WO2010146961A1 - プラズマ処理装置及びプラズマ処理装置用冷却装置 - Google Patents

プラズマ処理装置及びプラズマ処理装置用冷却装置 Download PDF

Info

Publication number
WO2010146961A1
WO2010146961A1 PCT/JP2010/058499 JP2010058499W WO2010146961A1 WO 2010146961 A1 WO2010146961 A1 WO 2010146961A1 JP 2010058499 W JP2010058499 W JP 2010058499W WO 2010146961 A1 WO2010146961 A1 WO 2010146961A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant flow
refrigerant
plasma processing
height
Prior art date
Application number
PCT/JP2010/058499
Other languages
English (en)
French (fr)
Inventor
清隆 石橋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US13/379,219 priority Critical patent/US20120118505A1/en
Priority to CN2010800273795A priority patent/CN102804931A/zh
Publication of WO2010146961A1 publication Critical patent/WO2010146961A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a plasma processing apparatus for performing plasma processing on a target object such as a semiconductor wafer, a liquid crystal substrate, and an organic EL element.
  • semiconductor devices used everywhere in life are required to be capable of high-speed processing and have lower power consumption.
  • semiconductor devices are required to be highly integrated and miniaturized.
  • semiconductor device manufacturing apparatuses are required to process minute structures on a semiconductor substrate with low damage.
  • a microwave plasma processing apparatus used for etching a semiconductor substrate or a film forming process generally uses an RLSA (Radial Line Slot Slot Antenna) planar antenna that uniformly introduces microwaves into a processing vessel and generates plasma uniformly. Used. According to the planar antenna of the RLSA system, microwaves can be supplied uniformly into the processing container, so that the semiconductor substrate can be processed uniformly in the surface. In addition, high-density plasma can be generated in a wide area directly under the antenna. Furthermore, since plasma with a low electron temperature can be generated, damage to the semiconductor substrate can be reduced.
  • RLSA Random Line Slot Slot Antenna planar antenna
  • the RLSA planar antenna is connected to a coaxial waveguide that propagates microwaves.
  • the microwave supplied from the coaxial waveguide propagates in the radial direction inside the disk-shaped dielectric plate in the antenna.
  • the microwave whose wavelength is compressed inside the dielectric plate is radiated into the processing container through the slot of the slot plate in close contact with the lower portion of the dielectric plate.
  • the plasma excitation gas in the processing vessel is excited into a plasma state by the microwave electric field in the processing vessel.
  • Such a planar antenna is heated mainly by plasma during the process.
  • the planar antenna When the planar antenna is heated, the planar antenna may be deformed due to the difference in coefficient of thermal expansion between the components constituting the planar antenna, and the microwave propagation characteristics may change.
  • the microwave propagates in a radial direction in a dielectric plate made of alumina or the like, forms a standing wave, and is supplied into the processing container through a slot of a slot plate made of copper or the like.
  • the microwave in the dielectric plate is disturbed, and the propagation state of the microwave supplied into the processing container is changed.
  • the plasma state excited by the microwave in the processing vessel also changes.
  • the amount of displacement due to the difference in coefficient of thermal expansion increases.
  • Patent Document 1 discloses a cooling device in which a cooling jacket is provided on the top of the planar antenna, and the planar antenna is cooled by flowing a coolant through a coolant channel of the cooling jacket. Is disclosed.
  • the heat removal amount (heat transfer amount) is proportional to the temperature difference between the wall surface of the refrigerant flow path and the refrigerant. Therefore, if the refrigerant temperature is different between the inlet side and the outlet side, the temperature difference is also different, and the heat removal amount is also different.
  • one refrigerant flow path is folded at an intermediate point, and the folded refrigerant flow paths are arranged adjacent to each other.
  • a recent microwave plasma processing apparatus for processing a semiconductor substrate having a large diameter from a 200 mm substrate to a 300 mm substrate is required to change the microwave propagation state of the planar antenna as much as possible. Due to this request, it is desired that the cooling device cools the planar antenna more uniformly.
  • an object of the present invention is to provide a plasma processing apparatus and a cooling apparatus for a plasma processing apparatus that can uniformly cool a planar antenna and a dielectric window in the circumferential direction.
  • one embodiment of the present invention includes a sealable processing container that performs plasma processing on an object to be processed therein, a mounting table that is disposed in the processing container and holds the object to be processed, A dielectric window disposed on the ceiling of the processing container and sealing the inside of the processing container; and a microwave antenna disposed on the dielectric window and radiating microwaves into the processing container.
  • a coolant channel for cooling the dielectric window is provided on a side wall of the processing container, and a liquid phase or gas phase coolant is supplied to the coolant channel without causing a phase change.
  • At least a part of the refrigerant flow path that flows and extends in the circumferential direction of the side wall is a plasma processing apparatus that gradually decreases in cross-sectional area from upstream to downstream.
  • Another aspect of the present invention includes a hermetically sealable processing container that performs plasma processing on an object to be processed therein, a mounting table that is disposed in the processing container and holds the object to be processed, and a ceiling portion of the processing container A dielectric window that seals the inside of the processing container, a microwave antenna that radiates microwaves into the processing container, and an upper part of the microwave antenna.
  • Still another aspect of the present invention includes: a sealable processing container that performs plasma processing on an object to be processed inside; a mounting table that is disposed in the processing container and holds the object to be processed; and
  • a plasma processing apparatus comprising plasma excitation means for exciting plasma and a coolant channel for cooling a member heated by the plasma
  • the coolant channel has a liquid phase or a gas phase without phase change.
  • at least a part of the refrigerant flow path is a plasma processing apparatus in which the sectional area gradually decreases from upstream to downstream.
  • Still another aspect of the present invention is a cooling apparatus for a plasma processing apparatus that is incorporated in a plasma processing apparatus that performs plasma processing on an object to be processed, and that cools a member heated by the plasma, without causing a phase change. It has a refrigerant flow path through which a liquid phase or gas phase refrigerant flows, and at least a part of the refrigerant flow path is a cooling device for a plasma processing apparatus that gradually decreases in cross section from upstream to downstream.
  • h heat transfer coefficient
  • A heat transfer area
  • (T w -T 0) temperature difference between the wall and the refrigerant
  • the cross-sectional area of the refrigerant flow path is reduced, the flow rate of the refrigerant increases and the heat transfer coefficient h increases.
  • the cross-sectional area of the refrigerant flow path is gradually reduced from the upstream toward the downstream as in the present invention, the decrease in the temperature difference due to the temperature rise of the refrigerant can be compensated by the improvement in the heat transfer coefficient h.
  • the amount of heat transfer in the length direction can be made substantially constant. For this reason, it becomes possible to cool a planar antenna and a dielectric window uniformly in the circumferential direction.
  • FIG. 1 is an overall configuration diagram of a plasma processing apparatus according to an embodiment of the present invention.
  • coolant flow path formed in an upper plate ((a) in a figure is a top view, (b) in the figure is sectional drawing)
