WO2010150439A1 - 蓄電ユニット - Google Patents

蓄電ユニット Download PDF

Info

Publication number
WO2010150439A1
WO2010150439A1 PCT/JP2010/001218 JP2010001218W WO2010150439A1 WO 2010150439 A1 WO2010150439 A1 WO 2010150439A1 JP 2010001218 W JP2010001218 W JP 2010001218W WO 2010150439 A1 WO2010150439 A1 WO 2010150439A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage element
holder
storage unit
fixing plate
Prior art date
Application number
PCT/JP2010/001218
Other languages
English (en)
French (fr)
Inventor
二宮徹
西本進
宗田昭彦
Original Assignee
パナソニック株式会社
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 株式会社小松製作所 filed Critical パナソニック株式会社
Priority to CN201080029000.4A priority Critical patent/CN102460621B/zh
Priority to EP10791767.6A priority patent/EP2447966A4/en
Priority to US13/377,871 priority patent/US9478362B2/en
Priority to KR1020117025903A priority patent/KR101396643B1/ko
Publication of WO2010150439A1 publication Critical patent/WO2010150439A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/26Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices with each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a power storage unit that stores power in a power storage element and discharges the power when necessary.
  • an electric storage unit configured by using a plurality of electric storage elements such as a secondary battery and a large-capacity capacitor (for example, Patent Document 1 and Patent Document 2) are widely used.
  • FIG. 7 is an exploded perspective view showing the entire structure of a conventional power storage unit.
  • a battery pack disclosed in Patent Document 1 is shown as the power storage unit.
  • a plurality of batteries 101 are arranged in a stacked manner by spacers 103. Further, positive and negative electrodes are formed at both ends of each battery 101, and are arranged so that the positive and negative of the electrodes of adjacent batteries 101 are reversed.
  • a plurality of battery lead plates 105 are electrically connected to the electrodes of the batteries 101 arranged in two stages by the spacer 103. Thereby, the some battery 101 is connected so that it may become series-parallel.
  • the lower battery 101 is accommodated along the guide groove 109 provided in the lid case 107.
  • the battery 101 is fixed by a double-sided tape (not shown) attached to the guide groove 109.
  • a main body case 111 is placed on the lid case 107 so as to cover the entire battery 101.
  • a circuit board 115 is disposed on the upper surface of the main body case 111 via a board holder 113.
  • a plurality of output leads 117 are electrically connected to the circuit board 115, and these are electrically connected to connection terminals 119 formed integrally with the battery lead plate 105.
  • the batteries 101 are arranged in a stacked manner, so that useless space is reduced and downsizing is possible, and a part of the side surface of the battery 101 is attached to the lid case 107 by a double-sided tape. Since it is fixed, a battery pack having excellent vibration resistance can be realized.
  • the present invention solves the above-described conventional problems, and provides a power storage unit that can achieve both higher vibration resistance against large vibrations applied to the power storage unit and better heat dissipation against heat generation from the power storage element.
  • the purpose is to do.
  • an electricity storage unit of the present invention includes a plurality of electricity storage elements having a cylindrical shape and electrically connected to each other, and a part of a cylindrical peripheral surface of the electricity storage element made of metal.
  • a holder having an arcuate concave surface to be stored; a fixing plate attached to the holder so as to hold the power storage element; and the power storage element disposed between a peripheral surface of the power storage element and a concave surface of the holder;
  • a first bonding material for bonding the holder is provided.
  • the entire portion of the circumferential surface of the electricity storage device that is housed in the concave surface of the holder in the electricity storage device by interposing the bonding material between the portion that is housed in the concave surface of the holder and the concave surface of the holder.
  • Heat generation is efficiently transmitted to the holder through the bonding material, compared to the case where the power storage element is in contact with the spacer at only four places as in the prior art.
  • FIG. 1 is an exploded perspective view showing an overall structure of a power storage unit according to an embodiment of the present invention.
  • FIG. 2A is a perspective view showing an external structure of the power storage unit according to the embodiment before assembly of the power storage element.
  • FIG. 2B is a perspective view showing an external structure after the storage element is assembled in the storage unit of the embodiment.
  • FIG. 3 is a partial cross-sectional view showing a storage state of the storage element in the holder in the storage unit of the embodiment.
  • FIG. 4 is a partial cross-sectional view showing the internal structure of the double-sided tape in the electricity storage unit of the embodiment.
  • FIG. 5 is an external perspective view showing the overall structure after assembly in the power storage unit of the embodiment.
  • FIG. 1 is an exploded perspective view showing an overall structure of a power storage unit according to an embodiment of the present invention.
  • FIG. 2A is a perspective view showing an external structure of the power storage unit according to the embodiment before assembly of the power storage element.
  • FIG. 2B is a perspective
  • FIG. 6 is a perspective view showing another structural example of the fixing plate in the power storage unit of the embodiment.
  • FIG. 7 is an exploded perspective view showing the entire structure of a conventional battery pack (storage unit).
  • FIG. 8 is a partial cross-sectional view showing a storage state of a battery in a spacer in a conventional battery pack (storage unit).
  • FIG. 1 is an exploded perspective view showing the overall structure of the power storage unit of the present embodiment.
  • 2A and 2B are perspective views showing an external structure of a power storage element with a bus bar in the power storage unit of the present embodiment,
  • FIG. 2A is an exploded perspective view before assembly, and
  • FIG. 2B is a perspective view after assembly.
  • FIG. 3 is a schematic partial cross-sectional view showing a state where the power storage element is housed in the holder in the power storage unit of the present embodiment.
  • FIG. 4 is a schematic partial cross-sectional view showing the internal structure of the double-sided tape in the electricity storage unit of the present embodiment.
  • FIG. 5 is an external perspective view showing the overall structure after assembly in the power storage unit of the present embodiment.
  • FIG. 6 is a perspective view showing another structure example of the fixing plate in the power storage unit of the present embodiment.
  • the power storage unit uses 12 power storage elements 11. These are configured to be electrically connected to the adjacent storage element 11 by the bus bar 13. Here, the twelve power storage elements 11 are all connected in series.
  • the electric storage element 11 is an electric double layer capacitor having a large capacity and excellent rapid charge / discharge characteristics.
  • the storage element 11 has a cylindrical shape as shown in FIG. 2A, and an end face electrode 15 is formed at one end (the upper end in FIG. 2A).
  • the end face electrode 15 is a positive electrode.
  • the cylindrical shape of the electricity storage element 11 is formed by extruding an aluminum plate, and the circumferential surface of the column constitutes the circumferential electrode 17.
  • the peripheral electrode 17 is a negative electrode.
  • the bottom surface of the electricity storage element 11 is also molded integrally with the peripheral surface, so that it becomes a negative electrode.
  • the electrical connection to the bottom surface is not performed.
  • an insulating material is interposed between the end face electrode 15 and the peripheral face electrode 17 so as to maintain electrical insulation.
  • the bus bar 13 is a member that electrically connects adjacent power storage elements 11 to each other, and is configured by press-molding aluminum.
  • the shape after molding is shown in FIG. 2A.
  • the bus bar 13 has a substantially L shape, and the peripheral electrode welding portion 19 is bent into a shape along the outer periphery of the peripheral electrode 17.
  • a bus bar terminal 23 is integrally formed with the flat end portion 21 of the bus bar 13. Further, a bent portion 24 is provided between the peripheral electrode welded portion 19 and the flat end portion 21.
  • the flat end portion 21 when the flat end portion 21 is welded to the end face electrode 15 of the adjacent power storage element 11, even if there is a misalignment, it can be absorbed by the bent portion 24 and the assembled power storage unit can be vibrated from the outside.
  • the bending portion 24 can relieve the stress applied to the weld connection portion between the flat end portion 21 and the end face electrode 15. Therefore, it is possible to reduce the possibility that the welded portion between the flat end portion 21 and the end face electrode 15 is detached due to vibration, and good vibration resistance can be obtained.
  • FIG. 2B shows a state where the bus bar 13 is connected to the power storage element 11.
  • the peripheral electrode welded portion 19 of the bus bar 13 has a shape that matches the outer periphery of the peripheral electrode 17 of the power storage element 11. And mechanical connection is possible.
  • the end face electrode 15 of the adjacent power storage element 11 and the flat end portion 21 of the bus bar 13 are welded to the plurality of power storage elements 11 to which the bus bar 13 is welded.
  • the power storage elements 11 are connected in series. This welding is performed using a jig that can be positioned so that the end face electrode 15 of each power storage element 11 is in contact with the flat end portion 21 of the adjacent bus bar 13 accurately.
