WO2010146874A1 - ディジタルミキシング回路およびそれを備えた携帯端末 - Google Patents

ディジタルミキシング回路およびそれを備えた携帯端末 Download PDF

Info

Publication number
WO2010146874A1
WO2010146874A1 PCT/JP2010/004068 JP2010004068W WO2010146874A1 WO 2010146874 A1 WO2010146874 A1 WO 2010146874A1 JP 2010004068 W JP2010004068 W JP 2010004068W WO 2010146874 A1 WO2010146874 A1 WO 2010146874A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
data
circuit
fsc
asynchronous
Prior art date
Application number
PCT/JP2010/004068
Other languages
English (en)
French (fr)
Inventor
塚本章人
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010146874A1 publication Critical patent/WO2010146874A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • H04W88/181Transcoding devices; Rate adaptation devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/502Details of the final digital/analogue conversion following the digital delta-sigma modulation
    • H03M3/506Details of the final digital/analogue conversion following the digital delta-sigma modulation the final digital/analogue converter being constituted by a pulse width modulator

Definitions

  • the present invention relates to a digital mixing circuit that performs mixing processing and noise processing on a plurality of sound data including at least sound as a sound source.
  • FIG. 6 is a block diagram showing the configuration of the digital mixing circuit of the first conventional example.
  • the input data includes call voice data, a tone for generating an operation sound, sound source data for a ringing tone and a sound effect, digital TV additional voice data, and additional voice data of a moving image recorded on a storage medium.
  • Music data when used as an audio player in a telephone.
  • sampling clock (Sampling Clock) of the call voice data is generated from the network clock of the line because it is synchronized with the telephone line side.
  • the sampling clock for tone data and sound source data is generated from the system clock of the device.
  • a sampling clock for additional audio data such as digital television is generated from a clock reproduced from a broadcast wave.
  • the music data is generated from the system clock in the same manner as the tone.
  • D / A converters 42 to 45 (DACs 42 to 45 in FIG. 6) that operate with the respective sampling clocks.
  • the mixing ratios of the converted analog signals of the respective data are adjusted by the variable gain amplifiers 46 to 51.
  • Each data whose mixing ratio is adjusted is added by resistors 57 to 64 and outputted from buffer amplifiers 55 and 56. Note that the sound source data and the broadcast wave additional sound are assumed to be stereo data. Therefore, the final output has two channels, and there are two mixing circuits.
  • FIG. 7 is a block diagram showing the configuration of the digital mixing circuit of the second conventional example. Each data is mixed by matching the sampling frequency of each data.
  • sampling frequency converters hereinafter referred to as fs converters or FSCs
  • FSCs 6-times oversampling circuit 73 and 3 / 2-times oversampling circuit 74 perform conversion to a common sampling frequency.
  • the input sampling clock of the D / A converter 88 in FIG. 7 is generated from the system clock, and its value is 48 kHz. Specifically, it is a clock generated by a PLL or the like from a reference clock.
  • the D / A converter 88 includes an 8 ⁇ oversampling circuit 84, a noise shaper (Noise shaper) 85, a PWM (Pulse Width Modulation) circuit 86, and an LPF (Low-pass filter) 87. Prepare. Each data whose sampling frequency is converted to 48 kHz is oversampled to 384 kHz by the 8 times oversampling circuit 84. The sampling frequency of the noise shaper 85 is 1536 kHz. All of these sampling clocks are also generated from the system clock.
  • the sampling clock of each input data is adjusted to 48 kHz by the asynchronous FSC 72 and the synchronous / asynchronous FSC 75. Since the sampling clock of tone data and sound source data and the sampling clock 48 kHz input to the D / A converter 88 are a simple integer ratio, they are oversampled.
  • the tone data is passed through a 6 ⁇ oversampling circuit 73, and the sound source data is oversampled by a 3/2 ⁇ oversampling circuit 74.
  • the sampling clock for call voice data is generated from the network clock of the telephone line and is therefore asynchronous with the telephone system clock. Therefore, the asynchronous fs converter 72 converts the sampling clock of the D / A converter 88.
  • the video additional audio data, digital broadcast audio data, and music data are appropriately switched by the selectors 71, 90, and 89.
  • the sampling clock of the moving image additional audio data is 48 kHz and is the same value as that of the D / A converter 88, so that it is passed to the next stage without passing through the fs converter 75.
  • the sampling clock of the digital broadcast audio data has the same frequency as the D / A converter 88. However, since it is generated from a clock reproduced from a broadcast wave, it has an asynchronous relationship with the system clock. That is, since it is not synchronized with the sampling clock of the D / A converter 88, the fs converter 75 is operated in the asynchronous mode to absorb the asynchrony between them.
  • the sampling clock source is the same as that of the D / A converter 88, but the sampling clock frequency is different.
  • the music data sampling clock is synchronized with the sampling clock of the D / A converter 88 by operating the fs converter 75 in the synchronous mode.
  • each data in accordance with the sampling clock of the D / A converter 88 is adjusted by the amplifiers 76 to 81, respectively. Then, each data is added by the adders 82 and 83 and passed to the D / A converter 88.
  • FIG. 8 is a block diagram showing the configuration of the digital mixing circuit of the third conventional example.
  • the sampling clock of the input of the D / A converter 718 is the same as the sampling clock of the music data, and the sampling clock of the 8-times oversampling circuit 714 and the sampling clock of the noise shaper 715 are the sampling clock of the music data. Is an integer multiple of.
  • the selectors 720 and 719 pass the music data to the multipliers 710 and 711 without passing through the fs converter 705 (synchronous / asynchronous FSC 705) during music reproduction. Further, since the sampling clock of the moving image additional audio data is synchronized with the system clock, the fs converter 705 (synchronous / asynchronous FSC 705) is operated in the synchronous mode and converted to the sampling clock of the D / A converter 718. The other operations are the same as those in FIG.
  • the method of once converting analog signals by the D / A converters 42 to 45 has been often used because of its simplicity, but a large number of D / A converters 42 to 45 are required. Since there are many analog circuit paths after the D / A converters 42 to 45, there are problems such as an increase in current consumption and an increase in noise floor.
  • the fs converter 72 (asynchronous FSC 72) and fs converter 75 (synchronous / asynchronous FSC 75) convert the sampling frequency by performing high-order oversampling and then re-sampling with a desired output sampling clock. For this reason, it is constituted by a large number of digital filters. However, when a linear phase characteristic is required, an FIR (Finite Impulse Response) digital filter is used, which is not preferable in terms of circuit scale and current consumption.
  • FIR Finite Impulse Response
  • the LPF used in the oversampling circuit 714 that is 8 times the D / A converter 718 may use a linear phase FIR filter in consideration of the sound quality during music reproduction.
  • a linear phase FIR filter is used for the LPF in the oversampling circuit 714, a delay time of 1 to 2 ms occurs.
  • the delay time of call voice data is preferably as small as possible. Therefore, when the digital mixing circuit of the third conventional example shown in FIG. 8 is applied to a mobile phone, the sound quality at the time of music reproduction and the delay time of the call voice data are in a trade-off relationship.
  • An object of the present invention is to provide a digital mixing circuit capable of reducing the circuit scale and current consumption and selecting an optimum filter for each input signal, and a portable terminal including the digital mixing circuit.
  • the fs converters 72, 75, and 702 to 705 resample at a desired sampling frequency after over-sampling, and the D / A converter 88 using the noise shapers 85 and 715, In 718, oversampling is once performed.
  • the oversampling in the D / A converters 88 and 718 is omitted by setting the resampling frequency in the fs converters 72, 75, and 702 to 705 to the same frequency as the oversampling frequency of the D / A converters 88 and 718. it can.
  • the LPF used for oversampling in the fs converters 72, 75, and 702 to 705 has a resampling frequency close to the input sampling frequency of the fs converters 72, 75, and 702 to 705. Therefore, the fs converter LPF characteristics in the digital mixing circuits of the second conventional example and the third conventional example are required to have very steep attenuation characteristics as shown in FIG. That is, the oversampling LPF output in the FSC needs to attenuate the FSC output shown in FIG. 9B by about 100 dB at the sampling frequency fs to 8 fs.
  • the oversampling in the D / A converters 88 and 718 is for making a free band in which the quantization noise is concentrated outside the audible range by the noise shapers 85 and 715. Therefore, as shown in FIG. 9C, the desired amount of attenuation is reduced in the characteristics of the oversampling LPF in the D / A converters 88 and 718 as compared with the LPFs in the fs converters 72, 75, and 702 to 705. That is, attenuation of about 60 dB is sufficient at the sampling frequency fs to 4 fs.
  • the sampling frequency of the outputs of the fs converters 72, 75, and 702 to 705 may be set to the same frequency as the oversampling frequency of the D / A converters 88 and 718.
  • a plurality of sound data including at least sound as a sound source is converted by a plurality of frequency conversion units that perform processing for converting a sampling clock frequency of each sound data, and the plurality of frequency conversion units.
  • At least one mixing unit for mixing a plurality of sound data, a noise shaping unit for performing noise processing on the plurality of sound data mixed by the at least one mixing unit, and a plurality of noises processed by the noise shaping unit A digital mixing circuit including a conversion unit that converts the sound data into an analog signal for output as sound, wherein the frequency conversion unit has a plurality of values that are the same as the input sampling frequency in the noise shaping unit. Change the sampling clock frequency of the sound data A process to perform.
  • the digital mixing circuit further includes an output unit that performs processing to output the analog signal converted by the conversion unit as sound.
  • the noise shaping unit directly drives the load of the output unit in a class D amplifier format.
  • the mobile terminal of the present invention includes the digital mixing circuit.
  • the circuit scale and current consumption can be reduced, and an optimum filter can be selected for each input signal.
  • FIG. 1 is a block diagram showing a configuration of a digital mixing circuit according to a first embodiment of the present invention.
  • (A), (b) is a figure for demonstrating the characteristic of LPF of the oversampling circuit which each element which comprises the frequency converter 119 of the mixing apparatus 1 contains.
  • FIG. 5 is a block diagram showing a configuration of a mixing device 5 and a speaker unit 6 constituting a digital mixing circuit according to a third embodiment.
  • FIGS. 7A to 7C are circuit diagrams for generating a sampling clock for each data in the digital mixing circuit according to the third embodiment.
  • Block diagram showing the configuration of the first conventional digital mixing circuit The block diagram which shows the structure of the digital mixing circuit of a 2nd prior art example
  • the block diagram which shows the structure of the digital mixing circuit of a 3rd prior art example (A)-(c) is a figure which shows the fs converter LPF characteristic in the digital mixing circuit of a 2nd prior art example and a 3rd prior art example.