  • a graph showing the relationship between the azimuth angle of the refrigerant flow path and the groove height ((a) in the figure shows when the refrigerant flow path has three turns, and (b) shows when the refrigerant flow path has three turns)
  • the figure which shows the other example of the refrigerant flow path formed in an upper plate ((a) in the figure is a top view, (b) in the figure is sectional drawing)
  • coolant flow path formed in a cooling plate ((a) is sectional drawing in the figure, (b) is a top view)
  • Graph showing the relationship between flow rate and uniformity when the height of the refrigerant flow path is a cubic expression of the path length The figure which shows the example which provided the two path
  • FIG. 1 shows an overall configuration diagram of a plasma processing apparatus.
  • the processing container 100 formed in a substantially cylindrical shape as a whole is made of aluminum or stainless steel containing aluminum.
  • a protective coating made of an aluminum oxide (alumina) coating or yttria (Y 2 O 3 ) coating is formed on the inner wall surface of the processing vessel 100.
  • a dielectric window 105 that seals the inside of the processing container 100 and transmits microwaves is placed on the ceiling of the processing container 100 via a seal ring 110.
  • the dielectric window 105 is made of quartz or ceramic (such as alumina or aluminum nitride).
  • the dielectric window 105 is fixed to the processing container 100 by a holding ring 200 on the upper side wall of the processing container 100.
  • a gas introducing means 510 for introducing a processing gas into the processing space U is provided on the side wall of the processing container 100.
  • the processing space U is divided into two regions by a lower shower 515, and gas for plasma excitation such as argon gas and krypton gas is supplied from the gas introducing means 510 located above, and a process is supplied from the lower shower 515.
  • Gas for processing is introduced.
  • the gas introduction means 510 and the lower shower 515 are connected to a gas supply source 505.
  • a gas for plasma excitation, a gas for process treatment, and a gas for cleaning may be arbitrarily introduced from the gas introduction unit 510.
  • an upper portion (hereinafter referred to as an upper plate 140) of the side wall of the processing container 100 partitioned by the lower shower 515 is integrally formed on the side wall.
  • the gas introducing means 510 may be configured in a shower head shape and provided on the ceiling portion of the processing container 100.
  • the upper plate 140 as a cooling device is provided with a refrigerant flow path 145 for cooling the dielectric window 105.
  • a fluorine-based liquid having high electrical insulation and thermal conductivity is flowed as a refrigerant. While the refrigerant flows through the refrigerant flow path 145, the refrigerant does not change phase and flows through the refrigerant flow path 145 in a liquid phase.
  • the temperature of the upper plate 140 is 90 ° C. or less (standard is 70 ° C. to 80 ° C.) and the temperature of the dielectric window 105 is 150 ° C. or less.
  • the structure of the refrigerant channel 145 will be described later.
  • a loading / unloading port (not shown) for loading and unloading the substrate to be processed is provided at the lower part of the side wall of the processing container 100 partitioned by the lower shower 515.
  • the carry-in / out port is opened and closed by a gate valve.
  • the exhaust port 135 for evacuating the inside is formed at the bottom of the processing vessel 100.
  • the exhaust port is connected to an exhaust device (not shown).
  • a mounting table 115 on which a wafer W that is a substrate to be processed is mounted is provided.
  • the mounting table 115 is connected to a high-frequency power source 125b that can apply a bias so that the wafer W can be attracted using an electrostatic attraction force.
  • a disk-shaped planar antenna 905 is disposed above the dielectric window 105 as a microwave antenna that supplies microwaves to the processing space U to excite plasma.
  • the planar antenna 905 includes a slot plate 905b having two types of orthogonal slots, and a dielectric plate 905a provided between the conductor surface 210a that reflects microwaves and the slot plate 905b.
  • Such a planar antenna 905 is called RLSA (RadialRadLine Slot Antenna).
  • the planar antenna 905 is fixed to the processing container 100 by an antenna holder.
  • the microwave generated by the microwave source 335 propagates in the rectangular waveguide 305 in the TE mode, and propagates in the coaxial waveguide 340 through the coaxial converter 310 in the TEM mode.
  • the coaxial waveguide 340 is connected to the center of the planar antenna 905.
  • the microwave introduced from the center of the planar antenna 905 propagates in the radial direction while the wavelength is compressed in the dielectric plate 905a, and is emitted into the processing space U from the slot vacated in the slot plate 905b.
  • the inner conductor of the coaxial waveguide 340 is cooled by the refrigerant supplied from the refrigerant supply source 405.
  • a cooling plate 210 as a cooling device for cooling the planar antenna 905 is provided above the conductor surface 210a.
  • the cooling plate 210 may be formed integrally with the conductor surface 210a.
  • a coolant channel 915 for cooling the planar antenna 905 is formed above the conductor surface 210a.
  • a fluorine-based liquid having high electrical insulation and thermal conductivity is flowed as a refrigerant. While the refrigerant flows through the refrigerant flow path 915, the refrigerant does not change phase and flows through the refrigerant flow path 915 in the liquid phase.
  • the configuration of the refrigerant flow path 915 of the cooling plate 210 will be described later.
  • FIG. 2 shows the upper plate 140.
  • the upper plate 140 is formed in an annular shape, and a receiving portion 160 on which the dielectric window 105 is placed is formed at the upper portion on the inner peripheral side.
  • a coolant channel 145 extending in the circumferential direction is formed in the upper plate 140.
  • the refrigerant channel 145 is formed in a spiral shape having one or more turns.
  • the refrigerant flow path 145 has a single inlet and outlet as a whole.
  • the azimuth angle of the entrance is represented by 0 degrees
  • the azimuth angle of the exit is represented by 360 degrees.
  • the cross-sectional shape of the refrigerant flow path 145 is formed in a rectangular shape. Regardless of the path length of the refrigerant flow path 145, the width of the refrigerant flow path 145 does not change. On the other hand, the height of the refrigerant flow path 145 gradually decreases from upstream to downstream.
  • the length from the inlet of the refrigerant flow path 145 is represented by a path length s
  • the azimuth angle at that time is represented by ⁇ .
  • FIG. 3A shows an example of a change in height when the refrigerant flow path 145 has three turns.
  • the height (groove height) of the refrigerant flow path 145 decreases linearly from the inlet toward the outlet.
  • the width of the refrigerant flow path 145 is constant without changing. For this reason, the cross-sectional area of the refrigerant flow path 145 gradually decreases from the inlet toward the outlet.
  • FIG. 3B shows an example of the height change when the refrigerant flow path 145 has a three-turn spiral shape.
  • the height of each winding of the refrigerant flow path 145 gradually decreases from 0 degree to approximately 360 degrees.
  • the connection portion for example, the connection portion between the first and second winding refrigerant flow paths 145 and 145
  • the refrigerant flow The height of the path 145 is increased to the original height.
  • the height of the first winding refrigerant flow path 145 located in the upper stage, the height of the second winding refrigerant flow path 145 located in the middle stage, and the height of the third winding refrigerant flow path 145 located in the lower stage. are the same height if they have the same azimuth.
  • the refrigerant flow path 145 may be formed by arranging a plurality of circularly wound refrigerant flow paths 145 in the vertical direction instead of being formed in a spiral shape. In this case, an inlet and an outlet of each winding of the refrigerant flow path 145 are provided. Each one-turn refrigerant flow path 145 gradually decreases in height from the inlet toward the outlet while maintaining a constant width.