  • the six power storage elements 11 thus configured are used in two rows so that all twelve power storage elements 11 are connected in series. For this reason, as shown in FIG. The direction is rotated 90 degrees so as to overlap the end face electrode 15 at the right end of the front row, and the welding connection is made.
  • the positive electrode terminals 25 for power input / output of all the electricity storage elements 11 are connected by welding.
  • the positive electrode terminal 25 has a plate shape in which the peripheral electrode welding portion 19 of the bus bar 13 is a flat end portion 21, and is formed by molding aluminum in the same manner as the bus bar 13. Further, the bus bar terminal 23 and the bent portion 24 are also integrally formed.
  • the bus bar 13 at the left end of the front row in FIG. Therefore, the bus bar 13 is used as a negative electrode terminal 26 for power input / output of all the power storage elements 11.
  • the holder 27 has a plurality of arcuate concave surfaces 29 (here, twelve locations) for housing a part of the peripheral surface of the power storage element 11 in a rectangular parallelepiped made of metal (here, made of aluminum). ) Has a provided configuration. Further, a fixing plate screw hole 31 and a case screw hole 33 for screwing a fixing plate and a case to be described later are also provided.
  • the concave surface 29 is formed so as to have a substantially semicircular shape when the holder 27 of FIG. 1 is viewed from above.
  • Such a holder 27 is formed by extrusion molding or cutting.
  • the concave surface 29 is provided so that the power storage elements 11 are not stacked. Thereby, the heat capacity of the holder 27 can be increased. Furthermore, since the space
  • the concave surface 29 of the holder 27 stores a part of the peripheral surface of the power storage element 11.
  • the portion of the peripheral surface of the power storage element 11 that is stored in the concave surface 29 and the concave surface 29 of the holder 27. are joined with an insulating bonding material (hereinafter referred to as an insulating bonding material).
  • an insulating bonding material hereinafter referred to as an insulating bonding material.
  • the reason why the bonding material is made insulative is that since the storage element 11 has the peripheral electrode 17, when the plurality of storage elements 11 are housed in the metal holder 27, the peripheral electrodes 17 are electrically connected to each other. This is to prevent short circuit.
  • double-sided tape 35 was used as the insulating bonding material. That is, in the electricity storage element 11, the circumferential surface of the electricity storage element 11 is joined to the concave surface 29 by applying the double-sided tape 35 to the peripheral surface portion accommodated in the concave surface 29 and further accommodating in the holder 27. In the configuration of FIG. 1, approximately half the area of the circumferential surface of the electricity storage element 11 is fixed by the concave surface 29 and the double-sided tape 35. Note that the double-sided tape 35 may be configured to store the power storage element 11 after first being attached to the concave surface 29.
  • FIG. 3 is a schematic partial cross-sectional view showing a storage state of the storage element in the holder at the joint between the storage element and the holder in the storage unit of the present embodiment.
  • the radius Rc of the electricity storage element 11 in order to store the circumferential surface of the electricity storage element 11 in the concave surface 29, the radius Rc of the electricity storage element 11 must be smaller than the radius Rk of the concave surface 29.
  • the peripheral surface of the electricity storage element 11 comes into contact with only one point on the circumference of the concave surface 29, and a gap is generated in the other portion. In this state, even if the power storage element 11 generates heat due to frequent charging / discharging, heat cannot be efficiently radiated from the holder 27.
  • the double-sided tape 35 joins the peripheral surface of the electricity storage element 11 and the concave surface 29 in order to fill the gap.
  • the thickness t of the double-sided tape 35 was set to be equal to or larger than the difference between the radius Rk of the concave surface 29 and the radius Rc of the power storage element 11 as shown in FIG.
  • the double-sided tape 35 is embedded in the gap between the peripheral surface of the electricity storage element 11 and the concave surface 29 after being joined by the double-sided tape 35.
  • FIG. 4 is a schematic partial sectional view showing the internal structure of the double-sided tape 35 in the power storage unit of the present embodiment.
  • the double-sided tape 35 has a laminated structure of a base material 37 and an adhesive portion 38 formed on both surfaces thereof.
  • a resin having elasticity for example, foil-like rubber
  • the base material 37 of the double-sided tape 35 is deformed so that the innermost part of the concave surface 29 becomes thinner and the front part becomes thicker. That is, the thickness t of the double-sided tape 35 becomes non-uniform when the electricity storage element 11 is fixed to the holder 27 with the fixing plate.
  • the double-sided tape 35 fills the entire gap formed between the power storage elements 11 having different radii and the concave surface 29, efficient heat dissipation is possible.
  • the adhesive portion 38 of the double-sided tape 35 is configured to contain a thermally conductive filler.
  • a thermally conductive filler for example, a ceramic made material such as alumina or silica is used.
  • the thermal conductivity in the adhesion part 38 which consists of a resin component can be improved.
  • the following effects are acquired by containing a heat conductive filler.
  • the base 37 is a resin such as a foil-like rubber, when a plurality (six in this case) of the storage elements 11 are pushed into the concave surface 29 at once by the fixing plate described later, the respective storages are stored. Depending on the magnitude and variation of the stress applied to the element 11, a large stress may be applied to a part of the substrate 37, leading to cutting. Alternatively, with the use of the power storage unit, the base material 37 may deteriorate due to vibration or thermal shock, and a portion where stress is concentrated may be cut.
  • the base material 37 If the base material 37 is cut, the base material 37 does not exist in that portion, and the adhesive portion 38 is thinner than the base material 37, so that the circumferential surface of the electricity storage element 11 is in direct contact with the concave surface 29, There is a possibility of electrical conduction (short circuit).
  • the double-sided tape 35 of this Embodiment contains the heat conductive filler in the adhesion part 38, when the electrical storage element 11 is strongly pushed into the concave surface 29, or deterioration progresses, a base material is obtained. Even if 37 is cut, the thermal conductive filler that is uniformly contained in the entire adhesive portion 38 is interposed between the peripheral surface of the power storage element 11 and the concave surface 29. Moreover, since the adhesion part 38 is formed in both surfaces of the base material 37, the amount of intervention of a heat conductive filler is also securable. Furthermore, the thermally conductive filler has an insulating property. For these reasons, the use of the double-sided tape 35 shown in FIG. 4 can reduce the possibility that the circumferential surface of the electricity storage element 11 is in direct contact with the concave surface 29 and short-circuits, and has high heat dissipation and high reliability. Can be obtained simultaneously.
  • the fixing plate 39 is made of resin, and has holding portions 41 made up of six arcuate concave surfaces for housing and holding a part of the cylindrical peripheral surface of the electricity storage element 11.
  • the holding portion 41 is dimensioned so that a slight gap is formed between the holder 27 and the fixing plate 39 when holding the power storage element 11 accommodated in the concave surface 29.
  • the eight fixing plate screws 43 are tightened into the fixing plate screw holes 31 so that there is no gap between them, so that the elasticity of the resin of the fixing plate 39 can be increased.
  • the electric storage element 11 is held so as to be pushed into the holder 27 side.
  • the power storage element 11 is bonded to the holder 27 with the double-sided tape 35 and is firmly held by the elasticity of the fixing plate 39. Therefore, even if the power storage unit is used for applications in which vibrations are remarkable (for example, hybrid construction machines), the possibility that the power storage element 11 is disconnected or the bus bar 13 is disconnected is reduced, and good vibration resistance is achieved. Is obtained.
  • a bottom plate 44 is integrally formed at the lower end portion of the holding portion 41 of the fixed plate 39. Accordingly, the bottom of the electricity storage element 11 is blocked from the outside by the bottom plate 44.
  • the bottom plate 44 is formed so that when the power storage element 11 is held by the holding portion 41, the bottom of the power storage element 11 is in a position where it does not come into contact. As a result, even if the height of the power storage element 11 varies, the variation is accommodated in the gap between the bottom portion of the power storage element 11 and the bottom plate 44.
  • the entire power storage element 11 is blocked from the outside by the concave surface 29, the holding portion 41, the bottom plate 44, and a case to be described later, so that dust and particles on the power storage element 11 and the bus bar 13 can be obtained. It is possible to reduce the adhesion of impurities such as suspended solids. Therefore, since the possibility of corrosion of the power storage element 11 and the bus bar 13 due to impurities is reduced, high reliability can be obtained.
  • fins 45 are integrally formed on the surface of the fixing plate 39 opposite to the holding portion 41, that is, on the outer wall surface. As a result, the mechanical strength of the fixing plate 39 can be increased, and the surface area of the outer wall is increased by the amount of the fins 45, so that the heat dissipation from the fixing plate 39 can be improved.
