WO2010147188A1 - 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法 - Google Patents

溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法 Download PDF

Info

Publication number
WO2010147188A1
WO2010147188A1 PCT/JP2010/060310 JP2010060310W WO2010147188A1 WO 2010147188 A1 WO2010147188 A1 WO 2010147188A1 JP 2010060310 W JP2010060310 W JP 2010060310W WO 2010147188 A1 WO2010147188 A1 WO 2010147188A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum degassing
tank
molten glass
window
vacuum
Prior art date
Application number
PCT/JP2010/060310
Other languages
English (en)
French (fr)
Inventor
元之 広瀬
信治 竹下
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2010800254192A priority Critical patent/CN102803162A/zh
Priority to JP2011519838A priority patent/JPWO2010147188A1/ja
Publication of WO2010147188A1 publication Critical patent/WO2010147188A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a vacuum degassing apparatus for molten glass that removes bubbles from continuously supplied molten glass, and a method for clarifying molten glass using the apparatus.
  • a clarification process for removing bubbles generated in the molten glass is provided before the molten glass in which the raw material is melted in the melting furnace is molded by the molding apparatus. Yes.
  • molten glass is introduced into the reduced-pressure atmosphere, and bubbles in the molten glass flow that flows continuously under this reduced-pressure atmosphere are greatly grown to float up the bubbles contained in the molten glass.
  • a vacuum defoaming method is known in which bubbles are removed by breaking bubbles and then discharged from a reduced-pressure atmosphere (see Patent Document 1).
  • FIG. 4 shows a general configuration of a conventional vacuum degassing apparatus used when performing the vacuum degassing method.
  • the cylindrical vacuum degassing tank 120 is housed and disposed in the vacuum housing 110 so that its long axis is oriented in the horizontal direction.
  • a rising pipe 130 oriented in the vertical direction is attached to the lower surface on the upstream side of the vacuum degassing tank 120, and a lowering pipe 140 is attached to the lower surface on the downstream side.
  • the upstream side and the downstream side of the vacuum degassing tank 120 mean the upstream side and the downstream side in the flow direction of the molten glass G flowing in the vacuum degassing tank 120.
  • a part of the ascending pipe 130 and the descending pipe 140 is located in the decompression housing 110.
  • the ascending pipe 130 communicates with the vacuum degassing tank 120 and is an introduction means for introducing the molten glass G from the melting tank 300 into the vacuum degassing tank 120. For this reason, the lower end portion of the ascending pipe 130 is inserted into the opening end of the upstream pit 320 and immersed in the molten glass G in the upstream pit 320.
  • the downcomer 140 communicates with the vacuum degassing tank 120 and is a derivation means for lowering the molten glass G after the vacuum degassing from the vacuum degassing tank 120 and leading it to a processing tank (not shown) in a subsequent process. is there.
  • a heat insulating material 150 such as a heat insulating brick is provided around the decompression defoaming tank 120, the ascending pipe 130, and the descending pipe 140.
  • suction for holding the inside of the vacuum housing 110 in a vacuum state by vacuum suctioning the ceiling portion of the vacuum housing 110 with a vacuum pump (not shown) or the like.
  • An opening 200 is provided.
  • Tank openings 160 a and 160 b for holding the inside of the vacuum degassing tank 120 in a reduced pressure state are also provided in the ceiling of the vacuum degassing tank 120 accommodated in the vacuum housing 110.
  • the tank opening 160 a is located above the ascending pipe 130, and the tank opening 160 b is located above the descending pipe 140.
  • FIG. 5 is a diagram showing a configuration of a vacuum degassing apparatus provided with a window.
  • windows 170 a and 170 b for monitoring the inside of the vacuum degassing tank 120 are provided on the ceiling of the vacuum housing 110.
  • the windows 170a and 170b are provided on the ceiling of the decompression housing 110 above the tank openings 160a and 160b, and include housing openings 180a and 180b provided on the ceiling of the decompression housing 110.
  • Transparent windows 190a and 190b are fitted into the housing openings 180a and 180b provided on the ceiling of the vacuum housing 110 so that the inside of the vacuum degassing tank 120 can be observed through the tank openings 160a and 160b.
  • the windows 170a and 170b include housing openings 180a and 180b provided on the ceiling of the decompression housing 110, and transparent windows 190a and 190b fitted in the housing openings 180a and 180b. Refers to the structure.
  • gas component from molten glass When vacuum degassing is performed using the vacuum degassing apparatus 100 ′ shown in FIG. 5, a gas component (hereinafter referred to as “gas component from molten glass”) is generated by bubbles breaking on the surface of the molten glass.
  • gas components from the molten glass may adhere to the ceiling portions of the window portions 170a and 170b and the decompression housing 110 in the vicinity thereof as aggregates.
  • products produced by the reaction between the windows 170a and 170b and the members of the decompression housing 110 in the vicinity thereof and the gas component from the molten glass, and aggregates of the gas component from the product or the molten glass are heated.
  • the product denatured by the above may adhere to the ceiling portion of the decompression housing 110.
  • the window portions 170a, 170b, 17a, 17b and the surrounding decompression housing 110 when aggregates adhere to the ceiling portions of the decompression housings 110 and 11 around the window portions 170a, 170b, 17a, and 17b, aggregates of gas components from the molten glass become the window portions 170a. , 170b, 17a, 17b and the surrounding pressure reducing housing 110, in addition to the above reaction products and products due to heat denaturation, the window portions 170a, 170b, 17a, 17b and the surrounding decompression It also includes adhering to the ceilings of the housings 110 and 11.
  • the present invention reduces the pressure of agglomerates of gas components from molten glass adhering to the window portion provided in the ceiling portion of the decompression housing and the ceiling portion of the decompression housing in the vicinity thereof.
  • An object of the present invention is to provide a vacuum degassing apparatus that can be removed without stopping the operation of the defoaming apparatus.
  • the present invention provides a vacuum housing that is sucked under reduced pressure, a vacuum deaeration tank that is provided in the vacuum housing and performs vacuum degassing of molten glass, and communicates with the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass having a deriving means for deriving, At least one tank opening is provided on the ceiling of the vacuum degassing tank, The ceiling of the decompression housing is provided with at least one window for monitoring the inside of the decompression defoaming tank paired with the tank opening.
  • the window portion is composed of a housing opening provided in a ceiling portion of the decompression housing, and a transparent window fitted in the housing opening,
  • the transparent window has a window opening, and the window opening is closed with a heat-resistant rubber stopper, and the heat-resistant rubber stopper has a hole oriented in the same direction as the window opening.
  • the vacuum degassing apparatus of the molten glass characterized by the foreign material removal means which consists of metal rod-shaped members being inserted in this hole is provided.
  • being paired with the tank opening means that the horizontal position of the tank opening corresponds to the horizontal position of the window.
  • the present invention provides a vacuum housing that is sucked under reduced pressure, a vacuum degassing tank that is provided in the vacuum housing and performs vacuum degassing of molten glass, and is provided in communication with the vacuum degassing tank.
  • a vacuum degassing apparatus for molten glass having At least one tank opening is provided on the ceiling of the vacuum degassing tank,
  • the ceiling of the decompression housing is provided with at least one window at a position corresponding to the horizontal position of the tank opening,
  • the window portion is composed of a housing opening provided in a ceiling portion of the decompression housing, and a transparent window fitted in the housing opening,
  • the transparent window has a window opening, and the window opening is closed with a heat-resistant rubber stopper, and the heat-resistant rubber stopper has a hole oriented in the same direction as the window opening.
  • a foreign matter collecting means is provided at an end of the foreign matter removing means on the side present in the vacuum housing.
  • the transparent window having the window opening is detachable with the inside of the vacuum housing held in a vacuum state.
  • the heat-resistant rubber stopper is preferably made of at least one selected from the group consisting of silicone rubber and fluororubber.
  • this invention provides the vacuum degassing method of a molten glass using the above-mentioned vacuum degassing apparatus.
  • the present invention also relates to a method for degassing molten glass using the above-described vacuum degassing apparatus, comprising at least one of the following steps (1) and (2):
  • a vacuum degassing method is provided. (1) A step of removing aggregates adhering to the window portion or its peripheral portion using the foreign matter removing means. (2) A step of removing aggregates adhering to the window portion or its peripheral portion by using the foreign matter removing means and collecting the removed aggregates by the foreign matter collecting means.
  • this invention provides the molten glass manufacturing method using the above-mentioned vacuum degassing method. Furthermore, the present invention includes a vacuum degassing step by the vacuum degassing method that has been aired, a raw material melting step as a pre-step of the vacuum defoaming step, a molding step as a post-step of the vacuum defoaming step, and the molding step A method for producing a glass product having a slow cooling step as a subsequent step is provided.
  • the vacuum degassing apparatus of the present invention it is necessary to stop the operation of the vacuum degassing apparatus in order to remove agglomerates adhering to the window provided on the ceiling of the vacuum housing and the ceiling of the vacuum housing in the vicinity thereof. This will improve productivity and yield of glass products.
  • the foreign substance removing means provided with the foreign substance collecting means when the aggregate is removed from the ceiling part of the decompression housing around the window part or the surrounding area, the removed aggregate flows through the vacuum deaeration tank. It can be prevented from being mixed with glass and becoming a foreign substance of molten glass, and the quality of the manufactured glass product is excellent.
  • FIG. 1 is a cross-sectional view showing a configuration example of the vacuum degassing apparatus of the present invention.
  • FIG. 2 is a partially enlarged view of the vicinity of the window portion 17a of the vacuum degassing apparatus 10 shown in FIG.
  • FIG. 3 is a view showing an example of a detachable window with the inside of the decompression housing held in a decompressed state.
  • FIG. 4 is a cross-sectional view showing a configuration example of a conventional vacuum degassing apparatus.
