WO2010143640A1 - 金属熱処理炉 - Google Patents

金属熱処理炉 Download PDF

Info

Publication number
WO2010143640A1
WO2010143640A1 PCT/JP2010/059723 JP2010059723W WO2010143640A1 WO 2010143640 A1 WO2010143640 A1 WO 2010143640A1 JP 2010059723 W JP2010059723 W JP 2010059723W WO 2010143640 A1 WO2010143640 A1 WO 2010143640A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heated
cooling
chamber
heating
Prior art date
Application number
PCT/JP2010/059723
Other languages
English (en)
French (fr)
Inventor
敏治 小林
原田 広史
潤 田崎
杉田 薫
捷範 菊池
Original Assignee
独立行政法人物質・材料研究機構
日新技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構, 日新技研株式会社 filed Critical 独立行政法人物質・材料研究機構
Priority to EP20100786171 priority Critical patent/EP2442057B1/en
Priority to CN201080024875.5A priority patent/CN102460052B/zh
Priority to US13/376,946 priority patent/US8845955B2/en
Publication of WO2010143640A1 publication Critical patent/WO2010143640A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/02Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated of multiple-chamber type
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/12Arrangement of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a metal heat treatment furnace. Specifically, it is a metal heat treatment furnace that performs a rapid cooling process after holding the metal at a high temperature for a certain time, and can reduce the running cost and increase the cooling rate. It is intended to provide a furnace.
  • the strength is maximized when ⁇ (gamma: alloy matrix) and ⁇ ′ (gamma prime: Ni 3 Al) indicate an aligned structure.
  • gamma: alloy matrix
  • ⁇ ′ gamma prime: Ni 3 Al
  • the alloy is raised to a temperature just below the melting point of the alloy (about 1350 ° C.) and held for a certain time (about 40 hours) for homogenization. Then, a heat treatment method for rapid cooling is required. In that case, the higher the cooling rate, the higher the accuracy of the matching composition formed at high temperatures, so that the alloy strength tends to be excellent.
  • FIG. 10 is a front view schematically showing a configuration of this conventional example, partially showing a cross section.
  • the heating chamber 100 is formed in a closed circular can shape, and a plurality of rod-shaped resistance heating elements 111 are arranged in a circular fence shape therein.
  • W tungsten
  • Mo mobdenum
  • cylindrical heat shielding plates 121 to 123 having different diameters are provided in a triple manner so as to surround the plurality of resistance heating elements 111, and the circular plates are provided so as to cover the upper and lower openings of the heat shielding plates 121 to 123.
  • the heat shield plates 131 to 133 are arranged. These heat shielding plates 121 to 123 and 131 to 133 also use W, Mo, or the like as a material.
  • the alloy A to be heated is disposed in the center of the space surrounded by the plurality of resistance heating elements 111, and the inside of the heating chamber 100 To a vacuum. Therefore, when a current is passed through each resistance heating element 111, each resistance heating element 111 generates Joule heat, and this is used as a heat source to raise the heated alloy A to a temperature near the melting point by using radiant heat. Hold for a certain time.
  • each resistance heating element 111 When a certain period of time has elapsed, the energization of each resistance heating element 111 is stopped, and high-purity He (helium) gas or Ar (argon) gas is cooled through a gas blowing port (not shown). The gas is supplied into the heating chamber 100 as a gas, and this is blown onto the alloy A to be heated and cooled. When the supplied cooling gas fills the heating chamber 100, a fan (not shown) is driven to forcibly stir the cooling gas.
  • He helium
  • Ar argon
  • W, Mo, or the like is used as the material of the resistance heating element 111 and the heat shielding plates 121 to 123 and 131 to 133, and the heated alloy A is heated and heated in the same space.
  • the heated alloy A is cooled.
  • the conventional example shown in FIG. 10 has a simple configuration as a heat treatment furnace, but has the following problems to be solved. That is, first, the alloy strength increases as the heating and cooling cycle is repeated, but W and Mo used as the material of the resistance heating element 111 and the heat shielding plates 121 to 123 and 131 to 133 are heated and cooled. When the cycle is repeated, if the wear is large and the frequency of use is high, replacement is required after about one year of use.
  • heating of the heated alloy A and cooling of the heated heated alloy A are performed in the same space. That is, when cooling the heated alloy A heated for a certain time, the cooling gas is supplied into the heating chamber 100 that is heated to a high temperature. Therefore, the cooling rate of the alloy A to be heated by the cooling gas is slow. For example, when cooling from around 1300 ° C., the cooling rate is 150 ° C./min at the maximum, which is insufficient as the cooling rate.
  • the higher the cooling rate the better the alloy strength.
  • the strength of the heated alloy A cannot be sufficiently exhibited because the cooling rate is slow.
  • the conventional example shown in FIG. 10 has the problems to be solved as described above.
  • a heating element using carbon that generates heat when a high-frequency current is passed through a coil whose pitch is adjustable is disposed in the heating chamber.
  • a cooling chamber for cooling the metal to be heated heated by the heating element is disposed below the heating chamber so as to communicate with the heating chamber.
  • a water-cooled lift shaft that supports the metal to be heated and can enter the heating chamber is disposed through the bottom of the cooling chamber.
  • a gas that is supported by the water-cooling lift shaft and moves from the heating chamber to the cooling chamber and cools the heated metal to be heated is supplied to the cooling chamber.
  • the metal heat treatment furnace of the present invention has the following characteristics. [1] ⁇ 1> For heating a metal to be heated provided with a heating unit including a coil whose pitch is adjustable and a heating element using carbon that generates heat when current flows through the coil.
  • heating chamber ⁇ 2> A cooling chamber disposed below the heating chamber for cooling the heated metal heated by the heating unit: ⁇ 3> A hollow connecting portion for connecting the heating chamber and the cooling chamber, provided with a movable gate that partitions the heating chamber and the cooling chamber: ⁇ 4> A first movable heat shielding plate disposed at a lower portion of the heating chamber for shielding heat from the heating chamber: ⁇ 5> a second movable heat shielding plate disposed in an upper portion of the cooling chamber for shielding heat from the heated metal to be heated applied to the gate: ⁇ 6> A water-cooled lifting shaft disposed through the bottom of the cooling chamber and capable of supporting the metal to be heated and entering the heating chamber: A metal heat treatment furnace comprising: [2] The cooling chamber is A fan for pumping the gas is provided inside the cooling chamber to introduce a gas for cooling the heated metal to be heated, which is supported by the water-cooling lift shaft and moved from the heating chamber to the cooling chamber.
