WO2010146969A1 - プラズマ処理装置及び方法 - Google Patents

プラズマ処理装置及び方法 Download PDF

Info

Publication number
WO2010146969A1
WO2010146969A1 PCT/JP2010/058732 JP2010058732W WO2010146969A1 WO 2010146969 A1 WO2010146969 A1 WO 2010146969A1 JP 2010058732 W JP2010058732 W JP 2010058732W WO 2010146969 A1 WO2010146969 A1 WO 2010146969A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum vessel
plasma processing
attached
substrate support
vacuum
Prior art date
Application number
PCT/JP2010/058732
Other languages
English (en)
French (fr)
Inventor
松田 竜一
吉田 和人
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP10789344A priority Critical patent/EP2444997A1/en
Priority to KR1020117030127A priority patent/KR101343162B1/ko
Priority to US13/376,067 priority patent/US20120135164A1/en
Publication of WO2010146969A1 publication Critical patent/WO2010146969A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft

Definitions

  • the present invention relates to a plasma processing apparatus having a substrate support on which a substrate is placed and a plasma processing method using the plasma processing apparatus.
  • Patent Documents 1 and 2 Japanese Patent Laid-Open No. 9-167762 JP 2002-208584 A
  • FIG. 7 is a cross-sectional view of a conventional plasma CVD apparatus having a support structure for supporting the substrate support from the bottom surface of the vacuum vessel.
  • illustration of a plasma generation mechanism, a gas supply mechanism, a vacuum mechanism, and the like is omitted.
  • the plasma CVD apparatus 40 shown in FIG. 7 is attached to a vacuum vessel 41 in which the inside is evacuated and plasma P is generated, a bottom surface 42 attached to the flange 41a of the vacuum vessel 41, and a central portion of the bottom surface 42.
  • the portion of the substrate support is supported on the bottom surface 42 side, and it is necessary to remove the bottom surface 42 during maintenance, but it is not easy to remove.
  • a vacuum exhaust port on the bottom surface 42, and a vacuum exhaust port 49 is often provided on the side surface of the vacuum container 41.
  • the exhaust in the vacuum vessel 41 is biased, an influence is exerted on the gas flow of the film forming process and the cleaning process in a relatively high pressure degree of vacuum, that is, in a region where the viscosity flow is close to the molecular flow. End up.
  • FIG. 8 is a sectional view of a conventional plasma CVD apparatus having a support structure for supporting the substrate support from the side surface of the vacuum vessel. Also in FIG. 8, illustration of a plasma generation mechanism, a gas supply mechanism, a vacuum mechanism, and the like is omitted.
  • a plasma CVD apparatus 50 shown in FIG. 8 has a vacuum container 51 in which the inside is evacuated and plasma P is generated, and an arm that extends from the side surface of the vacuum container 51 toward the center and is supported by a plate 52.
  • a member 53 and a substrate support base 54 on which the substrate 55 is placed are supported by the upper surface of the arm member 53.
  • the substrate support base 54 is supported on the side surface of the vacuum vessel 51 by one arm member 53, and has a so-called cantilever structure.
  • a new support base unit may be inserted, but this is one large replacement part and expensive. The replacement work is not easy.
  • the vacuum exhaust port 56 can be provided on the bottom surface of the vacuum vessel 51.
  • the exhaust in the vacuum vessel 51 is also biased and a relatively high pressure is applied. In the region where the degree of vacuum is, that is, in the region where the viscous flow is close to the molecular flow, the gas flow in the film forming process and the cleaning process is affected.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a plasma processing apparatus and method for supporting a substrate support so that there is no bias in exhaust and maintenance is easy.
  • a plasma processing apparatus for solving the above-mentioned problems is A desired gas is supplied into a cylindrical vacuum vessel, and the pressure inside the vacuum vessel is controlled using a pressure control valve attached to the lower part of the vacuum vessel and a vacuum pump attached to the lower part of the pressure control valve.
  • a through-hole penetrating the side wall of the opposing vacuum vessel is formed inside, and a support beam that traverses through the center of the vacuum vessel is formed integrally with the vacuum vessel, In the central part of the upper surface of the support beam, an opening for attaching the substrate support is provided, The substrate support is attached to the opening through a first seal member that seals the vacuum side and the atmosphere side.
  • a plasma processing apparatus for solving the above-mentioned problems is as follows. While supplying a desired gas into the cylindrical vacuum vessel, the pressure in the vacuum vessel is adjusted using a pendulum gate valve attached to the lower portion of the vacuum vessel and a vacuum pump attached to the lower portion of the pendulum gate valve.
  • a plasma processing apparatus for performing a desired plasma processing on a substrate placed on a cylindrical substrate support in the vacuum vessel by controlling
  • a through-hole penetrating the side wall of the opposing vacuum vessel is formed inside, and a support beam that traverses through the center of the vacuum vessel is formed integrally with the vacuum vessel,
  • an opening for attaching the substrate support is provided in the central part of the upper surface of the support beam,
  • the substrate support is attached to the opening through a first sealing member that seals the vacuum side and the atmosphere side,
  • the horizontal direction of the support beam or the direction perpendicular to the horizontal direction is deviated so that the center of the area of the open region at the center value of the recommended use value of the opening ratio of the pendulum gate valve coincides with the axial center of the vacuum vessel.
  • the pendulum type gate valve is attached to the vacuum vessel.
  • a plasma processing apparatus for solving the above-described problem is
  • the substrate support is A cylindrical inner cylinder having a lower end attached thereto around the opening of the support beam via the first seal member;
  • a bellows that is disposed on the outer peripheral side of the inner cylinder, and is welded to the upper end side of the inner cylinder or the upper end side is attached via a second seal member;
  • a cylindrical outer tube that is disposed on the outer peripheral side of the bellows and welded to the lower end side of the bellows or attached to the lower end side via a third seal member;
  • a disc-shaped mounting table that is attached via a fourth seal member so as to close the opening on the upper end side of the outer cylinder, and on which the substrate is mounted;
  • a cylindrical covering member that is provided in close contact with the outer cylinder so as to cover the entire surface of the outer cylinder and is made of a material having corrosion resistance;
  • a drive member attached to the back surface of the mounting table, through the opening and the inside of the inner
  • a plasma processing method for solving the above problem is as follows.
  • a plasma processing method using the plasma processing apparatus according to any one of the first to third inventions Supplying gas into the vacuum vessel; Using the pressure control valve and the vacuum pump to control the pressure in the vacuum vessel, Generating a plasma of the gas, Plasma treatment is performed on the substrate placed on the substrate support.
  • the substrate support base portion since the cylindrical substrate support base is mounted on the support beam crossing the vacuum vessel, the substrate support base portion exhausts air uniformly symmetrically about the substrate support base. In the support beam portion, the exhaust is uniformly performed in a plane symmetry with the support beam portion as a plane.
  • the substrate support since the substrate support is attached to the opening on the support beam integrated with the vacuum vessel, it is easy to position the substrate support, and it is easy to remove, assemble, and replace the substrate support during maintenance. . As a result, it is possible to suppress the bias of the exhaust and improve the maintainability.
  • the cylindrical substrate support is mounted on the support beam crossing the vacuum vessel, and the area center of the opening region at the center value of the recommended use value of the opening ratio of the pendulum type gate valve is a vacuum. Since the pendulum type gate valve is attached to the vacuum vessel and is eccentric in the transverse direction of the support beam or in the direction perpendicular to the transverse direction so as to coincide with the axis center of the vessel, the substrate support is pivoted in the substrate support portion. As a result, the exhaust is uniformly performed by the axial symmetry, and the exhaust is uniformly performed by the plane symmetry with the support beam portion as a plane.
  • the substrate support is attached to the opening on the support beam integrated with the vacuum vessel, it is easy to position the substrate support, and it is easy to remove, assemble, and replace the substrate support during maintenance. . As a result, it is possible to further suppress the unevenness of exhaust gas and improve the maintainability.
  • the drive mechanism can be arranged in the through hole inside the support beam, so there is no influence on the exhaust in the vacuum vessel.
  • the exhaust can be performed uniformly.
  • the bias of exhaust is suppressed, so that the substrate placed on the substrate support base In-plane uniformity of the plasma treatment to be applied can be improved.
  • FIG. 1 shows an example of an embodiment of a plasma processing apparatus according to the present invention, and (a) and (b) are cross-sectional views at positions different from each other by 90 ° in a plasma CVD apparatus.