  • FIG. 5 is a cross-sectional view showing a configuration example of a vacuum degassing apparatus provided with a window portion of a conventional example.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the vacuum degassing apparatus of the present invention.
  • a cylindrical vacuum vacuum degassing tank 12 is housed and disposed in the vacuum housing 11 such that its long axis is oriented in the horizontal direction.
  • a rising pipe 13 oriented in the vertical direction is attached to the lower surface on the upstream side of the vacuum degassing tank 12, and a lowering pipe 14 is attached to the lower surface on the downstream side.
  • the upstream side and the downstream side of the vacuum degassing tank 12 mean the upstream side and the downstream side in the flow direction of the molten glass G flowing in the vacuum degassing tank 12.
  • a part of the ascending pipe 13 and the descending pipe 14 is located in the decompression housing 11.
  • the ascending pipe 13 communicates with the vacuum degassing tank 12 and is an introducing means for introducing the molten glass G from the melting tank 300 into the vacuum degassing tank 12. For this reason, the lower end portion of the rising pipe 13 is inserted into the opening end of the upstream pit 320 and is immersed in the molten glass G in the upstream pit 320.
  • the downcomer 14 communicates with the vacuum degassing tank 12 and is a lead-out means for lowering the molten glass G after the vacuum degassing from the vacuum degassing tank 12 and leading it to a processing tank (not shown) in a subsequent process. is there.
  • the lower end portion of the downcomer pipe 14 is inserted into the open end of the downstream pit 340 and is immersed in the molten glass G in the downstream pit 340.
  • a heat insulating material 15 such as a heat insulating brick is provided around the decompression defoaming tank 12, the ascending pipe 13 and the descending pipe 14 to insulate these.
  • An opening 20 is provided.
  • Tank openings 16 a and 16 b for holding the inside of the vacuum degassing tank 12 in a decompressed state are also provided at the ceiling of the vacuum degassing tank 12 accommodated in the vacuum housing 11.
  • the tank openings 16 a and 16 b are also openings for monitoring the inside of the vacuum degassing tank 12.
  • the tank opening 16 a is located above the ascending pipe 13
  • the tank opening 16 b is located above the descending pipe 14.
  • the vacuum degassing apparatus of the present invention it is sufficient that at least one tank opening is provided in the ceiling of the vacuum degassing tank, and the number of tank openings provided in the ceiling of the vacuum degassing tank, and The position of the tank opening is not limited to the embodiment shown in FIG. Therefore, only one of the tank openings 16a and 16b may be provided. Further, instead of the tank openings 16a and 16b, one tank opening may be provided in a portion other than these (for example, an intermediate portion of the vacuum degassing tank 12).
  • the third tank opening (further, the fourth and fifth tank openings) is replaced with a portion other than the tank openings 16a and 16b (for example, the vacuum degassing tank 12). It may be provided in the middle part).
  • the communicating portion between the downcomer 14 led to the tank and the vacuum degassing tank 12 is particularly important in confirming the state of the molten glass in the vacuum degassing tank 12, more specifically, the surface of the molten glass. is there. Therefore, for the purpose of monitoring by observation both upstream and downstream of the vacuum degassing tank 12, the tank openings provided in the ceiling of the vacuum degassing tank 12 are like the tank openings 16a and 16b shown in FIG. It is preferable to provide at least above the ascending pipe 13 and the descending pipe 14.
  • the shape of the tank openings 16a and 16b provided on the ceiling of the vacuum degassing tank 12 is not particularly inconvenient in monitoring the inside of the vacuum degassing tank 12, and is not particularly limited as long as the strength of the vacuum degassing tank 12 is not reduced.
  • various shapes such as a circle, an ellipse, and a rectangle can be selected.
  • the dimensions of the tank openings 16a and 16b provided in the ceiling of the vacuum degassing tank 12 are not particularly limited as long as the inside of the vacuum degassing tank 12 is not inferior, and the strength of the vacuum degassing tank 12 is not reduced.
  • the outer diameter may be 30 to 400 mm, more preferably 40 to 350 mm, and still more preferably 50 to 300 mm.
  • windows 17a and 17b for monitoring the inside of the vacuum degassing tank 12 are provided on the ceiling of the vacuum housing 11.
  • the positions of the windows 17a and 17b preferably coincide with the horizontal positions of the tank openings 16a and 16b provided in the ceiling of the vacuum degassing tank 12.
  • the windows 17a and 17b are constituted by housing openings 18a and 18b provided in the ceiling of the decompression housing 11, and transparent windows 19a and 19b fitted in the openings 18a and 18b.
  • the transparent windows 19a and 19b fitted in the openings 18a and 18b preferably have heat resistance, pressure resistance, acid resistance, and the like.
  • the ceiling of the vacuum housing is provided with at least one window at a position corresponding to the tank opening provided in the ceiling of the vacuum degassing tank in the horizontal direction. What is necessary is just to provide the window part of the same number as the tank opening part provided in the ceiling part of the pressure reduction degassing tank in the ceiling part of a pressure reduction housing. Therefore, only one of the windows 17a and 17b may be provided. However, considering that the purpose of providing the tank openings 16a and 16b in the ceiling of the vacuum degassing tank 12 is to monitor the inside of the vacuum degassing tank 12, as shown in FIG.
  • the position of the window portion does not necessarily coincide with the position of the tank opening in the substantially horizontal direction, and the horizontal position of the tank opening is horizontal with respect to the window. It only needs to be paired corresponding to the direction position, and the horizontal position of both parts may be shifted so that the inside of the vacuum degassing tank can be monitored from an oblique direction.
  • the optical path is shorter when the distance from the tank opening to the window is shorter, it is preferable that the position of the window coincides with the position of the tank opening in the substantially horizontal direction.
  • the shape of the windows 17a and 17b provided in the ceiling of the decompression housing 11, more specifically, the shape of the housing openings 18a and 18b provided in the ceiling of the decompression housing 11 as the windows 17a and 17b is the decompression release.
  • the shape of the tank openings 16a, 16b provided in the ceiling of the vacuum degassing tank 12 and the shape of the housing openings 18a, 18b provided in the ceiling of the vacuum housing 11 as the windows 17a, 17b, are consistent or similar in order to monitor the inside of the vacuum degassing tank 12.
  • the dimensions of the windows 17a and 17b provided on the ceiling of the decompression housing 11, more specifically, the dimensions of the housing openings 18a and 18b provided on the ceiling of the decompression housing 11 as the windows 17a and 17b are also decompressed and degassed. There is no inconvenience in monitoring the inside of the tank 12 by observation, and there is no particular limitation as long as the strength of the vacuum degassing tank 12 is not reduced. However, the dimensions of the tank openings 16a and 16b provided in the ceiling of the vacuum degassing tank 12, and the dimensions of the housing openings 18a and 18b provided in the ceiling of the vacuum housing 11 as the windows 17a and 17b, Are preferably the same when monitoring the inside of the vacuum degassing vessel 12.
  • the dimensions of the housing openings 18a and 18b provided in the ceiling of the decompression housing 11 as the windows 17a and 17b are described with respect to the dimensions of the tank openings 16a and 16b provided in the ceiling of the decompression defoaming tank 12. It is preferable to be in the range. Further, in order to prevent the foreign matter from dropping into the openings 16a and 16b of the vacuum degassing tank 12 when removing the foreign matters attached to the windows 17a and 17b, the window portions 17a and 17b and the housing openings 18a and 18b are used. May be larger than the dimensions of the openings 16a and 16b.
  • a window 17a provided in the ceiling and a tank opening 16a provided in the ceiling of the vacuum degassing tank 12 are provided on the window 17b provided in the ceiling of the vacuum housing 11 and the ceiling of the vacuum degassing tank 12. It is preferable to have a structure that communicates in the vertical direction via a cylindrical body or the like so that the provided tank opening 16b can be observed through the windows 17a and 17b.
  • the window portion 17a is formed on the ceiling portion of the vacuum housing 11 at the desired location.
  • a tank opening 16a may be provided in the ceiling portion of the vacuum degassing tank 12 vertically or obliquely below, and the window 17a and the tank opening 16a may be communicated with each other.
  • a vacuum degassing apparatus 10 according to the present invention shown in FIG. 1 has window parts 17a and 17b and foreign matter removing means 24a and 24b for removing aggregates adhering to the ceiling part of the vacuum housing 11 in the vicinity thereof. ing.
  • the foreign matter removing means will be described with reference to FIG. 2 which is a partially enlarged view near the window portion 17a of the vacuum degassing apparatus 10 of the present invention shown in FIG.
  • the foreign matter removing means 24a will be described with reference to FIG. 2, but the foreign matter removing means 24b has substantially the same structure.
  • the transparent window 19 a has a window opening 21, and the window opening 21 is closed with a heat-resistant rubber plug 22.
  • heat-resistant rubber at least one selected from the group of silicone rubber and fluororubber is particularly preferable.
  • the heat-resistant rubber plug 22 has a hole 23 oriented in the same direction as the window opening 21, and the hole 23 is made of metal, for example, stainless steel, noble metal such as platinum, aluminum, copper, or the like.
  • a foreign substance removing means 24a made of a member is inserted.
  • the plug 22, the window opening 21 and the hole 23 are omitted. With such a configuration, the inside of the decompression housing 11 is maintained in a decompressed state even when the following operation is performed on the foreign matter removing means 24a.
  • the vertical movement / tilting, foreign matter removing means 24a is made using the elasticity of the heat-resistant rubber stopper. Rotation about the longitudinal axis of 24a is possible.
  • the movable range is limited as compared with the vertical movement and the turning about the longitudinal axis, but the lower end of the foreign matter removing means 24a can be moved in the horizontal direction.
  • Silicone rubber and fluororubber mentioned as the material of the plug 22 are preferable because they have sufficient elasticity even at high temperatures and are excellent in heat resistance, chemical resistance, durability, and gas sealability.
  • the foreign matter removing means 24a is moved at the lower end of the foreign matter removing means 24a while moving in the vertical direction, turning about the longitudinal axis, and moving the lower end in the horizontal direction.