  • gas inlet pipe A gas discharge pipe for discharging the gas introduced into the cooling chamber by the gas introduction pipe from the cooling chamber;
  • the cooling chamber is A ring-shaped gas supply pipe for supplying a gas for cooling the heated metal to be heated is provided with a number of nozzles for ejecting the gas supplied through the gas supply pipe:
  • thermocouples carbon that is inexpensive and consumes only a small amount is used as a heating element, which is heated by induction heating, and the heating chamber and the cooling chamber are separated from each other. Since 2 (nitrogen) gas can also be used, the running cost when the heat treatment furnace is operated can be remarkably reduced. Even after several years of use, there is almost no need to replace consumables other than thermocouples.
  • the maximum operating temperature can be raised to 1700 ° C or higher, and the pitch of the induction coil can be adjusted according to the size and shape of the alloy to be heated. Therefore, uniformity of temperature, that is, uniformity of temperature distribution in the heating space can be ensured in a range of ⁇ 5 ° C.
  • the heating chamber and the cooling chamber are not formed in the same space, but are formed as separate spaces, and the heated alloy to be heated is moved from the high temperature heating chamber to an unheated cooling chamber.
  • a high cooling rate can be obtained, and a high-strength alloy can be realized. Therefore, the effect brought about by the present invention is extremely large in practical use.
  • a heating element made of carbon that generates heat by flowing a high-frequency current through a coil with adjustable pitch is disposed in a heating chamber as a means for heating a metal to be heated.
  • a cooling chamber for cooling the heated metal to be heated is provided below the heating chamber.
  • the heating chamber and the cooling chamber are connected by a hollow connecting portion, and a vacuum gate valve for separating the heating chamber and the cooling chamber and separating the atmosphere of both is provided in the connecting portion.
  • the movable heat shielding plate for shielding the heat from the heating chamber is disposed in the lower part of the heating chamber.
  • a movable heat shielding plate is provided.
  • a water-cooled lift shaft that supports the metal to be heated and can enter the heating chamber is disposed through the bottom of the cooling chamber.
  • the cooling chamber has a gas introduction pipe with a fan for pumping the gas inside to introduce the cooling gas into the cooling chamber, and a gas discharge pipe for discharging the gas introduced into the cooling chamber to the outside.
  • a heat exchanger for exchanging heat with the gas is disposed inside at least one of the gas introduction pipe and the gas discharge pipe.
  • FIG. 1 is a front view showing a part of the metal heat treatment furnace in the present embodiment, partly in cross section.
  • the metal heat treatment furnace in this embodiment cools a heated alloy to be heated below a can-shaped heating chamber 10 in which a heating unit 20 for heating the alloy to be heated is provided.
  • a circular can-shaped cooling chamber 80 is arranged with the same axis as the heating chamber 10, and both are connected via a cylindrical hollow connecting portion 60.
  • the side wall / bottom wall of the connected heating chamber 10 and the top wall / side wall / bottom wall of the cooling chamber 80, and the side wall of the connecting portion 60 connecting the both have a double structure, and cooling water is contained in the gap. Is to be supplied.
  • a pipe-like water-cooled lifting shaft 90 that passes through the bottom of the cooling chamber 80 and through which cooling water flows can enter the heating chamber 10.
  • the heating unit 20 disposed in the upper heating chamber 10 uses an induction heating method in the present invention, and the configuration thereof will be described with reference to FIG. 2 (sectional view) in which the heating unit 20 is enlarged.
  • 21 is a heating element formed in a cylindrical shape using high-purity carbon as a material, and its upper opening is closed by a disk-shaped heating element 22 also using high-purity carbon. It is. Further, as shown in FIG. 3, the lower opening has a disk-shaped support base 91 (material is mullite) attached to the upper end of the water-cooling lifting / lowering shaft 90 for supporting the alloy to be heated, A disk-shaped heating element 23 using high-purity carbon interposed between the plate-shaped heat insulating material 27 is closed when the water-cooled lifting shaft 90 is raised.
  • a disk-shaped support base 91 material is mullite
  • the outer peripheral wall of a cylindrical heating element 21 is surrounded by a cylindrical heat insulating material 24, and the upper surface of the upper disk-shaped heating element 22 is covered with a disk-shaped heat insulating material 26. .
  • the lower surface of the lower disk-shaped heating element 23 (FIG. 3) is covered with a disk-shaped heat insulating material 27 as shown in FIG.
  • carbon felt is used as the material for each of the heat insulating materials 24, 26, and 27.
  • the cylindrical heating element 21 is supported by a ring-shaped heat insulating material 25 in a planar shape continuously provided below the cylindrical heat insulating material 24. This heat insulating material 25 is not shown in FIG.
  • a planar shape having four legs is supported by a ring-shaped base 40.
  • a cylindrical heat insulating material 24 surrounding the heating element 21 is surrounded by a cylindrical outer cylinder 28 using mullite as a material, and an induction coil 31 is arranged around the outer cylinder 28 over the height direction of the outer cylinder 28. It is installed.
  • the induction coil 31 is supported by thin plate-like coil supports 32a and 32b (not shown in FIG. 1).
  • FIG. 4 shows a configuration for supporting the induction coil 31 by the coil supports 32a and 32b.
  • the coil support 32 a is provided with a slit 33, and as shown in FIG. 5A, the shaft portion 36 of the movable knob 34 having a convex side shape is fitted into the slit 33. They can slide together.
  • the shaft portion 36 of the movable knob 34 is fixed to the induction coil 31 by brazing.
  • the middle layer part B indicated by the dashed parallel oblique line has the highest temperature
  • the upper part part A indicated by the one-dot chain line parallel oblique line is The temperature is lower than that of the middle layer portion B