  • A) is a perspective view of a lower chamber of the plasma CVD apparatus shown in FIG. 1
  • (b) is a perspective view of a lower chamber, an upper chamber, and a substrate support portion of the plasma CVD apparatus shown in FIG. is there.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 4.
  • FIG. 1 It is a perspective view which shows the modification of the connection member shown in FIG.
  • FIG. 1 It is sectional drawing of the conventional plasma CVD apparatus which has a support structure which supports a board
  • FIG. 1A is a cross-sectional view of the plasma CVD apparatus of the present embodiment
  • FIG. 1B is a cross-sectional view of the plasma CVD apparatus at a position orthogonal to FIG. 2A is a perspective view of a lower chamber of the plasma CVD apparatus shown in FIG. 1
  • FIG. 2B is a lower chamber, upper chamber, and substrate support of the plasma CVD apparatus shown in FIG.
  • It is a perspective view of a base part. 1 and 2, illustration of a gas supply mechanism for supplying a desired gas into the vacuum vessel, a plasma generation mechanism for generating plasma in the vacuum vessel, a vacuum mechanism for controlling the pressure in the vacuum vessel, etc. is omitted. is doing.
  • the plasma processing apparatus 10 includes a lower chamber 11, an upper chamber 16, and a ceiling plate 17 that constitute a cylindrical vacuum vessel.
  • the lower chamber 11 and the upper chamber 16 are attached by flanges 11b and 16c, and are sealed by a sealing member such as an O-ring (not shown) so that the inside can be evacuated.
  • a ceiling plate 17 is attached to the flange 16b of the upper opening of the upper chamber 16, and is sealed so that the inside can be evacuated by a seal member such as an O-ring (not shown).
  • the lower flange 11c of the lower chamber 11 is a normal circular flange, and is a pressure control valve for controlling the pressure in the vacuum vessel, a vacuum pump (for example, a pendulum gate valve as shown in FIG. Molecular pumps) are sequentially attached, but their illustration is omitted here.
  • a substrate support table 13 including a disk-shaped mounting table 13b for mounting the substrate 15 and a cylindrical support tube 13a for supporting the mounting table 13b. A desired plasma treatment is performed on the substrate 15 placed thereon.
  • the mounting table 13b and the support cylinder 13a are sealed by a sealing member such as an O-ring (not shown).
  • the lower chamber 11 is provided with a support beam 12 that traverses in the diametrical direction through the center of the lower chamber 11.
  • the support beam 12 has a rectangular cross section having a flat surface on the upper surface, and is provided from one side of the cylindrical side wall 11a to the other side of the side wall 11a facing the one side across the center of the lower chamber 11. It has been. Further, a through hole 12 c having a rectangular cross section is provided inside the support beam 12. That is, the through hole 12c of the support beam 12 is formed so as to pass through the center of the lower chamber 11 and penetrate the opposing cylindrical side wall 11a in the diametrical direction.
  • the support beam 12 is formed integrally with the lower chamber 11. Note that the lower chamber 11 may be formed integrally with the upper chamber 16.
  • a circular upper surface opening 12a is provided in the central portion of the upper surface of the support beam 12 in order to install the substrate support table 13.
  • a support cylinder 13a of the substrate support table 13 is provided in the upper surface opening 12a. It is attached via a seal member (first seal member) such as an O-ring (not shown) to seal the vacuum side and the atmosphere side.
  • a lower surface opening 12b is provided at the center of the lower surface of the support beam 12 facing the upper surface opening 12a so that the through hole 12c can be accessed during maintenance.
  • a closing plate 18 is attached to 12b via a seal member such as an O-ring (not shown). Since the upper surface and the lower surface of the support beam 12 are flat, it is easy to form the circular upper surface opening 12a and the lower surface opening 12b.
  • the inside of the substrate support base 13 communicates with the outside of the vacuum vessel through the through hole 12c of the support beam 12, and is in an atmospheric state including the through hole 12c.
  • the outside of the substrate support 13 can be closed by the above-described vacuum container including the lower chamber 11, the upper chamber 16, and the ceiling plate 17, and can be brought into a vacuum state by a vacuum pump.
  • the support structure by the support beam 12 is a so-called doubly supported beam
  • the substrate support 13 is installed on the support beam 12 which is a doubly supported beam.
  • the mounting table 13b is usually provided with an electrode for electrostatic attraction, an electrode for bias application, a heater for heating, a sensor for temperature detection, a flow path for cooling, and the like.
  • the said support structure since the inside of the board
  • a drive mechanism for moving the substrate support table up and down when a drive mechanism for moving the substrate support table up and down is incorporated, it may be installed inside the substrate support table 13 and inside the through hole 12c of the support beam 12.
  • a vacuum mechanism (a pressure control valve, a vacuum pump, etc.) can be disposed directly under the vacuum vessel.
  • the support beam 12 is formed integrally with the lower chamber 11, the parts to be removed at the time of maintenance are only the lightweight mounting table 13b and the support cylinder 13a, and the maintenance is very easy.
  • the ceiling plate 17 may be removed, and the mounting table 13b and the support tube 13a may be sequentially removed.
  • the upper surface opening 12a which is the place where the support cylinder 13a is installed, is formed in the support beam 12 in advance, the substrate support 13 is centered only by being installed, and its positioning is very easy. is there.
  • the support beam 12 as the support structure is simple, maintenance such as removal, assembly, and replacement of the substrate support base 13 is facilitated.
  • the substrate support 13 is partly cylindrical in the portion of the substrate support 13 so that the exhaust is uniformly performed symmetrically about the substrate support 13.
  • exhaust is performed uniformly in a plane symmetry with the portion of the support beam 12 as a plane.
  • FIG. 3 shows a cross-sectional view of a substrate support having a structure capable of moving up and down, and this embodiment will be described with reference to FIG.
  • the substrate support base 20 is disposed on the outer peripheral side of the inner cylinder 22 and the cylindrical inner cylinder 22 to which the lower flange 22 a serving as the lower end side is attached around the upper surface opening 12 a of the support beam 12.
  • a bellows 23 in which an upper flange 23 a serving as an upper end side is attached to an outer peripheral surface on the upper end side of the inner cylinder 22, and a lower flange serving as a lower end side of the bellows 23 while being disposed on the outer peripheral side of the bellows 23.
  • 23b includes a cylindrical outer cylinder 24 attached to the lower end side, and a mounting table 26 attached to the upper flange 24a so as to close the opening on the upper end side of the outer cylinder 24.
  • a cover member 25 (covering member) is provided on the outer periphery of the outer cylinder 24 so as to be in close contact with the outer peripheral surface so as to cover the entire surface of the outer cylinder 24. That is, immediately below the mounting table 26, the inner cylinder 22 is disposed on the innermost peripheral side, and the cylindrical inner cylinder 22, bellows 23, outer cylinder 24, and cover member 25 having different diameters are sequentially arranged from the inner side. It has a concentric installation.
  • the support beam 12 and the lower flange 22a are attached via a seal member (first seal member) such as an O-ring.
  • a seal such as an O-ring is provided between the inner cylinder 22 and the upper flange 23a via a seal member (second seal member) such as an O-ring
  • a seal such as an O-ring is provided between the lower flange 23b and the outer cylinder 24.
  • the upper flange 24a and the mounting table 26 are attached via a member (third seal member) and a seal member (fourth seal member) such as an O-ring.
  • the support beam 12, the inner cylinder 22, the bellows 23, the outer cylinder 24, and the mounting table 26 are attached to each other via the seal member.
  • the vacuum vessel is driven while maintaining a vacuum.
  • the mounting table 26 can be moved up and down by a mechanism (not shown).
  • a mechanism (not shown).
  • at least one of the inner cylinder 22 and the bellows 23 and between the bellows 23 and the outer cylinder 24 is welded so that there is no leakage. It is good also as a structure which makes it form and keeps a vacuum.
  • the cover member 25 is made of a material having corrosion resistance in order to avoid high temperature corrosion of the outer cylinder 24 due to corrosive gas.
  • the cover member 25 is made of anodized aluminum or ceramics such as high purity alumina. Yes.
  • the mounting table 26 may be set to a high temperature of about 400 ° C., it is desirable that the portion of the upper flange 24a that is in direct contact with the mounting table 26 is in close contact with the cover member 25.
  • the upper end portion 25a of the cover member 25 is also formed in conformity with the shape so as to be in close contact with no gap.
  • the outer cylinder 24 can be prevented from being exposed to corrosive gas as much as possible.
  • a cylindrical skirt member (exterior member) 28 may be provided on the outer peripheral side of the cover member 25 so as to cover the entire surface of the cover member 25.
  • the skirt member 28 is made of a material having corrosion resistance, and is made of, for example, aluminum whose surface is anodized or ceramics such as high-purity alumina.