  • the height of the first winding refrigerant flow path 145 located in the upper stage, the height of the second winding refrigerant flow path 145 located in the middle stage, and the height of the third winding refrigerant flow path 145 located in the lower stage are: If the azimuth is the same, the height is the same.
  • the upper plate 140 is divided into a plurality of parts in the vertical direction according to the number of turns of the coolant channel 145.
  • a groove constituting the refrigerant flow path 145 is formed in each of the divided upper plates 140.
  • the groove of the refrigerant flow path 145 is processed by an NC lathe using a tool such as an end mill.
  • the height of the refrigerant flow path 145 is linear with respect to the path length.
  • FIG. 4 shows another example of the refrigerant flow path 145 formed in the upper plate 140.
  • the upper plate 140 is formed with a one-turn annular coolant flow path 145.
  • the inlet of the refrigerant channel 145 is arranged at an azimuth angle of 0 degrees, and the inlet of the refrigerant channel 145 is arranged at an azimuth angle of 360 degrees.
  • the height of the refrigerant flow path 145 is expressed by a cubic expression of a path length s that gradually decreases from the inlet to the outlet.
  • the width of the refrigerant flow path 145 is constant.
  • the height d of the refrigerant flow path 145 only needs to gradually decrease from the inlet to the outlet, and may be expressed by a secondary or tertiary expression of the path length s.
  • FIG. 6 shows a refrigerant flow path 915 formed in the cooling plate 210.
  • a spiral coolant channel 915 is formed in the disc-shaped cooling plate 210.
  • the spiral refrigerant flow path 915 may be formed by one or more turns. The azimuth angles of the inlet and outlet of the refrigerant flow path 915 coincide.
  • An inlet may be formed on the outer peripheral side of the spiral refrigerant flow path 915, an outlet may be formed on the inner peripheral side, an inlet may be formed on the inner peripheral side of the refrigerant flow path 915, and an outlet may be formed on the outer peripheral side.
  • the cross-sectional shape of the refrigerant channel 915 is formed in a rectangular shape.
  • the height of the refrigerant flow path 915 gradually decreases from the inlet toward the outlet.
  • the width of the refrigerant flow path 915 does not change.
  • the height of the refrigerant flow path 915 is expressed by an nth-order mathematical expression of the path length s. It should be noted that in one turn of the spiral refrigerant flow path 915, the height gradually decreases from upstream to downstream, and the height is the original height at the joint of one turn and the other turn of the refrigerant flow path 915. You may make it return to it.
  • the amount of heat removal can be made constant along the refrigerant flow paths 145 and 915.
  • the causal relationship between “gradually reducing the cross-sectional area of the refrigerant flow path” and “the heat removal amount (heat transfer amount) can be made constant” is as follows.
  • a heat removal amount (heat transfer amount) Q transmitted from the wall surface of the refrigerant flow path to the refrigerant is expressed by the following equation.
  • Q hA (T w ⁇ T 0 )
  • W h Heat transfer coefficient
  • W / m 2 K A Heat transfer area
  • m 2 T w temperature of the wall surface
  • K T 0 refrigerant temperature
  • the Nusselt number Nu can be increased by increasing the flow velocity U.
  • the flow velocity is gradually increased.
  • the Nusselt number Nu increases from Equation 3
  • the heat transfer coefficient h increases from Equation 2.
  • the heat transfer area A in Equation 1 also decreases, but the rate of increase in the heat transfer coefficient h is larger than the rate of decrease in the heat transfer area A. can do. As a result, it becomes possible to keep the heat removal amount Q of Formula 1 constant.
  • Table 1 summarizes the main specifications of the calculation results.
  • the difference in the heat extraction linear density remains within about 2% within the range, and it was found that the difference in the heat extraction linear density hardly depends on the refrigerant flow rate.
  • Table 3 shows the results of calculating how the difference in heat extraction linear density is affected by the structure of the refrigerant flow path (dependence of the difference in heat extraction linear density on the refrigerant flow path structure).
  • the difference in heat extraction linear density can be reduced from 36.2% to 7.4% and 24.4% compared to the case of one winding. it can.
  • folding the refrigerant flow path requires a space, and there is a limit in reducing the difference in heat extraction linear density.
  • the height can be reduced to less than 2% without changing the refrigerant flow path.
  • FIG. 9 to FIG. 11 show the result of an attempt to optimize when the height of the refrigerant flow path is a cubic expression of the path length.
  • the height of the refrigerant flow path is 12 mm at the inlet, and decreases in a cubic manner toward the outlet.
  • the groove width is 8 mm.
  • the difference in heat removal linear density heat removal uniformity
  • the heat removal uniformity is slightly inferior, but by setting it to 5 L / min or more, the heat removal uniformity can be extremely reduced.
  • FIG. 12 shows an example in which the upper plate 140 is provided with a two-passage refrigerant flow path 145 including first and second refrigerant flow paths 145a and 145b.
  • the first and second refrigerant channels 145 a and 145 b are arranged in the vertical direction of the upper plate 140.
  • the inlets and outlets of the respective refrigerant flow paths 145a and 145b are arranged at azimuth angles of 0 degrees and 360 degrees.
  • FIG. 13 shows the relationship between the azimuth angle and the heights of the first and second refrigerant flow paths 145a and 145b.
  • the heights of the first and second refrigerant channels 145a and 145b are both set so that the azimuth angle gradually decreases to 180 degrees and the azimuth angle gradually increases from 180 degrees to 360 degrees. .
  • the reason why the heights of the first and second refrigerant flow paths 145a and 145b are set in this way is as follows. As shown in FIG. 14 of the comparative example, when the groove depth is constant, the amount of heat removal is the lowest at an azimuth angle of 180 degrees, and is almost symmetrical with respect to 180 degrees. In order to improve the heat extraction rate at an azimuth angle of 180 degrees, the groove depth is reduced to increase the flow velocity. In addition, sufficient thermal uniformity can be obtained with a substantially symmetrical groove depth distribution.
  • FIG. 14 shows a comparative example when the heights of the refrigerant flow paths 145a and 145b are constant.
  • the refrigerant channel height was 9 mm
  • the refrigerant channel width was 6 mm
  • the refrigerant flow rate was 9 L / min
  • the heat removal amount was 2 kW
  • the heat removal uniformity was ⁇ 1.3%.
  • the heat removal uniformity is ⁇ 0.1% when the flow rate of the refrigerant is 2 L / min or more.
  • the heat removal uniformity could be made ⁇ 0.6% or less.
  • the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention.
  • the refrigerant channel of the present invention may be formed in a lower shower, and a gas such as argon gas may be flowed through the refrigerant channel to cool the lower shower.
  • a conductive film is integrally formed on the upper and lower surfaces of the dielectric plate by plating or the like, the upper conductive film is used as a conductor plate that reflects microwaves, and the lower conductive film is used as a slot plate that transmits microwaves. May be used.
  • DESCRIPTION OF SYMBOLS 100 ... Processing container 105 ... Dielectric window 115 ... Mounting stand 140 ... Upper plate (The side wall of a processing container, a cooling device) 145: Refrigerant channel 145a ... First refrigerant channel 145b ... Second refrigerant channel 210 ... Cooling plate (cooling device) 905 ... Planar antenna (microwave antenna, plasma excitation means) 910 ... Upper cover 915 ... Refrigerant flow path U ... Processing space W ... Wafer (substrate to be processed)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 平面アンテナや誘電体窓を周方向に均一に冷却できるプラズマ処理装置を提供する。 プラズマ処理装置の処理容器100の側壁140に誘電体窓105を冷却するための冷媒流路145を設ける。冷媒流路145には、相変化させることなく液相又は気相の冷媒が流される。側壁140の周方向に伸びる冷媒流路145の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなる。ここで、冷媒流路145の断面積を小さくすれば、冷媒の流速が大きくなり、熱伝達率が大きくなる。冷媒流路145の断面積を上流から下流に向けて漸次小さくすると、冷媒の温度上昇に伴う温度差の低下分を熱伝達率の向上分により補うことができ、冷媒流路145の長さ方向における熱移動量をほぼ一定にすることができる。このため、平面アンテナ905や誘電体窓105を周方向に均一に冷却することが可能になる。

