WO2010140665A1 - 周期表第13族金属化合物結晶の製造方法及び製造装置 - Google Patents

周期表第13族金属化合物結晶の製造方法及び製造装置 Download PDF

Info

Publication number
WO2010140665A1
WO2010140665A1 PCT/JP2010/059468 JP2010059468W WO2010140665A1 WO 2010140665 A1 WO2010140665 A1 WO 2010140665A1 JP 2010059468 W JP2010059468 W JP 2010059468W WO 2010140665 A1 WO2010140665 A1 WO 2010140665A1
Authority
WO
WIPO (PCT)
Prior art keywords
periodic table
group
metal
nitride
producing
Prior art date
Application number
PCT/JP2010/059468
Other languages
English (en)
French (fr)
Inventor
雄也 齋藤
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to EP10783447A priority Critical patent/EP2439317A1/en
Priority to JP2011518498A priority patent/JPWO2010140665A1/ja
Publication of WO2010140665A1 publication Critical patent/WO2010140665A1/ja
Priority to US13/311,217 priority patent/US20120125255A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/062Vertical dipping system
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/10Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state

Definitions

  • the present invention relates to a method and an apparatus for producing a periodic table group 13 metal nitride represented by gallium nitride, and more specifically, a method and an apparatus for producing a high-quality periodic table group 13 metal nitride bulk single crystal. About.
  • Gallium nitride is useful as a material applied to electronic devices such as light emitting diodes and laser diodes.
  • vapor phase growth methods such as MOCVD (Metal-Organic Chemical Vapor Deposition) method and HVPE (Hydride Vapor Phase Epitaxy) method for epitaxial growth on a substrate such as sapphire or silicon carbide are common. It is.
  • Patent Document 1 an alkali nitride metal or alkaline earth metal nitride such as Li 3 N and Mg 3 N 2 is added as an additive to a mixture of a group 13 nitride raw material and a metal halide, and further heated and melted.
  • a method for obtaining gallium nitride by crystal growth has been proposed.
  • those of periodic table 4, 5 and 6 or 10 and 11 group elements for example, nickel (Ni), tantalum (Ta), titanium) (Ti), palladium (Pd), platinum (Pt), gold (Au) and niobium (Nb)
  • group elements for example, nickel (Ni), tantalum (Ta), titanium) (Ti), palladium (Pd), platinum (Pt), gold (Au) and niobium (Nb)
  • others include BN, alumina (Al 2 O 3 ) and quartz (SiO 2 ).
  • Patent Document 2 a flux containing sodium metal is used, crystal growth is performed at a partial pressure of nitrogen of 200 atm under pressure of 40 MPa (about 400 atm) and heated to 1100 ° C. It is described that single crystals are grown.
  • Patent Document 2 it is proposed to use a ceramic containing at least one of titanium nitride and zirconium nitride as a main component as a reaction vessel.
  • Patent Document 1 has the following problems. That is, when an alkali nitride metal such as Li 3 N and Mg 3 N 2 or an alkaline earth metal nitride is added as an additive to a mixture of a Group 13 nitride raw material and a metal halide and heated and melted, the additive becomes a nitride component Therefore, there is a problem in that members such as a reaction vessel and a stirring blade that come into contact with the nitriding component through the solution are vigorously nitrided and corroded and damaged.
  • an alkali nitride metal such as Li 3 N and Mg 3 N 2 or an alkaline earth metal nitride
  • an alkali nitride metal such as Li 3 N and Mg 3 N 2 or an alkaline earth metal nitride
  • the additive becomes a nitride component Therefore, there is a problem in that members such as a reaction vessel and a stirring blade that come into contact with the
  • Patent Document 2 discloses that a ceramic containing at least one of titanium nitride and zirconium nitride, which are difficult to be nitrided and alloyed, as a main component is used for a reaction vessel.
  • a ceramic containing at least one of titanium nitride and zirconium nitride which are difficult to be nitrided and alloyed, as a main component is used for a reaction vessel.
  • the crystal growth of the Group 13 metal nitride of the periodic table by the liquid phase method has various problems such as an increase in manufacturing cost due to erosion and deterioration of various members and a decrease in the quality of the GaN crystal. At the same time, it is not solved at the same time.
  • the present inventors have made a plurality of requests that in the liquid phase growth method of Group 13 metal nitride of the periodic table, it is difficult to be nitrided and alloyed, has excellent workability, and is difficult to crack.
  • the above problems can be solved at once by using a member in which a specific nitride layer is formed on the surface of a metal containing a specific element. And reached the present invention.
  • the present invention includes a step of preparing a solution or melt containing a raw material and a solvent, and a step of growing a periodic table group 13 metal nitride crystal in the solution or melt in the crystal production apparatus.
  • the member in the crystal production apparatus that is in contact with the solution or melt contains at least one metal selected from Group 4 to Group 6 elements of the periodic table, and the member surface has a periodicity.
  • a method for producing a periodic table Group 13 metal compound crystal comprising a nitride layer containing at least one nitride selected from Group 4 to Group 6 elements.