  • the agglomerates adhered to the window 17a and the ceiling of the decompression housing in the vicinity thereof while the interior of the decompression housing 11 is maintained in a decompressed state by scratching the ceiling of the decompression housing around the portion 17a Can be removed.
  • the foreign matter removing means 24a is inserted into a heat-resistant rubber plug 22 that closes the window opening 21 provided in the transparent window 19a, so that the above operation is performed while observing the internal state from the window 19a. It can be carried out.
  • the step of removing the agglomerates adhering to the window part or its peripheral part using the foreign matter removing means is performed when the agglomerates need to be removed in the vacuum degassing of the molten glass. Just do it. Therefore, aggregates adhering to the window portion 17a and the ceiling portion of the decompression housing in the vicinity thereof can be removed without stopping the operation of the decompression deaerator.
  • the foreign matter removing means 24a can also remove agglomerates adhering to other parts in the vacuum degassing apparatus 10, for example, agglomerates adhering to the periphery of the tank openings 16a and 16b.
  • the tip of the foreign matter removing means that does not include the foreign matter collecting means 25 may have any structure suitable for removing foreign matter, and the tip is bent or curved regardless of whether it is a rod-like body or an enlarged tip. Any suitable shape may be employed.
  • the foreign matter removing means 24a shown in FIG. 2 is provided with a foreign matter collecting means 25 at its lower end.
  • the foreign matter collecting means 25 is a curved portion or a bent portion having a shape similar to the tip of the earpick provided at the lower end of the foreign matter removing means 24a, and is removed from the ceiling portion of the decompression housing around the window portion 17a.
  • the collected agglomerates can be collected without dropping down.
  • the foreign matter remaining in the foreign matter collecting means 25 may be taken out of the decompression housing by the following method, for example.
  • the molten glass flowing through the vacuum deaeration tank 12 is removed when removing the agglomerates adhering to the window 17a and the ceiling portion of the vacuum housing in the vicinity thereof. It is possible to prevent the agglomerates from being mixed in.
  • the lower end of the foreign matter removing means 24a may have a shape suitable for removing aggregates.
  • the shape suitable for removing aggregates include a screw shape, a flat plate shape similar to a spatula, a needle shape with a thin tip, a shape similar to a saw, and the like.
  • the window opening 21 is provided near the left end of the transparent window 19a, but the position of the window opening provided in the transparent window is not limited to this.
  • a window opening may be provided near the right end of the window 19a, or a window opening may be provided near the center of the window 19a.
  • the heat-resistant rubber stopper that closes the window opening and the foreign matter removing means inserted in the stopper monitor the inside of the vacuum deaeration tank 12.
  • the foreign matter removing means When the foreign matter removing means is operated while visually observing the internal state from the window 19a, the vicinity of the side edge of the transparent window 19a (near the left edge, near the right edge, drawing) On the other hand, it is preferable to provide a window opening in the vicinity of the front end or near the back end.
  • the window 19a having the window opening 21 is preferably detachable in a state where the inside of the decompression housing 11 is maintained in a decompressed state.
  • FIG. 3 shows an example of a configuration in which the window 19a having the window opening 21 can be attached and detached while the inside of the decompression housing 11 is kept in a decompressed state.
  • a ball valve 26 that can be opened and closed during operation of the vacuum degassing apparatus is provided below the window 19a.
  • the window 19b is also preferably configured as shown in FIG.
  • the vacuum deaeration tank 12 is provided by setting a transparent window having no window opening, such as the windows 190 a and 190 b of FIG. 5, in the window 17 a. Can be easily monitored.
  • the window opening is opened with the ball valve 26 closed in order to keep the interior of the decompression housing 11 in a decompressed state.
  • the transparent window which does not have from the window part 17a After removing the transparent window which does not have from the window part 17a, it has the window which has a foreign material removal means, ie, the opening part 21, The plug 22 made from a heat resistant rubber is inserted in this window opening part 21, and this plug 22 The ball valve 26 may be opened after the window 19a into which the foreign matter removing means 24a is inserted is attached to the window portion 17a. 3 is applied to the suction opening 20 for holding the inside of the decompression housing 11 in a decompressed state, thereby removing aggregates attached to the suction opening 20 and the ceiling portion of the decompression housing in the vicinity thereof.
  • the foreign matter remaining in the foreign matter collecting means 25 after being collected by the foreign matter collecting means 25 can be directly taken out of the decompression housing while maintaining the reduced pressure state.
  • a shutter for preventing the fallen object can be installed at the opening of the tank opening. .
  • the rising pipe 13 and the descending pipe 14 are conduits for the molten glass G, they are manufactured using a material having excellent heat resistance and corrosion resistance to the molten glass.
  • a hollow tube made of platinum or a platinum alloy, a cylindrical tube, and other tubular tubes of various shapes.
  • the platinum alloy include a platinum-gold alloy and a platinum-rhodium alloy.
  • dense refractories include, for example, electrocast refractories such as alumina electrocast refractories, zirconia electrocast refractories, alumina-zirconia-silica electrocast refractories, and dense alumina refractories.
  • dense fired refractories such as dense zirconia-silica refractory and dense alumina-zirconia-silica refractory.
  • the decompression housing 11 that accommodates the decompression defoaming tank 12 and accommodates part of the ascending pipe 13 and the descending pipe 14 is made of metal, for example, stainless steel.
  • the dimension of each component of the vacuum degassing apparatus 10 of the present invention can be appropriately selected as necessary.
  • the dimensions of the vacuum degassing tank 12 are the same as the vacuum degassing apparatus used or the shape of the vacuum degassing tank 12 regardless of whether the vacuum degassing tank 12 is made of platinum, a platinum alloy, or a dense refractory. It can be selected as appropriate according to the conditions.
  • an example of the dimensions is as follows.
  • the vacuum degassing tank 12 is made of platinum or a platinum alloy, the wall thickness is preferably 4 mm or less, more preferably 0.5 to 1.2 mm.
  • the vacuum degassing tank is not limited to a cylindrical shape having a circular cross section, and may be a substantially cylindrical shape having an elliptical shape or a semicircular cross sectional shape, or a cylindrical shape having a rectangular cross section.
  • the riser pipe 13 and the downfall pipe 14 are made of platinum, a platinum alloy, or a dense refractory, they can be appropriately selected according to the vacuum degassing apparatus to be used.
  • examples of the dimensions of the ascending pipe 13 and the descending pipe 14 are as follows. Inner diameter: 0.05 to 0.8 m, more preferably 0.1 to 0.6 m -Length: 0.2-6m, more preferably 0.4-4m
  • the wall thickness is preferably 0.4 to 5 mm, more preferably 0.6 to 4 mm.
  • the vacuum degassing method for molten glass using the vacuum degassing apparatus of the present invention can be carried out under the same conditions as the conventional vacuum degassing method for molten glass.
  • the vacuum degassing tank 12 is preferably heated so that the inside thereof is in a temperature range of 1100 ° C. to 1600 ° C., particularly 1150 ° C. to 1500 ° C.
  • the inside of the vacuum degassing tank 12 is preferably decompressed to 38 to 460 mmHg (51 to 613 hPa) in absolute pressure, more preferably 60 to 350 mmHg (80 to 467 hPa). preferable.
  • it is preferable from the viewpoint of productivity that the flow rate of the molten glass G flowing through the vacuum degassing tank 12 is 1 to 2000 tons / day.
  • the molten glass production method using the vacuum degassing method of the present invention preferably comprises a raw material melting step as a pre-process of the vacuum degassing method of the present invention, and a molding step as a post-process.
  • This raw material melting step may be, for example, a conventionally known one.
  • the raw material is melted by heating to about 1400 ° C. or higher according to the type of glass.
  • the raw material to be used is not particularly limited as long as it is compatible with the glass to be produced.
  • raw materials prepared by mixing conventionally known materials such as cinnabar, boric acid, limestone in accordance with the composition of the final glass product can be used. It may contain a refining agent.
  • molding process may be a conventionally well-known thing, for example, a float shaping
  • the glass after molding is slowly cooled by a slow cooling means (gradual cooling process) so that no residual stress remains in the solidified glass after molding (further cooling process), and further cut (cutting process) as necessary. Through a polishing process or the like, it becomes a glass product.
  • the slow cooling process, the cutting process, and the polishing process are known techniques.
  • the molten glass produced by the present invention is not limited in terms of composition as long as it is a glass produced by a heat melting method. Therefore, it may be non-alkali glass, or may be alkali glass such as soda lime silica glass represented by soda lime glass or alkali borosilicate glass.
  • the present invention is particularly suitable for the production of alkali-free glass and further alkali-free glass for liquid crystal display substrates.
  • the glass product excellent in foam quality can be obtained, it is suitable as a manufacturing method of glass products, such as a glass substrate for FPD.
  • the state of the molten glass in the vacuum defoaming tank is observed from the above window as needed, and the operation status of the vacuum degassing apparatus is accurately grasped by monitoring.
  • the decompression defoaming device Since it is not necessary to stop the operation and the productivity of glass and the yield of glass products are improved, it is useful for the production of glass that requires vacuum degassing treatment.
  • the removed agglomerate is removed from the decompression housing. It can be prevented from falling on the surface of the molten glass flowing inside and mixed into the molten glass and becoming a foreign substance of the molten glass, and the quality of the manufactured glass product can be improved. It is useful for the production of glass that is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 減圧ハウジングの天井部に設けられた窓部、および、その周辺の減圧ハウジングの天井部に付着した溶融ガラスからのガス成分の凝集物を、運転を停止することなしに除去することができる減圧脱泡装置を提供。 減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、少なくとも1つの窓部が設けられており、前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、前記透明な窓は窓開口部を有し、該窓開口部は耐熱性ゴム製の栓で閉止されており、該耐熱性ゴム製の栓は前記窓開口部と同一方向に配向する孔を有し、該孔に金属製の棒状部材からなる異物除去手段が挿入されていることを特徴とする溶融ガラスの減圧脱泡装置。