  • the temperature of the portion C indicated by the two-dot chain line parallel oblique lines is lower than that of the upper layer portion A.
  • the upper part A is open to the upper part of the outer cylinder 28 (FIG. 2), so that heat escapes upward and is close to normal temperature air, and the lower part C is where cooling water flows. This is due to the proximity of the water-cooled lifting shaft 90 (FIG. 1).
  • the heating temperature increases as the pitch of the induction coil 31 is narrower, the pitch of the induction coil 31 is increased for the middle layer portion B as shown in FIG.
  • the pitch is made slightly narrower, and the pitch is made narrower for the lower part C than for the part A.
  • the specific set value of the pitch of the induction coil 31 varies depending on the size and shape of the alloy to be heated. Therefore, when setting the pitch, after heating the alloy to be heated in a state where the pitches are all equal, the temperature distribution in the space inside the heating unit 20 is measured, and the pitch is set based on the obtained measurement value. To do.
  • the pitch of the induction coil 31 is set in accordance with the size and shape of the alloy to be heated, the temperature control is not easy and the induction heating method, which has limited applications, can be used in heat treatment of metals. The effectiveness can be sufficiently exhibited.
  • the heating unit 20 having the above-described configuration is movable at the lower end of the heating chamber 10 in the left-right direction on the drawing for shielding radiant heat from the heating chamber 10.
  • a heat shielding plate 50a is provided.
  • a disc-shaped movable member for partitioning the heating chamber 10 and the cooling chamber 80 and separating the atmosphere of the two at the intermediate portion of the connecting portion 60 that connects the heating chamber 10 and the lower cooling chamber 80.
  • a vacuum gate valve 70 having a gate 71 is provided.
  • a heat shielding plate 50b that is movable in the left-right direction in the drawing is also provided at the upper end of the cooling chamber 80.
  • the heat shielding plate 50b here is for protecting the vacuum gate valve 70 which is not so high in heat resistance, coupled with the heat shielding plate 50a disposed at the lower end of the heating chamber 10.
  • a gas introduction pipe 81 for introducing a cooling gas into the cooling chamber 80 is provided at the side surface of the cooling chamber 80, and a fan 82 for pumping the gas is provided in the inside thereof.
  • a heat exchanger 83a for cooling the gas is provided.
  • a gas discharge pipe 84 for discharging the gas introduced into the cooling chamber 80 to the outside is provided in the side surface portion of the cooling chamber 80 at a position facing the gas introduction pipe 81, and the inside A heat exchanger 83b is provided.
  • the gas introduced into the cooling chamber 80 is used by circulating the gas discharged from the cooling chamber 80.
  • the heat exchangers 83a and 83b may be arranged in either one of the gas introduction pipe 81 and the gas discharge pipe 84 instead of both.
  • FIG. 7 shows a state where the alloy to be heated is heated using the heat treatment furnace configured as described above.
  • the water cooling elevating shaft 90 is raised, and a support base 91 that supports the alloy to be heated and is fixed to the upper end of the heating alloy 20 is disposed inside the heating chamber 10.
  • the alloy A to be heated is mounted on the support base 91.
  • the alloy A to be heated is mounted on the support base 91 by removing the disc-shaped upper lid 11 of the heating chamber 10.
  • the heating chamber 10 and the cooling chamber 80 are evacuated by exhausting through an exhaust port (not shown) that opens into the heating chamber 10.
  • a high-frequency current having a frequency of, for example, 1 kHz is passed through the induction coil 31 to heat the inside of the heating unit 20 to, for example, about 1300 ° C.
  • the pitch of the induction coil 31 is not equal, but is adjusted so that the temperature distribution inside the heating unit 20 is uniform, and thus the thermal uniformity is ensured in a range of ⁇ 5 ° C.
  • a cooling gas through the gas introduction pipe 81 is sent into the cooling chamber 80 through the heat exchanger 83a to cool the alloy A to be heated.
  • the gas sent into the cooling chamber 80 is cooled by the heat exchanger 83 b disposed in the opening of the gas discharge pipe 84, discharged from the cooling chamber 80, and then circulated and led to the gas introduction pipe 81. Then, it is fed into the cooling chamber 80.
  • the cooling gas is not limited to an inert gas such as He gas or Ar gas.
  • N 2 gas cannot be used because there is a risk of damaging the resistance heating element 211 made of W or Mo.
  • the cooling rate of the heated alloy A cooled in the cooling chamber 80 in this way is 400 ° C./min when the heating temperature is around 1350 ° C., according to experiments conducted by the inventors of the present application. Therefore, an extremely high cooling rate can be realized as compared with the maximum cooling rate of 150 ° C./min in the case of the conventional example shown in FIG.
  • the heat treatment furnace according to the present invention can also be used for heat treatment of metals such as steel.
  • metals such as steel.
  • SiC silicon carbide
  • the heating element 21 is formed in a cylindrical shape, and the heating elements 22 and 23 that close the upper and lower openings are formed in a disk shape.
  • the present invention is not limited to this.
  • the present invention can be applied to a case where the heating element is formed in a rectangular tube shape and the heating element that closes the upper and lower openings is formed in a shape corresponding to the shape of the opening.
  • a gas supply pipe 85 having a ring shape in plan view is arranged below the heat shield plate 50b projecting to the upper part in the cooling chamber 80B, and the lower surface is cooled.
  • a large number of nozzles 86 for ejecting the gas for use in a conical shape are attached at a predetermined angle (for example, 45 °) so that each of the nozzles 86 is directed to the heated alloy A indicated by a broken line, and the lower part in the cooling chamber 80B. It is good also as a structure which provides the gas exhaust pipe 87 opened in this.
  • the present invention is not limited to this.
  • the cooling rate of the heated alloy A to be heated is 300 ° C./min or more when the heating temperature is around 1300 ° C. without using a cooling gas.
  • a higher cooling rate can be obtained than in the case of the conventional example shown in FIG. Therefore, even if the gas introduction pipe 81, the fan 82, the gas exhaust pipe 84, and the heat exchangers 83a and 83b are not provided in the cooling chamber 80, the running cost is reduced and the cooling that is the object of the present invention. An increase in speed can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