  • a driving member 21 is attached to the back surface of the mounting table 16 through the opening 12a and the inner cylinder 22, and the driving member 21 is moved up and down by a driving mechanism (not shown).
  • the drive mechanism can be installed inside the substrate support base 20 and inside the through-hole 12c of the support beam 12, which prevents the vacuum mechanism (pressure control valve, vacuum device, etc.) from being placed directly below the vacuum container. Absent. Therefore, as in the first embodiment, for the exhaust in the vacuum vessel, the portion of the substrate support 20 having a driving mechanism is cylindrical, and therefore the portion of the substrate support 20 is cylindrical.
  • the exhaust is uniformly performed in an axial symmetry, and the exhaust is uniformly performed in the plane of the support beam 12 in a plane symmetry with the support beam 12 as a plane.
  • the in-plane uniformity of plasma treatment for example, a thin film formed by plasma CVD
  • plasma CVD plasma CVD
  • the outer cylinder 24 is protected by the cover member 25, and the possibility that the high temperature portion is exposed to corrosive gas is small. Thus, high temperature corrosion is suppressed.
  • the bellows 23 and the inner cylinder 22 have a long distance from the mounting table 26 and are difficult to conduct heat, so that they do not become high temperature, and even if they are exposed to corrosive gas, high temperature corrosion is suppressed. Will be. Therefore, in the inner cylinder 22, the bellows 23, and the outer cylinder 24 which are metal members, the high temperature corrosion of these members is suppressed, and the product life of these members is increased, and metal contamination from these members is prevented. Can be suppressed.
  • the bellows 23 that is extended when the substrate 15 is transferred is shrunk when the substrate 15 is subjected to plasma processing, so that the products and by-products that adhere to the surface of the bellows 23 are reduced.
  • film formation on the surface of the bellows 23 is reduced, so that generation of particles due to film peeling of the formed thin film is reduced.
  • the substrate support table 20 only the mounting table 26 side is moved up and down with the upper flange 23a of the bellows 23 as a boundary, and the inner cylinder 22 side is fixed, so that the volume of the driven portion inside the vacuum vessel is fixed.
  • the weight can be reduced and the load on the drive mechanism can be reduced.
  • the bellows 23 moves in the direction of contraction, so that it is safer than the direction of extension. In this state, the bellows 23 is not broken.
  • Example 3 The present embodiment is premised on the structure of the first embodiment, but is characterized by the position of a pendulum type gate valve provided in the lower part of the vacuum vessel. Therefore, a cross-sectional view of the plasma processing apparatus including the pendulum type gate valve is shown in FIG. 4, and a cross-sectional view taken along the line AA of FIG. 4 is shown in FIG. Examples will be described.
  • FIG. 4 illustration of a plasma generation mechanism, a gas supply mechanism, and the like is omitted.
  • the exhaust structure of the plasma processing apparatus 10 shown in Embodiment 1 is attached to the lower portion of the lower chamber 11 via a connection member 31, and is evacuated. It has a pendulum gate valve 32 that controls the pressure inside the container, and a TMP (turbo molecular pump) 34 that is attached to the lower part of the pendulum gate valve 32 and exhausts the atmosphere inside the vacuum container.
  • TMP tri molecular pump
  • connection member 31 is attached to the flange 11c of the lower chamber 11
  • the pendulum type gate valve 32 is attached to the flange 31c of the connection member 31 with a bolt 33 inserted from above
  • the TMP 34 is The flange of the TMP 34 itself is attached to the pendulum type gate valve 33 by a bolt 33 inserted from below.
  • the pendulum gate valve 32 is eccentrically attached to the lower chamber 11. Specifically, as shown in FIG. 5, the pendulum gate valve 32 is eccentric so that the axial center Cc of the cylindrical lower chamber 11 and the area center Mc of the opening region M of the pendulum gate valve 32 coincide. Has been placed.
  • the opening area M naturally changes depending on the opening ratio of the pendulum type gate valve 32.
  • the center value of the recommended opening ratio (10% to 50%) of the pendulum type gate valve 32 is 30%. Using the opening region M as a reference, the area center Mc of the opening region M is obtained, and the pendulum gate valve 32 is arranged eccentrically so that the axial center Cc and the area center Mc coincide.
  • the center Gc when the opening 32a of the pendulum gate valve 32 is fully opened is decentered in the opening direction D of the valve body 32b that opens and closes the opening 32a with respect to the axial center Cc of the lower chamber 11. .
  • the axial center of the upper chamber 16 coincides with the axial center Cc of the lower chamber 11.
  • the center of the connection portion of the TMP 34 is arranged so as to coincide with the center Gc of the opening 32 a of the pendulum type gate valve 32.
  • the arrangement position of the pendulum type gate valve 32 is decentered in the transverse direction of the support beam 12 with respect to the support beam 12 positioned above, and the support beam 12 is considered as one surface.
  • the arrangement is made so as to have the above positional relationship, when the opening ratio in the pendulum type gate valve 32 is controlled in the vicinity of 30% and the inside of the vacuum vessel is controlled to a desired pressure, in the portion of the substrate support base 13, Since the portion of the substrate support 13 is cylindrical, exhaust is performed uniformly in an axial symmetry with the substrate support 13 as an axis, and the portion of the support beam 12 is plane-symmetric with the portion of the support beam 12 as a plane. The exhaust is uniformly performed.
  • the inside of the vacuum vessel is controlled to a desired pressure with an aperture ratio far from 30%, it is slightly non-uniform compared to when the aperture ratio is 30%.
  • This effect is noticeable in a process with a relatively high pressure vacuum.
  • plasma cleaning in a plasma CVD apparatus is performed with a relatively high degree of vacuum.
  • Conventionally there has been a bias in plasma cleaning, and in order to perform predetermined cleaning, excessive gas is consumed, or a part of the cleaning is performed excessively, and plasma damage may occur.
  • uniform plasma cleaning is performed on the lower chamber 11, the upper chamber 16, and the substrate support 13, and as a result, useless gas is used. And plasma damage are reduced, maintenance frequency can be reduced, and the life of parts can be extended.
  • the pendulum gate valve 32 may be decentered in a direction perpendicular to the transverse direction of the support beam 12.
  • the above-described center line does not bisect the shape of the opening region M in line symmetry.
  • the area is divided into two equal parts, and an effect close to that obtained when the pendulum gate valve 32 is eccentric in the transverse direction of the support beam 12 can be obtained.
  • the opening 31a of the connecting member 31 is also eccentrically provided, and this eccentric direction is also eccentric to the opening direction D of the valve body 32b.
  • a space is created in the opposite side portion that is eccentric, and a port 31b for the roughing exhaust pipe 35 is provided in the lower portion of the lower chamber 11 adjacent to the side of the pendulum type gate valve 32, Even when the port is on the side wall of the lower chamber 11, the roughing pipe 35, the valve 36, and the like can be arranged immediately below the lower chamber 11.
  • a roughing piping 35 is connected to a port 31b which is the bottom of the vacuum vessel, and a roughing vacuum pump is connected via a valve 36 and an exhaust piping 38.
  • the exhaust pipe 38 is connected to the exhaust port of the TMP 34 via the valve 37.
  • the pendulum type gate valve 32 is eccentrically connected, the standby portion 32e is arranged on the outer side from the side wall of the vacuum vessel. Therefore, the position of the flange 32d is further outside, and access to the standby unit 32e is facilitated. Therefore, by rotating the valve body 32b around the rotary shaft 32c and moving the valve body 32b to the position of the standby portion 32e, maintenance to the valve body 32b becomes possible, and maintenance performance for the pendulum gate valve 32 is improved. It can also be improved.
  • the fact that the pendulum type gate valve 32 is connected eccentrically means that the bolt 33 on the opposite side of the standby portion 32e is disposed on the near side, thereby reducing the difficulty of tightening and removing the bolt 33. You can also.
  • connection member 31 has a simple structure in which an eccentric opening 31a is provided in a circular flat plate-like member.
  • the connection member shown in FIG. It is good also as a structure like 31 '.
  • the connecting member 31 ′ has an eccentric opening 31 a ′ and a roughing piping port 31 b ′, similar to the connecting member 31, but from the opening at the top of the connecting member 31 ′.
  • An inclined portion 31c ′ is formed over the opening 31a ′, and the exhaust is smoothly performed toward the opening 31a ′.
  • connection member 31 ′ the upper flange 31 d ′ is connected to the flange 11 c of the lower chamber 11, and the lower flange 31 e ′ is connected to the pendulum gate valve 32. Further, this embodiment may be combined with the substrate support 20 described in the second embodiment.
  • the present invention is suitable for a plasma processing apparatus and method for performing plasma processing such as plasma CVD or plasma etching used for manufacturing a semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

