
 前記基板に搭載され、振動を電気に変換する圧電素子を有する圧電発電装置と、
 前記基板に搭載された無線通信装置と、
 前記基板に搭載されたセンサ素子と、
 を備え、
 前記圧電素子の共振周波数と前記基板の共振周波数とが一致していること、
 を特徴とする。
 前記無線センサネットワーク装置においては、センサが検知した情報を無線通信装置を通じて外部のホスト装置に通信する。圧電発電装置は無線通信装置及び/又はセンサの電源として機能する。この圧電発電装置は前記基板との関係で振動が効率よく伝達され、かつ、該基板に無線通信装置やセンサ素子などが搭載されているので、部品の高密度実装化、小型化が実現される。
 本発明によれば、発電効率を高めることのできる圧電発電装置を得ることができる。また、小型な無線センサネットワーク装置を得ることができる。
本発明に係る圧電発電装置の種々の実施例を示す斜視図である。 一例としての圧電積層体の外観を示す斜視図である。 前記圧電積層体の分解斜視図である。 前記圧電積層体を構成する圧電素子層を示す斜視図である。 本発明に係る無線センサネットワーク装置の第1実施例を示す斜視図である。 本発明に係る無線センサネットワーク装置の第2実施例を示す斜視図である。 無線センサネットワーク装置の回路構成を示すブロック図である。
 以下、本発明に係る圧電発電装置及び無線センサネットワーク装置の実施例について、添付図面を参照して説明する。
 (圧電発電装置の実施例、図1参照)
 図1に、本発明に係る圧電発電装置の第1~第4実施例を示す。これらの圧電発電装置は、それぞれ、振動を電気に変換する圧電素子を含む圧電積層体10と、該圧電積層体10を搭載する基板40とで構成されている。そして、圧電素子の共振周波数と基板40の共振周波数とは一致している。基板40は、例えば、紙フェノール基板(FR-1,2)、紙エポキシ基板(FR-3)、ガラスコンポジット基板(CEM-3)、ガラスエポキシ基板(FR-4)、ガラスポリイミド基板、フッ素基板、ガラスPPO基板、金属基板、若しくは、セラミック基板などによって形成されている。
 圧電積層体10は、図2~図4を参照して以下に説明するように、単一の圧電素子を内蔵していてもよく、あるいは、複数の圧電素子を内蔵していてもよい。複数の圧電素子を内蔵している場合、各圧電素子の共振周波数は同じであっても、異なっていてもよい。
 図1(A)は、矩形形状をなす互いに対向する主面を有する板状の基板40自体の共振周波数が圧電素子の共振周波数と一致している第1実施例を示す。図1(B)は、基板40に表裏に貫通する切欠41によって形成された振動部51を有し、該振動部51の共振周波数と圧電素子の共振周波数とが一致している第2実施例を示す。
 図1(C)は、基板40に表裏に貫通する切欠41,42によって形成された振動部51,52を有している第3実施例を示す。振動部51,52はそれぞれ互いに異なる共振周波数を有し、圧電積層体10には各振動部51,52の共振周波数と一致する共振周波数の圧電素子が内蔵されている。
 図1(D)は、基板40の両側部に設けた切欠43,44によって形成された振動部53,54を有している第4実施例を示す。振動部53,54は切欠43,44の近傍が振動の節となるそれぞれ互いに異なる共振周波数を有し、圧電積層体10には各振動部53,54の共振周波数と一致する共振周波数の圧電素子が内蔵されている。
 図1(A)に示した第1実施例においては、基板40に作用した外部からの振動が基板40を介して圧電積層体10に伝達され、電力が発生する。圧電素子の共振周波数と基板40の共振周波数とが一致しているため、基板40が振動している限り圧電素子も効率よく振動することになり、発電可能時間が長くなって発電効率が高くなる。ここで、外部から圧電発電装置に作用する運動エネルギーの一部は基板40の振動部及び圧電積層体10の振動部に振動エネルギーとして変換される。この場合、基板40の振動部の質量が圧電積層体10の振動部の質量より大きいとき、かつ、励振される共振周波数が互いに一致するとき、基板40の振動部に蓄積される振動エネルギーは圧電積層体10の各振動部の振動エネルギーより大きくできる。この場合において、基板40の振動部から圧電積層体10の振動部に、共振現象によって、振動エネルギーが効率的に伝えられるため、圧電発電装置の発電効率が高くできる点において好ましい。さらに、基板40の振動部と圧電積層体10の振動部とが同じ共振周波数をもつ屈曲振動モードであれば、振動モードが一致することにより振動エネルギーの交換がより円滑になる点において好ましい。