  • the fins 45 are provided only at one central portion. However, the fins 45 may be provided at a plurality of locations, and the shape of the fins 45 is not limited to the horizontal direction in FIG. 1. You may provide in a perpendicular direction.
  • the case 47 is fixed to the upper portion of the holder 27 as shown in FIG. 1 with the fixing plates 39 fixed to both sides of the holder 27.
  • the case fixing screw 49 is fixed in the case screw hole 33 through the case 47.
  • the upper portion of the electricity storage element 11 to which the double-sided tape 35 is not attached is enclosed by the case 47.
  • the upper portion of the power storage element 11 can be blocked from the outside, and adhesion of dust and the like is reduced.
  • the case 47 is made of resin, and a plurality of holes 51 are provided on the upper surface thereof.
  • the bus bar terminal 23 formed integrally with the bus bar 13 is protruded from the upper surface of the case 47 through the hole 51.
  • the circuit board 53 is arranged on the upper surface of the case 47. At this time, the bus bar terminal 23 is inserted into a terminal hole (not shown) provided in the circuit board 53 and soldered. The bus bar terminal 23 is electrically connected.
  • the circuit board 53 can detect the voltage at the electrical connection point of each storage element 11. Furthermore, the circuit board 53 has a built-in balance circuit (not shown) that equalizes the voltage across each power storage element 11 according to the detected voltage. However, the voltage of each power storage element 11 can also be controlled by the balance circuit. This can be done via the bus bar terminal 23. A plurality of electronic components constituting the voltage detection circuit and the balance circuit are mounted on the circuit board 53, but are omitted in FIG.
  • FIG. 5 shows a perspective view after the assembly of the power storage unit described so far.
  • the circuit board 53 is fixed to the case 47 by six circuit board fixing screws 55.
  • the positive terminal 25 and the negative terminal 26 are connected to an external charge / discharge circuit (not shown).
  • an external charge / discharge circuit not shown.
  • the holder 27 When using a plurality of power storage units, it is desirable that the holder 27 is fixed so as to be in contact with a metal base (not shown) having a large heat capacity. Thereby, the heat of the holder 27 is quickly transmitted to the pedestal, and more efficient heat dissipation becomes possible. In addition, if it is set as the structure which water-cools the base itself, much higher heat dissipation will be acquired.
  • the power storage elements 11 to which the double-sided tape 35 has been applied in advance and the bus bar 13 is welded are arranged on the holding portion 41 of the fixed plate 39.
  • a jig (not shown) is also used, and the bus bars 13 are arranged so as to be in contact with the adjacent end face electrode 15.
  • the fixing plate 39 and the end face electrode of the electricity storage element 11 arranged by the jig and the flat end portion 21 of the bus bar 13 are connected by welding.
  • the protective sheet (not shown) of the double-sided tape 35 is peeled off, and the fixing plate 39 is fixed to the holder 27 with the fixing plate screw 43 so that the electric storage element 11 is accommodated in the concave surface 29 of the holder 27.
  • the bus bar 13 connected to the power storage element 11 at the right end of the rear row in FIG. 1 and the end face electrode 15 of the power storage element 11 at the right end of the front row are connected by welding.
  • the positive electrode terminal 25 is welded to the end electrode 15 at the left end of the rear row.
  • the case 47 is fixed to the holder 27. Both are fixed by a case fixing screw 49. Thereafter, the circuit board 53 is electrically connected to the bus bar terminal 23 and mechanically connected to the case 47 with the circuit board fixing screw 55.
  • the above assembling method is an example, and any method other than the above may be used as long as the assembling is possible, such as fixing the power storage element 11 to the holder 27 first.
  • the portion of the peripheral surface of the electricity storage element 11 that is accommodated in the concave surface 29 of the holder 27 and the concave surface 29 of the holder 27 are joined by the double-sided tape 35 (insulating bonding material).
  • the power storage element 11 is firmly fixed to the holder 27, and the vibration resistance is improved.
  • the double-sided tape 35 is interposed between the peripheral surface of the power storage element 11 and the concave surface 29, the heat of the power storage element 11 is efficiently transmitted to the holder 27 via the double-sided tape 35, and the heat dissipation is improved. Therefore, it is possible to realize a power storage unit that can achieve both vibration resistance and high heat dissipation.
  • the fixing plate 39 is made of resin, but it may be made of metal (for example, aluminum). Thereby, since the heat of the electrical storage element 11 is also radiated from the fixed plate 39, further high heat dissipation is obtained. Further, by forming a large number of fins 45 on the outer wall surface of the fixed plate 39, the fins 45 are made of metal, so that even higher heat dissipation can be obtained.
  • the fixing plate 39 is made of metal, an insulating bonding material is provided between the concave surface (holding portion 41) of the fixing plate 39 and the peripheral surface of the electricity storage element 11 in order to insulate the plurality of electricity storage elements 11. It is necessary to distribute. Specifically, if the double-sided tape 35 is used as the insulating bonding material, the entire peripheral surface of the power storage element 11 may be covered with the double-sided tape 35. In this case, similarly to the radius Rk of the concave surface 29 of the holder 27, the radius of the concave surface of the fixing plate 39 is determined such that the difference from the radius Rc of the power storage element 11 is less than the thickness t of the double-sided tape 35.
  • the fixing plate 39 is fastened to the holder 27 with the fixing plate screw 43 to generate a stress that pushes the power storage element 11 into the concave surface 29 due to the elasticity of the fixing plate 39.
  • an elastic portion 57 may be provided on at least a part of the fixed plate 39 that contacts the power storage element 11.
  • the elastic portion 57 for example, the U-shaped cantilever shown in FIG. At this time, the elastic portion 57 is formed by being bent toward the holding portion 41 side.
  • the elastic portion 57 presses the peripheral surface of each power storage element 11, so that it is more reliable than the indentation stress due to the elasticity of the entire fixing plate 39 described in the configuration of FIG. A stress can be applied to each power storage element 11. Therefore, it is possible to more firmly fix the vibration.
  • the material of the fixing plate 39 may be resin or metal.
  • the double-sided tape 35 is used as the insulating bonding material when the peripheral surface of the power storage element 11 and the concave surface 29 are bonded, but this may also be used as an adhesive containing a thermally conductive filler. Good.
  • the adhesive itself has plasticity, like the rubber base material 37 of the double-sided tape 35, the adhesive layer becomes thin by pushing the power storage element 11 into the concave surface 29, and good thermal conductivity is obtained. .
  • the adhesive can be evenly distributed in the gap between the peripheral surface of the power storage element 11 and the concave surface 29, and can be firmly held.
  • the peripheral surface electrode 17 of the power storage element 11 may come into contact with the holder 27 and be electrically short-circuited.
  • a thermally conductive filler made of ceramics Thereby, even if it pushes the electrical storage element 11 into the concave surface 29, since a heat conductive filler exists between both, the short circuit possibility of the surrounding surface electrode 17 and the holder 27 can be reduced.
  • the adhesive since the adhesive has higher plasticity than the double-sided tape 35, it can be interposed as thinly as possible between the peripheral surface of the power storage element 11 and the concave surface 29. Therefore, heat dissipation becomes good. However, since a uniform application process and a curing process of the adhesive are required, the assemblability is inferior to that of the double-sided tape 35. Therefore, any insulating bonding material may be used as appropriate in accordance with required heat dissipation and assembly ease. Further, the adhesive may be arranged between the concave surface (holding portion 41) of the fixing plate 39 and the peripheral surface of the power storage element 11.
  • the power storage element 11 has the peripheral electrode 17.
  • the power storage element 11 may be provided with an insulating portion such as an insulating tube on the peripheral surface.
  • the end face electrodes are arranged on both ends of the cylinder. Therefore, since the peripheral surface of the electricity storage element 11 is insulated by the insulating tube, the bonding material with the holder 27 does not need to be insulative. Therefore, for example, when the double-sided tape 35 is used, the adhesive portion 38 can contain a conductive filler such as a metal as a thermal conductive filler. Thereby, compared with the heat conductive filler which consists of ceramics etc., the heat conductivity in the double-sided tape 35 is improved.
  • the insulating tube is thicker than the double-sided tape 35 and the adhesive, so that the thermal resistance increases accordingly. Therefore, particularly in applications where charging and discharging are frequently performed, even if the conductive filler is used, the cooling performance may be insufficient. In this case, the configuration of the present embodiment is desirable.
  • an electric double layer capacitor is used as the storage element 11, but this may be another capacitor such as an electrochemical capacitor or a secondary battery.
  • the power storage unit of the present invention can simultaneously achieve vibration resistance and high heat dissipation, it is particularly useful as a power storage unit that frequently charges and discharges power storage elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Power Sources (AREA)