  • One of the features of the digital mixing circuit according to the first embodiment of the present invention is that the sampling clock of each input data of the mixing device 1 is converted into an asynchronous sampling frequency converter (FSC) 102, a first oversampling circuit 103, 2 A noise shaping circuit (frequency conversion unit) of the D / A converter 2 connected to the mixing device 1 by a frequency conversion unit 119 composed of an oversampling circuit 104 and a synchronous / asynchronous sampling frequency converter (FSC) 105. 119) to the same value as the input sampling frequency.
  • FSC asynchronous sampling frequency converter
  • the mixing apparatus 1 can reduce the circuit scale and current consumption of the digital filter without providing an oversampling circuit (frequency conversion unit 119) in the D / A converter 2.
  • FIG. 1 is a block diagram showing a configuration of a digital mixing circuit according to Embodiment 1 of the present invention.
  • the digital mixing circuit according to the first embodiment includes a mixing device 1 and a D / A converter 2.
  • a mixing apparatus 1 shown in FIG. 1 includes a selector 101, an asynchronous sampling frequency converter (FSC) 102 (hereinafter, asynchronous FSC 102), and a first oversampling circuit (48 times oversampling circuit) that performs 48 times oversampling. 103, a second oversampling circuit (12 times oversampling circuit) 104 that performs 12 times oversampling, a synchronous / asynchronous sampling frequency converter (FSC) 105 (synchronous / asynchronous FSC 105), and six amplifiers 106 to 111 And two adders 112 and 113.
  • FSC asynchronous sampling frequency converter
  • the mixing device 1 is connected to the D / A converter 2, and the output signal of the mixing device 1 becomes the input signal of the D / A converter 2.
  • the asynchronous FSC 102, the first oversampling circuit 103, the second oversampling circuit 104, and the synchronous / asynchronous FSC 105 constitute a frequency conversion unit 119 of the mixing device 1.
  • the six amplifiers 106 to 111 and the two adders 112 and 113 constitute a mixing unit 118 of the mixing apparatus 1.
  • sampling frequency of the mixing unit 118 composed of the six amplifiers 106 to 111 and the two adders 112 and 113 is 384 kHz, which is the same as the input sampling frequency of the noise shaper 115 of the D / A converter 2 described later.
  • the D / A converter 2 shown in FIG. 1 includes a noise shaper 115, a PWM (Pulse Width Modulation) circuit 116, and an LPF (Low-pass filter) 117.
  • the input sampling frequency of the noise shaper 115 of the D / A converter 2 shown in FIG. 1 is 384 kHz, which is the same value as the sampling frequency of the mixing unit 118 of the mixing device 1 described above.
  • the asynchronous FSC 102 synchronizes the sampling clock (8 kHz) of the call voice data generated from the network clock with the sampling frequency (384 kHz) of the mixing unit 118 of the mixing apparatus 1.
  • the first oversampling circuit 103 oversamples the sampling clock system clock (8 kHz) of the tone data generated from the system clock 48 times, and the sampling frequency (384 kHz) of the mixing unit 118 of the mixing apparatus 1. ).
  • the second oversampling circuit 104 oversamples the sampling clock (32 kHz) of the sound source data generated from the system clock and synchronizes with the sampling frequency (384 kHz) of the mixing unit 118 of the mixing apparatus 1.
  • the selector 101 selects data to be input to the synchronous / asynchronous FSC 105 among the moving image additional audio data, digital broadcast audio data, and music data.
  • sampling clocks are generated from different clock sources, and as shown in FIG. 1, the sampling clock of the video additional audio data is 48 kHz, and the digital broadcast audio data The sampling clock is 48 kHz, and the sampling clock for music data is 44.1 kHz.
  • the synchronous / asynchronous FSC 105 converts the sampling clock of the data selected by the selector 101 into 384 kHz, which is the same value as the sampling frequency of the mixing unit 118 of the mixing device 1. As shown in FIG. 1, the synchronous / asynchronous FSC 105 functions as an oversampling circuit that performs, for example, 8 times oversampling.
  • the operating frequency of the D / A converter 2 is the same as the sampling clock of each data converted by the frequency converter 119.
  • the D / A converter 2 illustrated in FIG. 1 includes a noise shaper 115, a PWM (Pulse Width Modulation) circuit 116, and an LPF (Low-pass filter) 117.
  • the noise shaper 115 moves the quantization noise of each data output from the mixing device 1 out of the band.
  • the PWM circuit 116 performs pulse width modulation on each data processed by the noise shaper 115.
  • LPF 117 passes only a predetermined low frequency of each data processed by PWM circuit 116 as a signal.
  • the voice clock data sampling clock (8 kHz) is converted by the asynchronous FSC 102 to 384 kHz, which is the same value as the sampling frequency of the mixing unit 118 of the mixing device 1. Then, the call voice data is output from the asynchronous FSC 102 to the amplifier 106.
  • the sampling clock (8 kHz) of tone data is oversampled by the first oversampling circuit 103 to 384 kHz, which is the same value as the sampling frequency of the mixing unit 118 of the mixing device 1.
  • the tone data is output from the first oversampling circuit 103 to the amplifier 107.
  • the sampling clock (32 kHz) of the sound source data is oversampled by the second oversampling circuit 104 to 384 kHz, which is the same value as the sampling frequency of the mixing unit 118 of the mixing device 1.
  • the sound source data is divided into two systems from the second oversampling circuit 104 and output to the amplifiers 108 and 109.
  • the sampling clock of the data selected by the selector 101 among the video additional audio data, digital broadcast audio data, and music data is the same value as the sampling frequency of the mixing unit 118 of the mixing apparatus 1 by the synchronous / asynchronous FSC 105, 384 kHz. Is converted to
  • the sampling clock (48 kHz) of the moving image additional audio data is sampled by the mixing unit 118 of the mixing apparatus 1 by the synchronous / asynchronous FSC 105 operating as an 8-times oversampling circuit. It is converted to 384 kHz, which is the same value as the frequency.
  • the moving image additional audio data is output from the synchronous / asynchronous FSC 105 to the amplifiers 110 and 111 in two systems.
  • the sampling clock of the digital broadcast audio data based on the clock (48 kHz) reproduced from the broadcast wave operates using the synchronous / asynchronous FSC 105 as an asynchronous sampling frequency converter. Then, it is converted to 384 kHz, which is the same value as the sampling frequency of the mixing unit 118 of the mixing apparatus 1.
  • the digital broadcast audio data is output from the synchronous / asynchronous FSC 105 to the amplifiers 110 and 111 in two systems.
  • the sampling clock of the music data based on the system clock is operated by the synchronous / asynchronous FSC 105 as the synchronous FSC and the sampling of the mixing unit 118 of the mixing apparatus 1 is performed. Convert to 384 kHz, which is the same value as the frequency. Then, the music data is divided into two systems from the synchronous / asynchronous FSC 105 and output to the amplifiers 110 and 111.
  • the mixing ratio is adjusted by the amplifiers 106 to 111 for each data in which the sampling clock is converted to the same value as the sampling frequency of the mixing unit 118 by the frequency conversion unit 119. Then, each data whose mixing ratio is adjusted is added by the adders 112 and 113 and is output from the mixing device 1 to the noise shaper 115 constituting a part of the D / A converter 2.
  • the input sampling frequency of the noise shaper 115 is 384 kHz, which is the same value as the sampling frequency of the mixing unit 118. Therefore, the mixing apparatus 1 according to Embodiment 1 of the present invention does not need to provide an oversampling circuit in the D / A converter 2 that is the output destination.
  • the quantization noise of each data is moved out of the band by the noise shaper 115 of the D / A converter 2. Then, it is output to a PWM (Pulse Width Modulation) circuit 116.
  • PWM Pulse Width Modulation
  • Each data processed by the noise shaper 115 is subjected to pulse width modulation by the PWM circuit 116 and output to an LPF (Low-pass filter) 117.
  • the data processed by the PWM circuit 116 is output only by the low frequency band of each data by an LPF (Low-pass filter) 117.
  • the characteristics of the LPF built in each element of the asynchronous FSC 102, the first oversampling circuit 103, the second oversampling circuit 104, and the synchronous / asynchronous FSC 105 are shown in FIG.
  • the attenuation range characteristics of the above may be relaxed.
  • FIGS. 2A and 2B are diagrams for explaining the LPF characteristics of the oversampling circuit built in each element constituting the frequency conversion unit 119 of the mixing apparatus 1.
  • FIG. 2A shows the relationship between the output of the oversampling circuit and the sampling frequency.
  • the vertical axis indicates the output of the oversampling circuit, and the horizontal axis indicates the frequency.
  • FIG. 2B is a diagram showing the relationship between the output of the asynchronous FSC 102 (or synchronous / asynchronous FSC 105) and the sampling frequency.
  • the vertical axis indicates the output of the FSC
  • the horizontal axis indicates the frequency.
  • the oversampling LPF output in the FSC may be attenuated by about 60 dB at the sampling frequency fs to 4 fs and gradually attenuated to about 100 dB at the sampling frequency 4 fs to 8 fs.
  • the oversampling circuit in the FSC has the characteristics shown in FIG. 2A, a predetermined output can be obtained over the sampling frequencies fs to 8fs as shown in FIG. 2B. Compared with the characteristic of FIG. 9 described in the conventional example, this is a relaxation of the attenuation region characteristic near the audible region. Therefore, the circuit scale of the mixing device can be reduced as compared with the conventional example.
  • a minimum phase transition filter may be used for the asynchronous FSC 102 and the first oversampling circuit 103 in consideration of the delay.
  • a linear phase FIR filter may be used for the synchronous / asynchronous FSC 105 in consideration of sound quality. For this reason, in this Embodiment, the optimal filter can be selected with respect to each input signal.
  • Embodiment 2 One of the features of the digital mixing circuit according to Embodiment 2 of the present invention is that the sampling clock of each input data of the mixing device 3 is composed of asynchronous sampling frequency converters (FSC) 122, 123, 124, 125.
  • the frequency converter 310 converts the D / A converter 4 connected to the mixing device 3 to the same value as the input sampling frequency of the noise shaper 135. That is, in this embodiment, the input sampling frequency of the noise shaper 135 is 352.8 kHz, and the sampling frequency of the mixing unit 320 is also 352.8 kHz.
  • the mixing apparatus 3 can reduce the circuit scale and current consumption of the digital filter without providing an oversampling circuit in the D / A converter 4 that is the output destination.
  • FIG. 3 is a block diagram showing the configuration of the mixing device 3 and the D / A converter 4 that constitute the digital mixing circuit according to the second embodiment.
  • the mixing device 3 shown in FIG. 3 includes a selector 121, an asynchronous sampling frequency converter (FSC) 122 (hereinafter referred to as asynchronous FSC 122), an asynchronous sampling frequency converter (FSC) 123 (hereinafter referred to as asynchronous FSC 123), and an asynchronous device.
  • FSC asynchronous sampling frequency converter
  • FSC asynchronous sampling frequency converter
  • FSC asynchronous sampling frequency converter
  • the mixing device 3 is connected to the D / A converter 4, and the output signal of the mixing device 3 becomes the input signal of the D / A converter 4.
  • the asynchronous FSC 122, the asynchronous FSC 123, the asynchronous FSC 124, and the asynchronous FSC 125 constitute a frequency conversion unit 310 of the mixing device 3.
  • the six amplifiers 126 to 131 and the two adders 132 and 133 constitute a mixing unit 320 of the mixing device 3.
  • the sampling frequency of the mixing unit 320 composed of the six amplifiers 126 to 131 and the two adders 132 and 133 is 384 kHz, which is the same as the input sampling frequency of the noise shaper 135 of the D / A converter 4 described later.
  • the D / A converter 4 shown in FIG. 3 includes a noise shaper 135, a PWM (Pulse Width Modulation) circuit 136, and an LPF (Low-pass filter) 137.