 ピッチが調整自在のコイルに高周波電流を流すことにより発熱するカーボンを用いた発熱体を備える加熱部20を、加熱室10内に配設する。加熱室10の下方に、発熱体により加熱された被加熱金属を冷却するための冷却室80を、連結部60を介して加熱室10と連通するようにして配設する。被加熱金属を支持して加熱室10内に進入可能な水冷昇降軸90を、冷却室80の底部を貫通して配設する。水冷昇降軸90により支持されて加熱室10内から冷却室80内に移動した、加熱された被加熱金属を冷却するガスを冷却室80内に導入するガス導入管81を、冷却室80に配設し、ランニング・コストを低廉化することができるとともに、冷却速度を高めることが可能な金属熱処理炉を実現する。

Description

金属熱処理炉
 本発明は金属熱処理炉に関する。具体的には、金属を一定時間高温に保持した後に急速に冷却する処理を施す金属熱処理炉であって、ランニング・コストを低廉化することができるとともに、冷却速度を高めることが可能な金属熱処理炉を提供せんとするものである。
 例えば、Ni(ニッケル)基超耐熱合金では、γ(ガンマ:合金マトリックス)およびγ’(ガンマプライム:NiAl)が整合配列した組織を示す場合に、その強度は最大に生かされる。この最大の強度をもたらすγ/γ’の整合組織を得るためには、合金の融点ぎりぎりの温度(1350℃程度)にまで上げ、かつ、均質化のため一定時間(40時間程度)保持したうえで、その後、急冷する熱処理方法が必要である。その場合、冷却速度が速いほど高温時に形成された精度の高い整合組成が保たれるため、合金強度は優れる傾向が見られる。
 そこで、従来より、合金を高温に加熱した後急冷する手段として、抵抗発熱型ガス冷却式真空熱処理炉(ガスファンクーリング炉)が用いられており、その構成例を図10に示し説明する。ここで、図10は、この従来例の構成を概略的に示す、一部を断面表示した正面図である。
 図10において、加熱室100は、密閉した円缶状に形成されており、その内部に、複数の棒状の抵抗発熱体111が、円柵状に配設されている。ここにおける抵抗発熱体111の素材には、W(タングステン)やMo(モリブデン)などが用いられる。
 また、複数の抵抗発熱体111を囲むようにして、それぞれ径が異なる円筒状の熱遮蔽板121~123が三重に配設されるとともに、熱遮蔽板121~123の上下開口を覆うようにして円板状の熱遮蔽板131~133が配設されている。これらの熱遮蔽板121~123,131~133にも、WやMoなどが素材として用いられる。
 このような構成による熱処理炉を用いて合金を融点温度近くまで加熱する場合は、複数の抵抗発熱体111により囲まれる空間の中央部に、被加熱合金Aを配置したうえで、加熱室100内を真空にする。そこで、各抵抗加熱体111に電流を流すと、各抵抗発熱体111はジュール熱を発生し、これを熱源とし輻射熱を利用して被加熱合金Aを融点近くの温度にまで上げ、この状態を一定時間にわたって保持する。
 一定時間が経過したならば、各抵抗発熱体111への通電を停止するとともに、図示されてはいないガス吹込み口を介して、高純度のHe(ヘリウム)ガスあるいはAr(アルゴン)ガスを冷却ガスとして加熱室100内に供給し、これを被加熱合金Aに吹き付けて冷却する。供給された冷却ガスが加熱室100内に充満すると、ファン(図示せず)を駆動して冷却ガスを強制的に撹拌する。
 このように、この従来例では、抵抗発熱体111および熱遮蔽板121~123,131~133の素材としてWやMoなどを用い、また、同一空間内で被加熱合金Aの加熱と、加熱された被加熱合金Aの冷却とを行うようにしている。
特開平7-218144号公報
 しかしながら、例えば図10に示した従来例は、熱処理炉としては構成が簡易であるものの、つぎのような解決すべき課題がある。すなわち、第1に、合金強度は、加熱と冷却のサイクルを繰り返すほど高められるが、抵抗発熱体111および熱遮蔽板121~123,131~133の素材として用いられるWやMoは、加熱と冷却のサイクルを繰り返すと、その損耗が大きく、使用頻度が多い場合は、約1年程度の使用で交換が必要となる。
 しかし、WやMoはレア・メタルであり、極めて高価である。抵抗発熱体111および熱遮蔽板121~123,131~133を交換する場合は、熱処理炉の価格の50%程度のコストを要する。したがって、図10に示した従来例によると、コスト要因となるHeガスあるいはArガスを冷却ガスとして使用している点も含めて、ランニング・コストが極めて高くなってしまうことになる。
 第2に、例えば図10に示した従来例では、被加熱合金Aの加熱と、加熱された被加熱合金Aの冷却とを同一空間内で行っている。すなわち、一定時間にわたって加熱された被加熱合金Aを冷却するときは、加熱されて高温となっている加熱室100内に、冷却ガスを供給するようにしている。そのため、冷却ガスによる被加熱合金Aの冷却速度が遅く、例えば、1300℃付近から冷却する場合、冷却速度は、最大でも150℃/分であり、冷却速度としては不充分である。
 前述のように、冷却速度が速いほど優れた合金強度が得られるものである。しかし、被加熱合金Aの加熱と、加熱された被加熱合金Aの冷却とを同一空間内で行うと、冷却速度が遅いため被加熱合金Aの強度を充分に発揮することができないことになる。以上のような解決すべき課題が、例えば図10に示した従来例にはあった。
 そこで、上記課題を解決するために、本発明はなされたものである。そのために、本発明では、ピッチが調整自在のコイルに高周波電流を流すことにより発熱するカーボンを用いた発熱体を、加熱室内に配設する。加熱室の下方に、発熱体により加熱された被加熱金属を冷却するための冷却室を、加熱室と連通するようにして配設する。被加熱金属を支持して加熱室内に進入可能な水冷昇降軸を、冷却室の底部を貫通して配設する。水冷昇降軸により支持されて加熱室内から冷却室内に移動した、加熱された被加熱金属を冷却するガスを冷却室内に供給する。以上のような手段を、本発明では用いるようにした。
 すなわち、本発明の金属熱処理炉は以下の特徴を有している。
[1]<1>ピッチが調整自在に支持されたコイルおよび前記コイルに電流が流れることにより発熱するカーボンを用いた発熱体を含む加熱部が配設された、被加熱金属を加熱するための加熱室と:
  <2>前記加熱部により加熱された前記被加熱金属を冷却するための、前記加熱室の下方に配設された冷却室と:
  <3>前記加熱室と前記冷却室とを仕切る可動のゲートが配設された、前記加熱室と前記冷却室とを連結するための中空の連結部と:
  <4>前記加熱室内の下部に配設された、前記加熱室からの熱を遮蔽するための第1の可動の熱遮蔽板と:
  <5>前記冷却室内の上部に配設された、前記ゲートに加わる前記加熱された前記被加熱金属からの熱を遮蔽するための第2の可動の熱遮蔽板と:
  <6>前記冷却室の底部を貫通して配設された、前記被加熱金属を支持して前記加熱室内に進入可能な水冷昇降軸と:
 を具備した金属熱処理炉。
[2] 前記冷却室が、
 前記水冷昇降軸により支持されて前記加熱室内から前記冷却室内に移動した前記加熱された被加熱金属を冷却するガスを前記冷却室内に導入するための、内部に前記ガスを圧送するファンが配設されたガス導入管と:
 前記ガス導入管により前記冷却室内に導入された前記ガスを前記冷却室内より排出するためのガス排出管と:を備えるとともに、