Description

プラズマ処理装置及びプラズマ処理装置用冷却装置
 本発明は、半導体ウェハ、液晶用基板、有機EL素子等の被処理体をプラズマ処理するプラズマ処理装置に関する。
 近年、生活のいたるところで用いられる半導体デバイスには、高速な処理ができること、より低消費電力であること等が求められている。この要求を満たすため、半導体デバイスには高集積化及び微細化が必要とされている。半導体デバイスの高集積化及び微細化にしたがって、半導体デバイスの製造装置には半導体基板上の微細な構造物を低ダメージで処理することが求められている。
 低ダメージでの処理が可能なプラズマ処理装置として、低電子温度かつ高密度のプラズマを生成することができるマイクロ波プラズマ処理装置が注目されている。半導体基板のエッチングや製膜処理に用いられるマイクロ波プラズマ処理装置には、処理容器内にマイクロ波を均一に導入し、均一にプラズマを生成できるRLSA(Radial Line Slot Antenna)方式の平面アンテナが一般的に用いられる。このRLSA方式の平面アンテナによれば、マイクロ波を均一に処理容器内へ供給できるので、半導体基板を面内で均一に処理することができる。しかも、アンテナ直下の広い領域に高密度のプラズマを生成できる。さらに低電子温度のプラズマを生成することができるので、半導体基板のダメージを少なくすることができる。
 RLSAの平面アンテナは、マイクロ波を伝搬させる同軸導波管に接続される。同軸導波管から供給されたマイクロ波は、アンテナ内のディスク状の誘電体板内部を半径方向に伝搬する。誘電体板内部で波長が圧縮されたマイクロ波は、誘電体板の下部に密着するスロット板のスロットを介して処理容器内に放射される。処理容器内のマイクロ波の電界により処理容器内のプラズマ励起用ガスがプラズマ状態に励起される。
 このような平面アンテナは、プロセス時に主にプラズマによって加熱される。平面アンテナが加熱されると、平面アンテナを構成する各部品の熱膨張率の差から平面アンテナが変形してしまい、マイクロ波の伝搬特性が変化してしまうおそれがある。マイクロ波は、アルミナ等から作られた誘電体板内を半径方向に伝搬し、定在波を形成し、銅等から作られたスロット板のスロットを介して処理容器内に供給される。熱膨張率の高いスロット板に形成されるスロットの位置が変位すると、誘電体板内のマイクロ波が乱れてしまい、処理容器内に供給されるマイクロ波の伝搬状態が変化してしまう。こうなると、処理容器内のマイクロ波によって励起されるプラズマ状態も変化する。特に処理装置が大型化した場合には、熱膨張率の差による変位量が大きくなる。
 プラズマによって加熱される平面アンテナの変形を防止するために、特許文献1には、平面アンテナの上部に冷却ジャケットを設け、冷却ジャケットの冷媒流路に冷媒を流すことによって平面アンテナを冷却する冷却装置が開示されている。
特開2007-335346号公報
 しかし、従来の冷却装置においては、冷媒流路を流れる冷媒が徐々に加熱されるので、冷媒流路の入口側と出口側の冷媒温度が異なり、冷媒流路の壁面から冷媒への抜熱量(熱移動量)が不均一になるという問題がある。抜熱量(熱移動量)は、冷媒流路の壁面と冷媒との温度差に比例する。よって、入口側と出口側で冷媒温度が異なると、温度差も異なり、抜熱量も異なってしまう。
 平面アンテナを均一に冷却するために、従来の冷却装置においては、一本の冷媒流路を中間地点で折り返し、折り返した冷媒流路を隣り合うように配置していた。このように冷媒流路を配置することで、冷媒流路前半の抜熱量と冷媒流路後半の抜熱量を平均化させることができる。
 しかし、冷媒流路を折り返した場合、平面アンテナの特定の部分を均一に冷却できても、平面アンテナを全周にわたって均一に冷却することが困難になる。また、冷媒流路を折り返すと、冷媒流路の設置面積も大きくなり、処理容器の狭い側壁内に冷媒流路を設置することも困難になる。
 200mm基板から300mm基板へと大口径化している半導体基板を処理する近年のマイクロ波プラズマ処理装置には、平面アンテナのマイクロ波の伝搬状態を従来よりもできるだけ変化させないことが要請されている。この要請により冷却装置には、平面アンテナをより均一に冷却することが望まれる。
 そこで本発明は、平面アンテナや誘電体窓を周方向に均一に冷却できるプラズマ処理装置及びプラズマ処理装置用冷却装置を提供することを目的とする。
 上記課題を解決するために、本発明の一態様は、内部にて被処理体にプラズマ処理を行う密閉可能な処理容器と、前記処理容器内に配置され、被処理体を保持する載置台と、前記処理容器の天井部に配置され、前記処理容器の内部を密閉する誘電体窓と、前記誘電体窓の上部に配置され、マイクロ波を前記処理容器内に放射するマイクロ波アンテナと、を備えるプラズマ処理装置において、前記処理容器の側壁には、前記誘電体窓を冷却するための冷媒流路が設けられ、前記冷媒流路には、相変化させることなく液相又は気相の冷媒が流され、前記側壁の周方向に伸びる前記冷媒流路の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなるプラズマ処理装置である。
 本発明の他の態様は、内部にて被処理体にプラズマ処理を行う密閉可能な処理容器と、前記処理容器内に配置され、被処理体を保持する載置台と、前記処理容器の天井部に配置され、前記処理容器の内部を密閉する誘電体窓と、前記誘電体窓の上部に配置され、マイクロ波を前記処理容器内に放射するマイクロ波アンテナと、前記マイクロ波アンテナの上部に配置され、前記マイクロ波アンテナを冷却するための冷媒流路を有する冷却板と、を備えるプラズマ処理装置において、前記冷却板には、相変化させることなく液相又は気相の冷媒が流され、前記冷却板に巡らされる前記冷媒流路の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなるプラズマ処理装置である。
 本発明のさらに他の態様は、内部にて被処理体にプラズマ処理を行う密閉可能な処理容器と、前記処理容器内に配置され、被処理体を保持する載置台と、前記処理容器内にプラズマを励起させるプラズマ励起手段と、前記プラズマによって加熱された部材を冷却するための冷媒流路と、を備えるプラズマ処理装置において、前記冷媒流路には、相変化させることなく液相又は気相の冷媒が流され、前記冷媒流路の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなるプラズマ処理装置である。
 本発明のさらに他の態様は、被処理体にプラズマ処理を行うプラズマ処理装置に組み込まれ、プラズマによって加熱された部材を冷却するためのプラズマ処理装置用冷却装置であって、相変化させることなく液相又は気相の冷媒が流される冷媒流路を有し、前記冷媒流路の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなるプラズマ処理装置用冷却装置である。
 冷媒流路の壁面から冷媒に伝わる熱移動量Qは、Q=hA(T-T)で表わされる。h:熱伝達率、A:伝熱面積、(T-T):壁面と冷媒の温度差
 冷媒流路の断面積を小さくすれば、冷媒の流速が大きくなり、熱伝達率hが大きくなる。本発明のように冷媒流路の断面積を上流から下流に向けて漸次小さくすると、冷媒の温度上昇に伴う温度差の低下分を熱伝達率hの向上分により補うことができ、冷媒流路の長さ方向における熱移動量をほぼ一定にすることができる。このため、平面アンテナや誘電体窓を周方向に均一に冷却することが可能になる。
本発明の一実施形態のプラズマ処理装置の全体の構成図 アッパープレートに形成される冷媒流路を示す図(図中(a)が平面図、図中(b)が断面図) 冷媒流路の方位角と溝高さとの関係を示すグラフ(図中(a)が冷媒流路が三巻きのときを示し、図中(b)が冷媒流路が三巻きのときを示す) アッパープレートに形成される冷媒流路の他の例を示す図(図中(a)が平面図、図中(b)が断面図) 冷媒流路の方位角と溝高さとの関係を示すグラフ(3次式) 冷却板に形成される冷媒流路を示す図(図中(a)が断面図、(b)が平面図) 従来例と本発明例とで抜熱線密度を比較した計算結果を示すグラフ 抜熱線密度差異の流量依存性を示すグラフ 冷媒流路の高さを経路長の3次式にしたときの、方位角と溝高さとの関係を示すグラフ 冷媒流路の高さを経路長の3次式にしたときの、方位角と単位長さ抜熱率分布との関係を示すグラフ 冷媒流路の高さを経路長の3次式にしたときの、流量と均一性との関係を示すグラフ アッパープレートに二経路の冷媒流路を設けた例を示す図(図中(a)が平面図、図中(b)が断面図) 方位角と第一及び第二の冷媒流路の溝高さとの関係を示すグラフ 冷媒流路の溝高さを一定にしたときの、方位角と単位長さ抜熱率分布との関係を示すグラフ(比較例) 冷媒流路の溝高さを変化させたときの、方位角と単位長さ抜熱率分布との関係を示すグラフ(本発明例) 冷媒流路の溝高さを変化させたときの、流量と均一性との関係を示すグラフ