  • the input sampling frequency of the noise shaper 135 of the D / A converter 4 shown in FIG. 3 is 352.8 kHz, which is the same value as the sampling frequency of the mixing unit 320 of the mixing device 3 described above.
  • the asynchronous FSC 122 synchronizes the sampling clock (8 kHz) of the call voice data generated from the network clock with the sampling frequency (352.8 kHz) of the mixing unit 320 of the mixing device 3.
  • the asynchronous FSC 123 synchronizes the sampling clock (8 kHz) of tone data generated from the system clock with the sampling frequency (352.8 kHz) of the mixing unit 320 of the mixing device 3.
  • the asynchronous FSC 124 synchronizes the sampling clock (32 kHz) of the music data generated from the system clock with the sampling frequency (352.8 kHz) of the mixing unit 320 of the mixing device 3.
  • the selector 121 selects data to be input to the asynchronous FSC 125 from among the video additional audio data, digital broadcast audio data, and music data.
  • sampling clocks are generated from different clock sources, and as shown in FIG. 3, the sampling clock of the video additional audio data is 48 kHz, and the digital broadcast audio data The sampling clock is 48 kHz, and the sampling clock for music data is 44.1 kHz.
  • the asynchronous FSC 125 converts the sampling clock of the data selected by the selector 121 to 352.8 kHz, which is the same value as the sampling frequency of the mixing unit 320 of the mixing device 3. As shown in FIG. 2, the asynchronous FSC 125 functions as an oversampling circuit that performs oversampling of 8 times, for example.
  • the operating frequency of the D / A converter 4 is the same as the sampling clock of each data converted by the frequency converter 310 of the mixing device 3.
  • a noise shaper 135 moves the quantization noise of each data output from the mixing device 3 out of the band.
  • a PWM (Pulse Width Modulation) circuit 136 performs pulse width modulation on each data processed by the noise shaper 115.
  • An LPF (Low-pass filter) 137 passes only a predetermined low frequency of each data processed by the PWM circuit 136 as a signal.
  • the voice clock data sampling clock (8 kHz) is converted by the asynchronous FSC 122 to 352.8 kHz, which is the same value as the sampling frequency of the mixing unit 320 of the mixing device 3. Then, the call voice data is output from the asynchronous FSC 122 to the amplifier 126.
  • the sampling clock (8 kHz) of tone data is converted by the asynchronous FSC 123 into 352.8 kHz, which is the same value as the sampling frequency of the mixing unit 320 of the mixing device 3.
  • the tone data is output from the asynchronous FSC 123 to the amplifier 126.
  • the sampling clock (8 kHz) of the sound source data is converted to 352.8 kHz which is the same value as the sampling frequency of the mixing unit 320 of the mixing device 3 by the asynchronous FSC 124.
  • the sound source data is divided into two systems from the asynchronous FSC 125 and output to the amplifiers 128 and 129.
  • the sampling clock of the data selected by the selector 121 among the video additional audio data, digital broadcast audio data, and music data is the same value as the sampling frequency of the mixing unit 320 of the mixing device 3 by the asynchronous FSC 125, 352.8 kHz. Is converted to
  • the sampling clock (48 kHz) of the video additional audio data is the same value as the sampling frequency of the mixing unit 320 of the mixing apparatus 1 by the synchronous / asynchronous FSC 105, 352 Converted to 8 kHz.
  • the moving image additional audio data is output from the asynchronous FSC 125 to the amplifiers 130 and 131 in two systems.
  • the sampling clock of the digital broadcast audio data based on the clock (48 kHz) reproduced from the broadcast wave is sent from the mixing unit 320 of the mixing device 3 by the asynchronous FSC 125. Conversion to 352.8 kHz, which is the same value as the sampling frequency.
  • the digital broadcast audio data is output from the asynchronous FSC 125 to the amplifiers 130 and 131 in two systems.
  • the sampling clock (44.1 kHz) of the music data causes the asynchronous FSC 125 to operate as an 8-times oversampling circuit and the sampling of the mixing unit 320 of the mixing device 3. Convert to 352.8 kHz, which is the same value as the frequency. Then, the music data is divided into two systems from the asynchronous FSC 125 and output to the amplifiers 130 and 131.
  • the mixing ratio is adjusted by the amplifiers 126 to 131 for each data in which the sampling clock is converted to the same value as the sampling frequency of the mixing unit 320 by the frequency conversion unit 310.
  • Each data whose mixing ratio is adjusted is added by the adder 132 and the adder 133, and is output from the mixing device 3 to the noise shaper 135 constituting a part of the D / A converter 4.
  • the input sampling frequency of the noise shaper 135 is 352.8 kHz, which is the same value as the sampling frequency of the mixing unit 320. Therefore, the mixing apparatus 3 according to Embodiment 2 of the present invention does not need to provide an oversampling circuit in the D / A converter 4 that is the output destination.
  • the characteristics of the LPF built in each of the three asynchronous FSCs 122, 123, and 124 and the asynchronous FSC 125 are in the vicinity of the audible range as shown in FIG.
  • the attenuation range characteristics of the above may be relaxed. Compared with the characteristic of FIG. 9 described in the conventional example, this is a relaxation of the attenuation region characteristic near the audible region. Therefore, the circuit scale of the mixing device can be reduced as compared with the conventional example.
  • FIG. 4 is a block diagram showing the configuration of the mixing device 5 and the speaker unit 6 constituting the digital mixing circuit according to the third embodiment.
  • FIGS. 5 (a) to 5 (c) are sampling clocks for each data. The circuit diagram for producing
  • the frequency converter 510 includes a selector 101, an asynchronous sampling frequency converter (FSC) 102 (hereinafter, asynchronous FSC 102), a first oversampling circuit (48 times oversampling circuit) 103 that performs 48 times oversampling, A second oversampling circuit (12 times oversampling circuit) 104 that performs 12 times oversampling and a synchronous / asynchronous sampling frequency converter (FSC) 105 (synchronous / asynchronous FSC 105) are provided.
  • FSC asynchronous sampling frequency converter
  • the asynchronous FSC 102 synchronizes the sampling clock (8 kHz) of the call voice data generated from the network clock with the sampling frequency of the mixing unit 520 of the mixing device 5. As shown in FIG. 5A, the sampling clock for the call voice data uses 8 kHz obtained by dividing the network clock by the frequency dividing circuit 161.
  • the first oversampling circuit 103 oversamples the sampling clock (8 kHz) of tone data generated from the system clock 48 times and synchronizes with the sampling frequency of the mixing unit 520 of the mixing device 5.
  • the output of the crystal oscillation circuit 163, which is a system clock is appropriately multiplied by a PLL 164, and 8 kHz obtained by frequency division by the frequency dividing circuit 160 becomes a sampling clock for tone data.
  • the second oversampling circuit 104 oversamples the sampling clock (32 kHz) of the sound source data generated from the system clock by 12 times and synchronizes with the sampling frequency of the mixing unit 520 of the mixing device 5.
  • the output of the crystal oscillation circuit 163, which is a system clock is appropriately multiplied by a PLL 164, and 32 kHz obtained by frequency division by the frequency dividing circuit 160 becomes a sampling clock for sound source data.
  • the selector 101 selects data to be input to the synchronous / asynchronous FSC 105 among the moving image additional audio data, digital broadcast audio data, and music data.
  • sampling clocks are generated from different clock sources. As shown in FIG. 4, the sampling clock of the video additional audio data is 48 kHz, and the digital broadcast audio data The sampling clock is 48 kHz, and the sampling clock for music data is 44.1 kHz.
  • the output of the crystal oscillation circuit 163, which is a system clock, is appropriately multiplied by the PLL 164, and is divided by the frequency dividing circuit 160 to be input to the synchronous / asynchronous FSC 105.
  • a sampling clock for moving image additional audio data and music data is generated.
  • the sampling clock of the digital broadcast sound is 48 kHz obtained by dividing the clock reproduced from the broadcast wave by the frequency dividing circuit 162.
  • the synchronous / asynchronous FSC 105 converts the sampling clock of the data selected by the selector 101 into the same value as the sampling frequency of the mixing unit 520 of the mixing device 5. As shown in FIG. 4, the synchronous / asynchronous FSC 105 also functions as an oversampling circuit that performs oversampling 8 times, for example.
  • the sampling clock of each data is set to the same value as the input sampling frequency of the noise shaper 172 of the mixer units 528 to 532 of the mixing unit 520. Yes. Therefore, the digital mixing circuit according to Embodiment 3 of the present invention does not include an oversampling circuit before the noise shaper 172 of each mixer section 528 to 532 constituting a part of the D / A converter referred to in the present invention. May be.
  • the mixing unit 520 includes adders 526 and 527 and mixer units 528 to 532 per channel.
  • Adders 526 and 527 add the sound source data output from second oversampling circuit 104 and the data output from synchronous / asynchronous FSC 105, and output the result to mixer unit 528.
  • Each mixer unit 528 to 532 mixes each data output from the frequency conversion unit 510 according to the output form.
  • Each mixer unit 528 to 532 includes a multiplier 170 that adjusts the mixing ratio of each data output from the frequency conversion unit 510 according to the output form, an adder 171 for mixing, a noise shaper 172, and a PWM circuit. 173 and buffers 174 and 175 for driving the load.
  • the noise shaper 172 of each of the mixer units 528 to 532, the PWM circuit 173, and the buffers 174 and 175 for driving the load correspond to the D / A converter referred to in the present invention.
  • Each of the mixer units 528 to 532 constitutes a class D amplifier that directly drives a load connected to the stereo earphone 150, the call receiver 151, and the stereo speakers 152 and 153.
  • the speaker unit 6 includes inductors 139 to 142 and capacitors 146 to 149 constituting a low pass filter (Low Pass Filter, LPF), a stereo earphone 150, a receiver 151 for calls, and stereo speakers 152 and 153.
  • LPF Low Pass Filter
  • the output to the call receiver 151 is handled by the mixer unit 528. This output is connected to a receiver 151 through an LPF formed by inductors 183 and 134 and a capacitor 143. The connection between the stereo speakers 152 and 153 is the same.
  • the stereo earphone 150 connects the outputs of the mixer units 531 and 532 to the stereo earphone 150 through an LPF composed of inductors 139 to 142 and capacitors 146 to 149 based on the clock generated by the PLL.
  • the digital mixing circuit according to the third embodiment of the present invention has been described as an example when applied to a voice output unit of a mobile phone.
  • the present invention is not limited to this.
  • the digital mixing circuit according to the third embodiment of the present invention can be applied to any portable terminal having a function of mixing sound data including sound as a sound source and outputting sound from the sound data subjected to the mixing process.
  • the characteristics of the LPF built in each of the asynchronous FSC 102 and the synchronous / asynchronous FSC 105 are represented by attenuation characteristics in the vicinity of the audible range as shown in FIG. May be relaxed.
  • the attenuation range characteristic near the audible range is relaxed. Therefore, the circuit scale of the mixing device can be reduced as compared with the conventional example.
  • a minimum phase transition filter may be used for the asynchronous FSC 102 and the first oversampling circuit 103 in consideration of the delay.
  • a linear phase FIR filter may be used for the synchronous / asynchronous FSC 105 in consideration of sound quality. For this reason, in this Embodiment, the optimal filter can be selected with respect to each input signal.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the circuit scale and current consumption can be reduced, and an optimum filter can be selected for each input signal, which can be applied to a mobile phone or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Telephone Function (AREA)