 図1(B)に示した第2実施例においては、基板40に作用した外部からの振動が振動部51を振動させ、振動部51の振動が圧電積層体10に伝達され、電力が発生する。その作用効果は前記第1実施例と同様である。特に、振動部51を設けることによって、基板40自体の共振周波数とは異なる特定の共振周波数を設定することができる。また、基板40の振動が屈曲振動モードである場合で、貫通溝41によって基板40に形成される振動部51の振動における節又は固定端が圧電積層体10の近傍に配置され、かつ、振動部51の腹又は自由端が圧電積層体10より離れて配置されるときは、振動部51の腹又は自由端が圧電積層体10の近傍に配置され、かつ、振動部51の節又は固定端が圧電積層体10より離れて配置されるときに比べ、振動部51から基板40を介して圧電積層体10に伝達される振動エネルギーの伝達距離が貫通溝41を迂回する距離の分を短くできるため、基板40から圧電積層体10へ伝達される振動エネルギーは伝達効率を高くできる点において好ましい。
 図1(C),(D)に示した第3及び第4実施例においては、基板40に作用した外部からの振動が振動部51,52及び振動部53,54を振動させ、振動部51,52及び振動部53,54の振動が圧電積層体10に伝達され、電力が発生する。その作用効果は前記第1及び第2実施例と同様である。特に、互いに異なる共振周波数をもつ二つの振動部51,52及び53,54を設けることで外部からの異なる周波数の振動に対処してより高い効率で発電を行うことが可能である。
 なお、本発明に係る圧電発電装置において、基板に設けた振動部の形状や個数などは任意である。例えば、蓄積される振動エネルギー、又は、屈曲振動モードの共振周波数を制御するため、振動部51,52,53,54の腹又は自由端に錘が配置されていてもよい。これにて、振動エネルギーの増加、又は、共振周波数の低下を比較的容易に実現できるため好ましい。なお、振動部51,52,53,54の表面は、必ずしも平面でなくともよく、表面に段差(窪み及び突起を含み、基板40とは一体あるいは別体であってもよい。図示しない)あるいは貫通孔(図示しない)が設けられてもよい。この段差あるいは貫通孔により基板40の剛性が変更され、振動部51,52,53,54の振動モード及び共振周波数が調整されてもよい。ここで、錘は段差自体によって形成されてもよく、あるいは、窪み又は溝に形成される空間に形成されてもよい。
 (圧電積層体の構成、図2~図4参照)
 ここで、一例としての圧電積層体10の構成を図2~図4を参照して説明する。その分解構造は図3に示すとおりであり、圧電積層体10は、表裏面に電力取出し電極22,23を形成した振動部21を有する圧電素子層11と、該圧電素子層11の上下部に積層され、振動部21が振動できる空洞31を有するセパレータ層12,13と、該セパレータ層12,13の上下部に積層された蓋層14,15とで構成されている。
 圧電素子層11は、図4に示すように、振動部21がほぼ中央部に位置するように表裏に貫通する平面視でほぼU字形状をなす貫通溝部25を形成し、表面の電力取出し電極22は左方の側面に導出され、外部電極35と電気的に接続されている。裏面の電力取出し電極23は右方の側面に導出され、外部電極36と電気的に接続されている。それぞれのセパレータ層12,13及び蓋層14,15の側面にも外部電極35,36が形成され、これらの外部電極35,36は圧電積層体10が積層体として形成された後に一体的に形成されたものである。また、圧電素子層11、セパレータ層12,13及び蓋層14,15はセラミックスから形成されている。セラミックス材料は比較的融点が高く、小型化によって熱容量が小さくなる傾向にある装置において、例えば、リフロー半田などの実装工程においても、樹脂材料に比べて熱容量や熱変形などの発生を抑制することができ、小型であっても耐熱性に優れ、温度変化による寸法変動及び剛性変動の要因から発生する共振周波数の変動を抑制する効果に優れた圧電発電装置を得ることができる。
 以上の構成からなる圧電積層体10においては、振動部21が分極処理されており、圧電積層体10に外力が作用すると、外力の変化あるいは加速度の変化に起因して、振動部21が長さ振動モード又は屈曲振動モードで共振することにより、外部電極35,36から電力が取り出される。同等の寸法を有する振動部の振動において、長さ振動モードは比較的共振周波数が高く、屈曲振動モードは比較的共振周波数が低い。圧電積層体10が小型化すると、振動部21の共振周波数が高くなる傾向にある。屈曲振動モードを利用すれば、同じ共振周波数でより小型化することが可能である。