Description

溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法
 本発明は、連続的に供給される溶融ガラスから気泡を除去する溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラスの清澄方法に関する。
 従来より、成形されたガラス製品の品質を向上させるために、溶解炉で原料を溶解した溶融ガラスを成形装置で成形する前に、溶融ガラス内に発生した気泡を除去する清澄工程が設けられている。
 この清澄工程では、減圧雰囲気内に溶融ガラスを導入し、この減圧雰囲気下、連続的に流れる溶融ガラス流内の気泡を大きく成長させて溶融ガラス内に含まれる気泡を浮上させ、溶融ガラス表面で気泡を破泡させて除去し、その後減圧雰囲気から排出する減圧脱泡方法が知られている(特許文献1参照)。
 減圧脱泡方法を実施する際に使用される従来の減圧脱泡装置の一般的構成を図4に示した。
 図4に示す減圧脱泡装置100において、円筒形状をした減圧脱泡槽120は、その長軸が水平方向に配向するように減圧ハウジング110内に収納配置されている。減圧脱泡槽120の上流側の下面には垂直方向に配向する上昇管130が、下流側の下面には下降管140が取り付けられている。なお、減圧脱泡槽120の上流側および下流側とは、減圧脱泡槽120を流動する溶融ガラスGの流動方向における上流側および下流側を意味する。上昇管130及び下降管140は、その一部が減圧ハウジング110内に位置している。
 上昇管130は減圧脱泡槽120と連通しており、溶解槽300からの溶融ガラスGを減圧脱泡槽120に導入する導入手段である。このため、上昇管130の下端部は、上流ピット320の開口端に挿入され、この上流ピット320内の溶融ガラスGに浸漬されている。
 下降管140は、減圧脱泡槽120に連通しており、減圧脱泡後の溶融ガラスGを減圧脱泡槽120から下降させて後工程の処理槽(図示せず)に導出する導出手段である。このため、下降管140の下端部は、下流ピット340の開口端に挿入され、この下流ピット340内の溶融ガラスGに浸漬されている。
 減圧ハウジング110内において、減圧脱泡槽120、上昇管130及び下降管140の周囲には、これらを断熱被覆する断熱用レンガ等の断熱材150が配設されている。
 図4に示す減圧脱泡装置100において、減圧ハウジング110の天井部には、真空ポンプ(図示せず)等によって真空吸引することにより、該減圧ハウジング110の内部を減圧状態に保持するための吸引開口部200が設けられている。
 該減圧ハウジング110内に収容配置された減圧脱泡槽120の天井部にも、該減圧脱泡槽120の内部を減圧状態に保持するための槽開口部160a,160bが設けられている。槽開口部160aは上昇管130の上方に位置しており、槽開口部160bは下降管140の上方に位置している。
特開平11-130442号公報
 減圧脱泡装置において、減圧ハウジングの天井部には減圧脱泡槽の内部を観察し、モニタするための窓部が設けられていることが好ましい。図5は、窓部が設けられた減圧脱泡装置の構成を示した図である。
 図5に示す減圧脱泡装置100´において、減圧ハウジング110の天井部には、減圧脱泡槽120の内部をモニタするための窓部170a,170bが設けられている。
 窓部170a,170bは、槽開口部160a,160b上方の減圧ハウジング110の天井部に設けられており、該減圧ハウジング110の天井部に設けられたハウジング開口部180a,180bを含む。槽開口部160a,160bを介して減圧脱泡槽120の内部を観察できるように、該減圧ハウジング110の天井部に設けられたハウジング開口部180a,180bには透明な窓190a,190bがはめ込まれている。なお、窓部170a,170bとは、減圧ハウジング110の天井部に設けられたハウジング開口部180a,180bと、該ハウジング開口部180a,180bにはめ込まれた透明な窓190a,190bと、を含んだ構造を指す。
 図5に示す減圧脱泡装置100´を用いて減圧脱泡を実施する際、溶融ガラス表面で気泡が破泡することによってガス成分(以下、「溶融ガラスからのガス成分」という。)が発生するが、溶融ガラスからのガス成分が凝集物として、窓部170a,170bやその周辺の減圧ハウジング110の天井部に付着する場合がある。また、窓部170a,170bやその周辺の減圧ハウジング110の部材と、溶融ガラスからのガス成分と、が反応することによる生成物や、該生成物もしくは溶融ガラスからのガス成分の凝集物が熱によって変性した生成物が減圧ハウジング110の天井部に付着する場合がある。
 以下、本明細書において、凝集物が窓部170a,170b,17a,17bやその周辺の減圧ハウジング110,11の天井部に付着するといった場合、溶融ガラスからのガス成分の凝集物が窓部170a,170b,17a,17bやその周辺の減圧ハウジング110の天井部に付着することに加えて、上記の反応生成物や熱変性による生成物が窓部170a,170b,17a,17bやその周辺の減圧ハウジング110,11の天井部に付着することも包含する。
 このような凝集物が窓部170a,170b、特に、窓190a,190bに付着すると減圧脱泡槽120内部をモニタするのが困難となる。
 また、窓部170a,170bやその周辺の減圧ハウジング110の天井部に付着した凝集物が減圧脱泡槽120内に落下して、該減圧脱泡槽120を流通する溶融ガラスに混入すると、溶融ガラスの異物となる。
 このため、窓部170a,170bやその周辺の減圧ハウジング110の天井部に付着した凝集物を定期的に除去する必要があるが、この作業は減圧脱泡装置の運転を停止して実施することが必要となることから、生産性やガラス製品の歩留まりを低下させる。
 上記した問題点を解決するため、本発明は、減圧ハウジングの天井部に設けられた窓部、および、その周辺の減圧ハウジングの天井部に付着した溶融ガラスからのガス成分の凝集物を、減圧脱泡装置の運転を停止することなしに除去することができる減圧脱泡装置を提供することを目的とする。
 上記の目的を達成するため、本発明は、減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
 前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
 前記減圧ハウジングの天井部には、前記槽開口部と対となり前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
 前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、
 前記透明な窓は窓開口部を有し、該窓開口部は耐熱性ゴム製の栓で閉止されており、該耐熱性ゴム製の栓は前記窓開口部と同一方向に配向する孔を有し、該孔に金属製の棒状部材からなる異物除去手段が挿入されていることを特徴とする溶融ガラスの減圧脱泡装置を提供する。
 なお、前記槽開口部と対となるとは、前記槽開口部の水平方向位置が前記窓部の水平方向位置に対応していることをいう。この場合は、前記槽開口部の水平方向位置と前記窓部の水平方向位置が一致せず、前記減圧脱泡槽内部を斜め方向からモニタする場合を含む。斜め方向からモニタする場合でも、前記減圧脱泡槽内部を観察できる。
 また、本発明は、減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
 前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
 前記減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、少なくとも1つの窓部が設けられており、
 前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、
 前記透明な窓は、窓開口部を有し、該窓開口部は耐熱性ゴム製の栓で閉止されており、該耐熱性ゴム製の栓は前記窓開口部と同一方向に配向する孔を有し、該孔には金属製の棒状部材からなる異物除去手段が挿入されていることを特徴とする溶融ガラスの減圧脱泡装置を提供する。
 本発明の溶融ガラスの減圧脱泡装置において、前記異物除去手段の前記減圧ハウジング内に存在する側の端部には、異物収集手段が設けられていることが好ましい。
 本発明の溶融ガラスの減圧脱泡装置において、前記窓開口部を有する透明な窓は、前記減圧ハウジング内部を減圧状態に保持した状態で着脱可能であることが好ましい。
 また、前記耐熱性ゴム製の栓は、シリコーンゴム及びフッ素ゴムの群より選ばれる少なくとも1種からなるものであることが好ましい。