  • the present invention is a manufacturing apparatus for obtaining a periodic table group 13 metal nitride crystal by growing a periodic table group 13 metal nitride crystal from a solution or melt containing a raw material and a solvent, wherein the solution Alternatively, the member in the manufacturing apparatus in contact with the melt contains at least one metal selected from Group 4 to Group 6 elements of the periodic table, and at least at least selected from Group 4 to Group 6 elements of the periodic table on the surface of the member
  • the present invention relates to a periodic table group 13 metal compound crystal manufacturing apparatus including a nitride layer including one nitride.
  • this invention consists of the following. 1.
  • a periodic table group 13 metal nitride comprising a step of creating a solution or melt containing a raw material and a solvent, and a step of growing a periodic table group 13 metal nitride crystal in the solution or melt in the crystal manufacturing apparatus.
  • the member of the crystal production apparatus that is in contact with the solution or melt contains at least one metal selected from Group 4 to Group 6 elements of the periodic table, and the surface of the member includes Group 4 to Group 4 of the periodic table.
  • a method for producing a periodic table group 13 metal compound crystal comprising a nitride layer containing at least one nitride selected from group 6 elements. 2.
  • a method for producing a periodic table group 13 metal compound crystal according to claim 1. 16.
  • the member in the manufacturing apparatus contains at least one metal selected from Group 4 to Group 6 elements of the periodic table, and at least one nitride selected from Group 4 to Group 6 elements of the periodic table on the surface of the member
  • the group 13 metal nitride crystal of the periodic table can be grown without eroding the surface of the member by the nitriding component and the metal component contained in the solution or melt. And a high-quality nitride crystal can be obtained.
  • the material of the member itself is a metal, it is possible to use members of various shapes, and the durability of the member is greatly improved. Can be lowered.
  • FIG. 1 is a schematic diagram of an apparatus for nitriding used in Reference Experimental Examples 1 to 3, Reference Comparative Experimental Examples 1 and 2, and Example 1 of the present invention.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS Schematic of the crystal growth apparatus used in Example 1 and Comparative Example 1 of the present invention.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the step of creating a solution or melt containing a raw material and a solvent is a step of creating a solution or melt containing a raw material and a solvent.
  • the raw material and the solvent are placed in a reaction vessel, and the solvent is heated and melted in an inert gas atmosphere. It is a step of creating a solution or melt.
  • the step of creating the solution or melt may be performed in a crystal manufacturing apparatus.
  • the temperature at which the solvent is heated and melted is usually 200 to 1500 ° C., preferably 400 to 1000 ° C.
  • the time for melting the solvent by heating is usually 1 to 100 hours, preferably 1 to 10 hours.
  • the raw material used in the method for producing a Group 13 metal nitride of the periodic table is not particularly limited in the present invention.
  • a material containing a Group 13 metal element of a periodic table, a material containing a nitrogen element, and a periodic table examples thereof include compounds containing a Group 13 metal element and a nitrogen element.
  • Examples of the substance containing a Group 13 metal element of the periodic table include a metal simple substance such as metal gallium, metal aluminum, and metal indium, and a group 13 metal alloy of the periodic table such as GaAl and GaIn.
  • Examples of the substance containing nitrogen element include Li 3 N, NaN 3 , K 3 N, Mg 3 N 2 , Ca 3 N 2 , Ba 3 N 2, and gases such as N 2 gas and NH 3 gas. Mention may be made of nitrides of alkali metals or alkaline earth metals such as Sr 3 N 2 .
  • Examples of the compound containing a periodic table group 13 metal element and nitrogen element include periodic table group 13 metal nitrides such as GaN, AlN and InN, and periodic table group 13 metal alloys such as AlGaN, InGaN and AlGaInN. And nitrides of alkali metals or alkaline earth metals such as Li 3 GaN 2 , Ca 3 Ga 2 N 4 , CaGaN, Ba 3 Ga 2 N 4, and Mg 3 GaN 3 and Group 13 metals of the periodic table You can list things.
  • composite nitrides of alkali metals or alkaline earth metals and Group 13 metals of the periodic table when dissolved in a molten salt as a solvent to be described later, are compared with alkali metal metal methods such as Na flux method.
  • alkali metal metal methods such as Na flux method.
  • Li 3 GaN 2 is preferable because of its solubility in a molten salt described later. It is particularly preferable because it is high and relatively easy to synthesize.
  • the form of the raw material is not particularly limited.
  • the solid raw material may be any of powder, granule, and lump.
  • a granular raw material of Li 3 GaN 2 is preferable because it can be easily weighed and the raw material does not rise in the liquid when the solution is mixed.
  • a liquid raw material may be used.
  • a solid raw material such as metallic gallium at room temperature may become a liquid at the reaction temperature.
  • the concentration of the total raw material in the solution or melt is usually 0.0001 mol% to 99.9 mol%, preferably 0.001 mol% to 10 mol%, more preferably 0.001 mol% to 0.1 mol%.
  • the solvent used in the present invention is not particularly limited.
  • preferred solvents for dissolving this are lithium chloride, sodium chloride, potassium chloride, cesium chloride, calcium chloride, chloride.
  • Group 17 elements of the periodic table such as barium, lithium fluoride, sodium fluoride, potassium fluoride, lithium bromide, potassium bromide, cesium bromide, lithium iodide, sodium iodide, calcium iodide and barium iodide
  • molten salts of metal halides and mixed molten salts of these metal halides.