 以下、添付図面を参照して、本発明のプラズマ処理装置の一実施形態を説明する。図1は、プラズマ処理装置の全体の構成図を示す。
 全体がほぼ円筒形状に形成される処理容器100は、アルミニウム又はアルミニウムを含有するステンレス鋼からなる。処理容器100の内壁面には、酸化アルミニウム(アルミナ)皮膜やイットリア(Y)皮膜からなる保護皮膜が形成されている。
 処理容器100の天井部には、処理容器100の内部を密封すると共に、マイクロ波を透過させる誘電体窓105がシールリング110を介して載せられる。誘電体窓105は、石英やセラミック(アルミナや窒化アルミ等)からなる。誘電体窓105は処理容器100の側壁の上部の押えリング200によって処理容器100に固定される。
 処理容器100の側壁には、処理空間Uに処理ガスを導入するためのガス導入手段510が設けられる。この実施形態では、処理空間Uを下段シャワー515によって二つの領域に区画し、上方に位置するガス導入手段510からはアルゴンガス、クリプトンガス等のプラズマ励起用のガスを、下段シャワー515からはプロセス処理用のガスを導入するようにしている。ガス導入手段510及び下段シャワー515はガス供給源505に接続されている。なお、下段シャワー515を設けずに、ガス導入手段510からプラズマ励起用のガス、プロセス処理用のガス、及びクリーニング用のガスを任意に導入できるようにしてもよい。下段シャワー515を設けない場合、下段シャワー515によって区画される処理容器100の側壁の上部(以下アッパープレート140という)は、側壁に一体に形成される。また、ガス導入手段510をシャワーヘッド状に構成し、処理容器100の天井部に設けてもよい。
 冷却装置としてのアッパープレート140には、誘電体窓105を冷却するための冷媒流路145が設けられる。冷媒流路145には、冷媒として高い電気絶縁性と熱伝導性を有するフッ素系の液体が流される。冷媒が冷媒流路145を流れている間、冷媒は相変化することがなく、液相のまま冷媒流路145を流れる。アッパープレート140で誘電体窓105を冷却するとき、アッパープレート140の温度を90℃以下(目安は70℃~80℃)、誘電体窓105の温度を150℃以下にするのが望ましい。冷媒流路145の構造については後述する。
 下段シャワー515によって区画される処理容器100の側壁の下部には、被処理基板を搬入及び搬出するための図示しない搬出入口が設けられる。搬出入口はゲートバルブによって開閉される。
 処理容器100の底部には、内部を真空引きするための排気ポート135が形成される。排気ポートは図示しない排気装置に接続されている。
 処理容器100内には、被処理基板であるウェハWを載置する載置台115が設けられる。載置台115にはウェハWを静電吸着力を用いて吸着できるようにバイアスを印加できる高周波電源125bが接続される。
 誘電体窓105の上部には、処理空間Uにマイクロ波を供給し、プラズマを励起させるマイクロ波アンテナとしてのディスク状の平面アンテナ905が配置される。平面アンテナ905は、直交する二種類のスロットを有するスロット板905bと、マイクロ波を反射する導体面210aとスロット板905bとの間に設けられる誘電体板905aと、からなる。このような平面アンテナ905は、RLSA(Radial Line Slot Antenna)と呼ばれる。平面アンテナ905は、アンテナ押えによって処理容器100に固定される。マイクロ波源335により生成されたマイクロ波は、矩形導波管305をTEモードで伝播し、同軸変換器310を経て同軸導波管340内をTEMモードで伝播する。同軸導波管340は平面アンテナ905の中心に接続されている。平面アンテナ905の中心から導入されたマイクロ波は、誘電体板905a内で波長が圧縮されながら半径方向に伝播し、スロット板905bに空けられたスロットから処理空間U内へ放出される。同軸導波管340の内導体は、冷媒供給源405から供給される冷媒によって冷却される。
 導体面210aの上方には、平面アンテナ905を冷却するための冷却装置としての冷却板210が設けられる。冷却板210は導体面210aと一体に形成されてもよい。導体面210aの上方には、平面アンテナ905を冷却するための冷媒流路915が形成される。冷媒流路915には、冷媒として高い電気絶縁性と熱伝導性を有するフッ素系の液体が流される。冷媒が冷媒流路915を流れている間、冷媒は相変化することがなく、液相のまま冷媒流路915を流れる。冷却板210で平面アンテナ905を冷却するとき、冷却板210の温度を110℃~120℃、平面アンテナ905の温度を150℃~160℃にするのが望ましい。冷却板210の冷媒流路915の構成については後述する。
 図2はアッパープレート140を示す。アッパープレート140は環状に形成され、その内周側の上部には誘電体窓105が載せられる受部160が形成される。アッパープレート140の内部には、周方向に伸びる冷媒流路145が形成される。冷媒流路145は、一巻き以上の巻き数を有する螺旋状に形成される。冷媒流路145は全体で一つの入口と出口を有する。アッパープレート140を平面図で見たときの入口の方位角と出口の方位角はほぼ一致する。図2(a)のようにXY座標をとるとき、入口の方位角は0度で表され、出口の方位角は360度で表される。冷媒流路145の断面形状は矩形に形成される。冷媒流路145の経路長にかかわらず冷媒流路145の幅は変化することはない。その一方、冷媒流路145の高さは上流から下流に向けて漸次減少する。なお、冷媒流路145の入口からの長さは経路長sで表され、そのときの方位角はθで表される。
 図3(a)は、冷媒流路145が三巻きのときの高さ変化の一例を示す。この例では、冷媒流路145の高さ(溝高さ)が入口から出口に向かって線形に減少する。冷媒流路145の幅は変化することなく一定である。このため、冷媒流路145の断面積は入口から出口に向けて漸次減少する。
 図3(b)は、冷媒流路145が三巻きの螺旋状のときの高さ変化の一例を示す。この例では、各一巻きの冷媒流路145の高さが方位角0度から略360度に向けて漸次減少する。そして、一巻きの冷媒流路145と他の一巻きの冷媒流路145の接続部分(例えば一巻き目の冷媒流路145と二巻き目の冷媒流路145との接続部分)において、冷媒流路145の高さが元の高さまで高くなる。すなわち、上段に位置する一巻き目の冷媒流路145の高さ、中段に位置する二巻き目の冷媒流路145の高さ、及び下段に位置する三巻き目の冷媒流路145の高さは、方位角が同じであれば同じ高さになる。
 冷媒流路145は、螺旋状に形成される替わりに円環状の一巻きの冷媒流路145を上下方向に複数配列することにより形成されてもよい。この場合、各一巻きの冷媒流路145の入口及び出口が設けられる。各一巻きの冷媒流路145は、入口から出口に向かって幅は一定のまま高さが漸次減少する。上段に位置する一巻き目の冷媒流路145の高さ、中段に位置する二巻き目の冷媒流路145の高さ、及び下段に位置する三巻き目の冷媒流路145の高さは、方位角が同じであれば同じ高さになる。
 実際に冷媒流路145を形成する場合、アッパープレート140は冷媒流路145の巻き数に応じて上下方向に複数に分割される。分割されたアッパープレート140それぞれに冷媒流路145を構成する溝が形成される。冷媒流路145の溝はエンドミル等の工具を使用したNC旋盤によって加工される。工具で冷媒流路145の溝を切削加工する場合、数値制御で工具の切り込み深さを制御するだけでよいので、溝の幅を変化させるよりも溝の深さ(高さ)を変化させる方が容易である。図3(a)に示すように、冷媒流路145の高さは経路長に対して線形であり、経路長をs、冷媒流路145の高さをdとすると、d=a・s(a:定数)で表される。工具の切込み深さとしてNC旋盤に一次式を入力すれば、冷媒流路145の高さを線形に変化させることができる。