 また、本発明は、上記した減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法を提供する。
 また、本発明は、上記した減圧脱法装置を用いて溶融ガラスを減圧脱泡する方法であって、少なくとも下記(1)および(2)のいずれかの工程を含むことを特徴とする溶融ガラスの減圧脱泡方法を提供する。
 (1)上記窓部、またはその周辺部に付着した凝集物を、上記異物除去手段を使用して除去する工程。
 (2)上記窓部、またはその周辺部に付着した凝集物を、上記異物除去手段を使用して除去し、除去された凝集物を上記異物収集手段により収集する工程。
 また、本発明は、上記した減圧脱泡方法を用いた溶融ガラス製造方法を提供する。
 さらに、本発明は、上気した減圧脱泡方法による減圧脱泡工程と、該減圧脱泡工程の前工程として原料溶融工程と、該減圧脱泡工程の後工程として成形工程と、該成形工程の後工程として徐冷工程と、を有するガラス製品の製造方法を提供する。
 本発明の減圧脱泡装置では、減圧ハウジングの天井部に設けられた窓部やその周辺の減圧ハウジングの天井部に付着した凝集物を除去するために、減圧脱泡装置の運転を停止する必要がなくなり、生産性やガラス製品の歩留まりが向上する。
 また、異物収集手段が設けられた異物除去手段を用いることにより、窓部やその周辺の減圧ハウジングの天井部から凝集物を除去する際に、除去した凝集物が減圧脱泡槽を流動する溶融ガラスに混入して、溶融ガラスの異物となることを防止することができ、製造されるガラス製品の品質が優れている。
図1は、本発明の減圧脱泡装置の一構成例を示す断面図である。 図2は、図1に示す減圧脱泡装置10の窓部17a付近の部分拡大図である。 図3は、減圧ハウジング内部を減圧状態に保持した状態で着脱可能な窓の一例を示した図である。 図4は、従来例の減圧脱泡装置の一構成例を示す断面図である。 図5は、従来例の窓部が設けられた減圧脱泡装置の構成例を示す断面図である。
 以下、図面を参照して本発明を説明する。
 図1は、本発明の減圧脱泡装置の一構成例を示す断面図である。図1に示す減圧脱泡装置10において、円筒形状をした減圧脱泡槽12は、その長軸が水平方向に配向するように減圧ハウジング11内に収納配置されている。減圧脱泡槽12の上流側の下面には垂直方向に配向する上昇管13が、下流側の下面には下降管14が取り付けられている。なお、減圧脱泡槽12の上流側および下流側とは、減圧脱泡槽12を流動する溶融ガラスGの流動方向における上流側および下流側を意味する。上昇管13及び下降管14は、その一部が減圧ハウジング11内に位置している。
 図1に示すように、上昇管13は減圧脱泡槽12と連通しており、溶解槽300からの溶融ガラスGを減圧脱泡槽12に導入する導入手段である。このため、上昇管13の下端部は、上流ピット320の開口端に挿入され、この上流ピット320内の溶融ガラスGに浸漬されている。
 下降管14は、減圧脱泡槽12に連通しており、減圧脱泡後の溶融ガラスGを減圧脱泡槽12から下降させて後工程の処理槽(図示せず)に導出する導出手段である。このため、下降管14の下端部は、下流ピット340の開口端に挿入され、この下流ピット340内の溶融ガラスGに浸漬されている。
 減圧ハウジング11内において、減圧脱泡槽12、上昇管13及び下降管14の周囲には、これらを断熱被覆する断熱用レンガ等の断熱材15が配設されている。
 図1に示す減圧脱泡装置10において、減圧ハウジング11の天井部には、真空ポンプ(図示せず)等によって真空吸引することにより、該減圧ハウジング11の内部を減圧状態に保持するための吸引開口部20が設けられている。
 該減圧ハウジング11内に収容配置された減圧脱泡槽12の天井部にも、該減圧脱泡槽12の内部を減圧状態に保持するための槽開口部16a,16bが設けられている。槽開口部16a,16bは、減圧脱泡槽12の内部をモニタするための開口部でもある。
 図1に示す減圧脱泡装置10において、槽開口部16aは上昇管13上方に位置しており、槽開口部16bは下降管14の上方に位置している。
 但し、本発明の減圧脱泡装置において、減圧脱泡槽の天井部には少なくとも1つの槽開口部が設けられていればよく、減圧脱泡槽の天井部に設ける槽開口部の数、および槽開口部の位置は、図1に示す態様に限定されない。
 したがって、槽開口部16a,16bのうち、いずれか一方のみを設けたのでもよい。また、槽開口部16a,16bの代わりに、これら以外の部位(例えば、減圧脱泡槽12の中間部分)に槽開口部を1つ設けたのでもよい。
 また、槽開口部16a,16bに加えて、第3の槽開口部(さらには、第4、第5の槽開口部)を槽開口部16a,16b以外の部位(例えば、減圧脱泡槽12の中間部分)に設けたのでもよい。
 但し、減圧脱泡槽12において、溶解槽200からの溶融ガラスGが導入される上昇管13と減圧脱泡槽12との連通部分、および、減圧脱泡後の溶融ガラスGが後工程の処理槽へと導出される下降管14と減圧脱泡槽12との連通部分は、減圧脱泡槽12内の溶融ガラスの状態、より具体的には、溶融ガラス表面を確認するうえで特に重要である。従って、減圧脱泡槽12の上流と下流の両方で観察によりモニタする目的で、該減圧脱泡槽12の天井部に設ける槽開口部は、図1に示す槽開口部16a,16bのように、上昇管13および下降管14の上方に少なくとも設けることが好ましい。
 減圧脱泡槽12の天井部に設ける槽開口部16a,16bの形状は、減圧脱泡槽12の内部をモニタするうえで不都合がなく、減圧脱泡槽12の強度低下につながらない限り特に限定されず、円形、楕円形、矩形等、各種形状を選択することができる。
 減圧脱泡槽12の天井部に設ける槽開口部16a,16bの寸法も減圧脱泡槽12の内部をモニタするうえで不都合がなく、減圧脱泡槽12の強度低下につながらない限り特に限定されない。円径または多角形の外径としてみた場合、例えば、30~400mmとすることができ、より好ましくは40~350mmであり、さらに好ましくは50~300mmである。
 本発明の減圧脱泡装置10において、減圧ハウジング11の天井部には減圧脱泡槽12の内部をモニタするための窓部17a,17bが設けられている。該窓部17a,17bの位置は、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bの水平方向の位置と一致しているのが好ましい。
 窓部17a,17bは、減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bと、該開口部18a,18bにはめ込まれた透明な窓19a,19bと、で構成される。なお、該開口部18a,18bにはめ込まれる透明な窓19a,19bは、耐熱性、耐圧性、耐酸性などを有することが望ましい。これらを満たす材料としては、例えば、石英ガラス、サファイアガラス、透明結晶化ガラスなどが挙げられる。
 本発明の減圧脱泡装置において、減圧ハウジングの天井部には、減圧脱泡槽の天井部に設けられた槽開口部に水平方向で対応する位置に、少なくとも1つの窓部が設けられていればよく、減圧脱泡槽の天井部に設けられた槽開口部と同数の窓部を減圧ハウジングの天井部に設けることは必ずしも要求されない。したがって、窓部17a,17bのうち、いずれか一方のみを設けたのでもよい。
 但し、減圧脱泡槽12の天井部に槽開口部16a,16bを設ける目的の1つが、該減圧脱泡槽12の内部をモニタすることである点を考慮すると、図1に示すように、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bに対して、同数の窓部17a,17bを減圧ハウジング11の天井部に設けることが好ましい。
 また、減圧脱泡槽12の内部をモニタするにあたり、窓部の位置が槽開口部の略水平方向の位置と必ずしも一致している必要はなく、槽開口部の水平方向位置が窓部の水平方向位置に対応して対になっていればよく、減圧脱泡槽内部を斜めからモニタできるように両部の水平方向位置がずれていてもよい。ただし、槽開口部から窓部までの距離が短い方が光路が短くなるので、構造的にも窓部の位置が槽開口部の略水平方向の位置と一致している方が好ましい。
 減圧ハウジング11の天井部に設ける窓部17a,17bの形状、より具体的には、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの形状は、減圧脱泡槽12の内部を観察によりモニタするうえで不都合がなく、減圧脱泡槽12の強度低下につながらない限り特に限定されず、円形、楕円形、矩形等、各種形状を選択することができる。但し、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bの形状と、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの形状と、が一致若しく類似していることが、減圧脱泡槽12の内部をモニタするうえで好ましい。