  • two or more types of salts can be introduced into the reaction system as separate solids and heated and melted.
  • a eutectic salt it is desirable to make it by heating and melting from the viewpoint of uniformity in the system.
  • the molten salt contains impurities such as water
  • the reactive gas include hydrogen chloride, hydrogen iodide, hydrogen bromide, ammonium chloride, ammonium bromide, ammonium iodide, chlorine, bromine and iodine, and a molten salt of chloride as a solvent.
  • hydrogen chloride hydrogen chloride
  • hydrogen iodide hydrogen bromide
  • ammonium chloride ammonium bromide
  • ammonium iodide chlorine, bromine and iodine
  • a molten salt of chloride as a solvent.
  • the type of the inert gas is not particularly limited, but for example, helium (He), nitrogen (N 2 ), argon (Ar) and the like are preferably used. Further, a substance that functions as a scavenger that selectively absorbs oxygen and moisture (for example, a metal piece such as titanium) may be accompanied in the reaction vessel.
  • Step of Growing Periodic Table Group 13 Metal Nitride Crystal This step consists of filling a reaction vessel with a solution or melt containing a raw material and a solvent in a crystal manufacturing apparatus, and heating and holding the group 13 metal of the periodic table. This is a step of growing a nitride crystal.
  • Crystal growth method The method for growing a crystal in the present invention largely corresponds to a liquid phase epitaxy method (Liquid Phase Epitaxy). There are several types of crystal growth methods in the liquid phase epitaxial method, but the present invention can be used by arbitrarily selecting a method from these methods.
  • the temperature difference (Gradient Transport) method the slow cooling method, the temperature cycling method, the crucible accelerated rotation (Accelerated Rotation Technique) method, which is mainly used in the flux method, A seed (Top-Seeded Solution Growth) method, a solvent transfer method, a solvent transfer floating zone (Traveling-Solvent Floating-Zone) method, and an evaporation method can be used. Moreover, these methods can also be used in arbitrary combinations.
  • the temperature for growing the Group 13 metal nitride crystal of the periodic table is usually 200 to 1500 ° C., preferably 400 to 1000 ° C., more preferably 600 to 800 ° C. Further, the reaction time for growing the periodic table group 13 metal nitride crystal is usually 1 to 5000 hours, preferably 10 to 1000 hours.
  • seed crystal In the production method of the present invention, it is preferable to use a periodic table group 13 metal nitride crystal or a substrate as a seed (seed crystal) for crystal growth.
  • the shape of the seed is not particularly limited, and may be a flat plate shape or a rod shape. Further, it may be a seed for homoepitaxial growth or a seed for heteroepitaxial growth.
  • seed crystals of Group 13 metal nitrides of the periodic table such as vapor grown GaN, InGaN and AlGaN can be mentioned.
  • examples include materials used as substrates for metal oxides such as sapphire, silica, ZnO and BeO, silicon-containing materials such as SiC and Si, and vapor phase growth of GaAs.
  • the seed material is preferably selected as close as possible to the lattice constant of the Group 13 metal nitride crystal of the periodic table grown in the present invention.
  • a rod-shaped seed crystal it is possible to produce a bulk crystal by first growing in the seed crystal portion and then performing crystal growth in the vertical direction while also performing crystal growth in the horizontal direction.
  • Group 13 metal nitride crystal of the periodic table As the periodic table group 13 metal nitride manufactured by the manufacturing method of the present invention, for example, a single metal nitride of a periodic table group 13 element such as B, Al, Ga and In (for example, GaN, AlN) is usually used. And InN), including alloy group nitrides (eg, GaInN and GaAlN). Of these, the production method of the present invention is particularly suitable for obtaining gallium nitride crystals.
  • a single metal nitride of a periodic table group 13 element such as B, Al, Ga and In (for example, GaN, AlN) is usually used.
  • InN including alloy group nitrides (eg, GaInN and GaAlN).
  • the production method of the present invention is particularly suitable for obtaining gallium nitride crystals.
  • a raw material and a solvent are filled in a reaction vessel having a stable nitride layer formed on the surface, and the raw material and the solvent are heated and melted in an inert gas atmosphere to prepare a solution or a melt. Crystal growth can be performed by heating and holding.
  • the oxygen atom content in the raw materials, the solvent and the mixture thereof is usually 5% by weight or less, preferably 2% by weight or less, particularly preferably 0.5% by weight or less.
  • the pressure range is not particularly limited, and the present invention can be applied even when the gas phase pressure is set to a higher pressure. It is preferable to be 100 MPa or less.
  • a member broadly refers to a reaction vessel and its accompanying items such as a reaction vessel, a seed crystal holding rod, a stirring blade, a baffle and a gas introduction pipe. Since the member may come into contact with a solution or melt used for crystal growth, the material of the member is a group 4 to 6 element of the periodic table [titanium (Ti), zirconium (Zr), hafnium (Hf), At least one metal selected from vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), and tungsten (W)].
  • At least 1 selected from Group 4 elements (Ti, Zr, and Hf) of the periodic table is more preferable because a nitride layer forming process described later is facilitated. Furthermore, Ti and Zr that are particularly excellent in workability among the Group 4 elements of the periodic table are most preferable.