 排気の偏りが無く、かつ、メンテナンスが容易となるように基板支持台を支持するプラズマ処理装置及び方法を提供する。そのため、プラズマCVD装置10において、対向する真空チャンバ11の側壁11aを貫通する貫通孔12cを内部に有し、真空チャンバ11の中心を通って横断する支持梁12を真空チャンバ11と一体に形成し、支持梁12の上面の中央部に、基板支持台13を取り付ける上面開口部12aを設け、真空側と大気側とをシールする第1シール部材を介して、上面開口部12aに円筒状の基板支持台13を取り付けた。

Description

プラズマ処理装置及び方法
 本発明は、基板を載置する基板支持台を有するプラズマ処理装置及び当該プラズマ処理装置を用いたプラズマ処理方法に関する。
 プラズマ処理装置において、基板を載置する基板支持台の支持構造としては、大別して、真空容器の底面から支持する構造と真空容器の側面から支持する構造の2種類が、従来技術として知られている(特許文献1、2)。
特開平9-167762号公報 特開2002-208584号公報
 基板支持台を真空容器の底面から支持する支持構造の場合には、以下のような問題が生じる。これを、図7を参照して説明する。なお、図7は、基板支持台を真空容器の底面から支持する支持構造を有する従来のプラズマCVD装置の断面図である。なお、図7において、プラズマ発生機構、ガス供給機構、真空機構等の図示は省略する。
 図7に示すプラズマCVD装置40は、内部が真空にされて、プラズマPが生成される真空容器41と、真空容器41のフランジ41aに取り付けられる底面42と、底面42の中央部に取り付けられ、伸縮可能なベローズ43と、ベローズ43を閉塞すると共に、ボールネジ46の駆動により上下動する駆動板44と、駆動板44の上面に取り付けられ、駆動板44と共に上下動する駆動部材45と、駆動部材45の上面に取り付けられ、基板48を載置する載置台47とを有している。つまり、プラズマCVD装置40は、基板支持台(載置台47、駆動部材45)を真空容器41の底面42から支持する支持構造を有すると共に、基板支持台自体を上下動可能な駆動機構も有している。
 図7に示すように、基板支持台の部分は、底面42側に支持されており、メンテナンス時には、この底面42を取り外す必要があるが、その取り外しは容易ではない。又、このような支持構造では、底面42に真空用の排気口を設けることは困難となり、真空容器41の側面に真空用の排気口49が設けられることが多い。このような場合、真空容器41内の排気が偏るため、比較的高い圧力の真空度、つまり、分子流に近い粘性流となる領域では、成膜プロセスやクリーニングプロセスのガス流れに影響が現れてしまう。
 又、基板支持台を真空容器の側面から支持する支持構造の場合には、以下のような問題が生じる。これを、図8を参照して説明する。なお、図8は、基板支持台を真空容器の側面から支持する支持構造を有する従来のプラズマCVD装置の断面図である。なお、図8においても、プラズマ発生機構、ガス供給機構、真空機構等の図示は省略する。
 図8に示すプラズマCVD装置50は、内部が真空にされて、プラズマPが生成される真空容器51と、真空容器51の側面から中央部へ向けて延設され、プレート52により支持された腕部材53と、腕部材53の上面に支持され、基板55を載置する基板支持台54とを有している。
 図8に示すように、基板支持台54は、1つの腕部材53により、真空容器51の側面に支持されており、所謂、片持ち梁構造となっている。メンテナンス時には、真空容器51の側面から支持台ユニット(腕部材53、基板支持台54)を取り外した後、新たな支持台ユニットを差し込めばよいが、これは、1つの大きな交換部品であり、高価で重量があり、この交換作業は容易ではない。このような支持構造では、真空容器51の底面に真空用の排気口56を設けることができるが、片持ち梁構造であることから、やはり、真空容器51内の排気が偏り、比較的高い圧力の真空度、つまり、分子流に近い粘性流となる領域では、成膜プロセスやクリーニングプロセスのガス流れに影響が現れてしまう。
 本発明は上記課題に鑑みなされたもので、排気の偏りが無く、かつ、メンテナンスが容易となるように基板支持台を支持するプラズマ処理装置及び方法を提供することを目的とする。
 上記課題を解決する第1の発明に係るプラズマ処理装置は、
 円筒状の真空容器内に所望のガスを供給すると共に、前記真空容器の下部に取り付けた圧力制御弁と前記圧力制御弁の下部に取り付けた真空ポンプを用いて、前記真空容器内の圧力を制御して、前記真空容器内の円筒状の基板支持台上に載置した基板に所望のプラズマ処理を施すプラズマ処理装置において、
 対向する前記真空容器の側壁を貫通する貫通孔を内部に有し、前記真空容器の中心を通って横断する支持梁を前記真空容器と一体に形成し、
 前記支持梁の上面の中央部に、前記基板支持台を取り付ける開口部を設け、
 真空側と大気側とをシールする第1シール部材を介して、前記開口部に前記基板支持台を取り付けたことを特徴とする。
 上記課題を解決する第2の発明に係るプラズマ処理装置は、
 円筒状の真空容器内に所望のガスを供給すると共に、前記真空容器の下部に取り付けた振り子式ゲート弁と前記振り子式ゲート弁の下部に取り付けた真空ポンプを用いて、前記真空容器内の圧力を制御して、前記真空容器内の円筒状の基板支持台上に載置した基板に所望のプラズマ処理を施すプラズマ処理装置において、
 対向する前記真空容器の側壁を貫通する貫通孔を内部に有し、前記真空容器の中心を通って横断する支持梁を前記真空容器と一体に形成し、
 前記支持梁の上面の中央部に、前記基板支持台を取り付ける開口部を設け、
 真空側と大気側とをシールする第1シール部材を介して、前記開口部に前記基板支持台を取り付け、
 前記真空容器の軸中心に、前記振り子式ゲート弁の開口率の使用推奨値の中心値における開口領域の面積中心が一致するように、前記支持梁の横断方向又は横断方向に垂直な方向に偏心して、前記振り子式ゲート弁を前記真空容器に取り付けたことを特徴とする。
 上記課題を解決する第3の発明に係るプラズマ処理装置は、
 上記第1、第2の発明に記載のプラズマ処理装置において、
 前記基板支持台は、
 前記支持梁の開口部の周囲に、前記第1シール部材を介して、下端側が取り付けられた円筒状の内筒と、
 前記内筒の外周側に配置されると共に、前記内筒の上端側に、溶接するか又は第2シール部材を介して、上端側が取り付けられたベローズと、
 前記ベローズの外周側に配置されると共に、前記ベローズの下端側に、溶接するか又は第3シール部材を介して、下端側が取り付けられた円筒状の外筒と、
 前記外筒の上端側の開口部を閉塞するように、第4シール部材を介して取り付けられ、前記基板を載置する円盤状の載置台と、
 前記外筒全面を覆うように、前記外筒と密接して設けられ、腐食耐性がある材料からなる円筒状の覆設部材と、
 前記開口部及び前記内筒の内部を通って、前記載置台の裏面に取り付けられた駆動部材と、
 前記貫通孔の内部に設けられ、前記駆動部材を駆動することにより、前記載置台上に載置された基板の位置を変更する駆動機構とを有することを特徴とする。
 上記課題を解決する第4の発明に係るプラズマ処理方法は、
 上記第1~第3の発明のいずれか1つに記載のプラズマ処理装置を用いたプラズマ処理方法であって、
 前記真空容器内にガスを供給し、
 前記圧力制御弁及び前記真空ポンプを用いて、前記真空容器内の圧力を制御し、
 前記ガスのプラズマを生成し、
 前記基板支持台上に載置した基板にプラズマ処理を施すことを特徴とする。