Abstract

 回路規模や消費電流を削減できるディジタルミキシング回路およびそれを備えた 携帯端末を提供すること。本発明のディジタルミキシング回路は、音源として少なくとも音声を含む複数の音データについて、各音データのサンプリングクロック周波数を変換する処理を行う複数の周波数変換部と、前記複数の周波数変換部で変換された複数の音データをミキシング処理する少なくとも一つのミキシング部と、前記少なくとも一つのミキシング部でミキシング処理された複数の音データのノイズ処理を行うノイズシェーピング部と、前記ノイズシェーピング部でノイズ処理された複数の音データを、音として出力するためにアナログ信号に変換する変換部と、を備えるディジタルミキシング回路であって、前記周波数変換部は、前記ノイズシェーピング部での入力サンプリング周波数と同じ値で、複数の音データのサンプリングクロック周波数を変換する処理を行う。

Description

ディジタルミキシング回路およびそれを備えた携帯端末
 本発明は、音源として少なくとも音声を含む複数の音データをミキシング処理およびノイズ処理を行うディジタルミキシング回路に関する。
 例えば昨今の携帯電話では、通話音声データに加えて、音楽データ、ディジタルテレビ付加音声データなど、音声データがある。各音声データのサンプリング周波数およびサンプリング周波数の基準クロックは、一様でない。各音声データは、ミキシング回路を介して、最終的に電話機のスピーカやコネクタを介して接続されるイヤフォンに出力される。異なるサンプリング周波数のデータをミキシングする方法として、例えば、図6に示すディジタルミキシング回路を用いる方法がある。図6は、第1従来例のディジタルミキシング回路の構成を示すブロック図である。
 図6では、入力データは、通話音声データ、操作音を発生するためのトーン、呼び出し音や効果音のための音源データ、ディジタルテレビ付加音声データ、記憶媒体に記録されている動画の付加音声データ、電話機でオーディオプレーヤーとして使う場合の音楽データである。
 通話音声データのサンプリングクロック(Sampling Clock)は、電話回線側に同期しているため回線の網クロックから生成される。トーンデータおよび音源データのサンプリングクロックは機器のシステムクロックから生成される。ディジタルテレビなどの付加音声データのサンプリングクロックは、放送波から再生したクロックから生成される。音楽データについては、トーンなどと同様にシステムクロックから生成する。
 まず、各種のサンプリングクロックのデータを、それぞれのサンプリングクロックで動作するD/Aコンバータ42~45(図6中、DAC42~45)でアナログ信号に変換する。変換された各データのアナログ信号を可変利得アンプ46~51で各々のミキシング比率を調整する。ミキシング比率が調整された各データを抵抗器57~64で加算して、バッファアンプ55および56から出力する。なお、音源データや放送波付加音声などはステレオデータを想定している。そのため最終的な出力は2チャネルあり、ミキシング回路も2系統存在する。
 次に、図7を参照して、ディジタルデータの段階でミキシングする方法もある。図7は、第2従来例のディジタルミキシング回路の構成を示すブロック図である。各データのサンプリング周波数を一致させて、各データをミキシングする。図7に示すように、サンプリング周波数変換器(以下fsコンバータまたはFSC)72、75または、6倍オーバーサンプリング回路73、3/2倍オーバーサンプリング回路74で、共通のサンプリング周波数に変換する。
 図7のD/Aコンバータ88の入力サンプリングクロックは、システムクロックから生成され、その値は48kHzである。具体的には基準とするクロックからPLLなどで生成されるクロックである。
 D/Aコンバータ88は、8倍のオーバーサンプリング(Over sampling)回路84と、ノイズシェーパー(Noise shaper)85と、PWM(Pulse Width Modulation)回路86と、LPF(Low-pass filter)87と、を備える。サンプリング周波数が48kHzに変換された各データは、8倍のオーバーサンプリング回路84により、そのサンプリング周波数が、384kHzにオーバーサンプリングされる。そして、ノイズシェーパー85のサンプリング周波数は、1536kHzである。これらのサンプリングクロックも全てシステムクロックから生成される。
 そして、各入力データのサンプリングクロックを、非同期FSC72、同期/非同期FSC75により48kHzに合わせる。トーンデータと音源データのサンプリングクロックとD/Aコンバータ88の入力のサンプリングクロック48kHzとは単純な整数比なので、オーバーサンプリングする。トーンデータは6倍のオーバーサンプリング回路73を通し、音源データは3/2倍のオーバーサンプリング回路74で、それぞれオーバーサンプリングする。
 通話音声データのサンプリングクロックは、電話回線の網クロックから生成されるため、電話機のシステムクロックとは非同期の関係にある。そのため、非同期fsコンバータ72でD/Aコンバータ88のサンプリングクロックに変換する。
 動画付加音声データ、ディジタル放送音声データ、音楽データは、セレクタ71、90、89で適宜切り替える。
 動画付加音声データを選択した場合、動画付加音声データのサンプリングクロックは、48kHzであり、D/Aコンバータ88のそれと同じ値なので、fsコンバータ75を通さずに、そのまま次段に渡される。
 ディジタル放送音声データを選択した場合、ディジタル放送音声データのサンプリングクロックは、D/Aコンバータ88と同じ周波数である。しかし、放送波から再生したクロックから生成されるため、システムクロックとは非同期の関係となっている。つまり、D/Aコンバータ88のサンプリングクロックには同期していないので、fsコンバータ75を非同期モードで動作させて、両者の非同期性を吸収させる。
 音楽データを選択した場合、サンプリングクロック源は、D/Aコンバータ88と同じだが、サンプリングクロック周波数が異なる。音楽データのサンプリングクロックを、fsコンバータ75を同期モードで動作させて、D/Aコンバータ88のサンプリングクロックに合わせる。
 上述のように、D/Aコンバータ88のサンプリングクロックに合わせた各データを、それぞれアンプ76~81によりミキシング比率を調整する。そして、加算器82と83で各データを加算して、D/Aコンバータ88に渡す。
 次に、音楽再生時の消費電流を最小にするためには、音楽再生のときにfsコンバータ(同期/非同期FSC75)を通さない構成が考えられる。これに対応したものが図8である。図8は、第3従来例のディジタルミキシング回路の構成を示すブロック図である。
 図8に示すように、D/Aコンバータ718の入力のサンプリングクロックは音楽データのサンプリングクロックと同じであり、8倍オーバーサンプリング回路714のサンプリングクロックとノイズシェーパー715のサンプリングクロックは音楽データのサンプリングクロックの整数倍の関係となっている。
 セレクタ720、719は音楽再生のときはfsコンバータ705(同期/非同期FSC705)を通さずに乗算器710、711に音楽データを渡す。また、動画付加音声データのサンプリングクロックはシステムクロックに同期しているので、fsコンバータ705(同期/非同期FSC705)を同期モードで動作させてD/Aコンバータ718のサンプリングクロックに変換する。上記以外の動作は図7と同じである。
日本国特開2001-256730号公報
 図6を参照して説明したように、一旦D/Aコンバータ42~45でアナログ信号に変換する方法は簡単なため良く用いられてきたが、D/Aコンバータ42~45が多数必要になること、D/Aコンバータ42~45以降のアナログ回路の経路が多いことから、消費電流の増加およびノイズフロア上昇といった問題があった。
 一方、図7を参照して説明したように、ディジタルデータの段階でミキシングするには、各データのサンプリング周波数を一致させなくてはならないために多数のfsコンバータ(非同期FSC72、同期/非同期FSC75)が必要となる。
 fsコンバータ72(非同期FSC72)、fsコンバータ75(同期/非同期FSC75)は高次のオーバーサンプリングを施した後、所望出力サンプリングクロックで再サンプリングすることでサンプリング周波数を変換している。そのため多数のディジタルフィルタにより構成されるが、特に直線位相特性を要求される場合にはFIR(Finite Impulse Response)ディジタルフィルタを使うため回路規模や消費電流の点で好ましくない。
 次に、音楽再生時の消費電流を低減したい場合には、図8のような構成を採る。しかし音楽データ以外の各データのサンプリングクロックは、音楽データのサンプリングクロックとは単純な整数比を為していないため、全てfsコンバータ(非同期FSC702、703、704、同期/非同期FSC705)を使うことになり、回路規模の点で問題になる。
 また、D/Aコンバータ718の8倍のオーバーサンプリング回路714で使われるLPFは、音楽再生時の音質を考慮すると直線位相FIRフィルタを用いれば良い。しかし、オーバーサンプリング回路714内のLPFに直線位相FIRフィルタを用いると、1~2msの遅延時間が発生する。特に携帯電話に、第3従来例のディジタルミキシング回路を適用する場合、通話音声データの遅延時間は、小さいほど良い。そのため、図8に示す第3従来例のディジタルミキシング回路を携帯電話に適用する場合、音楽再生時の音質と通話音声データの遅延時間とは、トレードオフの関係となる。
 本発明の目的は、回路規模や消費電流を削減でき、かつ各入力信号に対して最適なフィルタを選択可能なディジタルミキシング回路、及びそれを備えた携帯端末を提供することである。
 図7および図8に示すように、fsコンバータ72、75、702~705ではオーバーサンプリングしてから所望のサンプリング周波数で再サンプリングしており、ノイズシェーパー85、715を用いたD/Aコンバータ88、718では一旦オーバーサンプリングしている。
 そこで、fsコンバータ72、75、702~705での再サンプリング周波数を、D/Aコンバータ88、718のオーバーサンプリング周波数と同じ周波数とすることで、D/Aコンバータ88、718でのオーバーサンプリングを省略できる。
 fsコンバータ72、75、702~705でのオーバーサンプリングで用いられるLPFは、再サンプリング周波数がfsコンバータ72、75、702~705の入力サンプリング周波数に近い。そのため、第2従来例及び第3従来例のディジタルミキシング回路におけるfsコンバータLPF特性は、図9(a)に示す通り非常に急峻な減衰特性を要求される。すなわち、FSC内のオーバーサンプリングLPF出力は、図9(b)に示すFSC出力をサンプリング周波数fs~8fsにおいて約100dB減衰させる必要がある。