 前記ガス導入管および前記ガス排出管のうちの少なくとも一方の内部に前記ガスと熱交換するための熱交換器が配設された
 ものである前記[1]記載の金属熱処理炉。
[3] 前記冷却室が、
 前記加熱された被加熱金属を冷却するガスを供給するためのリング状のガス供給管に前記ガス供給管を介して供給される前記ガスを噴出するための多数のノズルが付設されたものと:
 前記ノズルを介して噴出された前記ガスを排出するためのガス排出管と:を
 備えたものである前記[1]記載の金属熱処理炉。
 本発明によるならば、安価であり消耗も微少量であるカーボンを発熱体として用い、これを誘導加熱方式により発熱させるとともに、加熱室と冷却室とを別空間にし、冷却ガスとして低価格のN(窒素)ガスも使用し得るようにしたので、熱処理炉を稼働させた場合のランニング・コストを著しく低廉なものとすることができる。数年間使用しても、熱電対以外の消耗品の交換の必要はほとんどない。
 また、発熱体にカーボンを用いることにより、最高使用温度を1700℃以上にすることができるうえに、誘導コイルのピッチを被加熱合金のサイズや形状などに応じて調整し得るようにしていることから、均熱性すなわち加熱空間における温度分布の均一性を、±5℃の範囲で確保することができる。
 さらに、加熱室と冷却室とを、同一空間とするのではなく別空間として形成して、加熱された被加熱合金を、高温となっている加熱室から加熱されていない冷却室内に移動させて冷却する結果、高い冷却速度を得ることができ、高強度の合金を実現することが可能となる。したがって、本発明によりもたらされる効果は、実用上極めて大きい。
本発明の一実施例の構成を示す、一部を断面表示した正面図である。 図1に示した加熱部の構成を拡大表示した断面図である。 図1に示した水冷昇降軸を下降させた場合の様子を示す構成図である。 図3に示した誘導コイルを支持するための構成を示す部分斜視図である。 図5に示した誘導コイルを支持する構成要素の構成を示す構成図である。 図3に示した誘導コイルのピッチを等しくした場合の、加熱部内の温度分布を説明するための説明図である。 図1に示した金属熱処理炉により被加熱合金を加熱している状態を説明するための説明図である。 図1に示した金属熱処理炉により被加熱合金を冷却している状態を説明するための説明図である。 加熱された被加熱合金を冷却するための他の構成を示す部分断面図である。 従来例の構成を示す、一部を断面表示した正面図である。
 本発明による金属熱処理炉は、ピッチが調整自在のコイルに高周波電流を流すことにより発熱するカーボン製の発熱体を、被加熱金属を加熱する手段として加熱室内に配設する。加熱室の下方に、加熱された被加熱金属を冷却するための冷却室を設ける。加熱室と冷却室は、中空の連結部により連結し、加熱室と冷却室を仕切って両者の雰囲気を分離するための真空ゲート弁を連結部に設ける。加熱室内の下部に、加熱室からの熱を遮蔽する可動の熱遮蔽板を配設するとともに、冷却室内の上部に、真空ゲート弁に加わる、加熱された被加熱金属からの熱を遮蔽するための可動の熱遮蔽板を配設する。被加熱金属を支持して加熱室内に進入可能な水冷昇降軸を、冷却室の底部を貫通して配設する。冷却用のガスを冷却室内に導入するための、内部にガスを圧送するファンを備えたガス導入管と、冷却室内に導入されたガスを外部に排出するためのガス排出管を、冷却室に設ける。ガス導入管およびガス排出管のうちの少なくとも一方の内部に、ガスと熱交換するための熱交換器を配設する。以下、実施例により詳しく説明する。
 本発明の一実施例の構成を、図1に示し説明する。ここで、図1は、本実施例における金属熱処理炉の構成を示す、一部を断面表示した正面図である。
 図1において、本実施例における金属熱処理炉は、被加熱合金を加熱するための加熱部20が内部に設けられた円缶状の加熱室10の下方に、加熱された被加熱合金を冷却するための円缶状の冷却室80が、加熱室10と軸心を同一にして配設され、両者は、円筒状の中空の連結部60を介して連結されている。
 連結された加熱室10の側壁・底壁および冷却室80の上壁・側壁・底壁、両者を連結する連結部60の側壁は、それぞれ二重構造となっており、その空隙部内に冷却水が供給されるようになっている。また、冷却室80の底部を貫通し、内部に冷却水が流通する昇降可能なパイプ状の水冷昇降軸90が、加熱室10内に進入し得るようになっている。
 上方の加熱室10内に配設された加熱部20は、本発明では誘導加熱方式を用いており、その構成について、加熱部20を拡大表示した図2(断面図)により説明する。
 図2において、21は、素材に高純度のカーボンを用いて円筒状に形成された発熱体であり、その上部開口は、同じく高純度のカーボンを用いた円板状の発熱体22により塞がれている。また、下部開口は、図3に示されているように、水冷昇降軸90の上端に取り付けられた、被加熱合金を支持するための円板状の支持台91(素材はムライト)と、円板状の断熱材27との間に介装された、高純度のカーボンを用いた円板状の発熱体23により、水冷昇降軸90が上昇したときに塞がれるようになっている。
 図2において、円筒状の発熱体21の外周壁は、円筒状の断熱材24により囲まれ、上部の円板状の発熱体22の上面は、円板状の断熱材26より覆われている。下部の円板状の発熱体23(図3)の下面は、図3に示したように、円板状の断熱材27により覆われている。各断熱材24,26,27の素材には、本実施例ではカーボン・フェルトを用いている。なお、円筒状の発熱体21は、円筒状の断熱材24の下方に連設された平面形状がリング状の断熱材25により支持され、この断熱材25は、図1では図示を省略している、4つの脚部を有する平面形状がリング状の基台40により支持されている。
 発熱体21を囲む円筒状の断熱材24は、素材にムライトを用いた円筒状の外筒28により囲まれ、外筒28の周囲には、外筒28の高さ方向にわたって誘導コイル31が配設されている。誘導コイル31は、図1では図示を省略している細板状のコイル支持具32a,32bにより支持されている。
 図4(部分斜視図)は、コイル支持具32a,32bにより誘導コイル31を支持するための構成を示している。図示するように、コイル支持具32aには、スリット33が設けられており、図5(a)に示すように、側面形状が凸字状の可動ノブ34の軸部36が、スリット33に嵌合して摺動し得るようになっている。可動ノブ34の軸部36は、図5(b)に示すように、ろう付けにより誘導コイル31に固着されている。
 したがって、可動ノブ34の頭部35(図5(a))をつまんで可動ノブ34を上下方向において移動させれば、誘導コイル31が移動するので、そのピッチを自在に調整することができることになる。なお、図5(c)(平面図)に示すように、コイル支持具32a~cは、外筒28の周方向において等間隔に3つ配設され、それぞれの下端部が、基台40(図2)に固定されている。
 ここで、誘導コイル31のピッチをすべて等しくすると、加熱部20内部の空間における温度分布は均一とはならず、均熱性を確保することができない。すなわち、誘導コイル31のピッチがすべて等しい場合は、図6に示すように、破線の平行斜線で示す中層の部位Bが、最も温度が高く、1点鎖線の平行斜線で示す上層の部位Aは、中層の部位Bよりは温度が低く、2点鎖線の平行斜線で示す部位Cは、上層の部位Aよりもさらに温度が低くなる。これは、上層の部位Aは、外筒28(図2)の上部が開口しているため熱が上方に逃げるとともに常温の大気に近いこと、下層の部位Cは、内部に冷却水が流通する水冷昇降軸90(図1)が近接することによる。