 第1の発明によれば、真空容器を横断する支持梁上に円筒状の基板支持台を取り付けたので、基板支持台の部分では、基板支持台を軸とする軸対称に均一に排気が行われ、支持梁の部分では、支持梁の部分を面とする面対称に均一に排気が行われることになる。又、真空容器と一体の支持梁上の開口部に基板支持台を取り付けたので、基板支持台の位置決めが容易となり、又、メンテナンス時には、基板支持台の取り外し、組立、交換等も容易となる。この結果、排気の偏りを抑制し、かつ、メンテナンス性を向上させることができる。
 第2の発明によれば、真空容器を横断する支持梁上に円筒状の基板支持台を取り付け、更に、振り子式ゲート弁の開口率の使用推奨値の中心値における開口領域の面積中心が真空容器の軸中心に一致するように、支持梁の横断方向又は横断方向に垂直な方向に偏心して、振り子式ゲート弁を真空容器に取り付けたので、基板支持台の部分では、基板支持台を軸とする軸対称により均一に排気が行われ、支持梁の部分では、支持梁の部分を面とする面対称により均一に排気が行われることになる。又、真空容器と一体の支持梁上の開口部に基板支持台を取り付けたので、基板支持台の位置決めが容易となり、又、メンテナンス時には、基板支持台の取り外し、組立、交換等も容易となる。この結果、排気の偏りをより抑制し、かつ、メンテナンス性を向上させることができる。
 第3の発明によれば、基板支持台が基板の位置を変更可能な駆動機構を備える場合でも、支持梁内部の貫通孔に駆動機構を配置できるので、真空容器内の排気に与える影響はなく、均一に排気を行うことができる。
 第4の発明によれば、第1~第3の発明に記載のプラズマ処理装置を用いてプラズマ処理をする場合、排気の偏りが抑制されているので、基板支持台上に載置した基板に施すプラズマ処理の面内均一性を向上させることができる。
本発明に係るプラズマ処理装置の実施形態の一例を示すものであり、(a)、(b)は、プラズマCVD装置において、互いに90°異なる位置における断面図である。 (a)は、図1に示したプラズマCVD装置の下部チャンバの斜視図であり、(b)は、図1に示したプラズマCVD装置の下部チャンバ、上部チャンバ及び基板支持台部分の斜視図である。 上下動可能な基板支持台の一例を示す断面図である。 図1に示したプラズマCVD装置の下部に取り付ける排気構造の一例を示す断面図である。 図4のA-A線矢視断面図である。 図4に示した接続部材の変形例を示す斜視図である。 基板支持台を真空容器の底面から支持する支持構造を有する従来のプラズマCVD装置の断面図である。 基板支持台を真空容器の側面から支持する支持構造を有する従来のプラズマCVD装置の断面図である。
 10 プラズマCVD装置
 11 下部チャンバ
 12 支持梁
 12a 上面開口部
 12c 貫通孔
 13、20 基板支持台
 13a 支持筒
 13b 載置台
 15 基板
 16 上部チャンバ
 17 天井板
 31、31’ 接続部材
 32 振り子式ゲート弁
 34 TMP
 本発明に係るプラズマ処理装置及び方法の実施形態例について、図1~図6を参照して、その説明を行う。なお、ここでは、一例として、プラズマCVD装置を例示するが、プラズマCVD装置に限らず、プラズマエッチング装置にも適用可能である。
(実施例1)
 本実施例のプラズマCVD装置について、図1~図2を参照して説明する。ここで、図1(a)は、本実施例のプラズマCVD装置の断面図であり、図1(b)は、図1(a)とは直交する位置におけるプラズマCVD装置の断面図である。又、図2(a)は、図1に示したプラズマCVD装置の下部チャンバの斜視図であり、図2(b)は、図1に示したプラズマCVD装置の下部チャンバ、上部チャンバ及び基板支持台部分の斜視図である。なお、図1、図2において、真空容器内に所望のガスを供給するガス供給機構、真空容器内にプラズマを発生させるプラズマ発生機構、真空容器内の圧力を制御する真空機構等の図示は省略している。
 本実施例において、プラズマ処理装置10は、円筒状の真空容器を構成する下部チャンバ11、上部チャンバ16及び天井板17を有する。下部チャンバ11と上部チャンバ16とはフランジ11b、16cにて取り付けられており、図示しないOリング等のシール部材により、内部を真空にできるようにシールされている。又、上部チャンバ16の上部開口部のフランジ16bには、天井板17が取り付けられており、図示しないOリング等のシール部材により、内部を真空にできるようにシールされている。なお、下部チャンバ11の下部のフランジ11cは、通常の円形フランジであり、真空容器内の圧力を制御する圧力制御弁、真空ポンプ(例えば、後述の図4に示すような振り子式ゲート弁、ターボ分子ポンプ)が順次取り付けられるが、ここでは、それらの図示は省略している。
 そして、真空容器の内部には、基板15を載置する円盤状の載置台13bと、載置台13bを支持する円筒状の支持筒13aからなる基板支持台13が設けられ、この基板支持台13上に載置した基板15に所望のプラズマ処理が施されることになる。なお、載置台13bと支持筒13aとの間は、図示しないOリング等のシール部材によりシールされている。
 そして、基板支持台13を支持する支持構造として、下部チャンバ11には、下部チャンバ11の中心を通って直径方向に横断する支持梁12が設けられている。支持梁12は、上面に平面を有する矩形断面状のものであり、円筒状の側壁11aの一方側から、下部チャンバ11の中心を挟んで、当該一方側に対向する側壁11aの他方側まで設けられている。更に、支持梁12の内部には矩形断面状の貫通孔12cが設けられている。つまり、支持梁12の貫通孔12cは、下部チャンバ11の中心を通り、対向する円筒状の側壁11aを直径方向に貫通するように形成されている。この支持梁12は、下部チャンバ11と一体に形成している。なお、下部チャンバ11は、上部チャンバ16と一体に形成してもよい。
 そして、支持梁12の上面の中央部分には、基板支持台13を設置するため、円形状の上面開口部12aが設けられており、この上面開口部12aに基板支持台13の支持筒13aを、図示しないOリング等のシール部材(第1シール部材)を介して取り付けて、真空側と大気側とをシールしている。又、上面開口部12aと対面する支持梁12の下面の中央部分には、メンテナンスの際、貫通孔12cの部分にアクセス可能とするための下面開口部12bが設けられており、この下面開口部12bには、図示しないOリング等のシール部材を介して、閉塞板18を取り付けている。なお、支持梁12の上面、下面は平面となっているので、円形状の上面開口部12aの形成、下面開口部12bの形成は容易である。
 従って、基板支持台13の内部は、支持梁12の貫通孔12cを介して、真空容器外部と連通しており、貫通孔12cを含めて、大気状態となっている。一方、基板支持台13の外部は、上述した下部チャンバ11、上部チャンバ16及び天井板17からなる真空容器に閉塞されて、真空ポンプにより、真空状態とすることが可能である。
 このように、支持梁12による支持構造は、所謂、両持ち梁であり、両持ち梁である支持梁12の上に基板支持台13は設置されることになる。
 載置台13bには、通常、静電吸着用の電極、バイアス印加用の電極、加熱用のヒータ、温度検出用のセンサ、冷却用の流路等が設けられている。そして、上記支持構造により、基板支持台13の内部、支持梁12の貫通孔12cが大気状態となっているので、上記機器等は大気側で接続されることになる。その場合には、真空状態の場合とは違って、高電圧が印加される電極部分で放電を起こすことはない。又、もし、冷却用の流路等から冷媒が漏れることがあったとしても、大気側で漏れることになるので、真空容器内に影響を及ぼすこともない。更には、後述の実施例2に示すように、基板支持台を上下動させる駆動機構を組み込む際にも、基板支持台13の内部、支持梁12の貫通孔12cの内部に設置すればよいので、真空機構(圧力制御弁、真空ポンプ等)を真空容器の真下に配置することができる。