  • the member is made of a metal containing at least 1 selected from the Group 4 to Group 6 elements of the Periodic Table, and 99% by weight or more of the Group 4 to 6 of the Periodic Table. More preferably, it is made of a metal containing at least one selected from group elements. Furthermore, it is particularly preferable that 90% by weight or more is made of a metal containing the Group 4 element of the periodic table.
  • Impurities other than at least one element selected from Group 4 to Group 6 elements in the periodic table contained in the member are not particularly limited, and include, for example, metal elements other than at least one element selected from Groups 4 to 6 in the periodic table. Mention may be made of metals and alloys and oxides, nitrides and carbides of these metal elements.
  • the member includes a nitride layer including at least one nitride selected from Group 4 to Group 6 elements of the periodic table on the surface thereof.
  • the nitride layer preferably contains at least one metal (X) nitride X i N j (i, j> 0) selected from Group 4 to Group 6 elements of the periodic table.
  • the nitride X i N j has a standard free energy of formation ⁇ G f 0 of less than 0 and is very stable even in a highly corrosive solution or melt, and is contained in the solution or melt. It is preferable because the member is not corroded by components or metal components.
  • the metal element X constituting the nitride X i N j is at least 11 selected from Group 4 to Group 6 elements of the periodic table
  • the same element as 1) selected from the group elements may be used, or a different element may be used.
  • X and Z are preferably the same element from the viewpoint that a nitride layer can be easily formed by a nitriding treatment described later.
  • the thickness of the nitride X i N j is not particularly limited as long as it is stable, but is usually about 10 nm to 1 mm, preferably 100 nm to 100 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m.
  • the nitride layer forming step refers to a step of forming a nitride layer on the surface of the member, and the forming method is particularly limited as long as the formed nitride layer is stable. Not done.
  • a vapor deposition method such as a PVD method (Physical Vapor Deposition) or a CVD method (Chemical Vapor Deposition) can be used. It is also possible to form a nitride layer by bonding them together.
  • a nitride layer can be formed on the surface of the member by nitriding the surface of the member itself.
  • a nitride layer forming method in which the member surface itself is nitrided is more preferable.
  • the surface of the member is previously nitrided to form a nitride layer on the surface of the member. It is more preferable that the surface of the member is previously nitrided before the step of growing crystals. It is particularly preferable that the surface of the member is previously nitrided before the step of preparing the solution or melt containing the solvent.
  • the method for nitriding the surface of the member is not particularly limited as long as the nitride layer formed on the surface is stable, and the member is heated and held in a nitrogen atmosphere at 100 to 1500 ° C., preferably 700 ° C. or higher.
  • a stable nitride layer can be formed on the surface.
  • a stable nitride layer can be formed on the surface of the member by heating and holding the member under nitrogen of preferably 200 to 1500 ° C., more preferably 600 to 800 ° C. Specifically, for example, the member is heated and held in a nitrogen atmosphere of 700 ° C. or higher or an ammonia atmosphere of 200 ° C. or higher.
  • N 2 gas is preferably circulated at a rate of 1 to 10000 cm 3 / min, more preferably 10 to 1000 cm 3 / min.
  • a nitride layer may be formed on the surface of the member by using at least one of an alkali metal nitride and an alkaline earth metal nitride as a nitriding agent, preferably at 100 to 1500 ° C., more preferably at 400 to 800 ° C. Is possible. More preferably, the nitride is stable by being held in a mixed melt of at least one of an alkali metal halide and an alkaline earth metal halide and at least one of the alkali metal nitride and the alkaline earth metal nitride. A layer can be formed.
  • the nitriding treatment can be easily performed by holding the member under the same conditions as the step of preparing the solution or melt containing the raw material and the solvent and the step of growing the periodic table group 13 nitride crystal. You can also.
  • a reaction vessel is filled with a raw material and a solvent, and the solvent is heated and melted under an inert gas atmosphere to prepare a solution or melt, and the solution or melt is brought into contact with the member, usually for 1 to 200 hours.
  • the nitriding treatment can be performed by heating and holding for 30 to 100 hours.
  • the solution or melt containing the raw material and the solvent is prepared according to the composition of the solution or melt, the reaction temperature and time for creating the solution or melt, and the temperature condition for heating and holding the member in the solution or melt. Conditions similar to those in the process and the process of growing the periodic table group 13 nitride crystal can be used.
  • the crystal manufacturing apparatus of the present invention is a manufacturing apparatus for growing a periodic table group 13 metal nitride crystal from a solution or melt containing a raw material and a solvent to obtain a periodic table group 13 metal nitride crystal. Point to. At least the step of growing a periodic table group 13 metal nitride crystal is performed in the crystal manufacturing apparatus. Further, the step of dissolving the raw material in a solvent to prepare a solution or melt may be performed within the crystal growth apparatus or may be performed outside the crystal growth apparatus.
  • the crystal manufacturing apparatus is composed of a container for storing the member, a valve, a sealing material, and the like that do not directly contact the solution or melt in addition to the member.