 図4は、アッパープレート140に形成される冷媒流路145の他の例を示す。この例では、アッパープレート140に一巻きの環状の冷媒流路145が形成されている。冷媒流路145の入口は方位角0度に配置され、冷媒流路145の入口は方位角360度に配置される。図5に示すように、冷媒流路145の高さは、入口から出口まで漸次低くなるような、経路長sの3次の数式で表される。冷媒流路145の幅は一定である。このように冷媒流路145の高さdは入口から出口まで漸次低くなればよく、経路長sの2次や3次の数式で表されてもよい。
 図6は、冷却板210に形成される冷媒流路915を示す。円盤状の冷却板210には、渦巻き状の冷媒流路915が形成される。渦巻き状の冷媒流路915は一巻き以上形成されればよい。冷媒流路915の入口及び出口の方位角は一致する。渦巻き状の冷媒流路915の外周側に入口が、内周側に出口が形成されてもよいし、冷媒流路915の内周側に入口が、外周側に出口が形成されてもよい。冷媒流路915の断面形状は矩形に形成される。冷媒流路915の高さは、入口から出口に向けて漸次低くなる。その一方、冷媒流路915の幅は変化することはない。冷媒流路915の高さは、経路長sのn次の数式で表される。なお、渦巻き状の冷媒流路915の一巻きにおいて上流から下流に向けて漸次高さが低くなるようにし、一巻きと他の一巻きの冷媒流路915の繋ぎ目において高さが元の高さに戻るようにしてもよい。
 冷媒流路145,915の断面積を上流から下流に向けて漸次減少させることにより、冷媒流路145,915に沿って抜熱量(熱移動量)を一定にすることができる。「冷媒流路の断面積を漸次減少させる」ことと「抜熱量(熱移動量)を一定にすることができる」ことの因果関係は以下のとおりである。
 冷媒流路の壁面から冷媒に伝わる抜熱量(熱移動量)Qは、以下の式で表される。
(数1)
 Q=hA(T-T
 ただし、Q:抜熱量,W
 h:熱伝達率,W/m2
 A:伝熱面積,m2
 :壁面表面の温度,K
 T:冷媒の温度,K
 冷媒の温度は熱交換によって上流から下流に向かって徐々に上昇していくので、冷媒流路に沿って抜熱量及び壁面温度を一定にするためには、上流から下流に向かって熱伝達率を上昇させなければならない。熱伝達率hは、以下の数式2で表される。
(数2)
 h=Nuk/L
 ただし、Nu:ヌッセルト数
 k:流体の熱伝導率,W/m2
 L:流路の長さ
 流体の熱伝導率k及び流路の長さLは一定なので、hを増加させるためには、ヌッセルト数Nuを増加させる必要がある。
 ヌッセルト数Nuは以下の数式3で表される。
(数3)
 Nu=0.664Re1/2Pr1/3
 Re=UL/ν
 Pr:プラントル数
 U:流速,m/s
 ν:動粘性係数,m2/s
 動粘性係数νは一定なので、流速Uを増加させることにより、ヌッセルト数Nuを増加させることができる。冷媒流路の断面積を上流から下流に向かって漸次減少させると、流速が漸次増加する。このため、数式3からヌッセルト数Nuが増加し、数式2から熱伝達率hが増加する。冷媒流路の断面積を上流から下流に向かって漸次減少させると、数式1の伝熱面積Aも減少するが、伝熱面積Aの減少率よりも熱伝達率hの増加率の方を大きくすることができる。この結果、数式1の抜熱量Qを一定に保つことが可能になる。
 図7は、単位長さ当たりの抜熱量(抜熱線密度)を従来例と本発明例とで比較した計算結果を示す。従来例及び本発明例共に、冷媒流路の幅:8mm、冷媒流路の入口側高さ:9mm、アッパープレートの温度-冷媒温度=20℃、抜熱量2kWの計算条件で比較した。
 表1は、計算結果の主要諸元をまとめたものである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、従来例のように冷媒流路の断面積を一定にすると、冷媒流路の入口と出口とで抜熱線密度が4割近く異なっていた。これに対し、冷媒流路の高さを減少させることにより、抜熱線密度の差異を4.6%(1次式)、0.7%(2次式)、0.1%(3次式)に低減できた。
 次に、抜熱線密度の差異が流量の変化によってどのように影響されるか(抜熱線密度差異の流量依存性)を計算した。抜熱線密度の差異が最も少なかった3次式の計算条件を使用した。すなわち、冷媒流路の幅:8mm、冷媒流路の入口側高さ:9mm(下流に向かって3次式で高さ減少)、アッパープレートの温度-冷媒温度=20℃、抜熱量2kWの条件で計算した。図8に計算結果を示し、表2に計算結果の主要諸元を記載する。
Figure JPOXMLDOC01-appb-T000002
 温度分布は冷媒流量によって変動するが、抜熱線密度の差異は範囲内で2%程度に留まり、抜熱線密度の差異は冷媒流量にほとんど依存しないことがわかった。
 表3は、抜熱線密度の差異が冷媒流路の構造によってどのように影響されるか(抜熱線密度の差異の冷媒流路構造依存性)を計算した結果を示す。
Figure JPOXMLDOC01-appb-T000003
 従来例のように冷媒流路を折り返すように二巻き形成しても、一巻きの場合よりも抜熱線密度の差異を36.2%から7.4%,24.4%に低減することができる。しかし、冷媒流路を折り返すのはスペースを必要とするし、抜熱線密度の差異を低減するのに限界もある。本発明例(傾斜型)のように、冷媒流路を折り返さなくても高さを変化させることにより、2%未満に低減することができる。
 図9ないし図11は、冷媒流路の高さを経路長の3次式にしたときの最適化を試みた結果を示す。図9に示すように、冷媒流路の高さは入口が12mmであり、出口に向かって3次式で減少する。溝幅は8mmである。図10に示すように、冷媒の流量10.1L/min、抜熱量2kWとしたとき、抜熱線密度の差異(抜熱均一性)を±0.06%以下にすることができた。図11に示すように、冷媒の流量が2L/min以下のときは抜熱均一性が若干劣るが、5L/min以上にすることで、抜熱均一性を極めて小さくすることができた。
 図12は、アッパープレート140に第一及び第二の冷媒流路145a,145bからなる二経路の冷媒流路145を設けた例を示す。第一及び第二の冷媒流路145a,145bはアッパープレート140の上下方向に配列される。各冷媒流路145a,145bの入口及び出口は、方位角0度及び360度に配置される。図13は、方位角と第一及び第二の冷媒流路145a,145bの高さとの関係を示す。第一及び第二の冷媒流路145a,145bの高さはいずれも、方位角が180度までは徐々に減少し、方位角が180度から360度までは徐々に増加するように設定される。第一及び第二の冷媒流路145a,145bの高さをこのように設定した理由は以下のとおりである。比較例の図14に示すように、溝深さが一定の場合には、方位角180度のところが一番抜熱量が低くなり、180度を基準にほぼ左右対称となっている。方位角180度のところの抜熱率を改善するために、溝深さを浅くして流速を上げる訳である。また、およそ左右対称の溝深さ分布で十分な均熱性が得られる。
 図14は、冷媒流路145a,145bの高さを一定にしたときの比較例を示す。冷媒流路の高さ9mm、冷媒流路の幅6mm、冷媒の流量9L/min、抜熱量2kWにしたとき、抜熱均一性は±1.3%であった。これに対し、冷媒流路145a,145bの高さを調整することにより、図15及び図16に示すように、冷媒の流量が2L/min以上のとき、抜熱均一性を±0.1%以下にすることができ、冷媒の流量が1L/min以下のとき、抜熱均一性を±0.6%以下にすることができた。
 なお、本発明は上記実施形態に限られることなく、本発明の要旨を変更しない範囲で様々に変更できる。例えば、本発明の冷媒流路を下段シャワーに形成し、冷媒流路にアルゴンガス等の気体を流し、下段シャワーを冷却してもよい。
 誘電体板の上面及び下面にめっき等により導電膜を一体に形成し、上面側の導電膜をマイクロ波を反射する導体板として使用し、下面側の導電膜をマイクロ波を透過させるスロット板として使用してもよい。
 本明細書は、2009年6月19日出願の特願2009-146838に基づく。この内容はすべてここに含めておく。
100…処理容器
105…誘電体窓
115…載置台
140…アッパープレート(処理容器の側壁,冷却装置)
145…冷媒流路
145a…第一の冷媒流路
145b…第二の冷媒流路
210…冷却板(冷却装置)
905…平面アンテナ(マイクロ波アンテナ,プラズマ励起手段)
910…上部カバー
915…冷媒流路
U…処理空間
W…ウェハ(被処理基板)