Abstract

 複数の蓄電素子(11)が互いに電気的に接続されるとともに、蓄電素子(11)の周面のうちの凹面(29)に収納される部分と凹面(29)とが両面テープ(35)で接合されるので、蓄電素子(11)がホルダ(27)に強固に固定されるとともに、蓄電素子(11)の熱が両面テープ(35)を介して効率よくホルダ(27)に伝達される。

Description

蓄電ユニット
 本発明は、蓄電素子に電力を蓄え、その電力を必要な時に放電する蓄電ユニットに関するものである。
 従来から、電力を蓄えその電力を必要な時に放電するために、二次電池や大容量キャパシタ等の蓄電素子を複数個使用して構成された蓄電ユニット(例えば、特許文献1および特許文献2を参照)が、広く利用されている。
 このような蓄電ユニットについて、その従来技術を図面を用いて以下に説明する。
 図7は従来の蓄電ユニットの全体構造を示す組立て分解斜視図であり、ここでは、蓄電ユニットとして、特許文献1に開示されている電池パックを示している。この電池パックは、図7に示すように、複数の電池101がスペーサ103により俵積み状に配置される。さらに、それぞれの電池101の両端には正負の電極が構成され、隣り合う電池101の電極の正負が逆になるように配置される。
 スペーサ103によって2段に並べられた、これらの電池101の電極には、複数の電池リード板105が電気的に接続されている。これにより、複数の電池101は直並列になるように接続される。
 このように構成された複数の電池101のうち、下段の電池101は、蓋ケース107に設けた案内溝109に沿って収納される。この時、案内溝109に貼付した図示しない両面テープにより電池101を固定している。
 蓋ケース107には電池101の全体を覆うように本体ケース111が被せられる。本体ケース111の上面には基板ホルダ113を介して回路基板115が配される。回路基板115には複数の出力リード117が電気的に接続されており、これらが電池リード板105と一体形成された接続端子119と電気接続されている。
 このような構成とすることにより、電池101が俵積み状に配置されるので、無駄なスペースが少なくなり小型化が可能になるとともに、電池101の側面の一部が両面テープにより蓋ケース107に固定されるので、耐振動性に優れた電池パックを実現できる。
特開2006-134801号公報 特開2005-317458号公報
 上記のように図7に示す従来の電池パックによると、確かに小型で良好な耐振動性が得られるのであるが、例えば回生電力が発生している間は電池(蓄電素子)101に充電し、その後、負荷に電力を供給する用途のように、電池101の充放電を頻繁に繰り返す場合は、電池101の内部抵抗に起因した発熱が大きくなる。特に、電池パックを構成したときに、隣り合う電池101に囲まれる中央部分の電池101は、電池101を俵積み状に配置しているため熱がこもりやすくなる。
 ここで、充放電による発熱が緩やかな場合は他の電池101にも熱が伝導するため、いずれ均熱状態に至るが、充放電が頻繁で発熱速度が速い場合は、電池101が均熱状態になるまでに時間がかかり、その間、電池101の温度差が発生する。この状態が繰り返されると、特定の電池101(この場合は中央部分の電池101)が高温状態となる期間が長くなり、その放熱が不十分になる可能性があるという課題があった。
 これに対し、スペーサ103を金属製にする構成の電池パックについての技術(例えば、特許文献2を参照)が検討されている。これにより、スペーサ103が熱を伝えやすくするので、均熱状態に至るまでの期間を短くすることができる。しかし、特許文献2の電池パックでは、図8に示す電池101とスペーサ103の概略断面図によると、熱伝導の良好な金属製のスペーサ103を用いているものの、各電池101とスペーサ103とは、太点線で示したように、電池101の円周上の4ヶ所と接触しているのみである。従って、電池101で発生した熱は4ヶ所の接触点からのみ、スペーサ103に伝達されることになる。
 このことから、たとえスペーサ103を金属製としても、頻繁な充放電を行う用途に従来の電池パックを適用する場合には、依然として放熱が不十分になる可能性があるという課題があった。
 本発明は、上記従来の課題を解決するもので、蓄電ユニットに加わる大きな振動に対するより高い耐振動性と、蓄電素子からの発熱に対するより良好な放熱性とを両立することができる蓄電ユニットを提供することを目的とする。
 前記の課題を解決するために、本発明の蓄電ユニットは、円柱形状を有し互いに電気的に接続される複数の蓄電素子と、金属からなり前記蓄電素子の円柱形状の周面の一部を収納する円弧状の凹面を有するホルダと、前記蓄電素子を保持するように前記ホルダに取り付けられた固定板と、前記蓄電素子の周面と前記ホルダの凹面との間に配置され前記蓄電素子と前記ホルダとを接合する第1の接合材とを備えたことを特徴とするものである。
 本発明によれば、蓄電素子の周面のうちでホルダの凹面に収納される部分とホルダの凹面との間に接合材が介在することにより、蓄電素子におけるホルダの凹面に収納される部分全体が接合材でホルダに強固に固定されることになるため、蓄電ユニットに大きな振動が加わっても蓄電素子が位置ずれしたり蓄電ユニットから外れたりする可能性が低減されるとともに、蓄電素子からの発熱が、従来のように蓄電素子が4ヶ所だけでスペーサと接する場合に比べて、接合材を介して効率よくホルダに伝達される。
 そのため、蓄電ユニットに加わる大きな振動に対するより高い耐振動性と、蓄電素子からの発熱に対するより良好な放熱性とを両立することができるという効果が得られる。
図1は、本発明の実施の形態の蓄電ユニットの全体構造を示す組立て分解斜視図である。 図2Aは、同実施の形態の蓄電ユニットにおける蓄電素子の組立て前の外観構造を示す斜視図である。 図2Bは、同実施の形態の蓄電ユニットにおける蓄電素子の組立て後の外観構造を示す斜視図である。 図3は、同実施の形態の蓄電ユニットにおける蓄電素子のホルダへの収納状態を示す部分断面図である。 図4は、同実施の形態の蓄電ユニットにおける両面テープの内部構造を示す部分断面図である。 図5は、同実施の形態の蓄電ユニットにおける組立て後の全体構造を示す外観斜視図である。 図6は、同実施の形態の蓄電ユニットにおける固定板の他の構造例を示す斜視図である。 図7は、従来の電池パック(蓄電ユニット)の全体構造を示す組立て分解斜視図である。 図8は、従来の電池パック(蓄電ユニット)における電池のスペーサへの収納状態を示す部分断面図である。
 以下、本発明の実施の形態を示す蓄電ユニットについて、図面を参照しながら具体的に説明する。
 図1は本実施の形態の蓄電ユニットの全体構造を示す組立て分解斜視図である。図2A、図2Bは本実施の形態の蓄電ユニットにおけるバスバー付き蓄電素子の外観構造を示す斜視図であり、図2Aは組立て前の分解斜視図を、図2Bは組立て後の斜視図を、それぞれ示す。図3は本実施の形態の蓄電ユニットにおいて蓄電素子をホルダに収納した状態を示す概略部分断面図である。図4は本実施の形態の蓄電ユニットにおける両面テープの内部構造を示す概略部分断面図である。図5は本実施の形態の蓄電ユニットにおける組立て後の全体構造を示す外観斜視図である。図6は本実施の形態の蓄電ユニットにおける固定板の他の構造例を示す斜視図である。
 図1において、蓄電ユニットは蓄電素子11を12個使用している。これらはバスバー13により隣の蓄電素子11と電気的に接続される構成としている。なお、ここでは12個の蓄電素子11を全て直列に接続する構成とした。
 ここで、蓄電素子11とバスバー13の詳細について、図2A、図2Bを用いて説明する。図2Aにおいて、蓄電素子11は大容量で急速充放電特性に優れる電気二重層キャパシタを用いた。この蓄電素子11は、図2Aに示すように円柱形状を有し、その一端(図2Aでは上端)には端面電極15が構成されている。本実施の形態では、端面電極15を正極とした。また、蓄電素子11の円柱形状はアルミニウム板を押し出し成型することにより形成されており、円柱の周面が周面電極17を構成している。本実施の形態では、周面電極17を負極とした。
 なお、蓄電素子11の底面も周面と一体で成型されているので負極となるが、本実施の形態では底面への電気的接続を行わない構成とした。また、図2Aには示していないが、端面電極15と周面電極17の間は絶縁材を介在させることにより、電気的に絶縁を保つ構成としている。
 次に、バスバー13の構成について説明する。バスバー13は隣同士の蓄電素子11を互いに電気的に接続する部材で、アルミニウムをプレス成型することにより構成している。成型後の形状を図2Aに示す。バスバー13は略L字形状を有し、周面電極溶接部19は周面電極17の外周に沿った形状に曲げ加工が施されている。一方、バスバー13の平端部21にはバスバー端子23が一体形成されている。さらに、周面電極溶接部19と平端部21の間には、屈曲部24が設けられている。
 これにより、平端部21を隣の蓄電素子11の端面電極15に溶接接続する際に、位置ずれがあっても屈曲部24で吸収することができるとともに、組立て後の蓄電ユニット全体に外部から振動が加わっても、平端部21と端面電極15の溶接接続部分に加わる応力を屈曲部24で緩和することができる。従って、振動により平端部21と端面電極15の溶接部分が外れる可能性を低減することができ、良好な耐振動性が得られる。