  • the member installed in the crystal manufacturing apparatus includes at least one metal selected from Group 4 to Group 6 elements of the periodic table, and the surface of the member is selected from Group 4 to Group 6 elements of the periodic table.
  • a nitride layer including at least one nitride is included.
  • the container for storing the member may be, for example, a quartz glass tube, a stainless steel autoclave, or the like.
  • the manufacturing method of this invention can be used for the process of manufacturing the periodic table group 13 metal nitride crystal in the manufacturing method of a semiconductor device.
  • the raw materials, conditions, and apparatuses used in general semiconductor device manufacturing methods can be applied as they are for the raw materials, manufacturing conditions, and apparatuses in other processes.
  • an Ar box is used for the same conditions as in the example of the method for producing a periodic table group 13 metal compound crystal of the present invention.
  • Li 3 GaN 2 0.2 g which is a raw material 101 having a nitriding action
  • LiCl 1.94 g and NaCl 0.06 g as a solvent 102 were sequentially added.
  • the pressure inside the quartz reaction tube was reduced using a vacuum pump. Thereafter, the valve 109 is opened, N 2 gas is introduced from the gas introduction pipe 110 to make the inside of the quartz reaction pipe N 2 atmosphere, then the valve 107 is opened, and N 2 gas is supplied through the gas exhaust pipe 106 at 100 cm 3 / It was distributed in min.
  • the temperature inside the Ti reaction vessel 104 is raised from room temperature to 745 ° C. over 1 hour, LiCl and NaCl are melted, and then held at 745 ° C. for 136.5 hours.
  • the inner wall surface of the Ti reaction vessel 104 was nitrided.
  • a Zr piece having a size of 20 mm in length, 10 mm in width, and 1 mm in thickness was used, and it was the same as in Reference Experiment Example 1 except for the following conditions (not an essential difference in confirming the effect of this comparison experiment). Then, the nitriding treatment of the Zr member was performed.
  • a reaction vessel 104 (outer diameter 31 mm, inner diameter 25 mm, height 180 mm) made of Y 2 O 3 was used.
  • -A position fixing container (not shown) was not used.
  • Using Li 3 GaN 2 1.0 g as a raw material 101 having a nitride action.
  • -As the solvent 102 9.7 g of LiCl and 0.3 g of NaCl were used.
  • the holding time at 745 ° C was set to 85.5 hours. Nitriding treatment was performed twice (the holding time was 85.5 hours for the first time and 43 hours for the second time).
  • the weights of the first and second nitriding Zr pieces were measured.
  • the weight changes before and after the nitriding treatment were +3.8 mg and +1.2 mg, respectively. Increased in weight.
  • nitriding treatment a strong nitride was formed on the surface of the Zr piece, and no corrosion or the like was observed.
  • a Ti-containing material having a screw shape with a total surface area of 10 cm 2 containing 90% Ti and 10% (weight ratio) of Al and V in total was used as the test member 112, and LiCl and NaCl were melted.
  • a member having a Ti content of 90% (weight ratio) was subjected to nitriding treatment in the same manner as in Reference Experimental Example 2, except that the nitriding treatment was performed twice with the holding time at 745 ° C. being 65 hours later.
  • the weight of each Ti-containing material in the first nitriding treatment and the second nitriding treatment was measured, and the change in weight before and after the nitriding treatment was +1.9 mg and +1, respectively. A weight gain of 3 mg was observed.
  • nitriding treatment a strong nitride was formed on the surface of the Ti-containing member, and no corrosion or the like was observed.
  • a Ta piece having a size of 15 mm in length, 7 mm in width, and 0.1 mm in thickness was used, and it was the same as Reference Experiment Example 1 except for the following conditions (not an essential difference in confirming the effect of this comparison experiment). Then, the nitriding treatment of the Ta member was performed.
  • a reaction vessel 104 (outer diameter 34 mm, inner diameter 30 mm, height 200 mm) made of Ti was used.
  • -A position fixing container (not shown) was not used.
  • -Solvent 102 was not used.
  • N 2 gas was used as a nitriding agent (flow 100cm 3 / min).
  • the weight before and after the nitriding treatment was measured and compared. As a result, a weight increase of +1.1 mg was observed after the nitriding treatment. Thus, it was confirmed that a stable nitride was formed on the surface of the Ta member that was subjected to nitriding treatment using high-temperature N 2 gas as a nitriding agent.
  • a reaction vessel 104 (outer diameter 34 mm, inner diameter 30 mm, height 200 mm) made of Ti was used.
  • -A position fixing container (not shown) was not used.
  • the weight before and after the nitriding treatment was measured and compared. As a result, a weight increase of +1.9 mg was observed after the nitriding treatment. Thus, it was confirmed that a stable nitride was formed on the surface of the Mo member that was subjected to nitriding treatment using Mg 3 N 2 that is an alkaline earth metal nitride as a nitriding agent.
  • Reference Experiment Example 2 was performed except that a cylindrical Y 2 O 3 piece having a diameter of 8 mm and a thickness of 4 mm was used, and the following conditions (not an essential difference in confirming the effect of this comparison experiment).
  • the Y 2 O 3 member was nitrided in the same manner as described above.