 屈曲振動モードにより発電する場合には表裏電極22,23のほかに図示されない中間電極が必要である。中間電極は分極用の電極として機能する場合にはいわゆるシリーズバイモルフを構成し、また等方向分極で短絡させた表裏電極22,23と中間電極との間で電荷を発生させるパラレルバイモルフを構成する。積層構造技術でいずれも実現可能である。
 前記圧電積層体10は、圧電素子層11とセパレータ層12,13と蓋層14,15との積層構造という簡単な構成からなり、小型化が容易であり、かつ、各層がセラミックスからなるため、積層工法を用いて一体的に焼成することで容易に製造することができる。
 ところで、圧電積層体10においては、圧電素子層11、セパレータ層12,13及び蓋層14,15をセラミックスから形成している。これにて、セラミックシートを用いた積層工法により小型で簡単な構成の圧電積層体10を容易に製造できる。特に、各層を熱膨張率のほぼ等しいセラミックス材料(同一組成であることが好ましい)とすれば、熱膨張差による応力が低減され、耐久性が向上する。しかも、焼成工程での収縮差も低減するので寸法精度が向上し、応力集中も低減するので、繰返し荷重に対する耐久性も向上し、さらに小型化することができる。またさらに、設計での耐荷重条件が緩和できるので、材料選択や形状選択などの設計自由度を高くすることができる。
 なお、前記圧電素子層11には様々な形状の振動部21を形成することができ、振動部21の形状によって異なる共振周波数とすることができる。また、1枚の圧電素子層11に複数の同じ形状あるいは異なる形状の振動部21を形成してもよい。複数の共振周波数で動作させるためには、共振周波数が異なる振動部21を有する複数の圧電素子層11をそれぞれセパレータ層12,13を介して積層してもよい。複数の振動部21を組み合わせる場合、各振動部21は電気的に並列に接続しても、あるいは、直列に接続してもよい。
 (無線センサネットワーク装置)
 図5に、本発明に係る無線センサネットワーク装置の第1実施例を示す。この無線センサネットワーク装置は、図7に示すように、圧電素子から出力された交流電流を直流に整流する整流回路61、該整流回路61で整流された電力を蓄える蓄電装置62、センサ63、該センサ63から出力される信号をデジタル信号化するA/D変換回路64、信号変換送信回路65を備えたモジュール60と、前記圧電積層体10と、基板40とから構成されている。基板40上に、圧電積層体10が搭載され、該圧電積層体10上にモジュール60が搭載されている。また、基板40の表面には図示しないホスト装置に信号を送信するためのアンテナ66(図5、図6参照)が設けられている。
 この無線センサネットワーク装置は、例えば、自動車のタイヤの内圧を検知するためにタイヤホイールなどに取り付けられるもので、ホイールの振動が基板40を介して圧電素子に伝達され、発生した電力は蓄電装置62に蓄えられる。蓄電装置62から必要な電力がセンサ63、A/D変換回路64、信号変換送信回路65に供給される。
 本無線センサネットワーク装置においては、基板40上に圧電積層体10、モジュール60、アンテナ66が一体的に搭載され、部品の高密度実装化、小型化、低コスト化が実現される。また、基板40の共振周波数と圧電素子の共振周波数とが一致していることにより、発電効率が向上するなどの効果は前述したとおりである。
 図6に示す無線センサネットワーク装置の第2実施例は、基板40に振動部51を形成したもので、その作用効果は図1(B)で説明したとおりである。勿論、基板40には複数の振動部が形成されていてもよい。
 (他の実施形態)
 なお、本発明に係る圧電発電装置及び無線センサネットワーク装置は前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。
 例えば、無線センサネットワーク装置に設けられるセンサの検知対象は種々のものがあり、温度や湿度、照度あるいは振動を検知するセンサであってもよい。
 以上のように、本発明は、圧電発電装置及び無線センサネットワーク装置に有用であり、特に、発電効率を高めることができ、さらに装置が小型化でき、またさらに低コスト化できる点で優れている。
 10…圧電積層体
 11…圧電素子層
 40…基板
 41,42,43,44…切欠
 51,52,53,54…振動部
 60…モジュール
 63…センサ
 65…信号変換送信回路
 66…アンテナ