 一方、D/Aコンバータ88、718でのオーバーサンプリングは、ノイズシェーパー85、715で量子化ノイズを可聴域外に集中させる空き帯域を作るためにある。そのため図9(c)に示すようにD/Aコンバータ88、718でのオーバーサンプリングLPFの特性は、fsコンバータ72、75、702~705のLPFと比較すると所望減衰量が緩和される。すなわち、サンプリング周波数fs~4fsにおいて約60dBの減衰でよい。
 つまり、fsコンバータ72、75、702~705の出力のサンプリング周波数をD/Aコンバータ88、718のオーバーサンプリング周波数と同じ周波数にすれば良い。
 本発明のディジタルミキシング回路は、音源として少なくとも音声を含む複数の音データについて、各音データのサンプリングクロック周波数を変換する処理を行う複数の周波数変換部と、前記複数の周波数変換部で変換された複数の音データをミキシング処理する少なくとも一つのミキシング部と、前記少なくとも一つのミキシング部でミキシング処理された複数の音データのノイズ処理を行うノイズシェーピング部と、前記ノイズシェーピング部でノイズ処理された複数の音データを、音として出力するためにアナログ信号に変換する変換部と、を備えるディジタルミキシング回路であって、前記周波数変換部は、前記ノイズシェーピング部での入力サンプリング周波数と同じ値で、複数の音データのサンプリングクロック周波数を変換する処理を行う。
 上記ディジタルミキシング回路は、更に、前記変換部で変換されたアナログ信号を音として出力する処理を行う出力部を備える。
 上記ディジタルミキシング回路では、前記ノイズシェーピング部は、D級アンプ形式で前記出力部の負荷を直接駆動する。
 また、本発明の携帯端末は、上記ディジタルミキシング回路を備える。
 本発明のディジタルミキシング回路およびそれを備えた携帯端末によれば、回路規模や消費電流を削減でき、かつ各入力信号に対して最適なフィルタを選択することができる。
本発明の実施の形態1に係るディジタルミキシング回路の構成を示すブロック図 (a)、(b)は、ミキシング装置1の周波数変換部119を構成する各素子が内蔵するオーバーサンプリング回路のLPFの特性を説明するための図 本発明の実施の形態2に係るディジタルミキシング回路の構成を示すブロック図 実施の形態3に係るディジタルミキシング回路を構成するミキシング装置5およびスピーカ部6の構成を示すブロック図 (a)~(c)は、実施の形態3に係るディジタルミキシング回路において、各データのサンプリングクロックを生成するための回路図 第1従来例のディジタルミキシング回路の構成を示すブロック図 第2従来例のディジタルミキシング回路の構成を示すブロック図 第3従来例のディジタルミキシング回路の構成を示すブロック図 (a)~(c)は、第2従来例及び第3従来例のディジタルミキシング回路におけるfsコンバータLPF特性を示す図
(実施の形態1)
 本発明の実施の形態1に係るディジタルミキシング回路の特徴のひとつは、ミキシング装置1の各入力データのサンプリングクロックを、非同期のサンプリング周波数変換器(FSC)102と第1オーバーサンプリング回路103と、第2オーバーサンプリング回路104と、同期/非同期サンプリング周波数変換器(FSC)105とから構成される周波数変換部119により、ミキシング装置1に接続されるD/Aコンバータ2の、ノイズシェーピング回路(周波数変換部119)の入力サンプリング周波数と同じ値に変換することである。
 この構成により、ミキシング装置1は、D/Aコンバータ2にオーバーサンプリング回路(周波数変換部119)を設けずに、ディジタルフィルタの回路規模や消費電流を削減することができる。
 図1を参照して、本発明の実施の形態1に係るディジタルミキシング回路の構成について説明する。図1は、本発明の実施の形態1に係るディジタルミキシング回路の構成を示すブロック図である。実施の形態1に係るディジタルミキシング回路は、ミキシング装置1とD/Aコンバータ2とから構成される。
 図1に示すミキシング装置1は、セレクタ101と、非同期のサンプリング周波数変換器(FSC)102(以下、非同期FSC102)と、48倍のオーバーサンプリングを行う第1オーバーサンプリング回路(48倍オーバーサンプリング回路)103と、12倍のオーバーサンプリングを行う第2オーバーサンプリング回路(12倍オーバーサンプリング回路)104と、同期/非同期サンプリング周波数変換器(FSC)105(同期/非同期FSC105)と、6つのアンプ106~111と、2つの加算器112、113と、を備える。
 ミキシング装置1は、D/Aコンバータ2に接続され、ミキシング装置1の出力信号は、D/Aコンバータ2の入力信号となる。
 また、非同期FSC102と、第1オーバーサンプリング回路103と、第2のオーバーサンプリング回路104と、同期/非同期FSC105とは、ミキシング装置1の周波数変換部119を構成する。
 また、6つのアンプ106~111と、2つの加算器112、113は、ミキシング装置1のミキシング部118を構成する。
 また、6つのアンプ106~111と、2つの加算器112、113で構成されるミキシング部118のサンプリング周波数は、後述するD/Aコンバータ2のノイズシェーパー115の入力サンプリング周波数と同じ384kHzである。
 図1に示すD/Aコンバータ2は、ノイズシェーパー(noise shaper)115と、PWM(Pulse Width Modulation)回路116と、LPF(Low-pass filter)117と、を備える。図1に示すD/Aコンバータ2のノイズシェーパー115の入力サンプリング周波数は、前述したミキシング装置1のミキシング部118のサンプリング周波数と同じ値の384kHzである。
 次に、図1を参照して、ミキシング装置1の各構成について詳細に説明する。
 非同期FSC102は、網クロックから生成される通話音声データのサンプリングクロック(8kHz)を、ミキシング装置1のミキシング部118のサンプリング周波数(384kHz)に同期させる。
 第1のオーバーサンプリング回路103は、システムクロックから生成されるトーンデータのサンプリングクロシステムクロック(8kHz)を、48倍にオーバーサンプリング(Over sampling)し、ミキシング装置1のミキシング部118のサンプリング周波数(384kHz)に同期させる。第2のオーバーサンプリング回路104は、システムクロックから生成される音源データのサンプリングクロック(32kHz)を、12倍にオーバーサンプリングし、ミキシング装置1のミキシング部118のサンプリング周波数(384kHz)に同期させる。
 セレクタ101は、動画付加音声データ、ディジタル放送音声データ、音楽データのうち、同期/非同期FSC105に入力するデータを選択する。なお、動画付加音声データ、ディジタル放送音声データ、音楽データは、それぞれ異なるクロック源からサンプリングクロックが生成され、図1に示すように、動画付加音声データのサンプリングクロックは48kHzであり、ディジタル放送音声データのサンプリングクロックは、48kHzであり、音楽データのサンプリングクロックは、44.1kHzである。
 同期/非同期FSC105は、セレクタ101で選択されたデータのサンプリングクロックを、ミキシング装置1のミキシング部118のサンプリング周波数と同じ値である、384kHzに変換する。同期/非同期FSC105は、図1に示すように、例えば、8倍のオーバーサンプリングを行うオーバーサンプリング回路として機能する。
 次に、図1を参照して、D/Aコンバータ2の各構成について、詳細に説明する。D/Aコンバータ2の動作周波数は、周波数変換部119により変換された各データのサンプリングクロックと同じである。図1に示すD/Aコンバータ2は、ノイズシェーパー(noise shaper)115と、PWM(Pulse Width Modulation)回路116と、LPF(Low-pass filter)117と、を備える。
 ノイズシェーパー115は、ミキシング装置1から出力された各データの量子化ノイズを帯域外へ移動する。
 PWM回路116は、ノイズシェーパー115によって処理された各データをパルス幅変調する。
 LPF117は、PWM回路116によって処理された各データの所定の低域周波数のみを信号として通過させる。
 次に、図1を参照して、ミキシング装置1に入力する各データとそのサンプリングクロックについて、説明する。
 通話音声データのサンプリングクロック(8kHz)は、非同期FSC102により、ミキシング装置1のミキシング部118のサンプリング周波数と同じ値である、384kHzに変換される。そして、通話音声データは、非同期FSC102からアンプ106へ出力される。
 トーンデータのサンプリングクロック(8kHz)は、第1オーバーサンプリング回路103により、ミキシング装置1のミキシング部118のサンプリング周波数と同じ値である、384kHzにオーバーサンプリングされる。そして、トーンデータは、第1オーバーサンプリング回路103からアンプ107へ出力される。
 音源データのサンプリングクロック(32kHz)は、第2オーバーサンプリング回路104により、ミキシング装置1のミキシング部118のサンプリング周波数と同じ値である、384kHzにオーバーサンプリングされる。そして、音源データは、第2オーバーサンプリング回路104から2系統に分かれて、アンプ108、109に出力される。
 動画付加音声データ、ディジタル放送音声データ、音楽データのうち、セレクタ101によって選択されたデータのサンプリングクロックは、同期/非同期FSC105により、ミキシング装置1のミキシング部118のサンプリング周波数と同じ値である、384kHzに変換される。
 まず、セレクタ101によって動画付加音声データが選択された場合、動画付加音声データのサンプリングクロック(48kHz)は、8倍オーバーサンプリング回路として動作する同期/非同期FSC105により、ミキシング装置1のミキシング部118のサンプリング周波数と同じ値である、384kHzに変換される。そして、動画付加音声データは、同期/非同期FSC105から、2系統に分かれて、アンプ110、111に出力される。
 次に、セレクタ101によってディジタル放送音声データが選択された場合、放送波から再生したクロック(48kHz)を基準とするディジタル放送音声データのサンプリングクロックは、同期/非同期FSC105を非同期サンプリング周波数変換器として動作させて、ミキシング装置1のミキシング部118のサンプリング周波数と同じ値である、384kHzに変換する。そして、ディジタル放送音声データは、同期/非同期FSC105から、2系統に分かれて、アンプ110、111に出力される。