 又、支持梁12は、下部チャンバ11と一体に形成されているので、メンテナンス時に取り外しする部分は、軽量な載置台13b、支持筒13aのみであり、メンテナンスは非常に容易である。例えば、メンテナンス時には、まず、天井板17を取り外し、順次、載置台13b、支持筒13aを取り外せばよく、交換が必要な場合には、支持梁12より上の載置台13b、支持筒13aのみを交換すればよい。又、支持筒13aの設置場所である上面開口部12aは、支持梁12に予め形成されているので、設置するだけで、基板支持台13のセンタリングすることになり、その位置決めも非常に容易である。このように、支持構造である支持梁12がシンプルであるため、基板支持台13の取り外し、組立、交換等のメンテナンスが容易となる。
 又、真空容器内の排気については、基板支持台13の部分では、基板支持台13の部分が円筒状であることから、基板支持台13を軸とする軸対称に均一に排気が行われ、支持梁12の部分では、支持梁12の部分を面とする面対称に均一に排気が行われることになる。その結果、基板支持台13上に載置した基板15に施すプラズマ処理(例えば、プラズマCVDにより成膜された薄膜等)の面内均一性を向上させることができる。
(実施例2)
 本実施例は、実施例1の構造を前提とし、基板支持台として、基板の位置を上下動可能なものを用いたものである。そこで、上下動可能な構造の基板支持台の断面図を図3に示し、図3を参照して、本実施例を説明する。
 本実施例において、基板支持台20は、支持梁12の上面開口部12aの周囲に、下端側となる下部フランジ22aが取り付けられた円筒状の内筒22と、内筒22の外周側に配置されると共に、内筒22の上端側の外周面に、上端側となる上部フランジ23aが取り付けられたベローズ23と、ベローズ23の外周側に配置されると共に、ベローズ23の下端側となる下部フランジ23bに、下端側が取り付けられた円筒状の外筒24と、外筒24の上端側の開口部を閉塞するように、上部フランジ24aに取り付けられた載置台26とを有する。又、外筒24の外周には、外筒24の全面を覆うように外周面に密接させたカバー部材25(覆設部材)が設けられている。つまり、載置台26の直下において、内筒22が最内周側に配置されており、互いに径の異なる円筒状の内筒22、ベローズ23、外筒24及びカバー部材25が、順次、内側から同心円状で設置された構造となっている。
 又、支持梁12と下部フランジ22aとの間は、Oリング等のシール部材(第1シール部材)を介して取り付けられている。同様に、内筒22と上部フランジ23aとの間は、Oリング等のシール部材(第2シール部材)を介して、又、下部フランジ23bと外筒24との間は、Oリング等のシール部材(第3シール部材)を介して、又、上部フランジ24aと載置台26との間は、Oリング等のシール部材(第4シール部材)を介して、取り付けられている。つまり、支持梁12、内筒22、ベローズ23、外筒24、載置台26同士の間は、シール部材を介して取り付けてあり、このような構成により、真空容器内部を真空に保ちつつ、駆動機構(図示省略)により、載置台26を上下動可能な構成としている。なお、内筒22、ベローズ23及び外筒24においては、内筒22とベローズ23との間、ベローズ23と外筒24との間の少なくとも一方を、リークが無いように溶接により溶着し、一体化させて、真空を保つ構成としてもよい。
 又、内筒22、ベローズ23及び外筒24のうち、少なくとも外筒24は、高温下でも載置台26を支持する構造を保つため、比較的融点の高い金属又は合金、例えば、ステンレス製等とすることが望ましい。又、カバー部材25は、腐食性ガスによる外筒24の高温腐食を避けるため、腐食耐性がある材料からなり、例えば、表面をアルマイト加工したアルミニウム、又は、高純度アルミナ等のセラミックスから形成されている。特に、載置台26は400℃程度の高温に設定されることがあるため、載置台26と直接接している上部フランジ24aの部分は、隙間無く、カバー部材25を密着させることが望ましい。例えば、図3に示すように、上部フランジ24aが外周側に出っ張っている場合には、カバー部材25の上端部25aも、その形状に倣って形成して、隙間無く密着するようにしている。この結果、外筒24が腐食性ガスにできるだけ曝されないようにすることができる。
 なお、カバー部材25の更に外周側に、カバー部材25の全面を覆うように、円筒状のスカート部材(外装部材)28を設けるようにしてもよい。このスカート部材28は、カバー部材25と同様に、腐食耐性がある材料からなり、例えば、表面をアルマイト加工したアルミニウム、又は、高純度アルミナ等のセラミックスから形成されている。スカート部材28を設けることにより、その外周側を流れるガスを整流して、均一に排気できるようにすると共に、外筒24、ベローズ23及び内筒22側へのガスの進入を防いでおり、その結果、外筒24、ベローズ23及び内筒22の腐食を防止して、腐食による金属汚染を防止すると共に、それらの製品寿命を長くしている。
 又、載置台16の裏面側には、開口部12a及び内筒22の内部を通って、駆動部材21が取り付けられており、この駆動部材21が、図示していない駆動機構により上下動されることにより、載置台26及び基板15を上下動させて、基板15の位置を変更可能となっている。駆動機構は、基板支持台20の内部、支持梁12の貫通孔12cの内部に設置することができ、真空機構(圧力制御弁、真空装置等)の真空容器の真下への配置を妨げることはない。従って、実施例1と同様に、真空容器内の排気については、駆動機構を有する基板支持台20の部分では、基板支持台20の部分が円筒状であることから、基板支持台20を軸とする軸対称に均一に排気が行われ、支持梁12の部分では、支持梁12の部分を面とする面対称に均一に排気が行われることになる。その結果、基板支持台20上に載置した基板15に施すプラズマ処理(例えば、プラズマCVDにより成膜された薄膜等)の面内均一性を向上させることができる。
 加えて、基板支持台20では、載置台26を400℃程度に加熱しても、外筒24は、カバー部材25に保護されており、高温部分が腐食性ガスに曝される可能性が小さくなり、高温腐食が抑制される。又、ベローズ23、そして、内筒22は、載置台26からの道程が遠く、熱伝導しにくいため、高温となることがなく、もし、腐食性ガスに曝されたとしても、高温腐食が抑制されることになる。従って、金属製の部材である内筒22、ベローズ23及び外筒24において、それらの部材の高温腐食が抑制されて、それらの部材の製品寿命が長くなると共に、それらの部材からの金属汚染を抑制することができる。
 又、基板支持台20では、基板15の搬送時に伸びているベローズ23は、基板15へのプラズマ処理時には縮んでいるので、ベローズ23の表面に付着する生成物や副生成物が少なくなる。特に、プラズマCVD装置の場合には、ベローズ23の表面への成膜が少なくなるので、成膜された薄膜の膜剥がれが要因となるパーティクルの発生が少なくなる。