 そこで、誘導コイル31のピッチが狭いほど加熱温度が高まることから、中層の部位Bに対しては、図2に示されているように、誘導コイル31のピッチは広くし、上層の部位Aに対しては、ピッチをやや狭くし、下層の部位Cに対しては、部位Aに対するよりもさらにピッチを狭くしている。
 この誘導コイル31のピッチの具体的な設定値は、被加熱合金のサイズや形状などにより異なるものである。したがって、ピッチを設定する場合は、あらかじめピッチをすべて等しくした状態で被加熱合金を加熱したうえで、加熱部20内部の空間における温度分布を測定し、得られた測定値に基づいてピッチを設定するようにする。
 このように、被加熱合金のサイズや形状などに応じて誘導コイル31のピッチを設定すれば、温度制御が容易ではないため用途が限られていた誘導加熱方式であっても、金属の熱処理において充分に有効性を発揮することが可能となる。
 図1において、以上のような構成の加熱部20が内部に設けられた加熱室10の下端部には、加熱室10からの放射熱を遮蔽するための、図面上で左右方向において移動可能な熱遮蔽板50aが配設されている。また、加熱室10と下方の冷却室80とを連結する連結部60の中間の部位には、加熱室10と冷却室80とを仕切って両者の雰囲気を分離するための、円板状の可動のゲート71を備えた真空ゲート弁70が配設されている。
 他方、冷却室80の上端部にも、図面上で左右方向において移動可能な熱遮蔽板50bが配設されている。ここにおける熱遮蔽板50bは、加熱室10の下端部に配設された熱遮蔽板50aと相まって、耐熱性がさほど高くない真空ゲート弁70を保護するためのものである。
 さらに、冷却室80の側面部には、冷却室80内に冷却用のガスを導入するためのガス導入管81が開口して備えられ、その内部には、ガスを圧送するためのファン82と、ガスを冷却するための熱交換器83aが配設されている。また、このガス導入管81と対向する位置の冷却室80の側面部には、冷却室80内に導入されたガスを外部に排出するためのガス排出管84が開口して備えられ、その内部に熱交換器83bが配設されている。冷却室80内に導入されるガスは、冷却室80より排出されるガスを循環して使用する。なお、熱交換器83a,83bは、ガス導入管81およびガス排出管84の双方ではなく、いずれか一方に配設するようにしてもよい。
 図7は、以上のように構成された熱処理炉を使用して被加熱合金を加熱している状態を示している。被加熱合金Aを加熱する場合は、水冷昇降軸90を上昇させて、その上端に固定された、被加熱合金を支持する支持台91を、加熱室10内に配設された加熱部20内部の空間内に進入させたうえで、被加熱合金Aを支持台91上に搭載する。支持台91への被加熱合金Aの搭載は、加熱室10の円板状の上部蓋11をはずして行う。所要の作業が完了したならば、加熱室10内に開口する、図示されてはいない排気口を介して排気をして、加熱室10および冷却室80内を真空にする。
 そこで、周波数が例えば1kHzの高周波電流を誘導コイル31に流して、加熱部20の内部を例えば1300℃程度に加熱する。このとき、誘導コイル31のピッチは、等間隔ではなく、加熱部20内部の温度分布が均一となるように調整されており、これにより、均熱性が±5℃の範囲で確保されている。
 この状態で、一定の時間が経過したならば、図8に示すように、水冷昇降軸90を下降させて被加熱合金Aを冷却室80内に移動させる。同時に、各熱遮蔽板50a,50bおよび真空ゲート弁70のゲート71を、それぞれ張り出させる。
 そこで、ファン82の駆動のもとに、ガス導入管81を介する冷却用のガスを、熱交換器83aを通して冷却室80内に送り込んで、被加熱合金Aを冷却する。冷却室80内に送り込まれたガスは、ガス排出管84の開口部に配設された熱交換器83bにより冷却されて、冷却室80より排出された後、循環してガス導入管81に導かれて冷却室80内に送り込まれる。
 ここで、冷却用のガスは、HeガスやArガスなどの不活性ガスに限られない。図10に示した従来例では、例えば、Nガスは、素材がWやMoである抵抗発熱体211を損傷する危険性があるため用いることができない。しかし、本発明による熱処理炉の冷却室80内では、そのような危険性はないことから、安価なNガスを用いることが可能である。
 このようにして冷却室80内で冷却される被加熱合金Aの冷却速度は、本願発明者が行った実験によれば、加熱温度が1350℃付近の場合で400℃/分である。したがって、図10に示した従来例によった場合の冷却速度が最大150℃/分であるのと比較して、極めて高い冷却速度を実現することができることになる。
 なお、本発明による熱処理炉は、鋼鉄などの金属の熱処理にも使用することができるが、鋼鉄などの浸炭を嫌う金属を熱処理する場合は、発熱体21~23に用いるカーボンにSiC(炭化珪素)のコーティングを施すことにより対処することができる。
 以上においては、発熱体21を円筒状に形成し、上下開口を塞ぐ発熱体22,23を円板状に形成したものを、例に挙げて説明した。しかし、本発明は、これに限定されるものではない。その他にも、例えば、発熱体を角筒状に形成し、上下開口を塞ぐ発熱体を開口の形状に対応した形状に形成する場合についても、本発明は適用され得るものである。
 また、加熱された被加熱合金Aを冷却するための構成として、冷却室80に、ガス導入管81、ファン82、ガス排出管84および熱交換器83a,83bを配設する場合について説明した。しかし、本発明は、これに限られるものではない。例えば、図9(部分断面図)に示すように、冷却室80B内の上部に張り出す熱遮蔽板50bの下方に、平面形状がリング状のガス供給管85を配し、その下面に、冷却用のガスを円錐状に噴出する多数のノズル86を、それぞれが破線で示す被加熱合金Aを指向するように、所定の角度(例えば、45°)をもって付設するとともに、冷却室80B内の下部に開口するガス排出管87を設ける構成としてもよい。
 さらに、冷却室80内に冷却用のガスを導入する場合について説明したが、本発明は、これに限定されるものではない。本願発明者が行った実験によれば、冷却用のガスを使用しなくても、加熱された被加熱合金Aの冷却速度は、加熱温度が1300℃付近の場合で300℃/分以上であり、図10に示した従来例によった場合よりも高い冷却速度を得ることができる。したがって、冷却室80へのガス導入管81、ファン82、ガス排出管84および各熱交換器83a,83bの配設を省略しても、ランニング・コストの低廉化とともに本発明の目的である冷却速度の向上化を達成することができるものである。
 なお、図中の符号は以下のものを示す。
 10 加熱室
 11 上部蓋
 20 加熱部
 21~23 発熱体
 24~27 断熱材
 28 外筒
 31 誘導コイル
 32a~32c コイル支持具
 33 スリット
 34 可動ノブ
 35 頭部
 36 軸部
 40 基台
 50a,50b 熱遮蔽板
 60 連結部
 70 真空ゲート弁
 71 ゲート
 80,80B 冷却室
 81 ガス導入管
 82 ファン
 83a,83b 熱交換器
 84 ガス排出管
 85 ガス供給管
 86 ノズル
 87 ガス排出管
 90 水冷昇降軸
 91 支持台
 100 加熱室
 111 抵抗発熱体
 121~123,131~133 熱遮蔽板
 A 被加熱合金