Claims (12)

  1.  内部にて被処理体にプラズマ処理を行う密閉可能な処理容器と、
     前記処理容器内に配置され、被処理体を保持する載置台と、
     前記処理容器の天井部に配置され、前記処理容器の内部を密閉する誘電体窓と、
     前記誘電体窓の上部に配置され、マイクロ波を前記処理容器内に放射するマイクロ波アンテナと、を備えるプラズマ処理装置において、
     前記処理容器の側壁には、前記誘電体窓を冷却するための冷媒流路が設けられ、
     前記冷媒流路には、相変化させることなく液相又は気相の冷媒が流され、
     前記側壁の周方向に伸びる前記冷媒流路の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなるプラズマ処理装置。
  2.  内部にて被処理体にプラズマ処理を行う密閉可能な処理容器と、
     前記処理容器内に配置され、被処理体を保持する載置台と、
     前記処理容器の天井部に配置され、前記処理容器の内部を密閉する誘電体窓と、
     前記誘電体窓の上部に配置され、マイクロ波を前記処理容器内に放射するマイクロ波アンテナと、
     前記マイクロ波アンテナの上部に配置され、前記マイクロ波アンテナを冷却するための冷媒流路を有する冷却板と、を備えるプラズマ処理装置において、
     前記冷却板には、相変化させることなく液相又は気相の冷媒が流され、
     前記冷却板に巡らされる前記冷媒流路の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなるプラズマ処理装置。
  3.  前記冷媒流路の断面形状が矩形であり、
     前記冷媒流路の上流から下流に向けて前記冷媒流路の幅が一定のまま高さが漸次低くなることを特徴とする請求項1又は2に記載のプラズマ処理装置。
  4.  前記冷媒流路の高さが、前記冷媒流路の経路長のn次の数式で表わされることを特徴とする請求項3に記載のプラズマ処理装置。ただし、nは自然数。
  5.  前記冷媒流路は、前記処理容器の側壁に一巻き以上の巻き数を有する螺旋状に形成され、
     少なくとも一巻きの冷媒流路において、上流から下流に向けて冷媒流路の高さが漸次低くなることを特徴とする請求項3又は4に記載のプラズマ処理装置。
  6.  前記冷媒流路は、前記処理容器の側壁に二巻き以上の巻き数を有する螺旋状に形成され、
     一巻きの冷媒流路において、上流から下流に向けて冷媒流路の高さが漸次低くなると共に、
     一巻きの冷媒流路と他の一巻きの冷媒流路の接続部分において、冷媒流路の高さが元の高さに戻ることを特徴とする請求項5に記載のプラズマ処理装置。
  7.  前記冷媒流路は、前記処理容器の側壁に環状に形成される一巻きの環状の冷媒流路を上下方向に複数配列してなり、
     前記一巻きの環状の冷媒流路において、上流から下流に向けて冷媒流路の高さが漸次低くなることを特徴とする請求項3又は4に記載のプラズマ処理装置。
  8.  前記冷媒流路は、前記処理容器の前記側壁の周方向に伸びる第一及び第二の冷媒流路を有し、
     前記第一及び前記第二の冷媒流路を流れる冷媒の流れ方向は互いに対向し、
     前記第一の冷媒流路は、上流から下流に向けて冷媒流路の高さが漸次低くなり、その後冷媒流路の高さが高くなり、
     前記第二の冷媒流路は、上流から下流に向けて冷媒流路の高さが漸次低くなり、その後冷媒流路の高さが高くなることを特徴とする請求項3又は4に記載のプラズマ処理装置。
  9.  前記冷媒流路は、前記冷却板に一巻き以上の巻き数を有する渦巻き状に形成され、
     少なくとも一巻きの冷媒流路において、上流から下流に向けて冷媒流路の高さが漸次低くなることを特徴とする請求項3又は4に記載のプラズマ処理装置。
  10.  前記冷媒は、フッ素系の液体であることを特徴とする請求項1ないし9のいずれかに記載のプラズマ処理装置。
  11.  内部にて被処理体にプラズマ処理を行う密閉可能な処理容器と、
     前記処理容器内に配置され、被処理体を保持する載置台と、
     前記処理容器内にプラズマを励起させるプラズマ励起手段と、
     前記プラズマによって加熱された部材を冷却するための冷媒流路と、を備えるプラズマ処理装置において、
     前記冷媒流路には、相変化させることなく液相又は気相の冷媒が流され、
     前記冷媒流路の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなるプラズマ処理装置。
  12.  被処理体にプラズマ処理を行うプラズマ処理装置に組み込まれ、プラズマによって加熱された部材を冷却するためのプラズマ処理装置用冷却装置であって、
     相変化させることなく液相又は気相の冷媒が流される冷媒流路を有し、
     前記冷媒流路の少なくとも一部は、上流から下流に向けて漸次断面積が小さくなるプラズマ処理装置用冷却装置。
PCT/JP2010/058499 2009-06-19 2010-05-20 プラズマ処理装置及びプラズマ処理装置用冷却装置 WO2010146961A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/379,219 US20120118505A1 (en) 2009-06-19 2010-05-20 Plasma processing apparatus and cooling device for plasma processing apparatus
CN2010800273795A CN102804931A (zh) 2009-06-19 2010-05-20 等离子体处理装置及等离子体处理装置用冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-146838 2009-06-19
JP2009146838A JP2011003464A (ja) 2009-06-19 2009-06-19 プラズマ処理装置及びプラズマ処理装置用冷却装置