 バスバー13を蓄電素子11に接続した状態を図2Bに示す。上記したように、バスバー13の周面電極溶接部19は、蓄電素子11の周面電極17の外周に合致する形状としているので、両者を合致させた状態で溶接することにより、高信頼な電気的、機械的接続が可能となる。
 ここで、図1に戻り、バスバー13を溶接接続した複数の蓄電素子11に対し、隣の蓄電素子11の端面電極15と、バスバー13の平端部21を溶接することにより、1列に付き6個の蓄電素子11が直列接続される。なお、この溶接は、各蓄電素子11の端面電極15が正確に隣のバスバー13の平端部21と接するように位置決めができる治具を用いて行っている。こうして構成した6個の蓄電素子11を2列用いて、12個の蓄電素子11が全て直列接続されるようにするのであるが、そのために、図1に示すように、後列右端のバスバー13は、前列右端の端面電極15上に重なるように方向を90度回転させて溶接接続している。
 なお、蓄電素子11において、図1の後列左端の端面電極15には、隣のバスバー13が存在しないため、全蓄電素子11の電力入出力用の正極端子25を溶接接続している。正極端子25はバスバー13の周面電極溶接部19を平端部21とした板形状を有し、バスバー13と同様にアルミニウムを成型して構成されている。また、バスバー端子23や屈曲部24も一体で形成されている。
 一方、蓄電素子11における図1の前列左端のバスバー13は、隣の端面電極15が存在しない。そこで、このバスバー13を全蓄電素子11の電力入出力用の負極端子26として用いている。
 次に、蓄電素子11のホルダ27への取り付け部分について説明する。
 ホルダ27は、図1に示すように、金属製(ここではアルミニウム製とした)の直方体に、蓄電素子11の周面の一部を収納する円弧状の凹面29を複数箇所(ここでは12箇所)設けた構成を有する。さらに、後述する固定板やケースをネジ止めするための固定板ネジ穴31やケースネジ穴33も設けられている。なお、凹面29は、図1のホルダ27を上面から見た時、略半円形状になるように形成されている。このようなホルダ27は押し出し成型や切削加工等により形成される。
 また、凹面29は蓄電素子11が俵積み状にならないように設けられている。これにより、ホルダ27の熱容量を大きくすることができる。さらに、蓄電素子11の間隔が広がるので、他の蓄電素子11の発熱の影響を互いに受けにくくすることができる。その結果、良好な放熱性が得られる。
 ホルダ27の凹面29には、蓄電素子11の周面の一部が収納されるが、この際に、蓄電素子11の周面のうちで凹面29に収納される部分と、ホルダ27の凹面29とを、絶縁性を有する接合材(以下、絶縁性接合材という)で接合している。ここで、接合材を絶縁性としたのは、蓄電素子11が周面電極17を有することから、金属製のホルダ27に複数の蓄電素子11を収納した時に、互いの周面電極17が電気的に短絡しないようにするためである。
 なお、絶縁性接合材としては、両面テープ35を用いた。すなわち、蓄電素子11において、凹面29に収納される周面部分に両面テープ35を貼付し、さらにホルダ27に収納することで、蓄電素子11の周面が凹面29と接合される。図1の構成では、蓄電素子11の周面のおよそ半分の面積が凹面29と両面テープ35で固定される。なお、両面テープ35は先に凹面29に貼付した後、蓄電素子11を収納する構成としてもよい。
 ここで、蓄電素子11の周面とホルダ27の凹面29との接合部分について、図3を用いて説明する。
 図3は本実施の形態の蓄電ユニットにおける蓄電素子とホルダの接合部分での蓄電素子のホルダへの収納状態を示す概略部分断面図である。図3より明らかなように、蓄電素子11の周面を凹面29に収納するためには、蓄電素子11の半径Rcが凹面29の半径Rkより小さくなければならない。このような大きさの関係を有することにより、蓄電素子11の周面は、凹面29の円周上の1点とのみ接することになり、その他の部分には隙間が生じる。この状態では蓄電素子11が頻繁な充放電により発熱しても、ホルダ27から効率よく放熱することができない。
 そこで、本実施の形態では、前記隙間を埋めるために、蓄電素子11の周面と凹面29を両面テープ35で接合している。この際、両面テープ35の厚さtは、図3に示すように、凹面29の半径Rkと蓄電素子11の半径Rcの差以上とした。その結果、両面テープ35により接合した後の蓄電素子11の周面と凹面29の隙間には全体に両面テープ35が埋め込まれることになる。
 これにより、蓄電素子11の熱は両面テープ35を介してホルダ27に伝わるため、効率的な放熱が可能となる。さらに、上記したように、蓄電素子11に比べ熱容量の大きな金属製のホルダ27により放熱を行うため、頻繁に蓄電素子11を充放電しても、蓄電ユニットの中央部分等に配される特定の蓄電素子11が高温状態になる可能性を低減できる。
 ここで、両面テープ35の構成について、図4により説明する。
 図4は本実施の形態の蓄電ユニットにおける両面テープ35の内部構造を示す概略部分断面図である。両面テープ35は、基材37と、その両面に形成された粘着部38との積層構造を有する。なお、実際には粘着部38は基材37に比べ薄く形成されるが、図4ではわかりやすくするために、粘着部38を厚く示している。また、基材37とその両面の粘着部38の厚さの合計を、前述の両面テープ35の厚さt(=Rk-Rc)とした。
 このような両面テープ35において、まず基材37には弾性を有する樹脂(例えば箔状のゴム)を用いた。これにより、図3に示すように、蓄電素子11の周面を凹面29に収納し、後述する固定板で蓄電素子11を保持した時に、蓄電素子11は凹面29の奥に向かって押し込まれる応力を受けるので、両面テープ35の基材37は、凹面29の最も奥の部分が薄くなり、手前の部分ほど厚くなるように変形する。すなわち、両面テープ35の厚さtは、蓄電素子11をホルダ27と前記固定板で固定した際に不均一になる。その結果、半径の異なる蓄電素子11と凹面29の間に形成される隙間全体を両面テープ35が埋めるので、効率的な放熱が可能となる。
 また、両面テープ35の粘着部38には熱伝導性フィラが含有される構成とした。熱伝導性フィラとしては、例えばアルミナやシリカ等のセラミックス製のものを用いている。これにより、樹脂成分からなる粘着部38における熱伝導性を改善することができる。さらに、熱伝導性フィラを含有することにより、次のような効果が得られる。
 上記したように基材37が箔状のゴム等の樹脂であるので、複数(ここでは6個)の蓄電素子11が後述する固定板により、一度に凹面29に押し込まれた時、それぞれの蓄電素子11に印加される応力の大きさやバラツキによっては、基材37の一部に大きな応力が印加され、切断に至る可能性がある。あるいは、蓄電ユニットの使用に伴い、振動や熱衝撃を受けることで基材37の劣化が進行し、応力が集中している部分が切断する可能性もある。もし、基材37が切断されると、その部分には基材37が存在しない状態となり、さらに粘着部38は基材37より薄いため、蓄電素子11の周面が凹面29と直接接触し、電気的に導通状態(短絡状態)となる可能性がある。
 これに対し、本実施の形態の両面テープ35は、粘着部38に熱伝導性フィラを含有しているので、蓄電素子11が凹面29に強く押し込まれたり、劣化が進行することにより、基材37が切断されたとしても、粘着部38の全体に満遍なく含有された熱伝導性フィラが蓄電素子11の周面と凹面29の間に介在している。また、粘着部38は基材37の両面に形成されているので、熱伝導性フィラの介在量も確保できる。さらに、熱伝導性フィラは絶縁性を有している。これらのことから、図4に示す両面テープ35を使用することにより、蓄電素子11の周面が凹面29と直接接触して短絡する可能性を低減することができ、高放熱性と高信頼性を同時に得ることが可能となる。
 ここで、図1に戻り、ホルダ27に収納された蓄電素子11は、さらに固定板39によっても保持される。固定板39は樹脂製で、蓄電素子11の円柱形状の周面の一部を収納し、保持するために6ヶ所の円弧状の凹面からなる保持部41を有している。この保持部41は、凹面29に収納された蓄電素子11を保持した時に、ホルダ27と固定板39の間に僅かな隙間ができるような寸法としている。
 これにより、ホルダ27に固定板39を取り付ける際に、両者間の隙間がなくなるように8個の固定板ネジ43を固定板ネジ穴31に締め込むことで、固定板39の樹脂が有する弾性により、蓄電素子11をホルダ27側に押し込むようにして保持する。
 その結果、蓄電素子11は両面テープ35でホルダ27と接合されるとともに、固定板39の弾性によって強固に保持される。従って、振動が顕著な用途(例えば、ハイブリッド建設機械など)に蓄電ユニットを使用したとしても、蓄電素子11が外れたり、バスバー13の接続が切断される可能性が低減され、良好な耐振動性が得られる。
 なお、固定板39の保持部41における下端部には底板44が一体形成されている。従って、蓄電素子11の底部は底板44により外部と遮断される構成となる。ここで、蓄電素子11を保持部41で保持した時に、蓄電素子11の底部が当接しない位置になるように底板44を形成している。これにより、蓄電素子11の高さにバラツキがあっても、蓄電素子11の底部と底板44との隙間に前記バラツキが収まる。