Claims (6)

  1.  振動を電気に変換する圧電素子と、該圧電素子を搭載する基板とを備えた圧電発電装置において、
     前記圧電素子の共振周波数と前記基板の共振周波数とが一致していること、
     を特徴とする圧電発電装置。
  2.  前記圧電素子は屈曲振動モードで振動し、前記基板の共振周波数は前記屈曲振動モードの共振周波数と一致していること、を特徴とする請求項1に記載の圧電発電装置。
  3.  前記基板に切欠によって形成された振動部を有し、該振動部の共振周波数と前記圧電素子の共振周波数とが一致していること、を特徴とする請求項1又は請求項2に記載の圧電発電装置。
  4.  基板と、
     前記基板に搭載され、振動を電気に変換する圧電素子を有する圧電発電装置と、
     前記基板に搭載された無線通信装置と、
     前記基板に搭載されたセンサ素子と、
     を備え、
     前記圧電素子の共振周波数と前記基板の共振周波数とが一致していること、
     を特徴とする無線センサネットワーク装置。
  5.  前記基板には、前記無線通信装置を構成するアンテナが設けられていること、を特徴とする請求項4に記載の無線センサネットワーク装置。
  6.  前記基板に切欠によって形成された振動部を有し、該振動部の共振周波数と前記圧電素子の共振周波数とが一致していること、を特徴とする請求項4又は請求項5に記載の無線センサネットワーク装置。
PCT/JP2010/060803 2009-06-26 2010-06-25 圧電発電装置及び無線センサネットワーク装置 WO2010150866A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011519944A JP5652396B2 (ja) 2009-06-26 2010-06-25 圧電発電装置及び無線センサネットワーク装置
US13/310,869 US8604674B2 (en) 2009-06-26 2011-12-05 Piezoelectric power generator and wireless sensor network apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-152309 2009-06-26
JP2009152309 2009-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/310,869 Continuation US8604674B2 (en) 2009-06-26 2011-12-05 Piezoelectric power generator and wireless sensor network apparatus