Publications (1)

Publication Number Publication Date
WO2010146961A1 true WO2010146961A1 (ja) 2010-12-23

Family

ID=43356282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058499 WO2010146961A1 (ja) 2009-06-19 2010-05-20 プラズマ処理装置及びプラズマ処理装置用冷却装置

Country Status (6)

Country Link
US (1) US20120118505A1 (ja)
JP (1) JP2011003464A (ja)
KR (1) KR20120028331A (ja)
CN (1) CN102804931A (ja)
TW (1) TW201130396A (ja)
WO (1) WO2010146961A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016225A (ja) * 2008-07-04 2010-01-21 Tokyo Electron Ltd 温度調節機構および温度調節機構を用いた半導体製造装置
JP2013235912A (ja) * 2012-05-08 2013-11-21 Tokyo Electron Ltd 被処理基体をエッチングする方法、及びプラズマエッチング装置
JP2013243218A (ja) * 2012-05-18 2013-12-05 Tokyo Electron Ltd プラズマ処理装置、及びプラズマ処理方法
JP2014192372A (ja) * 2013-03-27 2014-10-06 Tokyo Electron Ltd マイクロ波加熱処理装置
CN104299875A (zh) * 2013-07-17 2015-01-21 中微半导体设备(上海)有限公司 一种电感耦合等离子体处理装置
KR102262657B1 (ko) 2014-10-13 2021-06-08 삼성전자주식회사 플라즈마 처리 장치
KR20190005029A (ko) * 2017-07-05 2019-01-15 삼성전자주식회사 플라즈마 처리 장치
KR101981550B1 (ko) * 2017-08-24 2019-05-23 피에스케이홀딩스 (주) 기판 처리 장치, 기판 처리 방법 및 플라즈마 발생 유닛
CN111326390B (zh) * 2018-12-17 2023-09-12 中微半导体设备(上海)股份有限公司 射频电极组件和等离子体处理设备
US11875970B2 (en) 2018-12-17 2024-01-16 Advanced Micro-Fabrication Equipment Inc. China Radio frequency electrode assembly for plasma processing apparatus, and plasma processing apparatus
CN112185787B (zh) * 2019-07-04 2023-09-29 中微半导体设备(上海)股份有限公司 等离子体处理设备的射频电极组件和等离子体处理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176685A (ja) * 1986-01-30 1987-08-03 Daihen Corp プラズマア−ク加工装置
JPH1027756A (ja) * 1996-04-16 1998-01-27 Applied Materials Inc 半導体処理チャンバー用リッドアセンブリ
JP2000164583A (ja) * 1998-06-24 2000-06-16 Hitachi Ltd プラズマ処理装置およびプラズマ処理方法
JP2003521584A (ja) * 1999-08-04 2003-07-15 ゼネラル・エレクトリック・カンパニイ 電子ビーム物理蒸着被覆装置と該装置用の観察ポート
WO2007040033A1 (ja) * 2005-09-30 2007-04-12 Sharp Kabushiki Kaisha 冷却システム、その運転方法およびその冷却システムが用いられたプラズマ処理システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303812A (ja) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置
JP2005129483A (ja) * 2003-09-30 2005-05-19 Shibaura Mechatronics Corp プラズマ処理装置
JP4149427B2 (ja) * 2004-10-07 2008-09-10 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
JP2006244891A (ja) * 2005-03-04 2006-09-14 Tokyo Electron Ltd マイクロ波プラズマ処理装置
JP4564973B2 (ja) * 2007-01-26 2010-10-20 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP5374853B2 (ja) * 2007-10-17 2013-12-25 東京エレクトロン株式会社 プラズマ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176685A (ja) * 1986-01-30 1987-08-03 Daihen Corp プラズマア−ク加工装置
JPH1027756A (ja) * 1996-04-16 1998-01-27 Applied Materials Inc 半導体処理チャンバー用リッドアセンブリ
JP2000164583A (ja) * 1998-06-24 2000-06-16 Hitachi Ltd プラズマ処理装置およびプラズマ処理方法
JP2003521584A (ja) * 1999-08-04 2003-07-15 ゼネラル・エレクトリック・カンパニイ 電子ビーム物理蒸着被覆装置と該装置用の観察ポート
WO2007040033A1 (ja) * 2005-09-30 2007-04-12 Sharp Kabushiki Kaisha 冷却システム、その運転方法およびその冷却システムが用いられたプラズマ処理システム

Also Published As

Publication number Publication date
TW201130396A (en) 2011-09-01
CN102804931A (zh) 2012-11-28
JP2011003464A (ja) 2011-01-06
KR20120028331A (ko) 2012-03-22
US20120118505A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
WO2010146961A1 (ja) プラズマ処理装置及びプラズマ処理装置用冷却装置
KR101256120B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR101317018B1 (ko) 플라즈마 처리 장치
US8100082B2 (en) Method and system for introducing process fluid through a chamber component
CN100388434C (zh) 半导体处理用的基板保持结构和等离子体处理装置
JP5357486B2 (ja) プラズマ処理装置
KR100960424B1 (ko) 마이크로파 플라즈마 처리 장치
US20070137575A1 (en) Plasma processing apparatus
WO2010004997A1 (ja) プラズマ処理装置
US8968512B2 (en) Temperature adjusting mechanism and semiconductor manufacturing apparatus using temperature adjusting mechanism
US9653266B2 (en) Microwave plasma applicator with improved power uniformity
EP1804274A2 (en) Plasma processing apparatus
JP4593652B2 (ja) マイクロ波プラズマ処理装置
KR100501777B1 (ko) 플라즈마 처리 장치
US20220157579A1 (en) Stage, film-forming apparatus or film-processing apparatus including the stage, and method for controlling temperature of substrate
US9786528B2 (en) Substrate supporting table, substrate processing apparatus, and manufacture method for semiconductor device
JP2010177420A (ja) マイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用の誘電体板、及びマイクロ波プラズマ処理装置のマイクロ波給電方法
US20150279626A1 (en) Microwave plasma applicator with improved power uniformity
JP5665265B2 (ja) チャンバー部品を介してプロセス流体を導入する方法及びシステム
US20080190560A1 (en) Microwave Plasma Processing Apparatus
JP2002075881A (ja) プラズマ処理装置
JPH1092795A (ja) プラズマ処理装置
TWI394200B (zh) 經由腔室構件導入處理流體的方法與系統

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027379.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117030343

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13379219

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10789336

Country of ref document: EP

Kind code of ref document: A1