 減圧ハウジング11の天井部に設ける窓部17a,17bの寸法、より具体的には、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの寸法も減圧脱泡槽12の内部を観察によりモニタするうえで不都合がなく、減圧脱泡槽12の強度低下につながらない限り特に限定されない。但し、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bの寸法と、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの寸法と、が略同一であることが、減圧脱泡槽12の内部をモニタするうえで好ましい。
 したがって、窓部17a,17bとして減圧ハウジング11の天井部に設けられたハウジング開口部18a,18bの寸法は、減圧脱泡槽12の天井部に設けられた槽開口部16a,16bの寸法について記載した範囲であることが好ましい。
 また、窓部17a,17bに付着した異物を除去する際に、減圧脱泡槽12の開口部16a,16bに異物が落下することを防ぐために、窓部17a,17bおよびハウジング開口部18a,18bの寸法は、開口部16a,16bの寸法より大きくしても良い。
 また、本発明の減圧脱泡装置10の上昇管13、下降管14の上方における溶融ガラスの状態を観察し、その状態をモニターしたい場合には、図1、3のように、減圧ハウジング11の天井部に設けられる窓部17aと減圧脱泡槽12の天井部に設けられる槽開口部16aとを、また減圧ハウジング11の天井部に設けられる窓部17bと減圧脱泡槽12の天井部に設けられる槽開口部16bとを、窓部17a、17bから覗き込んで観察できるように、筒状体等を介して縦方向に連通する構造とするのが好ましい。また、減圧脱泡装置10の減圧脱泡槽12中を横方向に流れている溶融ガラスの状態を観察し、モニターしたい場合には、観察したい場所において、減圧ハウジング11の天井部に窓部17aと、その垂直下方あるいは斜め下方の減圧脱泡槽12の天井部に槽開口部16aとを設け、窓17aと槽開口部16aとを連通させるような構造としてもよい。
 図1に示す本発明の減圧脱泡装置10は、窓部17a,17b、および、その周辺の減圧ハウジング11の天井部に付着する凝集物を除去するための異物除去手段24a,24bを有している。異物除去手段について、図1に示す本発明の減圧脱泡装置10の窓部17a付近の部分拡大図である図2を参照して説明する。なお、異物除去手段24aについて図2を参照して説明するが、異物除去手段24bも実質的に同じ構造である。
 図2において、透明な窓19aは窓開口部21を有し、窓開口部21は耐熱性ゴム製の栓22で閉止されている。かかる耐熱性ゴムとしては、特にシリコーンゴム及びフッ素ゴムの群より選ばれる少なくとも1種が好ましい。前記耐熱性ゴム製の栓22は窓開口部21と同一方向に配向する孔23を有し、該孔23には金属製、例えばステンレス製、白金などの貴金属製、アルミニウム製、銅製等の棒状部材からなる異物除去手段24aが挿入されている。なお、図1においては、栓22、窓開口部21および孔23は省略されている。このような構成とすることにより、異物除去手段24aについて以下の動作を行った際にも、減圧ハウジング11内部を減圧状態に保持される。
 異物除去手段24aは、耐熱性ゴム製の栓22に設けられた孔23に挿入されているため、耐熱性ゴム製の栓の弾力性を利用して、上下方向の移動・傾動、異物除去手段24aの長手軸を中心とする旋回が可能である。また、上下方向の移動、および、長手軸を中心とする旋回に比べると、可動範囲は制約されるが、異物除去手段24aの下端を水平方向に移動させることもできる。栓22の材料として挙げられたシリコーンゴム及びフッ素ゴムは、高温においても充分な弾力性を有し、耐熱性、耐薬品性、耐久性、ガスシール性に優れているので好ましい。
 本発明の減圧脱泡装置では、異物除去手段24aについて、上下方向の移動、長手軸を中心とする旋回、および、その下端の水平方向の移動を行いながら、異物除去手段24aの下端で、窓部17a、および、その周辺の減圧ハウジングの天井部をひっかくことにより、減圧ハウジング11内部を減圧状態に保持した状態で、窓部17a、および、その周辺の減圧ハウジングの天井部に付着する凝集物を除去することができる。異物除去手段24aは、透明な窓19aに設けられた窓開口部21を閉止する耐熱性ゴム製の栓22に挿入されているので、該窓19aから内部の状態を目視しながら上記の操作を行うことができる。なお、上記した上記窓部、またはその周辺部に付着した凝集物を、上記異物除去手段を使用して除去する工程は、溶融ガラスの減圧脱泡において、凝集物の除去を必要とされる時に行なえばよい。
 したがって、減圧脱泡装置の運転を停止することなしに、窓部17a、および、その周辺の減圧ハウジングの天井部に付着する凝集物を除去することができる。
 なお、異物除去手段24aにより、減圧脱泡装置10内の他の部位に付着する凝集物、例えば、槽開口部16a,16bの周辺に付着する凝集物も除去することができる。
 図2、3に示した異物除去手段24aは、その先端部に後述する異物収集手段25が設けられている例を示しているが、かかる異物収集手段25を備えなくてもよいことは勿論である。異物収集手段25を備えない異物除去手段の先端は、異物を除去するのに適した構造であればよく、単に棒状体の形状であっても、先端が拡大した形状でも、先端が屈曲・湾曲した形状でもよく、適宜の形状が採用可能である。
 図2に示す異物除去手段24aは、その下端に異物収集手段25が設けられている。異物収集手段25は、異物除去手段24aの下端に設けられた耳かきの先端に類似した形状の湾曲部、若しくは、屈曲部であり、窓部17a、および、その周辺の減圧ハウジングの天井部から除去した凝集物を下方に落下させることなしに、収集することができる。
 異物収集手段25に残る異物は、例えば以下の方法で減圧ハウジングの外に取り出せばよい。異物収集手段25の異物が収集される部分を含む表面から異物除去手段24aの内部を通り減圧ハウジングの外に通じる穴を設け、減圧ハウジングの外からの吸引に取り出せばよい。その他、後述する方法によれば、減圧状態を保持したまま、収集後の異物を減圧ハウジングの外に取り出せる。
 窓部17aやその周辺の減圧ハウジングの天井部に付着した凝集物を除去する際に、除去した凝集物が落下すると、窓部17aの下方に位置する槽開口部16aから減圧脱泡槽12内に落下し、該減圧脱泡槽12を流通する溶融ガラスに混入するおそれがある。減圧脱泡槽12を流通する溶融ガラスに該凝集物が混入すると溶融ガラスの異物となる。
 異物収集手段25が設けられた異物除去手段24aを用いることにより、窓部17aやその周辺の減圧ハウジングの天井部に付着した凝集物を除去する際に、減圧脱泡槽12を流通する溶融ガラスに該凝集物が混入するのを防止できる。
 窓部17a、および、その周辺の減圧ハウジングの天井部に付着した凝集物の大きさ、硬さ、付着強度、粘性などの状態によっては、除去した凝集物の収集が困難な場合もある。このような場合、異物除去手段24aの下端を凝集物の除去に適した形状としてもよい。凝集物の除去に適した形状の具体例としては、スクリュー形状、ヘラに類似した平板形状、先端を細くした針状形状、鋸に類した形状等が挙げられる。
 なお、上記した上記窓部、またはその周辺部に付着した凝集物を、上記異物収集手段を使用して収集する工程は、溶融ガラスの減圧脱泡において、凝集物の収集を必要とされる時に行なえばよい。
 図2において、透明な窓19aの左側端部付近に窓開口部21が設けられているが、透明な窓に設ける窓開口部の位置はこれに限定されない。たとえば、窓19aの右側端部付近に窓開口部を設けてもよく、窓19aの中心付近に窓開口部を設けてもよい。また、図面に対して、手前側の端部付近や、奥側の端部付近に窓開口部を設けてもよい。但し、窓19aの中心付近に窓開口部を設けると、該窓開口部を閉止する耐熱性ゴム製の栓および該栓に挿入された異物除去手段が、減圧脱泡槽12の内部をモニタする際や、窓19aから内部の状態を目視しながら異物除去手段を操作する際に妨げになるおそれがあるため、透明な窓19aの側端部付近(左側端部付近、右側端部付近、図面に対して手前側端部付近、または奥側の端部付近)に窓開口部を設けることが好ましい。