  • the weight change before and after the treatment was found to be -40 mg. It was confirmed that the surface was corroded by this treatment. Thus, it was found that when the Y 2 O 3 piece was used as a test member, the nitriding treatment did not proceed well, but rather the member was damaged by the nitriding component, metal component, etc. in the melt.
  • Example 1 Nitriding treatment of Ti reaction vessel and crystal growth of GaN (nitriding treatment step)
  • an Ar box is used for the same conditions as in the example of the method for producing a periodic table group 13 metal compound crystal of the present invention.
  • 0.58 g of Li 3 GaN 2 which is a raw material 101 having a nitriding action
  • 5.63 g of LiCl and 0.17 g of NaCl as the solvent 102 were sequentially added (NaCl concentration was 3 wt%).
  • the valve 109 is opened, N 2 gas is introduced from the gas introduction pipe 110 to make the inside of the quartz reaction pipe N 2 atmosphere, then the valve 107 is opened, and N 2 gas is supplied through the gas exhaust pipe 106 at 100 cm 3 / It was distributed in min. Thereafter, using an electric furnace 111, the temperature inside the Ti reaction vessel 104 is raised from room temperature to 745 ° C. over 1 hour, LiCl and NaCl are melted, and then held at 745 ° C. for 60 hours. The inner wall surface of the reaction vessel 104 was nitrided.
  • the Ti reaction vessel 104 (outer diameter: 23 mm, inner diameter: 19 mm, height: 50 mm) after the nitriding treatment is again placed in the Ar box, and the reaction vessel 104 is filled with Li 3 GaN 2 .
  • As a solvent 102 5.63 g of LiCl and 0.17 g of NaCl were sequentially added (NaCl concentration was 3% by weight).
  • the Ti reaction vessel 104 was placed in the quartz reaction tube 105 through a position fixing vessel (not shown).
  • a tungsten (W) seed crystal holding rod 108 and a GaN seed crystal 100 (5 mm ⁇ 10 mm, thickness 300 ⁇ m, non-polar surface) combined with a Ta wire 103 are used in a quartz reaction tube.
  • the quartz reaction tube was taken out from the Ar box.
  • the pressure inside the quartz reaction tube was reduced using a vacuum pump. Thereafter, the valve 109 is opened, N 2 gas is introduced from the gas introduction pipe 110 to make the inside of the quartz reaction pipe N 2 atmosphere, then the valve 107 is opened, and N 2 gas is supplied through the gas exhaust pipe 106 at 100 cm 3 / It was distributed in min.
  • the temperature inside the Ti reaction vessel 104 was raised from room temperature to 745 ° C. over 1 hour, LiCl and NaCl were melted, and then first held at 745 ° C. for 70 hours. Thereafter, the liquid temperature is lowered from 745 ° C. to 720 ° C. in 1 hour, the seed crystal 100 is put in the melt, and the seed crystal holding rod is rotated so that the rotation speed of the seed crystal is 20 rpm. The GaN crystal was grown on the seed crystal for a time period.
  • the seed crystal on which the GaN crystal grew was extracted from the melt, and then the heating by the electric furnace was stopped, followed by natural cooling. Thereafter, the seed crystal was taken out from the quartz reaction tube, LiCl and NaCl adhering to the surface were dissolved in warm water, washed with pure water, and dried.
  • Example 2 Nitriding treatment of Zr reaction vessel and crystal growth of GaN Using Zr reaction vessel 104 (outer diameter 34 mm, inner diameter 30 mm, height 200 mm), and confirming the effect of this comparison experiment: GaN crystal growth was performed in the same manner as in Example 1 except that this was not an essential difference.
  • a strong nitride was formed on the inner wall surface of the Zr reaction vessel, and there was no corrosion. Further, when the weight of the seed crystal after crystal growth was measured, a weight increase of +4.1 mg was observed. Further, when X-ray diffraction measurement was performed on the crystal growth portion, a half of the X-ray rocking curve on the (100) plane was observed. The value range was 46.7 (arcsec), and it was confirmed that a high-quality GaN crystal was obtained even when a Zr reaction vessel was used.
  • the weight of the seed crystal was measured. As a result, the growth time was longer than that of Example 1, and there was an increase in weight of +9.8 mg.
  • the half-value width of the X-ray rocking curve on the (102) plane was 220.3 (arcsec), and the crystal quality reached that of the GaN crystal of Example 1. Not confirmed. Further, the half width of the X-ray rocking curve in the (100) plane was 195.7 (arcsec), and it was confirmed here that the crystal quality was not as good as that of the GaN crystal of Example 1.
  • the composition in the solution can be appropriately controlled, and the quality is high. Nitride crystals can be obtained.