 このような構成とすることにより、蓄電素子11の全体が、凹面29、保持部41、底板44、および後述するケースにより、外部と遮断されるので、蓄電素子11やバスバー13への埃や粒子状浮遊物等の不純物の付着を低減することができる。従って、不純物による蓄電素子11やバスバー13の腐食可能性が低減されるので、高信頼性が得られる。
 なお、固定板39の保持部41と反対面、すなわち外壁面にはフィン45が一体形成されている。これにより、固定板39の機械的強度を増すことができるとともに、フィン45の分だけ外壁の表面積が増えるので、固定板39からの放熱性を改善することができる。なお、図1の固定板39の構成では、中央部の1ヶ所にのみフィン45を設けているが、さらに複数箇所に設けてもよいし、フィン45の形状も図1の水平方向に限らず垂直方向等に設けてもよい。
 次に、固定板39がホルダ27の両側に固定された状態で、図1に示すように、ホルダ27の上部にはケース47が固定される。具体的には、ケース47を介してケース固定ネジ49をケースネジ穴33に締め込むことにより固定している。これにより、蓄電素子11の両面テープ35が貼付されていない上部がケース47により内包される。その結果、上記したように蓄電素子11の上部を外部と遮断でき、埃等の付着を低減している。
 ケース47は樹脂製で、その上面には複数の穴51が設けられている。この穴51を介して、バスバー13に一体形成したバスバー端子23をケース47の上面から突出させる。ケース47の上面には回路基板53が配されるが、その際に、回路基板53に設けた端子穴(図示せず)にバスバー端子23を挿入し、半田付けすることにより、回路基板53とバスバー端子23が電気的に接続される。
 その結果、回路基板53は各蓄電素子11の電気的接続点における電圧を検出することができる。さらに、回路基板53は、検出した電圧に応じて、各蓄電素子11の両端電圧を揃えるバランス回路(図示せず)を内蔵しているが、前記バランス回路による各蓄電素子11の電圧の制御もバスバー端子23を介して行うことができる。なお、回路基板53には電圧検出回路や前記バランス回路を構成する複数の電子部品が実装されているが、図1では省略している。
 ここまでで説明した蓄電ユニットの組立て後の斜視図を図5に示す。回路基板53は、6個の回路基板固定ネジ55により、ケース47に固定される。また、正極端子25と負極端子26は、図示しない外部の充放電回路に接続される。なお、電力仕様に応じて、複数の蓄電ユニットを使用する場合は、各蓄電ユニットの正極端子25と負極端子26を互いに直列や並列に接続すればよい。
 複数の蓄電ユニットを使用する場合は、熱容量の大きい金属製台座(図示せず)にホルダ27が接するように固定する構成が望ましい。これにより、ホルダ27の熱が速やかに台座に伝達され、さらに効率的な放熱が可能になる。なお、台座自体を水冷する構成にすれば、一層の高放熱性が得られる。
 次に、このような蓄電ユニットの組立て方法の一例を図1により説明する。
 まず、あらかじめ両面テープ35が貼付されるとともにバスバー13が溶接された蓄電素子11を、固定板39の保持部41に並べる。その際、各蓄電素子11の高さ方向の位置決めを行うために、図示しない治具を併用し、バスバー13が隣の端面電極15に接するように並べる。
 次に、固定板39と治具により並べられた蓄電素子11の端面電極とバスバー13の平端部21を溶接接続する。
 次に、両面テープ35の保護シート(図示せず)を剥がし、ホルダ27の凹面29に蓄電素子11が収納されるように、固定板39を固定板ネジ43でホルダ27に固定する。2列の蓄電素子11をホルダ27に固定した後は、図1の後列右端の蓄電素子11に接続したバスバー13と、前列右端の蓄電素子11の端面電極15を溶接接続する。さらに後列左端の端面電極15に正極端子25を溶接接続する。
 次に、ホルダ27にケース47を固定する。両者の固定はケース固定ネジ49による。その後、回路基板53をバスバー端子23と電気的に接続するとともに、回路基板固定ネジ55でケース47に機械的に接続する。
 なお、上記した組立て方法は一例であり、上記以外にも、先に蓄電素子11をホルダ27に固定する等、組立て可能な順序であれば、どのような方法であっても構わない。
 以上の構成により、蓄電素子11の周面のうちでホルダ27の凹面29に収納される部分と、ホルダ27の凹面29との間を両面テープ35(絶縁性接合材)で接合しているので、蓄電素子11がホルダ27に強固に固定され、耐振動性が向上する。さらに、蓄電素子11の周面と凹面29の間に両面テープ35が介在するので、蓄電素子11の熱が両面テープ35を介して効率よくホルダ27に伝達され、放熱性が良好となる。従って、耐振動性と高放熱性の両立が可能な蓄電ユニットを実現できる。
 なお、本実施の形態では、固定板39を樹脂製としたが、これは金属製(例えばアルミニウム)でもよい。これにより、蓄電素子11の熱は固定板39からも放熱されるため、さらなる高放熱性が得られる。さらに、固定板39の外壁面に多数のフィン45を形成することで、フィン45が金属製であることと相まって、なお一層の高放熱性が得られる。
 但し、固定板39を金属製とする場合は、複数の蓄電素子11間を絶縁するために、固定板39の凹面(保持部41)と蓄電素子11の周面の間に絶縁性接合材を配する必要がある。具体的には、絶縁性接合材として両面テープ35を用いる場合であれば、蓄電素子11の周面全てを両面テープ35で覆えばよい。この場合、固定板39の凹面の半径は、ホルダ27の凹面29の半径Rkと同様に、蓄電素子11の半径Rcとの差が両面テープ35の厚さt以下となるように決定する。
 また、本実施の形態では、固定板39を固定板ネジ43でホルダ27に締め込むことで、固定板39の弾性により蓄電素子11を凹面29に押し込む応力を発生するようにしているが、これは、図6に示すように、固定板39における蓄電素子11と接する少なくとも一部分に弾性部57を設ける構成としてもよい。弾性部57としては、例えば図6のコの字状片持ち梁を複数箇所に一体で形成する。この時、弾性部57は保持部41側にたわませて形成する。
 これにより、固定板39をホルダ27に固定した時に、各蓄電素子11の周面を弾性部57が押さえるので、図1の構成で述べた固定板39全体の弾性による押し込み応力に比べ、より確実に応力を、各蓄電素子11に印加することができる。従って、振動に対しさらに強固な固定が可能となる。なお、この際の固定板39の材質は樹脂でも金属でもよい。
 また、本実施の形態では、蓄電素子11の周面と凹面29を接合する際に、絶縁性接合材として両面テープ35を用いたが、これは、熱伝導性フィラを含有した接着剤としてもよい。この場合は、接着剤自体が可塑性を有するため、両面テープ35のゴム製基材37と同様に、蓄電素子11を凹面29に押し込むことで接着層が薄くなり、良好な熱伝導性が得られる。さらに、接着剤は蓄電素子11の周面と凹面29の隙間にも満遍なく行き渡らせることができ、強固な保持も可能となる。
 なお、この場合も、蓄電素子11を凹面29に押し込みすぎることで、蓄電素子11の周面電極17がホルダ27に接触して、電気的に短絡してしまう可能性があるので、接着剤にはセラミックス製の熱伝導性フィラを含有させる。これにより、蓄電素子11を凹面29に押し込んでも、両者の間には熱伝導性フィラが介在するので、周面電極17とホルダ27の短絡可能性を低減することができる。
 このように、接着剤は両面テープ35に比べ高い可塑性を有するため、蓄電素子11の周面と凹面29の間にできるだけ薄く介在させることができる。従って、放熱性が良好になる。しかし、接着剤の均一な塗布工程や、硬化工程が必要となるため、両面テープ35と比べ、組立て性が劣る。ゆえに、必要とされる放熱性と組立て容易性に応じて、適宜いずれかの絶縁性接合材を用いればよい。また、固定板39の凹面(保持部41)と蓄電素子11の周面の間に前記接着剤を配する構成としてもよい。
 また、本実施の形態では、蓄電素子11に周面電極17を有する構成としたが、これは、周面に絶縁チューブ等の絶縁部を設けた蓄電素子11であってもよい。この場合は、図7の電池101と同様に、円柱の両端に端面電極を配する構成となる。従って、蓄電素子11の周面は前記絶縁チューブによって絶縁されるため、ホルダ27との接合材は絶縁性である必要はない。そこで、例えば両面テープ35を用いる場合は、粘着部38に熱伝導性フィラとして金属等の導電性フィラを含有することができる。これにより、セラミックス等からなる熱伝導性フィラに比べて、両面テープ35における熱伝導性が改善される。
 なお、接着剤を用いる場合は、前記接着剤に前記導電性フィラを含有すればよい。しかし、本実施の形態の構成と比較すると、前記絶縁チューブの厚さは、両面テープ35や前記接着剤に比べ厚いので、その分、熱抵抗が大きくなる。従って、特に高頻度な充放電を行う用途等では、前記導電性フィラを用いたとしても冷却性が不十分になる可能性がある。この場合は、本実施の形態の構成の方が望ましい。
 また、本実施の形態において、蓄電素子11には電気二重層キャパシタを用いたが、これは電気化学キャパシタ等の他のキャパシタや二次電池でもよい。
 本発明の蓄電ユニットは、耐振動性と高放熱性を同時に実現できるため、特に頻繁に蓄電素子を充放電する蓄電ユニット等として有用である。