 また、減圧脱泡槽12の内部をモニタする際に、該窓開口部21を閉止する耐熱性ゴム製の栓22および該栓22に挿入された異物除去手段24aが妨げにならないようにするためには、該窓開口部21を有する窓19aが、減圧ハウジング11内部を減圧状態に保持した状態で着脱可能であることが好ましい。
 該窓開口部21を有する窓19aが減圧ハウジング11内部を減圧状態に保持した状態で着脱可能な構成の一例を図3に示す。図3の構成では、窓19aの下方に減圧脱泡装置の運転中に開閉可能なボールバルブ26が設けられている。なお、図1に示す減圧脱泡装置10の窓19aを図3の構成とする場合、窓19bも図3の構成とすることが好ましい。
 図3の構成であれば、通常の運転時には、図5の窓190a,190bのような、窓開口部を持たない透明な窓を窓部17aに設置しておくことにより、減圧脱泡槽12の内部を容易にモニタすることができる。窓部17aやその周辺の減圧ハウジングの天井部に付着した凝集物を除去する際には、減圧ハウジング11の内部を減圧状態に保持するためにボールバルブ26を閉止した状態で、窓開口部を持たない透明な窓を窓部17aから取り外した後、異物除去手段を有する窓、すなわち、開口部21を有し、該窓開口部21に耐熱性ゴム製の栓22が挿入され、該栓22に異物除去手段24aが挿入された窓19a、を該窓部17aに装着した後、ボールバルブ26を開放すればよい。
 なお、減圧ハウジング11の内部を減圧状態に保持するための吸引開口部20に図3の構成を適用することにより、吸引開口部20やその周辺の減圧ハウジングの天井部に付着した凝集物を除去することもできる。また、ボールバルブ26を利用することにより、異物収集手段25で収集した後の異物収集手段25に残る異物を、減圧状態を保持して減圧ハウジングの外に直接に取り出せる。
 なお、凝集物を除去する際に凝集物の一部が溶融ガラスに落下して異物となる事を防止するために槽開口部の開口部に落下物防止のためのシャッターを設置する事もできる。
 以下、本発明の窓部、異物除去手段、異物収集手段以外の本発明の減圧脱泡装置の構成要素について述べる。
 図1に示す減圧脱泡装置10において、減圧脱泡槽12、上昇管13及び下降管14は、溶融ガラスGの導管であるため、耐熱性及び溶融ガラスに対する耐食性に優れた材料を用いて作製されている。一例を挙げると、白金又は白金合金製の中空管、円筒状管、その他各形状の筒状管である。白金合金の具体例としては、白金-金合金、白金-ロジウム合金が挙げられる。また、他の一例を挙げると、セラミックス系の非金属無機材料製、すなわち、緻密質耐火物製の中空管、円筒状管、その他各形状の筒状管である。緻密質耐火物の具体例としては、例えば、アルミナ系電鋳耐火物、ジルコニア系電鋳耐火物、アルミナ-ジルコニア-シリカ系電鋳耐火物等の電鋳耐火物、並びに緻密質アルミナ系耐火物、緻密質ジルコニア-シリカ系耐火物及び緻密質アルミナ-ジルコニア-シリカ系耐火物等の緻密質焼成耐火物が挙げられる。減圧脱泡槽12を収容し、上昇管13及び下降管14の一部を収容する減圧ハウジング11は、金属製、例えばステンレス製である。
 本発明の減圧脱泡装置10の各構成要素の寸法は、必要に応じて適宜選択することができる。減圧脱泡槽12の寸法は、減圧脱泡槽12が白金製若しくは白金合金製、又は緻密質耐火物製であるかによらず、使用する減圧脱泡装置や、減圧脱泡槽12の形状に応じて適宜選択することができる。図1に示すような円筒形状の減圧脱泡槽12の場合、その寸法の一例は以下の通りである。
  ・水平方向における長さ:1~20m
  ・内径:0.2~3m(断面円形)
 減圧脱泡槽12が白金製若しくは白金合金製である場合、肉厚は4mm以下であることが好ましく、より好ましくは0.5~1.2mmである。
 減圧脱泡槽は、断面円形の円筒形状のものに限定されず、断面形状が楕円形や半円形状の略円筒形状のものや、断面が矩形の筒形状のものであってもよい。
 上昇管13及び下降管14は、白金製若しくは白金合金製、又は緻密質耐火物製であるかによらず、使用する減圧脱泡装置に応じて適宜選択することができる。例えば、図1に示す減圧脱泡装置10の場合、上昇管13及び下降管14の寸法の一例は以下の通りである。
  ・内径:0.05~0.8m、より好ましくは0.1~0.6m
  ・長さ:0.2~6m、より好ましくは0.4~4m
 上昇管13及び下降管14が白金製若しくは白金合金製である場合、肉厚は0.4~5mmであることが好ましく、より好ましくは0.6~4mmである。
 本発明の減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法は、従来の溶融ガラスの減圧脱泡方法と同様の条件で実施することができる。例えば、減圧脱泡の実施時、減圧脱泡槽12は、その内部が1100℃~1600℃、特に1150℃~1500℃の温度範囲になるように加熱されていることが好ましい。また、減圧脱泡槽12の内部は、絶対圧で38~460mmHg(51~613hPa)に減圧されていることが好ましく、より好ましくは、60~350mmHg(80~467hPa)に減圧されていることが好ましい。
 また、減圧脱泡槽12を流通する溶融ガラスGの流量が1~2000トン/日であることが生産性の点から好ましい。
 本発明の減圧脱泡方法を用いた溶融ガラス製造方法は、本発明の減圧脱泡方法の前工程として原料溶融工程を具備し、後工程として成形工程を具備することが好ましい。この原料溶融工程は、例えば従来公知のものでよく、例えばガラスの種類に応じて約1400℃以上に加熱することによって原料を溶融する工程である。用いる原材料も製造するガラスに適合させる原材料であれば特に限定されず、例えば硅砂、ホウ酸、石灰石等の従来公知のものを最終ガラス製品の組成に合わせて調合した原材料を用いることができ、所望の清澄剤を含んでもよい。また、この成形工程は、例えば従来公知のものでよく、例えばフロート成形工程、ロールアウト成形工程、フュージョン成形工程等が挙げられる。成形後のガラスは、成形後に固化したガラスの内部に残留応力が残らないように徐冷手段によって徐冷され(徐冷工程)、さらに必要に応じて切断され(切断工程)、その他必要に応じて研磨工程等を経て、ガラス製品となる。なお、徐冷工程、切断工程、及び研磨工程は、公知の技術である。
 本発明によって製造される溶融ガラスは、加熱溶融法により製造されるガラスである限り、組成的には制約されない。したがって、無アルカリガラスであってもよいし、ソーダライムガラスに代表されるソーダライムシリカ系ガラスやアルカリホウケイ酸ガラスのようなアルカリガラスであってもよい。本発明は、特に無アルカリガラス、さらには液晶ディスプレイ基板用無アルカリガラスの製造に適している。
 なお、本発明によれば、泡品質にきわめて優れたガラス製品を得ることができるため、FPD用のガラス基板等のガラス製品の製造方法として好適である。
 本発明のガラス製造用の減圧脱泡装置によれば、減圧脱泡槽内の溶融ガラスの状態を上記窓部から随時観察し、モニタリングすることにより、減圧脱泡装置の運転状況を的確に把握することができるとともに、減圧ハウジングの天井部に設けられた窓部やその周辺の減圧ハウジングの天井部に付着した、溶融ガラスからのガス成分の凝縮物を除去するために、減圧脱泡装置の運転を停止する必要がなくなり、ガラスの生産性やガラス製品の歩留まりが向上するので、減圧脱泡処理が必要とされるガラスの生産に対し有用である。
 また、本発明によれば、異物収集手段が設けられた異物除去手段を用いることにより、窓部やその周辺の減圧ハウジングの天井部から凝集物を除去する際に、除去した凝集物が減圧ハウジング内を流れる溶融ガラス面に落下し、溶融ガラスに混入して、溶融ガラスの異物となることを防止することができ、製造されるガラス製品の品質の向上することができるので、減圧脱泡処理を必要とされるガラスの生産に対し有用である。
 なお、2009年6月19日に出願された日本特許出願2009-146513号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 10,100:減圧脱泡装置
 11,110:減圧ハウジング
 12,120:減圧脱泡槽
 13,130:上昇管
 14,140:下降管
 15,150:断熱材
 16a,16b,160a,160b:槽開口部
 17a,17b,170a,170b:窓部
 18a,18b,18c,180a,180b:ハウジング開口部
 19a,19b,19c,190a,190b:透明な窓
 20,200:吸引開口部
 21:窓開口部
 22:耐熱性ゴム製の栓
 23:孔
 24a,24b:異物除去手段
 25:異物収集手段
 26:ボールバルブ
 300:溶解槽
 320:上流ピット
 340:下流ピット G:溶融ガラス