 又、基板支持台20では、ベローズ23の上部フランジ23aを境にして、載置台26側のみを上下動させ、内筒22側は固定しているので、真空容器内部での被駆動部分の体積、重量を小さくして、駆動機構への負担を小さくすることができる。又、駆動機構の故障等により、もし、大気圧による圧力が載置台26の裏面に働いたとしても、その場合には、ベローズ23を縮める方向に動くので、伸びる方向と比較して、安全な状態であり、ベローズ23が破断したりすることはない。
(実施例3)
 本実施例は、実施例1の構造を前提とするものであるが、真空容器の下部に設けた振り子式ゲート弁の位置に特徴があるものである。従って、振り子式ゲート弁を含めたプラズマ処理装置の断面図を図4に示すと共に、図4のA-A線矢視断面図を図5に示し、図4、図5を参照して、本実施例を説明する。なお、図4において、プラズマ発生機構、ガス供給機構等の図示は省略している。
 本実施例では、図4に示すように、実施例1(図1等参照)に示したプラズマ処理装置10の排気構造として、接続部材31を介して、下部チャンバ11の下部に取り付けられ、真空容器内部の圧力の制御を行う振り子式ゲート弁32と、振り子式ゲート弁32の下部に取り付けられ、真空容器内部の雰囲気を排気するTMP(ターボ分子ポンプ)34とを有するものである。なお、接続部材31は、下部チャンバ11のフランジ11cへ取り付けられており、振り子式ゲート弁32は、上方から差し込まれたボルト33により、接続部材31のフランジ31cに取り付けられており、TMP34は、下方から差し込まれたボルト33により、TMP34自体のフランジが振り子式ゲート弁33に取り付けられている。
 本実施例において、振り子式ゲート弁32は、偏心して下部チャンバ11に取り付けてある。具体的には、図5に示すように、円筒状の下部チャンバ11の軸中心Ccと振り子式ゲート弁32の開口領域Mの面積中心Mcが一致するように、振り子式ゲート弁32が偏心して配置されている。開口領域Mは、振り子式ゲート弁32の開口率により当然ながら変化するが、本実施例では、振り子式ゲート弁32における開口率の使用推奨値(10%~50%)の中心値30%の開口領域Mを基準にして、その開口領域Mの面積中心Mcを求め、軸中心Ccと面積中心Mcが一致するように、振り子式ゲート弁32を偏心配置している。従って、振り子式ゲート弁32の開口部32aの全開時の中心Gcは、下部チャンバ11の軸中心Ccに対して、開口部32aの開閉を行う弁体32bの開方向Dに偏心することになる。なお、上部チャンバ16の軸中心は、下部チャンバ11の軸中心Ccと一致している。又、TMP34の接続部中心は、振り子式ゲート弁32の開口部32aの中心Gcと一致するように配置されている。
 振り子式ゲート弁32の配置位置は、その上方に位置する支持梁12に対しては、支持梁12の横断方向に偏心させており、支持梁12を1つの面と考えると、支持梁12に対して、振り子式ゲート弁32の開口領域Mが面対称に位置することになる。つまり、軸中心Cc=面積中心Mcを通る支持梁12の横断方向の中心線を考えると、当該中心線が開口領域Mの形状を線対称に2等分し、面積を2等分することになる。
 従って、上記位置関係となるように配置すれば、振り子式ゲート弁32における開口率を30%近傍で制御して、真空容器内部を所望の圧力に制御するときには、基板支持台13の部分では、基板支持台13の部分が円筒状であることから、基板支持台13を軸とする軸対称に均一に排気が行われ、支持梁12の部分では、支持梁12の部分を面とする面対称に均一に排気が行われることになる。30%から離れた開口率で、真空容器内部を所望の圧力に制御するときには、開口率30%のときと比較して、やや不均一にはなるが、そのときでも、真空容器の軸中心に振り子式ゲート弁の開口部中心を一致させた場合より均一に排気することができる。その結果、基板支持台13上に載置した基板15に施すプラズマ処理(例えば、プラズマCVDにより成膜された薄膜等)の面内均一性をより向上させることができる。
 この効果は、比較的高い圧力の真空度のプロセスで顕著に表れる。例えば、プラズマCVD装置におけるプラズマクリーニングは、比較的高い圧力の真空度で実施される。従来は、プラズマクリーニングに偏りがあり、所定のクリーニングを実施するために、余分なガスを消費したり、一部余分にクリーニングが行われて、プラズマダメージが発生したりすることがあった。これに対し、本実施例では、上述した排気構造を用いることにより、下部チャンバ11、上部チャンバ16、基板支持台13に対して、均一なプラズマクリーニングが施され、その結果、無駄なガスの使用やプラズマによるダメージが低減され、メンテナンス頻度の低減や部品の長寿命化を図ることができる。
 なお、振り子式ゲート弁32を支持梁12の横断方向に垂直な方向に偏心させてもよく、その場合、上述した中心線は、開口領域Mの形状を線対称に2等分するわけではないが、面積は2等分することになり、振り子式ゲート弁32を支持梁12の横断方向に偏心させた場合に近い効果を得ることができる。
 又、振り子式ゲート弁32を偏心して取り付けたために、接続部材31の開口部31aも偏心して設けており、この偏心方向も、弁体32bの開方向Dに偏心させている。その結果、偏心させた反対側の部分にスペースが生まれ、振り子式ゲート弁32の側方に隣接して、下部チャンバ11の下部に、粗引き用排気配管35のためのポート31bを設けたり、ポートが下部チャンバ11の側壁にあっても、下部チャンバ11の直下に粗引き配管35、バルブ36等を配置したりすることが可能となる。そこで、本実施例では、真空容器内部の粗引きのために、真空容器の底部となるポート31bに、粗引き配管35を接続し、バルブ36及び排気配管38を介して、粗引き用真空ポンプ39と接続しており、又、バルブ37を介して、TMP34の排気ポートに排気配管38を接続している。このように、下部チャンバ11の直下に粗引き配管35、バルブ36等を配置することができ、処理装置の内部空間に、TMP34等と共に効率的に配置することが可能となる。
 又、振り子式ゲート弁32を偏心して接続しているため、待機部32eを真空容器の側壁からより外側に配置することになる。従って、フランジ32dの位置もより外側となり、待機部32eへのアクセスも容易となる。従って、回転軸32cを中心に弁体32bを回転させて、弁体32bを待機部32eの位置へ移動させることにより、弁体32bへのメンテナンスが可能となり、振り子式ゲート弁32に対するメンテナンス性を向上させることもできる。
 振り子式ゲート弁32を偏心して接続していることは、待機部32eの反対側にあるボルト33を、より手前側に配置することになり、そのボルト33の締め付け、取り外しの困難性を低減させることもできる。
 なお、図4、図5において、接続部材31は、円形平板状の部材に偏心した開口部31aを設けた単純な構造であったが、よりスムーズな排気を行うため、図6に示す接続部材31’のような構成としてもよい。接続部材31’は、具体的には、接続部材31と同様に、偏心した開口部31a’、粗引き配管用のポート31b’を有するものであるが、接続部材31’の上部の開口部分から開口部31a’にかけて、傾斜部31c’が形成されており、開口部31a’に向かって、スムーズに排気される構造となっている。なお、接続部材31’においては、上部フランジ31d’が下部チャンバ11のフランジ11cへ接続され、下部フランジ31e’が振り子式ゲート弁32へ接続される。更に、本実施例は、実施例2に記載した基板支持台20と組み合わせても良い。
 本発明は、半導体装置の製造に用いるプラズマCVDやプラズマエッチング等のプラズマ処理を実施するプラズマ処理装置及び方法に好適なものである。