 また、次に、セレクタ101によって音楽データが選択された場合、システムクロックを基準とする音楽データのサンプリングクロックは、同期/非同期FSC105を同期FSCとして動作させて、ミキシング装置1のミキシング部118のサンプリング周波数と同じ値である、384kHzに変換する。そして、音楽データは、同期/非同期FSC105から、2系統に分かれて、アンプ110、111に出力される。
 上述のように、周波数変換部119によりミキシング部118のサンプリング周波数と同じ値にサンプリングクロックが変換された各データは、それぞれアンプ106~111によりミキシング比率を調整される。そして、ミキシング比率が調整された各データは、加算器112と113により加算され、ミキシング装置1から、D/Aコンバータ2の一部を構成するノイズシェーパー115に出力される。
 ここで、本発明の実施の形態1に係るディジタルミキシング回路では、ノイズシェーパー115の入力サンプリング周波数が、ミキシング部118のサンプリング周波数と同じ値の384kHzである。そのため、本発明の実施の形態1に係るミキシング装置1は、出力先であるD/Aコンバータ2にオーバーサンプリング回路を設けなくても良い。
 D/Aコンバータ2に入力した各データは、D/Aコンバータ2のノイズシェーパー115により、各データの量子化ノイズが帯域外へ移動される。そして、PWM(Pulse Width Modulation)回路116に出力される。
 ノイズシェーパー115によって処理された各データは、PWM回路116により、パルス幅変調され、LPF(Low-pass filter)117に出力される。そして、PWM回路116によって処理されたデータは、LPF(Low-pass filter)117により、各データ低域周波数のみが出力される。
 なお、本実施の形態において、非同期FSC102、第1オーバーサンプリング回路103、第2オーバーサンプリング回路104、同期/非同期FSC105の各素子が内蔵するLPFの特性を、図3に示すように、可聴域近傍の減衰域特性を緩和しても良い。
 図2(a)、(b)は、ミキシング装置1の周波数変換部119を構成する各素子が内蔵するオーバーサンプリング回路のLPFの特性を説明するための図である。図2(a)は、オーバーサンプリング回路の出力とサンプリング周波数との関係を示す図である。図2(a)の縦軸は、オーバーサンプリング回路の出力を示し、横軸は、周波数を示す。図2(b)は、非同期FSC102(又は同期/非同期FSC105)の出力とサンプリング周波数との関係を示す図である。図2(b)の縦軸は、FSCの出力を示し、横軸は、周波数を示す。
 図2(a)に示すように、FSC内のオーバーサンプリングLPF出力は、サンプリング周波数fs~4fsにおいて約60dB減衰させ、サンプリング周波数4fs~8fsにおいて約100dBまで徐々に減衰させれば良い。
 また、図2(a)に示す特性をFSC内のオーバーサンプリング回路が有するため、図2(b)に示すような、サンプリング周波数fs~8fsに亘って、所定の出力を得ることができる。これは、従来例で説明した図9の特性と比較すると可聴域近傍の減衰域特性を緩和したものとなる。そのため、従来例と比して、ミキシング装置の回路規模を縮小できる。
 なお、本実施の形態において、非同期FSC102、第1オーバーサンプリング回路103に、遅延を考慮して最小位相推移フィルタを使っても良い。また、本実施形態において、同期/非同期FSC105に、音質を考慮して直線位相FIRフィルタを使って良い。このため、本実施の形態では、各入力信号に対して最適なフィルタを選択することができる。
(実施の形態2)
 本発明の実施の形態2に係るディジタルミキシング回路の特徴のひとつは、ミキシング装置3の各入力データのサンプリングクロックを、非同期のサンプリング周波数変換器(FSC)122、123、124、125から構成される周波数変換部310により、ミキシング装置3に接続されるD/Aコンバータ4の、ノイズシェーパー(noise shaper)135の入力サンプリング周波数と同じ値に変換することである。すなわち、本実施形態では、ノイズシェーパー135の入力サンプリング周波数が352.8kHzであり、ミキシング部320のサンプリング周波数も352.8kHzとなる。
 この構成により、ミキシング装置3は、出力先であるD/Aコンバータ4にオーバーサンプリング回路を設けずに、ディジタルフィルタの回路規模や消費電流を削減することができる。
 図3を参照して、本発明の実施の形態2に係るディジタルミキシング回路の構成について説明する。図3は、実施の形態2に係るディジタルミキシング回路を構成するミキシング装置3及びD/Aコンバータ4の構成を示すブロック図である。
 図3に示すミキシング装置3は、セレクタ121と、非同期のサンプリング周波数変換器(FSC)122(以下、非同期FSC122)と、非同期のサンプリング周波数変換器(FSC)123(以下、非同期FSC123)と、非同期のサンプリング周波数変換器(FSC)124(以下、非同期FSC124)と、非同期のサンプリング周波数変換器(FSC)125(以下、非同期FSC125)と、6つのアンプ126~131と、2つの加算器132、133と、を備える。
 ミキシング装置3は、D/Aコンバータ4に接続され、ミキシング装置3の出力信号は、D/Aコンバータ4の入力信号となる。
 また、非同期FSC122と、非同期FSC123と、非同期FSC124と、非同期FSC125とは、ミキシング装置3の周波数変換部310を構成する。
 また、6つのアンプ126~131と、2つの加算器132、133とは、ミキシング装置3のミキシング部320を構成する。
 また、6つのアンプ126~131と、2つの加算器132、133で構成されるミキシング部320のサンプリング周波数は、後述するD/Aコンバータ4のノイズシェーパー135の入力サンプリング周波数と同じ384kHzである。
 図3に示すD/Aコンバータ4は、ノイズシェーパー(noise shaper)135と、PWM(Pulse Width Modulation)回路136と、LPF(Low-pass filter)137と、を備える。図3に示すD/Aコンバータ4のノイズシェーパー135の入力サンプリング周波数は、前述したミキシング装置3のミキシング部320のサンプリング周波数と同じ値の352.8kHzである。
 次に、図3を参照して、ミキシング装置1の各構成について、詳細に説明する。
 非同期FSC122は、網クロックから生成される通話音声データのサンプリングクロック(8kHz)を、ミキシング装置3のミキシング部320のサンプリング周波数(352.8kHz)に同期させる。
 非同期FSC123は、システムクロックから生成されるトーンデータのサンプリングクロシステムクロック(8kHz)を、ミキシング装置3のミキシング部320のサンプリング周波数(352.8kHz)に同期させる。
 非同期FSC124は、システムクロックから生成される音楽データのサンプリングクロシステムクロック(32kHz)を、ミキシング装置3のミキシング部320のサンプリング周波数(352.8kHz)に同期させる。
 セレクタ121は、動画付加音声データ、ディジタル放送音声データ、音楽データのうち、非同期FSC125に入力するデータを選択する。なお、動画付加音声データ、ディジタル放送音声データ、音楽データは、それぞれ異なるクロック源からサンプリングクロックが生成され、図3に示すように、動画付加音声データのサンプリングクロックは48kHzであり、ディジタル放送音声データのサンプリングクロックは、48kHzであり、音楽データのサンプリングクロックは、44.1kHzである。
 非同期FSC125は、セレクタ121で選択されたデータのサンプリングクロックを、ミキシング装置3のミキシング部320のサンプリング周波数と同じ値である、352.8kHzに変換する。非同期FSC125は、図2に示すように、例えば、8倍のオーバーサンプリングを行うオーバーサンプリング回路として機能する。
 次に、図3を参照して、D/Aコンバータ4の各構成について、詳細に説明する。D/Aコンバータ4の動作周波数は、ミキシング装置3の周波数変換部310により変換された各データのサンプリングクロックと同じである。
 ノイズシェーパー(noise shaper)135は、ミキシング装置3から出力された各データの量子化ノイズを帯域外へ移動する。
 PWM(Pulse Width Modulation)回路136は、ノイズシェーパー115によって処理された各データをパルス幅変調する。
 LPF(Low-pass filter)137は、PWM回路136によって処理された各データの所定の低域周波数のみを信号として通過させる。
 次に、図3を参照して、ミキシング装置3に入力する各データとそのサンプリングクロックについて、説明する。
 通話音声データのサンプリングクロック(8kHz)は、非同期FSC122により、ミキシング装置3のミキシング部320のサンプリング周波数と同じ値である、352.8kHzに変換される。そして、通話音声データは、非同期FSC122からアンプ126へ出力される。
 トーンデータのサンプリングクロック(8kHz)は、非同期FSC123により、ミキシング装置3のミキシング部320のサンプリング周波数と同じ値である、352.8kHzに変換される。そして、トーンデータは、非同期FSC123からアンプ126へ出力される。
 音源データのサンプリングクロック(8kHz)は、非同期FSC124により、ミキシング装置3のミキシング部320のサンプリング周波数と同じ値である、352.8kHzに変換される。そして、音源データは、非同期FSC125から2系統に分かれて、アンプ128、129へ出力される。
 動画付加音声データ、ディジタル放送音声データ、音楽データのうち、セレクタ121によって選択されたデータのサンプリングクロックは、非同期FSC125により、ミキシング装置3のミキシング部320のサンプリング周波数と同じ値である、352.8kHzに変換される。
 まず、セレクタ121によって動画付加音声データが選択された場合、動画付加音声データのサンプリングクロック(48kHz)は、同期/非同期FSC105により、ミキシング装置1のミキシング部320のサンプリング周波数と同じ値である、352.8kHzに変換される。そして、動画付加音声データは、非同期FSC125から、2系統に分かれて、アンプ130、131に出力される。
 次に、セレクタ121によってディジタル放送音声データが選択された場合、放送波から再生したクロック(48kHz)を基準とするディジタル放送音声データのサンプリングクロックは、非同期FSC125により、ミキシング装置3のミキシング部320のサンプリング周波数と同じ値である、352.8kHzに変換する。そして、ディジタル放送音声データは、非同期FSC125から、2系統に分かれて、アンプ130、131に出力される。