  • the material is metal, it is possible to use members of various shapes, and the durability of the members is greatly improved, improving the industrial ease of implementation and greatly reducing the manufacturing cost. It is useful in that it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 原料および溶媒を含む溶液または融液を作成する工程、および結晶製造装置において前記溶液または融液中で周期表第13族金属窒化物結晶を成長させる工程を含む、周期表第13族金属窒化物結晶の製造方法において、前記溶液または融液が接触する前記結晶製造装置の部材が周期表第4族~6族元素から選ばれる少なくとも1の金属を含み、前記部材表面に周期表第4族~6族元素から選ばれる少なくとも1の窒化物を含む窒化物層を含むことを特徴とする周期表第13族金属化合物結晶の製造方法。

Description

周期表第13族金属化合物結晶の製造方法及び製造装置
 本発明は、窒化ガリウムに代表される周期表第13族金属窒化物の製造方法および製造装置に関し、詳しくは、高品質の周期表第13族金属窒化物の塊状単結晶の製造方法および製造装置に関する。
 窒化ガリウム(GaN)は発光ダイオード及びレーザーダイオード等の電子素子に適用される物質として有用である。窒化ガリウム結晶の製造方法としては、サファイア又は炭化ケイ素のような基板上にエピタキシャル成長を行なうMOCVD(Metal-Organic Chemical Vapor Deposition)法及びHVPE(Hydride Vapor Phase Epitaxy)法などの気相成長法が一般的である。
 しかしながら、これらの製造方法では、基板とGaNの熱膨張係数差や格子定数差に起因する結晶欠陥が多く発生するため、デバイス特性が悪いという問題がある。また、異種材料の組み合わせでは、気相成長したGaN層にそりが生じるため、歩留まりが悪くなり高コスト化に繋がる。
 これらの問題を解決するためには、基板に同種の材料を用いるホモエピタキシャル成長が最も適切である。近年では、ホモエピタキシャル成長に好適な格子欠陥の少ない高品質窒化ガリウム単結晶の製造技術確立が強く望まれており、上記気相法に代わる手法として、各種の液相法が提案されている。
 例えば、特許文献1では、13族窒化物原料と金属ハロゲン化物の混合物に、LiN及びMg等の窒化アルカリ金属または窒化アルカリ土類金属を添加物として加え、さらに加熱溶融して結晶成長を行い、窒化ガリウムを得る方法が提案されている。
 また、特許文献1では、反応容器や種結晶保持のための部材の材質として、周期表4、5及び6または10及び11族元素のもの(例えば、ニッケル(Ni)、タンタル(Ta)、チタン(Ti)、パラジウム(Pd)、白金(Pt)、金(Au)及びニオブ(Nb))、並びにその他としてBN、アルミナ(Al)及び石英(SiO)が例示されている。
 また、特許文献2には、ナトリウム金属を含むフラックスを使用し、40MPa(およそ400気圧)に加圧し1100℃に加熱した条件下で、窒素分圧を200気圧として結晶成長を行い、窒化ガリウムの単結晶を育成することが記載されている。
 また、特許文献2では、反応容器として、窒化チタン及び窒化ジルコニウムの少なくとも一方を主成分として含むセラミックスを用いることが提案されている。
日本国特開2005-112718号公報 日本国特開2006-265069号公報
 しかしながら、特許文献1に記載された方法には以下のような問題がある。すなわち、13族窒化物原料と金属ハロゲン化物の混合物に、LiN及びMg等の窒化アルカリ金属または窒化アルカリ土類金属を添加物として加えて加熱溶融すると、該添加物が窒化成分として働くため、溶液を介して該窒化成分に接触する反応容器及び攪拌翼等の部材が激しく窒化され腐食して損傷を受けるという問題がある。
 また、反応容器等の部材に、ニッケル(Ni)及び金(Au)等の合金化しやすい材料を用いると、溶液中の金属成分と容易に合金化してしまうため、部材が腐食して損傷を受けるという問題もある。そして、このような腐食が生じると、溶液中の成分組成が予想外に変動するため、結晶成長条件の制御に支障をきたし、得られるGaN結晶の品質低下等が生じるという問題がある。
 一方、特許文献2には、窒化及び合金化がされにくい窒化チタン及び窒化ジルコニウムの少なくとも一方が主成分として含まれるセラミックスを反応容器に用いることが開示されている。しかしながら、セラミックスには固有の問題がある。
 すなわち、セラミックスは焼結体であるため、金属に比べて加工性が極端に悪く、適用できる部材の形状には大きな制限がある。さらには、セラミックスは性質上割れやすいため、金属に比べて機械的な耐久性がはるかに劣り、必然的に部材の寿命は短くなり、その結果、製造コストの増加に繋がるという問題点もある。
 以上のとおり、液相法による周期表第13族金属窒化物の結晶成長では、各種部材の侵食や劣化に起因する製造コストの増加やGaN結晶の品質低下など様々な問題があり、これら全てが同時には解決されていないのが現状である。
 上記課題を解決するため、本発明者らは、周期表第13族金属窒化物の液相成長法において、窒化及び合金化がされにくく、かつ、加工性に優れ、割れにくいという複数の要求を同時に満たす部材とその製造方法について鋭意検討した結果、驚くべきことに、特定の元素を含む金属の表面に特定の窒化物層を形成させた部材を用いることで、上記課題を一挙に解決することを見出し、本発明に到達した。