Claims (11)

  1.  円柱形状を有し互いに電気的に接続される複数の蓄電素子と、
     金属からなり前記蓄電素子の円柱形状の周面の一部を収納する円弧状の凹面を有するホルダと、
     前記蓄電素子を保持するように前記ホルダに取り付けられた固定板と、
     前記蓄電素子の周面と前記ホルダの凹面との間に配置され前記蓄電素子と前記ホルダとを接合する第1の接合材とを備えた
     ことを特徴とする蓄電ユニット。
  2.  前記第1の接合材は、前記ホルダの凹面の半径と前記蓄電素子の半径の差以上の厚さを有し絶縁材料からなる両面粘着テープである
     ことを特徴とする請求項1に記載の蓄電ユニット。
  3.  前記固定板は、弾性特性を有する絶縁材料からなり前記蓄電素子の円柱形状の周面の一部を収納する円弧状の凹面が形成された
     ことを特徴とする請求項1に記載の蓄電ユニット。
  4.  前記固定板は、金属からなり前記蓄電素子の円柱形状の周面の一部を収納する円弧状の凹面が形成され、
     前記蓄電素子の周面と前記固定板の凹面との間に配置され前記蓄電素子と前記固定板とを接合する絶縁材料からなる第2の接合材を備えた
     ことを特徴とする請求項2に記載の蓄電ユニット。
  5.  前記第2の接合材は、前記固定板の凹面の半径と前記蓄電素子の半径の差以上の厚さを有し絶縁材料からなる両面粘着テープである
     ことを特徴とする請求項4に記載の蓄電ユニット。
  6.  前記第1の接合材は、両面の粘着部が熱伝導性フィラを含有して形成された
     ことを特徴とする請求項2に記載の蓄電ユニット。
  7.  前記第1の接合材は、前記蓄電素子を前記ホルダと前記固定板で固定したときに厚さが不均一になるように形成された
     ことを特徴とする請求項6に記載の蓄電ユニット。
  8.  前記第2の接合材は、両面の粘着部が熱伝導性フィラを含有して形成された
     ことを特徴とする請求項5に記載の蓄電ユニット。
  9.  前記第2の接合材は、前記蓄電素子を前記ホルダと前記固定板で固定したときに厚さが不均一になるように形成された
     ことを特徴とする請求項8に記載の蓄電ユニット。
  10.  前記固定板は、外壁面にフィンが形成された
     ことを特徴とする請求項1に記載の蓄電ユニット。
  11.  前記固定板は、前記蓄電素子と接する少なくとも一部分に弾性部が形成された
     ことを特徴とする請求項1に記載の蓄電ユニット。
PCT/JP2010/001218 2009-06-26 2010-02-24 蓄電ユニット WO2010150439A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080029000.4A CN102460621B (zh) 2009-06-26 2010-02-24 蓄电单元
EP10791767.6A EP2447966A4 (en) 2009-06-26 2010-02-24 Electrical storage unit
US13/377,871 US9478362B2 (en) 2009-06-26 2010-02-24 Electrical storage unit
KR1020117025903A KR101396643B1 (ko) 2009-06-26 2010-02-24 축전 유닛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-151678 2009-06-26
JP2009151678A JP5451211B2 (ja) 2009-06-26 2009-06-26 蓄電ユニット

Publications (1)

Publication Number Publication Date
WO2010150439A1 true WO2010150439A1 (ja) 2010-12-29

Family

ID=43386230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001218 WO2010150439A1 (ja) 2009-06-26 2010-02-24 蓄電ユニット

Country Status (6)

Country Link
US (1) US9478362B2 (ja)
EP (1) EP2447966A4 (ja)
JP (1) JP5451211B2 (ja)
KR (1) KR101396643B1 (ja)
CN (1) CN102460621B (ja)
WO (1) WO2010150439A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101153A1 (de) * 2011-01-28 2012-08-02 Bombardier Transportation Gmbh Anordnung zum halten einer mehrzahl von elektrischen energiespeicherzellen
WO2012130424A1 (de) * 2011-03-31 2012-10-04 Audi Ag Batterie für ein kraftfahrzeug
WO2015001699A1 (ja) * 2013-07-02 2015-01-08 ソニー株式会社 蓄電装置、蓄電システム、電子機器、電動車両および電力システム