 また、次に、セレクタ121によって音楽データが選択された場合、音楽データのサンプリングクロック(44.1kHz)は、非同期FSC125を8倍オーバーサンプリング回路として動作させて、ミキシング装置3のミキシング部320のサンプリング周波数と同じ値である、352.8kHzに変換する。そして、音楽データは、非同期FSC125から、2系統に分かれて、アンプ130、131に出力される。
 上述のように、周波数変換部310によりミキシング部320のサンプリング周波数と同じ値にサンプリングクロックが変換された各データは、それぞれアンプ126~131によりミキシング比率を調整される。そして、ミキシング比率が調整された各データは、加算器132と加算器133とにより加算され、ミキシング装置3から、D/Aコンバータ4の一部を構成するノイズシェーパー135に出力される。ここで、本発明の実施の形態2では、ノイズシェーパー135の入力サンプリング周波数は、ミキシング部320のサンプリング周波数と同じ値の352.8kHzである。そのため、本発明の実施の形態2に係るミキシング装置3は、出力先であるD/Aコンバータ4にオーバーサンプリング回路を設けなくても良い。
 なお、実施の形態2においても、実施の形態1と同様、3つの非同期FSC122、123、124および非同期FSC125の各素子が内蔵するLPFの特性を、図2(b)に示すように可聴域近傍の減衰域特性を緩和しても良い。これは、従来例で説明した図9の特性と比較すると可聴域近傍の減衰域特性を緩和したものとなる。そのため、従来例と比して、ミキシング装置の回路規模を縮小できる。
(実施の形態3)
 次に、図4、図5(a)~(c)を参照して、本発明の実施の形態3に係るディジタルミキシング回路の構成について、説明する。本発明の実施の形態3に係るミキシング装置5は、携帯電話の音声出力部に適用した場合の一例である。図4は、実施の形態3に係るディジタルミキシング回路を構成するミキシング装置5およびスピーカ部6の構成を示すブロック図であり、図5(a)~図5(c)は、各データのサンプリングクロックを生成するための回路図を示す。
 以下、図4、図5(a)~(c)を参照して、本実施形態のミキシング装置5及びスピーカ部6の構成について、説明する。
 図4に示すミキシング装置5は、周波数変換部510と、ミキシング部520とから構成される。
 周波数変換部510は、セレクタ101と、非同期のサンプリング周波数変換器(FSC)102(以下、非同期FSC102)と、48倍のオーバーサンプリングを行う第1オーバーサンプリング回路(48倍オーバーサンプリング回路)103と、12倍のオーバーサンプリングを行う第2オーバーサンプリング回路(12倍オーバーサンプリング回路)104と、同期/非同期サンプリング周波数変換器(FSC)105(同期/非同期FSC105)と、を備える。なお、周波数変換部510の構成のうち、実施の形態1の周波数変換部119と同じ構成には、同じ参照符号を用いて説明する。
 非同期FSC102は、網クロックから生成される通話音声データのサンプリングクロック(8kHz)を、ミキシング装置5のミキシング部520のサンプリング周波数に同期させる。なお、図5(a)に示すように、通話音声データのサンプリングクロックは、網クロックを分周回路161で分周した8kHzを用いる。
 第1のオーバーサンプリング回路103は、システムクロックから生成されるトーンデータのサンプリングクロシステムクロック(8kHz)を、48倍にオーバーサンプリング(Over sampling)し、ミキシング装置5のミキシング部520のサンプリング周波数に同期させる。なお、図5(b)に示すように、システムクロックである水晶発振回路163の出力をPLL164で適宜逓倍し、分周回路160で分周した8kHzがトーンデータのサンプリングクロックとなる。
 第2のオーバーサンプリング回路104は、システムクロックから生成される音源データのサンプリングクロック(32kHz)を、12倍にオーバーサンプリングし、ミキシング装置5のミキシング部520のサンプリング周波数に同期させる。なお、図5(b)に示すように、システムクロックである水晶発振回路163の出力をPLL164で適宜逓倍し、分周回路160で分周した32kHzが音源データのサンプリングクロックとなる。
 セレクタ101は、動画付加音声データ、ディジタル放送音声データ、音楽データのうち、同期/非同期FSC105に入力するデータを選択する。なお、動画付加音声データ、ディジタル放送音声データ、音楽データは、それぞれ異なるクロック源からサンプリングクロックが生成され、図4に示すように、動画付加音声データのサンプリングクロックは48kHzであり、ディジタル放送音声データのサンプリングクロックは、48kHzであり、音楽データのサンプリングクロックは、44.1kHzである。
 なお、図5(b)に示すように、システムクロックである水晶発振回路163の出力をPLL164で適宜逓倍し、これを分周回路160で分周することで、同期/非同期FSC105に入力される各データのうち、動画付加音声データおよび音楽データのサンプリングクロックが生成される。また、ディジタル放送音声のサンプリングクロックは、図5(c)に示すように、放送波から再生されたクロックを分周回路162で分周して得られる48kHzである。
 同期/非同期FSC105は、セレクタ101で選択されたデータのサンプリングクロックを、ミキシング装置5のミキシング部520のサンプリング周波数と同じ値に変換する。同期/非同期FSC105は、図4に示すように、例えば、8倍のオーバーサンプリングを行うオーバーサンプリング回路としても機能する。
 ここで、実施の形態3では、ミキシング装置5の周波数変換部510において、各データのサンプリングクロックが、ミキシング部520のミキサ部528~532のノイズシェーパー172の入力サンプリング周波数と同じ値に設定されている。そのため、本発明の実施の形態3に係るディジタルミキシング回路は、本発明でいうD/Aコンバータの一部を構成する各ミキサ部528~532のノイズシェーパー172の前段に、オーバーサンプリング回路を設けなくても良い。
 次に、図4を参照して、ミキシング部520の構成を説明する。ミキシング部520は、加算器526、527と、1チャネル当たりのミキサ部528~532と、を備える。
 加算器526、527は、第2オーバーサンプリング回路104から出力された音源データと、同期/非同期FSC105から出力されたデータを加算し、ミキサ部528へ出力する。
 各ミキサ部528~532は、周波数変換部510から出力された各データを、出力形態にあわせてミキシングする。各ミキサ部528~532は、周波数変換部510から出力された各データのミキシング比率を出力形態にあわせて調整する乗算器170と、ミキシングのための加算器171と、ノイズシェーパー172と、PWM回路173と、負荷を駆動するためのバッファ174、175から構成される。
 各ミキサ部528~532のノイズシェーパー172と、PWM回路173と、負荷を駆動するためのバッファ174、175が、本発明でいうD/Aコンバータに相当する。
 各ミキサ部528~532は、ステレオイヤフォン150、通話用のレシーバー151、ステレオスピーカ152、153に接続される負荷を、直接駆動するD級アンプを構成する。
 スピーカ部6は、ローパスフィルター(Low Pass Filter、 LPF)を構成するインダクタ139~142及びキャパシタ146~149と、ステレオイヤフォン150と、通話用のレシーバー151と、ステレオスピーカー152、153と、を備える。
 通話用のレシーバー151への出力はミキサ部528が受け持つ。この出力をインダクタ183および134とキャパシタ143によるLPFを通してレシーバー151を接続する。ステレオスピーカー152と153の接続も同様である。
 ステレオイヤフォン150は、PLLで生成したクロックに基づき、ミキサ部531、532の出力を、インダクタ139~142及びキャパシタ146~149で構成されるLPFを通して、ステレオイヤフォン150に接続する。
 なお、本実施の形態では、本発明の実施の形態3に係るディジタルミキシング回路を携帯電話の音声出力部に適用した場合の一例として説明したが、これに限らない。音源として音声含む音データをミキシング処理し、ミキシング処理した音データから音声を出力する機能を備える携帯端末であれば本発明の実施の形態3に係るディジタルミキシング回路を適用できる。
 なお、本実施の形態においても、実施の形態1と同様、非同期FSC102、同期/非同期FSC105の各素子が内蔵するLPFの特性を、図2(b)に示すように可聴域近傍の減衰域特性を緩和しても良い。これは、従来例と比較すると可聴域近傍の減衰域特性を緩和したものとなる。そのため、従来例と比して、ミキシング装置の回路規模を縮小できる。
 なお、本実施の形態において、非同期FSC102、第1オーバーサンプリング回路103に、遅延を考慮して最小位相推移フィルタを使っても良い。また、本実施形態において、同期/非同期FSC105に、音質を考慮して直線位相FIRフィルタを使って良い。このため、本実施の形態では、各入力信号に対して最適なフィルタを選択することができる。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年6月17日出願の日本特許出願(特願2009-144270)、に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のディジタルミキシング回路およびそれを備えた携帯端末によれば、回路規模や消費電流を削減でき、かつ各入力信号に対して最適なフィルタを選択することができ、携帯電話機などに適用できる。
1、3、5 ミキシング装置
2、4、88 D/Aコンバータ
6 スピーカ部
101、121 セレクタ
102 非同期FSC
103 48倍オーバーサンプリング回路(第1オーバーサンプリング回路)
104 12倍オーバーサンプリング回路(第2オーバーサンプリング回路)
105 同期/非同期FSC
106~111、126~131 アンプ
112、113、132、171、526、527 加算器
115、135、172 ノイズシェーパー
116、136、173 PWM回路
117、137 LPF
118、320、520 ミキシング部
119、310、510 周波数変換部
122~125 非同期FSC
150 ステレオイヤフォン
151 通話用のレシーバー
152、153 ステレオスピーカー
170 乗算器
174、175 バッファ
528~532 ミキサ部