Claims (9)

  1.  減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
     前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
     前記減圧ハウジングの天井部には、前記槽開口部と対となり前記減圧脱泡槽の内部をモニタするための、少なくとも1つの窓部が設けられており、
     前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、
     前記透明な窓は窓開口部を有し、該窓開口部は耐熱性ゴム製の栓で閉止されており、該耐熱性ゴム製の栓は前記窓開口部と同一方向に配向する孔を有し、該孔に金属製の棒状部材からなる異物除去手段が挿入されていることを特徴とする溶融ガラスの減圧脱泡装置。
  2.  減圧吸引される減圧ハウジングと、前記減圧ハウジング内に設けられ、溶融ガラスの減圧脱泡を行う減圧脱泡槽と、前記減圧脱泡槽に連通して設けられ、減圧脱泡前の溶融ガラスを前記減圧脱泡槽に導入する導入手段と、前記減圧脱泡槽に連通して設けられ、減圧脱泡後の溶融ガラスを前記減圧脱泡槽から導出する導出手段とを有する溶融ガラスの減圧脱泡装置であって、
     前記減圧脱泡槽の天井部には、少なくとも1つの槽開口部が設けられており、
     前記減圧ハウジングの天井部には、前記槽開口部の水平方向の位置に一致する位置に、少なくとも1つの窓部が設けられており、
     前記窓部は、減圧ハウジングの天井部に設けられたハウジング開口部と、該ハウジング開口部にはめ込まれた透明な窓と、で構成され、
     前記透明な窓は窓開口部を有し、該窓開口部は耐熱性ゴム製の栓で閉止されており、該耐熱性ゴム製の栓は前記窓開口部と同一方向に配向する孔を有し、該孔に金属製の棒状部材からなる異物除去手段が挿入されていることを特徴とする溶融ガラスの減圧脱泡装置。
  3.  前記金属製の棒状部材の異物除去手段の前記減圧ハウジング内に存在する側の端部には、異物収集手段が設けられていることを特徴とする請求項1又は2に記載の溶融ガラスの減圧脱泡装置。
  4.  前記窓開口部を有する透明な窓は、前記減圧ハウジング内部を減圧状態に保持した状態で着脱可能であることを特徴とする請求項1~3のいずれかに記載の溶融ガラスの減圧脱泡装置。
  5.  前記耐熱性ゴム製の栓は、シリコーンゴム及びフッ素ゴムの群より選ばれる少なくとも1種からなることを特徴とする請求項1~4のいずれかに記載の溶融ガラスの減圧脱泡装置。
  6.  請求項1~5のいずれかに記載の溶融ガラスの減圧脱泡装置を用いた溶融ガラスの減圧脱泡方法。
  7.  請求項1~5のいずれかに記載の減圧脱法装置を用いて溶融ガラスを減圧脱泡する方法であって、少なくとも下記(1)および(2)のいずれかの工程を含むことを特徴とする溶融ガラスの減圧脱泡方法。
     (1)上記窓部、またはその周辺部に付着した凝集物を、上記異物除去手段を使用して除去する工程。
     (2)上記窓部、またはその周辺部に付着した凝集物を、上記異物除去手段を使用して除去し、除去された凝集物を上記異物収集手段により収集する工程。
  8.  請求項6または7に記載の減圧脱泡方法を用いた溶融ガラス製造方法。
  9.  請求項6または7に記載の減圧脱泡方法による減圧脱泡工程と、該減圧脱泡工程の前工程として原料溶融工程と、該減圧脱泡工程の後工程として成形工程と、該成形工程の後工程として徐冷工程と、を有するガラス製品の製造方法。
PCT/JP2010/060310 2009-06-19 2010-06-17 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法 WO2010147188A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800254192A CN102803162A (zh) 2009-06-19 2010-06-17 熔融玻璃的减压脱泡装置及采用该装置的熔融玻璃制造方法
JP2011519838A JPWO2010147188A1 (ja) 2009-06-19 2010-06-17 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-146513 2009-06-19
JP2009146513 2009-06-19

Publications (1)

Publication Number Publication Date
WO2010147188A1 true WO2010147188A1 (ja) 2010-12-23

Family

ID=43356505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060310 WO2010147188A1 (ja) 2009-06-19 2010-06-17 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法

Country Status (5)

Country Link
JP (1) JPWO2010147188A1 (ja)
KR (1) KR20120031932A (ja)
CN (1) CN102803162A (ja)
TW (1) TWI412500B (ja)
WO (1) WO2010147188A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014193388A1 (en) * 2013-05-30 2014-12-04 Johns Manville Submerged combustion glass melting systems and methods of use
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10442717B2 (en) 2015-08-12 2019-10-15 Johns Manville Post-manufacturing processes for submerged combustion burner
JP2020011855A (ja) * 2018-07-13 2020-01-23 AvanStrate株式会社 ガラス基板の製造方法、及びガラス基板製造装置
US10654740B2 (en) 2013-05-22 2020-05-19 Johns Manville Submerged combustion burners, melters, and methods of use
US10858278B2 (en) 2013-07-18 2020-12-08 Johns Manville Combustion burner
US11142476B2 (en) 2013-05-22 2021-10-12 Johns Manville Burner for submerged combustion melting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137556A (ja) * 2001-10-31 2003-05-14 Asahi Glass Co Ltd 減圧脱泡装置
JP2006306662A (ja) * 2005-04-28 2006-11-09 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119484A (en) * 1997-10-06 2000-09-19 Asahi Glass Company Ltd. Vacuum degassing apparatus for molten glass
JP4513248B2 (ja) * 2001-09-28 2010-07-28 旭硝子株式会社 減圧脱泡装置および減圧脱泡方法
CN101595068B (zh) * 2007-01-31 2012-07-25 旭硝子株式会社 玻璃制造方法及减压脱泡装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137556A (ja) * 2001-10-31 2003-05-14 Asahi Glass Co Ltd 減圧脱泡装置
JP2006306662A (ja) * 2005-04-28 2006-11-09 Asahi Glass Co Ltd 溶融ガラスの減圧脱泡方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654740B2 (en) 2013-05-22 2020-05-19 Johns Manville Submerged combustion burners, melters, and methods of use
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US11623887B2 (en) 2013-05-22 2023-04-11 Johns Manville Submerged combustion burners, melters, and methods of use
US11142476B2 (en) 2013-05-22 2021-10-12 Johns Manville Burner for submerged combustion melting
US10618830B2 (en) 2013-05-30 2020-04-14 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
WO2014193388A1 (en) * 2013-05-30 2014-12-04 Johns Manville Submerged combustion glass melting systems and methods of use
US11186510B2 (en) 2013-05-30 2021-11-30 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10858278B2 (en) 2013-07-18 2020-12-08 Johns Manville Combustion burner
US10442717B2 (en) 2015-08-12 2019-10-15 Johns Manville Post-manufacturing processes for submerged combustion burner
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US11248787B2 (en) 2016-08-25 2022-02-15 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
JP2020011855A (ja) * 2018-07-13 2020-01-23 AvanStrate株式会社 ガラス基板の製造方法、及びガラス基板製造装置
JP7142506B2 (ja) 2018-07-13 2022-09-27 AvanStrate株式会社 ガラス基板の製造方法、及びガラス基板製造装置

Also Published As

Publication number Publication date
TWI412500B (zh) 2013-10-21
TW201114710A (en) 2011-05-01
KR20120031932A (ko) 2012-04-04
JPWO2010147188A1 (ja) 2012-12-06
CN102803162A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2010147188A1 (ja) 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法
JP5470853B2 (ja) ガラス製造方法および減圧脱泡装置
WO2011078258A1 (ja) 溶融ガラスの減圧脱泡方法およびガラス製品の製造方法
JPWO2008029649A1 (ja) ガラス製造方法
TWI444344B (zh) A method for producing a molten glass, a method for producing a vacuum degassing apparatus, and a glass product
KR101900111B1 (ko) 용융 유리의 감압 탈포 방법
KR102141857B1 (ko) 무알칼리 유리 기판
WO2012141152A1 (ja) 溶融ガラスの減圧脱泡方法、溶融ガラスの減圧脱泡装置、溶融ガラスの製造方法、溶融ガラスの製造装置、ガラス製品の製造方法、およびガラス製品の製造装置
WO2010147123A1 (ja) 溶融ガラスの減圧脱泡装置、およびそれを用いた溶融ガラス製造方法
KR102634707B1 (ko) 무알칼리 유리 기판
US20170081233A1 (en) Glass melt production device, glass melt production method, glass product production device, and glass product production method
JP2008019110A (ja) ガラス流路用材料、ガラス製造用装置及びガラス製品の製造方法
JP2012121740A (ja) ガラス製造装置及びそれを用いたガラス製造方法
KR101384375B1 (ko) 유리판의 제조 방법
WO2016052608A1 (ja) ガラス溶融物製造装置、ガラス溶融物製造方法、ガラス物品製造装置およびガラス物品製造方法
JP4821165B2 (ja) 溶融ガラスの減圧脱泡装置、および該減圧脱泡装置を用いた溶融ガラスの清澄方法
KR102141856B1 (ko) 무알칼리 유리 기판
JPH11240725A (ja) 溶融ガラスの減圧脱泡装置
WO2011083736A1 (ja) 溶融ガラスの減圧脱泡装置、それを用いた溶融ガラス製造方法、およびガラス物品の製造方法
TW202229194A (zh) 浮式玻璃基板
JP2023110086A (ja) 無アルカリガラス基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025419.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519838

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117024434

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789562

Country of ref document: EP

Kind code of ref document: A1