Publications (1)

Publication Number Publication Date
WO2010150866A1 true WO2010150866A1 (ja) 2010-12-29

Family

ID=43386635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060803 WO2010150866A1 (ja) 2009-06-26 2010-06-25 圧電発電装置及び無線センサネットワーク装置

Country Status (3)

Country Link
US (1) US8604674B2 (ja)
JP (1) JP5652396B2 (ja)
WO (1) WO2010150866A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029368A (ja) * 2011-07-27 2013-02-07 Denso Corp 車載用センサ
JP2013078235A (ja) * 2011-09-30 2013-04-25 Asahi Kasei Corp リチウムイオンキャパシタを用いた電源装置、及び無線通信機器
WO2014013638A1 (ja) * 2012-07-20 2014-01-23 パナソニック株式会社 発電モジュールおよびそれを用いた空調管理システム
JP2014018006A (ja) * 2012-07-10 2014-01-30 Kanazawa Univ 発電装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
BR112012019212A2 (pt) 2010-02-01 2017-06-13 Proteus Digital Health Inc sistema de coleta de dados
US9439599B2 (en) 2011-03-11 2016-09-13 Proteus Digital Health, Inc. Wearable personal body associated device with various physical configurations
CN102790547B (zh) * 2012-07-18 2015-08-05 天津大学 双稳态双悬臂梁压电发电装置
CN103051244B (zh) * 2012-12-15 2016-01-13 华中科技大学 一种纸基柔性发电装置及其制造方法
ITTO20130301A1 (it) * 2013-04-15 2014-10-16 Aviospace S R L Dispositivo harvester piezoelettrico vibrazionale multifrequenza.
WO2014170922A1 (en) * 2013-04-15 2014-10-23 Politecnico Di Torino Multi-frequency vibration piezoelectric harvester device
US9716446B2 (en) * 2013-07-05 2017-07-25 Texas Instruments Incorporated Self-powered piezoelectric energy harvesting microsystem
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US11114955B2 (en) 2017-11-17 2021-09-07 Clemson University Self powered wireless sensor
US11156531B2 (en) * 2018-08-06 2021-10-26 Harsco Technologies LLC Vibration sensor package

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303726A (ja) * 1998-04-23 1999-11-02 Murata Mfg Co Ltd 圧電型風力発電機
JP2001231273A (ja) * 2000-02-17 2001-08-24 Murata Mfg Co Ltd 圧電型風力発電機
JP2001275370A (ja) * 2000-03-27 2001-10-05 Toto Ltd 圧電水力発電装置
JP2007300140A (ja) * 2001-09-11 2007-11-15 Ngk Insulators Ltd 圧電/電歪デバイス
JP2008113973A (ja) * 2006-11-07 2008-05-22 Nikko:Kk 無線操縦走行玩具用の送信機と受信機並びに無線操縦走行玩具
JP2008522184A (ja) * 2004-12-04 2008-06-26 エムディーティー カンパニー リミテッド エネルギー捕集型の表面弾性波基盤の無電源/無線センサー

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1591677A1 (de) * 1967-05-31 1971-01-14 Telefunken Patent Mechanische Resonatoren in integrierten Halbleiterschaltungen und Verfahren zu ihrerHerstellung
US4327359A (en) * 1979-06-07 1982-04-27 Kulite Semiconductor Products, Inc. Glass breakage detectors employing piezoresistive devices
JPS5667731A (en) * 1979-11-06 1981-06-08 Nissan Motor Co Ltd Knocking sensor
US4494409A (en) * 1981-05-29 1985-01-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Engine vibration sensor
JPH02119784U (ja) * 1989-03-08 1990-09-27
US5245245A (en) * 1992-05-04 1993-09-14 Motorola, Inc. Mass-loaded cantilever vibrator
JP3170965B2 (ja) 1993-08-04 2001-05-28 セイコーエプソン株式会社 発電機および携帯用機器
US5802684A (en) * 1993-09-14 1998-09-08 Nikon Corporation Process for producing a vibration angular-velocity sensor
US5856722A (en) * 1996-01-02 1999-01-05 Cornell Research Foundation, Inc. Microelectromechanics-based frequency signature sensor
JP3539192B2 (ja) * 1998-03-17 2004-07-07 セイコーエプソン株式会社 圧電発電機、電子機器及び携帯機器
JP3348687B2 (ja) * 1998-05-22 2002-11-20 住友金属工業株式会社 振動波検出方法及び装置
JP4347946B2 (ja) * 1999-03-24 2009-10-21 日本特殊陶業株式会社 圧電アクチュエータ
US6336366B1 (en) * 1999-09-24 2002-01-08 Ut-Battelle, Llc Piezoelectrically tunable resonance frequency beam utilizing a stress-sensitive film
KR100867454B1 (ko) * 2002-02-01 2008-11-06 요 수가와라 음·진동의 공명 분리 장치
US7468608B2 (en) * 2002-07-19 2008-12-23 Siemens Aktiengesellschaft Device and method for detecting a substance of a liquid
US7692365B2 (en) * 2005-11-23 2010-04-06 Microstrain, Inc. Slotted beam piezoelectric composite
US7687977B2 (en) * 2006-04-10 2010-03-30 Honeywell International Inc. Micromachined, piezoelectric vibration-induced energy harvesting device and its fabrication
US8022600B2 (en) * 2006-11-01 2011-09-20 Panasonic Corporation Piezoelectric power generating mechanism with spring material
US20100175155A1 (en) * 2009-01-06 2010-07-08 President And Fellows Of Harvard College Measurement and Mapping of Molecular Stretching and Rupture Forces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303726A (ja) * 1998-04-23 1999-11-02 Murata Mfg Co Ltd 圧電型風力発電機
JP2001231273A (ja) * 2000-02-17 2001-08-24 Murata Mfg Co Ltd 圧電型風力発電機
JP2001275370A (ja) * 2000-03-27 2001-10-05 Toto Ltd 圧電水力発電装置
JP2007300140A (ja) * 2001-09-11 2007-11-15 Ngk Insulators Ltd 圧電/電歪デバイス
JP2008522184A (ja) * 2004-12-04 2008-06-26 エムディーティー カンパニー リミテッド エネルギー捕集型の表面弾性波基盤の無電源/無線センサー
JP2008113973A (ja) * 2006-11-07 2008-05-22 Nikko:Kk 無線操縦走行玩具用の送信機と受信機並びに無線操縦走行玩具