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160260A (ja) * 2011-01-28 2012-08-23 Nifco Inc バッテリパック
JP5296826B2 (ja) * 2011-03-30 2013-09-25 株式会社小松製作所 蓄電装置およびこれを備えた建設機械
JP5821249B2 (ja) * 2011-04-07 2015-11-24 日本ケミコン株式会社 コンデンサ装置
JP5685731B2 (ja) * 2011-08-22 2015-03-18 パナソニックIpマネジメント株式会社 電池パック
US20140220391A1 (en) * 2011-08-26 2014-08-07 Sanyo Electric Co., Ltd., Power source apparatus, and vehicle and power storage device equipped with that power source apparatus
JP5887866B2 (ja) * 2011-11-22 2016-03-16 日本ケミコン株式会社 コンデンサ装置の製造方法
WO2013114426A1 (ja) * 2012-01-30 2013-08-08 トヨタ自動車株式会社 車両
WO2014064900A1 (ja) * 2012-10-22 2014-05-01 三洋電機株式会社 パック電池及びその製造方法
WO2014079507A1 (en) * 2012-11-23 2014-05-30 Husqvarna Ab Apparatus for providing battery pack cooling
US9118093B2 (en) 2013-01-03 2015-08-25 Caterpillar Inc. Cooling jacket for battery pack
DE102013211459A1 (de) * 2013-06-19 2014-12-24 Robert Bosch Gmbh Handwerkzeugmaschinenakkupack
CN104241582A (zh) * 2013-06-19 2014-12-24 罗伯特·博世有限公司 手工工具机蓄电池组
JP2015005427A (ja) * 2013-06-21 2015-01-08 小島プレス工業株式会社 電池保持装置
JP6271178B2 (ja) * 2013-07-23 2018-01-31 三洋電機株式会社 バッテリ装置とこのバッテリ装置を備える電動車両及び蓄電装置
US10312554B2 (en) * 2014-01-28 2019-06-04 Ford Global Technologies, Llc Battery cooling channel with integrated cell retention features
JP6187351B2 (ja) * 2014-03-27 2017-08-30 豊田合成株式会社 電池モジュールおよびその製造方法
WO2015178153A1 (ja) * 2014-05-21 2015-11-26 旭化成Fdkエナジーデバイス株式会社 蓄電モジュール及び蓄電モジュールの製造方法
CN103986309A (zh) * 2014-05-23 2014-08-13 台达电子企业管理(上海)有限公司 直流电容模块及其叠层母排结构
JP6213394B2 (ja) * 2014-06-27 2017-10-18 豊田合成株式会社 電池モジュール
CN104157459B (zh) * 2014-07-31 2017-03-29 珠海松下马达有限公司 一种伺服驱动器及其电容帽组件的安装方法
US10115531B2 (en) 2014-08-19 2018-10-30 Ls Mitron Ltd. Energy storage device having improved heat-dissipation characteristic
JP6347768B2 (ja) * 2015-01-22 2018-06-27 カルソニックカンセイ株式会社 コンデンサ構造
WO2016117441A1 (ja) * 2015-01-22 2016-07-28 カルソニックカンセイ株式会社 コンデンサ構造
JP6394448B2 (ja) 2015-03-16 2018-09-26 豊田合成株式会社 電池モジュールおよびその製造方法
US11309604B2 (en) * 2015-04-13 2022-04-19 Cps Technology Holdings Llc Thermal epoxy and positioning of electrochemical cells
JP6421256B2 (ja) 2015-06-12 2018-11-07 エルジー・ケム・リミテッド バッテリーモジュール
KR102056361B1 (ko) * 2015-07-20 2019-12-16 주식회사 엘지화학 전극 리드 연결 구조물, 전극 리드 연결 구조물을 포함하는 전지 모듈과 이를 포함하는 전지 팩
JP6629592B2 (ja) * 2015-12-25 2020-01-15 株式会社マキタ 電池パック
CN108496261B (zh) 2016-01-15 2021-03-16 株式会社村田制作所 电池组
WO2017145830A1 (ja) * 2016-02-25 2017-08-31 パナソニックIpマネジメント株式会社 コンデンサ
US20190221814A1 (en) * 2016-09-29 2019-07-18 Panasonic Intellectual Property Management Co., Ltd. Cell module
CN106784496B (zh) * 2017-01-25 2020-03-06 友达光电股份有限公司 电池模块
CN110622335B (zh) 2017-05-24 2023-04-04 松下知识产权经营株式会社 蓄电模块以及蓄电单元
EP3641609B1 (en) 2017-06-19 2022-11-09 Techtronic Floor Care Technology Limited Surface cleaning apparatus
KR102090255B1 (ko) * 2018-02-02 2020-03-17 주식회사 엘지화학 배터리 모듈의 제조방법 및 배터리 모듈
JP7325014B2 (ja) * 2018-03-27 2023-08-14 パナソニックIpマネジメント株式会社 蓄電モジュール
CN108767146B (zh) * 2018-04-11 2021-08-06 苏州达方电子有限公司 具灭火功效的抑制电池芯热失控的防护结构
JP7230997B2 (ja) * 2018-12-14 2023-03-01 株式会社明電舎 パルス電源用コンデンサモジュール
CN109638193A (zh) * 2018-12-21 2019-04-16 深圳航天东方红海特卫星有限公司 一种微小卫星用蓄电池结构
JP2020170683A (ja) 2019-04-05 2020-10-15 株式会社マキタ バッテリパック
CN110931697A (zh) * 2019-12-12 2020-03-27 惠州亿纬锂能股份有限公司 电池组合结构及组合电池包
DE102020102387A1 (de) * 2020-01-31 2021-08-05 Bayerische Motoren Werke Aktiengesellschaft Batteriemodul für eine Traktionsbatterie, Traktionsbatterie sowie Kraftfahrzeug
DE102020104573B4 (de) 2020-02-21 2021-09-30 Bayerische Motoren Werke Aktiengesellschaft Batteriezellenanordnung, Batterie und Kraftfahrzeug
SE2251434A1 (en) * 2022-12-07 2024-06-08 Northvolt Ab A method of arranging battery cells

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223165A (ja) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd 電源装置
JP2003168413A (ja) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 電池及びその製造方法
JP2005285458A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 電源装置および電源装置用電池セル
JP2005317459A (ja) * 2004-04-30 2005-11-10 Sanyo Electric Co Ltd パック電池
JP2005317458A (ja) 2004-04-30 2005-11-10 Sanyo Electric Co Ltd パック電池
JP2006134801A (ja) 2004-11-09 2006-05-25 Sanyo Electric Co Ltd パック電池
JP2007095483A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071652A (en) * 1976-03-29 1978-01-31 Minnesota Mining And Manufacturing Company Thermally conductive electrical tape
JPH09306447A (ja) * 1996-05-13 1997-11-28 Matsushita Electric Ind Co Ltd 電池パック
KR20040000387A (ko) * 1996-10-08 2004-01-03 히다치 가세고교 가부시끼가이샤 접착제 및 양면 접착 필름
JPH11269438A (ja) * 1998-03-25 1999-10-05 Dainippon Ink & Chem Inc 熱伝導難燃性感圧接着剤及び感圧接着テープ
DE10002142B4 (de) * 1999-01-28 2004-04-29 Sanyo Electric Co., Ltd., Moriguchi Stromversorgung enthaltend wiederaufladbare Batterien
DE10214367B4 (de) 2002-03-30 2006-08-24 Robert Bosch Gmbh Energiespeichermodul und Handwerkzeugmaschine
US20070053140A1 (en) * 2005-09-02 2007-03-08 Maxwell Technologies, Inc. Flexible enclosure for energy storage devices
KR100988445B1 (ko) 2006-02-13 2010-10-18 주식회사 엘지화학 전지팩 제조용 스페이서
US8293392B2 (en) * 2009-03-26 2012-10-23 Sanyo Energy (Usa) Corporation Battery holder for a battery array, and battery array

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223165A (ja) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd 電源装置
JP2003168413A (ja) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 電池及びその製造方法
JP2005285458A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 電源装置および電源装置用電池セル
JP2005317459A (ja) * 2004-04-30 2005-11-10 Sanyo Electric Co Ltd パック電池
JP2005317458A (ja) 2004-04-30 2005-11-10 Sanyo Electric Co Ltd パック電池
JP2006134801A (ja) 2004-11-09 2006-05-25 Sanyo Electric Co Ltd パック電池
JP2007095483A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2447966A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101153A1 (de) * 2011-01-28 2012-08-02 Bombardier Transportation Gmbh Anordnung zum halten einer mehrzahl von elektrischen energiespeicherzellen
WO2012130424A1 (de) * 2011-03-31 2012-10-04 Audi Ag Batterie für ein kraftfahrzeug
WO2015001699A1 (ja) * 2013-07-02 2015-01-08 ソニー株式会社 蓄電装置、蓄電システム、電子機器、電動車両および電力システム
US9917286B2 (en) 2013-07-02 2018-03-13 Murata Manufacturing Co., Ltd. Power storage device, power storage system, electronic apparatus, electric vehicle, and electric power system
US10147922B2 (en) 2013-07-02 2018-12-04 Murata Manufacturing Co., Ltd. Power storage device, power storage system, electronic apparatus, electric vehicle, and electric power system

Also Published As

Publication number Publication date
EP2447966A4 (en) 2018-04-04
JP2011009477A (ja) 2011-01-13
JP5451211B2 (ja) 2014-03-26
US9478362B2 (en) 2016-10-25
KR20120030041A (ko) 2012-03-27
CN102460621A (zh) 2012-05-16
EP2447966A1 (en) 2012-05-02
CN102460621B (zh) 2014-07-23
KR101396643B1 (ko) 2014-05-19
US20120082887A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5451211B2 (ja) 蓄電ユニット
US11894532B2 (en) Battery module and manufacturing method thereof
JP6653749B2 (ja) 電池ブロックおよび電池ブロックの製造方法
JP4127060B2 (ja) 車両用リチウムイオン組電池
KR100896131B1 (ko) 중대형 전지모듈
US11784360B2 (en) Battery module
KR100870457B1 (ko) 전지모듈
JP3662485B2 (ja) 電池パック
JP5546885B2 (ja) 電池パック
JP5374979B2 (ja) 電池と組電池
US11973207B2 (en) Cell unit for battery module
KR20060125603A (ko) 배터리 팩
KR20230051461A (ko) 이차 전지 및 이를 포함한 배터리 모듈
JP2008300288A (ja) 組電池
EP3800689B1 (en) Secondary battery, battery module and electric vehicle
CN110380112B (zh) 电池模组及组装方法、动力电池
JP2010061998A (ja) 電池と組電池
CN110379971B (zh) 电池模组及动力电池
KR101400083B1 (ko) 고분자 수지 충진에 의한 안전성이 향상된 단위모듈
KR101533991B1 (ko) 전지모듈 어셈블리
EP3937272A1 (en) Electrochemical cell module
JP2023180724A (ja) 蓄電装置
JP2018063827A (ja) 電池モジュールの製造方法
JP2023182431A (ja) 蓄電装置
KR20120135986A (ko) 제조공정성이 향상된 전지모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029000.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117025903

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4900/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13377871

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010791767

Country of ref document: EP