Claims (4)

  1.  音源として少なくとも音声を含む複数の音データについて、各音データのサンプリングクロック周波数を変換する処理を行う複数の周波数変換部と、
     前記複数の周波数変換部で変換された複数の音データをミキシング処理する少なくとも一つのミキシング部と、
     前記少なくとも一つのミキシング部でミキシング処理された複数の音データのノイズ処理を行うノイズシェーピング部と、
     前記ノイズシェーピング部でノイズ処理された複数の音データを、音として出力するためにアナログ信号に変換する変換部と、を備えるディジタルミキシング回路であって、
     前記周波数変換部は、前記ノイズシェーピング部での入力サンプリング周波数と同じ値で、複数の音データのサンプリングクロック周波数を変換する処理を行う、
     ことを特徴とするディジタルミキシング回路。
  2.  請求項1に記載のディジタルミキシング回路は、更に、
     前記変換部で変換されたアナログ信号を音として出力する処理を行う出力部を備えるディジタルミキシング回路。
  3.  請求項2に記載のディジタルミキシング回路であって、
     前記ノイズシェーピング部は、D級アンプ形式で前記出力部の負荷を直接駆動する、ディジタルミキシング回路。
  4.  請求項2又は請求項3に記載のディジタルミキシング回路を備える携帯端末。
PCT/JP2010/004068 2009-06-17 2010-06-17 ディジタルミキシング回路およびそれを備えた携帯端末 WO2010146874A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-144270 2009-06-17
JP2009144270A JP2011002565A (ja) 2009-06-17 2009-06-17 ディジタルミキシング回路およびそれを備えた携帯端末

Publications (1)

Publication Number Publication Date
WO2010146874A1 true WO2010146874A1 (ja) 2010-12-23

Family

ID=43356204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004068 WO2010146874A1 (ja) 2009-06-17 2010-06-17 ディジタルミキシング回路およびそれを備えた携帯端末

Country Status (2)

Country Link
JP (1) JP2011002565A (ja)
WO (1) WO2010146874A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11327560A (ja) * 1998-05-15 1999-11-26 Yamaha Corp 楽音合成方法、楽音処理方法、記録媒体および楽音合成装置
JP2005064904A (ja) * 2003-08-13 2005-03-10 Yamaha Corp ネットワークに接続される信号処理装置
JP2005518051A (ja) * 2002-01-23 2005-06-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーバーサンプリングされたデジタルオーディオ信号をミキシングするためのミキシングシステム
JP2006229891A (ja) * 2005-02-21 2006-08-31 Rohm Co Ltd 信号増幅回路およびそれを用いた電子機器
JP2006254307A (ja) * 2005-03-14 2006-09-21 Asahi Kasei Microsystems Kk デジタルスイッチングアンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11327560A (ja) * 1998-05-15 1999-11-26 Yamaha Corp 楽音合成方法、楽音処理方法、記録媒体および楽音合成装置
JP2005518051A (ja) * 2002-01-23 2005-06-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーバーサンプリングされたデジタルオーディオ信号をミキシングするためのミキシングシステム
JP2005064904A (ja) * 2003-08-13 2005-03-10 Yamaha Corp ネットワークに接続される信号処理装置
JP2006229891A (ja) * 2005-02-21 2006-08-31 Rohm Co Ltd 信号増幅回路およびそれを用いた電子機器
JP2006254307A (ja) * 2005-03-14 2006-09-21 Asahi Kasei Microsystems Kk デジタルスイッチングアンプ

Also Published As

Publication number Publication date
JP2011002565A (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
US9544691B2 (en) Acoustic playback system
KR100915116B1 (ko) 다중 경로의 멀티 레이트 오디오 프로세싱 시의 믹싱복잡도를 줄일 수 있도록 레이트 변환 필터를 이용하는방법 및 시스템
KR101357935B1 (ko) 노이즈 캔슬링 시스템 및 노이즈 캔슬 방법
US7852239B2 (en) Method and system for processing multi-rate audio from a plurality of audio processing sources
US9378751B2 (en) Method and system for digital gain processing in a hardware audio CODEC for audio transmission
CN111900953B (zh) 数字麦克风的采样转换及滤波实现系统、方法
US20100057473A1 (en) Method and system for dual voice path processing in an audio codec
US8909361B2 (en) Method and system for processing high quality audio in a hardware audio codec for audio transmission
US8879721B2 (en) Audio communication system
JP5133172B2 (ja) Fm送信回路及びオーバーサンプリング処理回路
WO2010146874A1 (ja) ディジタルミキシング回路およびそれを備えた携帯端末
JP2011064961A (ja) 音声再生装置および方法
US7437298B2 (en) Method and apparatus for mobile phone using semiconductor device capable of inter-processing voice signal and audio signal
JP4250578B2 (ja) 音声オーディオ装置
US20180197563A1 (en) Audio signal processing circuit, in-vehicle audio system, audio component device and electronic apparatus including the same, and method of processing audio signal
JP2006033448A (ja) マルチサンプリングレートσδdacシステム、及び音響機器
JP5795503B2 (ja) パルス幅変調システムおよび音声信号出力装置
JP2973736B2 (ja) ディジタル電話用codec
JP2006113153A (ja) 1ビット信号のダウンサンプリング装置、ダウンサンプリング方法、マルチチャンネルオーディオ装置、及びマルチチャンネルオーディオ装置の音声再生方法
JP2000307385A (ja) 周波数分割回路
JP5466054B2 (ja) D/aコンバータ
CN117155392A (zh) 多工作模式数模转换系统及其设计方法
KR20040050401A (ko) 시간분할 디지털 필터 및 이를 이용한 다채널디지털/아날로그 데이터 변환기 회로
JP3201059B2 (ja) ディジタルオーディオ信号処理装置及びディジタルネットワーク装置
CN116566393A (zh) 模数转换系统、音频处理方法、设备、介质及产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789253

Country of ref document: EP

Kind code of ref document: A1