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029368A (ja) * 2011-07-27 2013-02-07 Denso Corp 車載用センサ
JP2013078235A (ja) * 2011-09-30 2013-04-25 Asahi Kasei Corp リチウムイオンキャパシタを用いた電源装置、及び無線通信機器
JP2014018006A (ja) * 2012-07-10 2014-01-30 Kanazawa Univ 発電装置
WO2014013638A1 (ja) * 2012-07-20 2014-01-23 パナソニック株式会社 発電モジュールおよびそれを用いた空調管理システム
JPWO2014013638A1 (ja) * 2012-07-20 2016-06-30 パナソニックIpマネジメント株式会社 発電モジュールおよびそれを用いた空調管理システム

Also Published As

Publication number Publication date
US8604674B2 (en) 2013-12-10
JP5652396B2 (ja) 2015-01-14
US20120074812A1 (en) 2012-03-29
JPWO2010150866A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5652396B2 (ja) 圧電発電装置及び無線センサネットワーク装置
US8020266B2 (en) Method of producing a device
Wischke et al. Electromagnetic vibration harvester with piezoelectrically tunable resonance frequency
Saadon et al. A review of vibration-based MEMS piezoelectric energy harvesters
JP5520239B2 (ja) 発電デバイスおよびそれを用いた発電モジュール
US20050134149A1 (en) Piezoelectric vibration energy harvesting device
KR101727252B1 (ko) 압전 에너지 하베스팅 장치
JP2007267591A (ja) エネルギー回収機
EP3298633B1 (en) Ultrasonic transducer
JP2009510791A (ja) 圧電式の変圧器
JP2013102639A (ja) 環境発電デバイス
JP2009165212A (ja) 圧電体を用いた発電素子およびそれを用いた発電装置
JP2010011547A (ja) 発電デバイス
KR20130003017A (ko) 진동 발전 디바이스
Sobocinski et al. Monomorph piezoelectric wideband energy harvester integrated into LTCC
JP6019981B2 (ja) 発電デバイス及びセンシングシステム
JP2013110920A (ja) 発電装置
JP5267664B2 (ja) 圧電発電装置及びその製造方法
JP5760172B2 (ja) 発電デバイスおよびそれを用いた発電モジュール
KR20110006884A (ko) 진동주파수 변환장치, 진동주파수 변환장치를 이용한 에너지 포집기 및 에너지 포집방법
Khalid et al. Piezoelectric vibration harvesters based on vibrations of cantilevered bimorphs: a review
US10205409B1 (en) Power generating tile assembly
CN114483869A (zh) 一种基于压电非线性能量阱的柔性板减振装置和方法
Gao et al. Vibration-based energy extraction for sensor powering: design, analysis, and experimental evaluation
JP2009247128A (ja) 圧電振動型発電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519944

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792184

Country of ref document: EP

Kind code of ref document: A1