Claims (4)

  1.  円筒状の真空容器内に所望のガスを供給すると共に、前記真空容器の下部に取り付けた圧力制御弁と前記圧力制御弁の下部に取り付けた真空ポンプを用いて、前記真空容器内の圧力を制御して、前記真空容器内の円筒状の基板支持台上に載置した基板に所望のプラズマ処理を施すプラズマ処理装置において、
     対向する前記真空容器の側壁を貫通する貫通孔を内部に有し、前記真空容器の中心を通って横断する支持梁を前記真空容器と一体に形成し、
     前記支持梁の上面の中央部に、前記基板支持台を取り付ける開口部を設け、
     真空側と大気側とをシールする第1シール部材を介して、前記開口部に前記基板支持台を取り付けたことを特徴とするプラズマ処理装置。
  2.  円筒状の真空容器内に所望のガスを供給すると共に、前記真空容器の下部に取り付けた振り子式ゲート弁と前記振り子式ゲート弁の下部に取り付けた真空ポンプを用いて、前記真空容器内の圧力を制御して、前記真空容器内の円筒状の基板支持台上に載置した基板に所望のプラズマ処理を施すプラズマ処理装置において、
     対向する前記真空容器の側壁を貫通する貫通孔を内部に有し、前記真空容器の中心を通って横断する支持梁を前記真空容器と一体に形成し、
     前記支持梁の上面の中央部に、前記基板支持台を取り付ける開口部を設け、
     真空側と大気側とをシールする第1シール部材を介して、前記開口部に前記基板支持台を取り付け、
     前記真空容器の軸中心に、前記振り子式ゲート弁の開口率の使用推奨値の中心値における開口領域の面積中心が一致するように、前記支持梁の横断方向又は横断方向に垂直な方向に偏心して、前記振り子式ゲート弁を前記真空容器に取り付けたことを特徴とするプラズマ処理装置。
  3.  請求項1又は請求項2に記載のプラズマ処理装置において、
     前記基板支持台は、
     前記支持梁の開口部の周囲に、前記第1シール部材を介して、下端側が取り付けられた円筒状の内筒と、
     前記内筒の外周側に配置されると共に、前記内筒の上端側に、溶接するか又は第2シール部材を介して、上端側が取り付けられたベローズと、
     前記ベローズの外周側に配置されると共に、前記ベローズの下端側に、溶接するか又は第3シール部材を介して、下端側が取り付けられた円筒状の外筒と、
     前記外筒の上端側の開口部を閉塞するように、第4シール部材を介して取り付けられ、前記基板を載置する円盤状の載置台と、
     前記外筒全面を覆うように、前記外筒と密接して設けられ、腐食耐性がある材料からなる円筒状の覆設部材と、
     前記開口部及び前記内筒の内部を通って、前記載置台の裏面に取り付けられた駆動部材と、
     前記貫通孔の内部に設けられ、前記駆動部材を駆動することにより、前記載置台上に載置された基板の位置を変更する駆動機構とを有することを特徴とするプラズマ処理装置。
  4.  請求項1から請求項3のいずれか1つに記載のプラズマ処理装置を用いたプラズマ処理方法であって、
     前記真空容器内にガスを供給し、
     前記圧力制御弁及び前記真空ポンプを用いて、前記真空容器内の圧力を制御し、
     前記ガスのプラズマを生成し、
     前記基板支持台上に載置した基板にプラズマ処理を施すことを特徴とするプラズマ処理方法。
PCT/JP2010/058732 2009-06-18 2010-05-24 プラズマ処理装置及び方法 WO2010146969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10789344A EP2444997A1 (en) 2009-06-18 2010-05-24 Plasma processing apparatus and plasma processing method
KR1020117030127A KR101343162B1 (ko) 2009-06-18 2010-05-24 플라즈마 처리 장치 및 플라즈마 처리 방법
US13/376,067 US20120135164A1 (en) 2009-06-18 2010-05-24 Plasma processing apparatus and plasma processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-145195 2009-06-18
JP2009145195A JP5558035B2 (ja) 2009-06-18 2009-06-18 プラズマ処理装置及び方法

Publications (1)

Publication Number Publication Date
WO2010146969A1 true WO2010146969A1 (ja) 2010-12-23

Family

ID=43356290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058732 WO2010146969A1 (ja) 2009-06-18 2010-05-24 プラズマ処理装置及び方法

Country Status (6)

Country Link
US (1) US20120135164A1 (ja)
EP (1) EP2444997A1 (ja)
JP (1) JP5558035B2 (ja)
KR (1) KR101343162B1 (ja)
TW (1) TWI430392B (ja)
WO (1) WO2010146969A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660936B2 (ja) * 2014-04-09 2020-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 改良されたフロー均一性/ガスコンダクタンスを備えた可変処理容積に対処するための対称チャンバ本体設計アーキテクチャ
KR20170048787A (ko) * 2015-10-27 2017-05-10 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
JP6607795B2 (ja) 2016-01-25 2019-11-20 東京エレクトロン株式会社 基板処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168930A (ja) * 1992-11-30 1994-06-14 Nec Corp 化学気相成長法と化学気相成長装置および多層配線の製造方法
JPH0997786A (ja) * 1995-09-29 1997-04-08 Kobe Steel Ltd プラズマ処理方法及びその装置
JPH09167762A (ja) 1995-07-10 1997-06-24 Watkins Johnson Co プラズマ強化化学処理反応装置とその方法
JP2002208584A (ja) 2001-01-09 2002-07-26 Tokyo Electron Ltd 枚葉式の処理装置
JP2009117444A (ja) * 2007-11-02 2009-05-28 V Tex:Kk 真空ゲートバルブおよびこれを使用したゲート開閉方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402848B1 (en) * 1999-04-23 2002-06-11 Tokyo Electron Limited Single-substrate-treating apparatus for semiconductor processing system
JP2001077088A (ja) * 1999-09-02 2001-03-23 Tokyo Electron Ltd プラズマ処理装置
JP2002151473A (ja) * 2000-11-13 2002-05-24 Tokyo Electron Ltd プラズマ処理装置及びその組立方法
US7204912B2 (en) * 2002-09-30 2007-04-17 Tokyo Electron Limited Method and apparatus for an improved bellows shield in a plasma processing system
US7789963B2 (en) * 2005-02-25 2010-09-07 Tokyo Electron Limited Chuck pedestal shield
JP5050369B2 (ja) * 2006-03-06 2012-10-17 東京エレクトロン株式会社 処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168930A (ja) * 1992-11-30 1994-06-14 Nec Corp 化学気相成長法と化学気相成長装置および多層配線の製造方法
JPH09167762A (ja) 1995-07-10 1997-06-24 Watkins Johnson Co プラズマ強化化学処理反応装置とその方法
JPH0997786A (ja) * 1995-09-29 1997-04-08 Kobe Steel Ltd プラズマ処理方法及びその装置
JP2002208584A (ja) 2001-01-09 2002-07-26 Tokyo Electron Ltd 枚葉式の処理装置
JP2009117444A (ja) * 2007-11-02 2009-05-28 V Tex:Kk 真空ゲートバルブおよびこれを使用したゲート開閉方法

Also Published As

Publication number Publication date
EP2444997A1 (en) 2012-04-25
KR20120034079A (ko) 2012-04-09
TWI430392B (zh) 2014-03-11
JP2011003704A (ja) 2011-01-06
KR101343162B1 (ko) 2013-12-19
TW201130079A (en) 2011-09-01
US20120135164A1 (en) 2012-05-31
JP5558035B2 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
JP4736564B2 (ja) 載置台装置の取付構造及び処理装置
TW201929144A (zh) 低溫冷卻的可旋轉靜電卡盤
TWI697037B (zh) 處理裝置
JP7126431B2 (ja) シャワーヘッドおよびガス処理装置
JP7542374B2 (ja) 回転機構および基板処理装置
JPWO2008156031A1 (ja) 真空処理装置
TWM590308U (zh) 用於減少電漿蝕刻腔室中的污染的設備
US11764102B2 (en) Rotating shaft sealing device and processing apparatus for semiconductor substrate using the same
JP5558035B2 (ja) プラズマ処理装置及び方法
JP2006237348A (ja) 静電チャック及びこれを備えた真空処理装置
KR101367473B1 (ko) 기판 지지대의 구조 및 플라즈마 처리 장치
TW202232564A (zh) 緊固構造、電漿處理裝置以及緊固方法
JP5743120B2 (ja) プラズマ処理装置及び方法
JP2001104774A (ja) プラズマ処理装置
JP2006086230A (ja) 半導体製造装置
KR20180101199A (ko) 가스 도입 기구 및 열처리 장치
US11705346B2 (en) Substrate processing apparatus
TW202117837A (zh) 第一導電性構件與第二導電性構件之接合構造與接合方法及基板處理裝置
WO2014007066A1 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010789344

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117030127

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13376067

Country of ref document: US