Claims (3)

  1.  ピッチが調整自在に支持されたコイルおよび前記コイルに電流が流れることにより発熱するカーボンを用いた発熱体を含む加熱部が配設された、被加熱金属を加熱するための加熱室と:
     前記加熱部により加熱された前記被加熱金属を冷却するための、前記加熱室の下方に配設された冷却室と:
     前記加熱室と前記冷却室とを仕切る可動のゲートが配設された、前記加熱室と前記冷却室とを連結するための中空の連結部と:
     前記加熱室内の下部に配設された、前記加熱室からの熱を遮蔽するための第1の可動の熱遮蔽板と:
     前記冷却室内の上部に配設された、前記ゲートに加わる前記加熱された前記被加熱金属からの熱を遮蔽するための第2の可動の熱遮蔽板と:
     前記冷却室の底部を貫通して配設された、前記被加熱金属を支持して前記加熱室内に進入可能な水冷昇降軸と:
     を具備していることを特徴とする金属熱処理炉。
  2.  前記冷却室が、
     前記水冷昇降軸により支持されて前記加熱室内から前記冷却室内に移動した前記加熱された被加熱金属を冷却するガスを前記冷却室内に導入するための、内部に前記ガスを圧送するファンが配設されたガス導入管と:
     前記ガス導入管により前記冷却室内に導入された前記ガスを前記冷却室内より排出するためのガス排出管と:を備えるとともに、
     前記ガス導入管および前記ガス排出管のうちの少なくとも一方の内部に前記ガスと熱交換するための熱交換器が配設された
     ものであることを特徴とする請求項1記載の金属熱処理炉。
  3.  前記冷却室が、
     前記加熱された被加熱金属を冷却するガスを供給するためのリング状のガス供給管に前記ガス供給管を介して供給される前記ガスを噴出するための多数のノズルが付設されたものと:
     前記ノズルを介して噴出された前記ガスを排出するためのガス排出管と:を
     備えたものであることを特徴とする請求項1記載の金属熱処理炉。
PCT/JP2010/059723 2009-06-08 2010-06-08 金属熱処理炉 WO2010143640A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20100786171 EP2442057B1 (en) 2009-06-08 2010-06-08 Furnace for heat treatment of metal
CN201080024875.5A CN102460052B (zh) 2009-06-08 2010-06-08 金属热处理炉
US13/376,946 US8845955B2 (en) 2009-06-08 2010-06-08 Heat treatment furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-136824 2009-06-08
JP2009136824A JP5700323B2 (ja) 2009-06-08 2009-06-08 金属熱処理炉

Publications (1)

Publication Number Publication Date
WO2010143640A1 true WO2010143640A1 (ja) 2010-12-16

Family

ID=43308895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059723 WO2010143640A1 (ja) 2009-06-08 2010-06-08 金属熱処理炉

Country Status (5)

Country Link
US (1) US8845955B2 (ja)
EP (1) EP2442057B1 (ja)
JP (1) JP5700323B2 (ja)
CN (1) CN102460052B (ja)
WO (1) WO2010143640A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115443A1 (ja) * 2014-01-31 2015-08-06 三菱日立パワーシステムズ株式会社 タービン翼の製造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700323B2 (ja) * 2009-06-08 2015-04-15 独立行政法人物質・材料研究機構 金属熱処理炉
WO2014035480A1 (en) * 2012-08-30 2014-03-06 General Electric Company Induction furnace with uniform cooling capability
JP6296657B2 (ja) * 2014-06-26 2018-03-20 株式会社Ihi 熱処理装置
JP6350041B2 (ja) * 2014-07-02 2018-07-04 富士電機株式会社 熱処理装置
US20160067807A1 (en) * 2014-09-04 2016-03-10 Rolls-Royce Corporation Dual zone furnace
CN104294030B (zh) * 2014-09-23 2016-09-07 山东梁山亨通机械制造有限公司 一种收割机刀片热处理设备
PL228193B1 (pl) * 2014-10-06 2018-02-28 Seco/Warwick Społka Akcyjna Urzadzenie do jednostkowego hartowania czesci urzadzen technicznych
CN104561476B (zh) * 2015-01-28 2017-02-22 周献 连续式高温热处理炉
WO2016189919A1 (ja) * 2015-05-26 2016-12-01 株式会社Ihi 熱処理装置
CN105112611A (zh) * 2015-08-21 2015-12-02 湖州南浔中盛金属热处理有限公司 一种金属热处理炉
US10840114B1 (en) * 2016-07-26 2020-11-17 Raytheon Company Rapid thermal anneal apparatus and method
CN106086334B (zh) * 2016-08-25 2017-12-01 盐城东江汽车部件有限公司 一种汽车方向盘转向拉杆热处理装置
CN106323000B (zh) * 2016-10-28 2018-08-10 中国工程物理研究院材料研究所 基于低温液体的金属熔炼及冷却一体系统
US20220016700A1 (en) * 2019-03-15 2022-01-20 Desktop Metal, Inc. Two-stage sintering furnace and methods of operating thereof
CN110631369A (zh) * 2019-08-13 2019-12-31 福建师范大学 一种具有冷却室的马弗炉
CN112853053A (zh) * 2021-01-06 2021-05-28 陕西航天时代导航设备有限公司 一种简易软磁合金磁性能重置的设备
WO2022239739A1 (ja) * 2021-05-10 2022-11-17 デンケン・ハイデンタル株式会社 焼成炉
CN113587630A (zh) * 2021-07-23 2021-11-02 佛山市中研非晶科技股份有限公司 分体式恒磁热循环井式炉
CN113817910B (zh) * 2021-10-08 2023-04-07 昆山晶微新材料研究院有限公司 均质化处理装置、铸造设备和高均质性铸锭的制备方法
AT524549B1 (de) * 2021-10-15 2022-07-15 Ebner Ind Ofenbau Industrieofenanlage
CN113908771B (zh) * 2021-10-15 2022-07-15 中国科学技术大学 一种基于连续分子束源的低压闪热解流动管反应装置
CN114082872A (zh) * 2021-12-01 2022-02-25 贵州航天精工制造有限公司 一种tc4钛合金紧固件螺纹滚压成形方法
CN114273507A (zh) * 2021-12-29 2022-04-05 江苏健力钢管有限公司 一种轴承钢管的热加工生产方法及系统
CN116377190B (zh) * 2023-03-10 2024-02-20 松森特殊金属(长沙)有限公司 一种基于金属热处理加工用工件快速循环降温装置
CN117265231B (zh) * 2023-09-13 2024-04-23 南通顺祥钢结构有限公司 一种热处理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020082A (ja) * 1983-07-13 1985-02-01 石川島播磨重工業株式会社 真空炉
JPH07218144A (ja) 1994-01-28 1995-08-18 Ishikawajima Harima Heavy Ind Co Ltd 抵抗加熱方法と抵抗加熱炉
JP2003100643A (ja) * 2001-09-26 2003-04-04 Daiichi Kiden:Kk 高温cvd装置
JP2005273931A (ja) * 2004-03-23 2005-10-06 Iwasaki Electric Co Ltd 高温加熱炉
JP2005299990A (ja) * 2004-04-09 2005-10-27 Daiichi Kiden:Kk 高温加熱装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH301572A (de) * 1952-01-31 1954-09-15 Geraetebau Anstalt Einrichtung zum Glühen unter von der Atmosphäre abweichenden Verhältnissen.
DE10102991C2 (de) * 2000-02-19 2003-11-20 Ald Vacuum Techn Ag Einrichtung zum Aufheizen eines Werkstücks aus Metall
CN2564970Y (zh) * 2002-09-12 2003-08-06 爱协林工业炉工程(北京)有限公司 热处理炉内工件快速冷却装置
JP4573290B2 (ja) * 2003-10-17 2010-11-04 株式会社Ihi 高圧熱処理炉
JP5700323B2 (ja) * 2009-06-08 2015-04-15 独立行政法人物質・材料研究機構 金属熱処理炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020082A (ja) * 1983-07-13 1985-02-01 石川島播磨重工業株式会社 真空炉
JPH07218144A (ja) 1994-01-28 1995-08-18 Ishikawajima Harima Heavy Ind Co Ltd 抵抗加熱方法と抵抗加熱炉
JP2003100643A (ja) * 2001-09-26 2003-04-04 Daiichi Kiden:Kk 高温cvd装置
JP2005273931A (ja) * 2004-03-23 2005-10-06 Iwasaki Electric Co Ltd 高温加熱炉
JP2005299990A (ja) * 2004-04-09 2005-10-27 Daiichi Kiden:Kk 高温加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2442057A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115443A1 (ja) * 2014-01-31 2015-08-06 三菱日立パワーシステムズ株式会社 タービン翼の製造方法
JP2015145629A (ja) * 2014-01-31 2015-08-13 三菱日立パワーシステムズ株式会社 タービン翼の製造方法
US10105752B2 (en) 2014-01-31 2018-10-23 Mitsubishi Hitachi Power Systems, Ltd. Turbine blade manufacturing method

Also Published As

Publication number Publication date
EP2442057B1 (en) 2015-05-06
US8845955B2 (en) 2014-09-30
JP5700323B2 (ja) 2015-04-15
EP2442057A1 (en) 2012-04-18
CN102460052B (zh) 2014-09-03
CN102460052A (zh) 2012-05-16
EP2442057A4 (en) 2014-03-12
JP2010281534A (ja) 2010-12-16
US20120133089A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5700323B2 (ja) 金属熱処理炉
US8658951B2 (en) Heat treatment apparatus
JP4428268B2 (ja) 熱処理炉
JP5029435B2 (ja) 載置台構造及び熱処理装置
KR101196538B1 (ko) 처리 장치 및 처리 방법
KR100748820B1 (ko) 열처리 방법 및 열처리 장치
WO2004030061A1 (ja) 熱処理装置
WO2005001360A1 (ja) ガス冷却式真空熱処理炉およびその冷却ガス方向切替え装置
JP2009141205A (ja) 処理装置及び処理方法
KR100365805B1 (ko) 반도체 웨이퍼의 고온고압 처리 방법 및 장치
JPWO2007010607A1 (ja) 浸炭処理方法および浸炭炉
JP4288110B2 (ja) 半導体製造装置
JP5877920B1 (ja) 急速昇降温熱処理炉
TWI570259B (zh) Vacuum processing device
JP2015202508A (ja) ろう付け方法及び装置
JP2018104723A (ja) プラズマ窒化装置
JP2007242850A (ja) 半導体製造装置及び半導体製造方法
JPH10321546A (ja) 熱処理炉
CN217733187U (zh) 一种热处理用强磁场作用装置
JP2000012478A (ja) 基板熱処理装置
US20230117184A1 (en) Batch processing oven for magnetic anneal
JP2012074540A (ja) 熱処理装置
CN106191728B (zh) 一种硬质合金工件的热处理工艺
JP2009125752A (ja) 熱間鍛造用素材ビレットの加熱方法
JP2005240104A (ja) 冷却方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024875.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786171

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010786171

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13376946

Country of ref document: US