 本発明は、原料および溶媒を含む溶液または融液を作成する工程、および結晶製造装置において前記溶液または融液中で周期表第13族金属窒化物結晶を成長させる工程を含む、周期表第13族金属窒化物結晶の製造方法において、前記溶液または融液が接触する前記結晶製造装置内の部材が周期表第4族~6族元素から選ばれる少なくとも1の金属を含み、前記部材表面に周期表第4族~6族元素から選ばれる少なくとも1の窒化物を含む窒化物層を含むことを特徴とする周期表第13族金属化合物結晶の製造方法である。
 また、本発明は、原料および溶媒を含む溶液または融液から周期表第13族金属窒化物結晶を成長させて周期表第13族金属窒化物結晶を得るための製造装置であって、前記溶液または融液が接触する前記製造装置内の部材が周期表第4族~6族元素から選ばれる少なくとも1の金属を含み、前記部材表面に周期表第4族~6族元素から選ばれる少なくともの1の窒化物を含む窒化物層を含むことを特徴とする周期表第13族金属化合物結晶製造装置に係るものである。
 すなわち、本発明は以下よりなる。
1.原料および溶媒を含む溶液または融液を作成する工程、および結晶製造装置において前記溶液または融液中で周期表第13族金属窒化物結晶を成長させる工程を含む、周期表第13族金属窒化物結晶の製造方法において、前記溶液または融液が接触する前記結晶製造装置の部材が周期表第4族~6族元素から選ばれる少なくとも1の金属を含み、前記部材表面に周期表第4族~6族元素から選ばれる少なくとも1の窒化物を含む窒化物層を含むことを特徴とする周期表第13族金属化合物結晶の製造方法。
2.前記部材表面をあらかじめ窒化処理することで、前記部材表面に前記窒化物層を形成することを特徴とする前項1に記載の周期表第13族金属化合物結晶の製造方法。
3.前記窒化物層が周期表第4族元素の窒化物を含むことを特徴とする前項1または2に記載の周期表第13族金属化合物結晶の製造方法。
4.前記部材が周期表第4族元素の金属を含むことを特徴とする前項1~3のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
5.前記部材の90重量%以上が周期表第4族金属であることを特徴とする前項4に記載の第13族金属化合物結晶の製造方法。
6.前記周期表第4族金属がTiおよびZrの少なくとも1であることを特徴とする前項3~5のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
7.前記部材が反応容器、撹拌翼、種結晶保持棒、バッフルおよびガス導入管の少なくとも1である前項1~6のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
8.前記窒化処理が窒素下で前記部材を加熱保持する工程である前項2~7のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
9.前記窒化処理が窒化剤を用いることを特徴とする前項2~8のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
10.前記窒化剤がアルカリ金属窒化物およびアルカリ土類金属窒化物の少なくとも1であることを特徴とする前項9に記載の周期表第13族金属化合物結晶の製造方法。
11.前記原料がアルカリ金属またはアルカリ土類金属と周期表第13族金属との複合窒化物であることを特徴とする前項1~10のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
12.前記アルカリ金属またはアルカリ土類金属と周期表第13族金属との複合窒化物がLiGaNであることを特徴とする前項11に記載の周期表第13族金属化合物結晶の製造方法。
13.前記溶媒がアルカリ金属ハロゲン化物であることを特徴とする前項1~12のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
14.前記アルカリ金属ハロゲン化物が塩化リチウムおよび塩化ナトリウムの少なくとも1であることを特徴とする前項13に記載の周期表第13族金属化合物結晶の製造方法。
15.前記原料および溶媒を含む溶液または融液を作成する工程および周期表第13族金属窒化物結晶を成長させる工程と同様の条件下で、前記窒化処理することを特徴とする前項2~14のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
16.原料および溶媒を含む溶液または融液から周期表第13族金属窒化物結晶を成長させて周期表第13族金属窒化物結晶を得るための製造装置であって、前記溶液または融液が接触する前記製造装置内の部材が周期表第4族~6族元素から選ばれる少なくとも1の金属を含み、かつ、前記部材の表面に周期表第4族~6族元素から選ばれる少なくとも1の窒化物を含む窒化物層を含むことを特徴とする周期表第13族金属化合物結晶の製造装置。
17.前記部材表面をあらかじめ窒化処理することで、前記部材表面に前記窒化物層を形成することを特徴とする前項16に記載の周期表第13族金属化合物結晶の製造装置。
18.前記窒化物層が周期表第4族元素の窒化物を含むことを特徴とする前項16または17に記載の周期表第13族金属化合物結晶の製造装置。
19.前記部材が周期表第4族元素を含む金属を含むことを特徴とする前項16~18のいずれか1項に記載の周期表第13族金属化合物結晶の製造装置。
20.前記部材の90重量%以上が周期表第4族金属であることを特徴とする前項19に記載の周期表第13族金属化合物結晶の製造装置。
21.前記周期表第4族金属がTiおよびZrの少なくとも1であることを特徴とする前項16~20のいずれか1項に記載の周期表第13族金属化合物結晶の製造装置。
22.前記部材が反応容器、撹拌翼、種結晶保持棒、バッフルおよびガス導入管の少なくとも1であることを特徴とする前項16~21のいずれか1項に記載の周期表第13族金属化合物結晶の製造装置。
 本発明により、溶液または融液中に含まれる窒化成分及び金属成分に部材表面が侵食されることなく、周期表第13族金属窒化物結晶を成長させることができるので、溶液中の組成を適切に制御することができ、かつ高品質な窒化物結晶を得ることができる。
 また、部材自体の材質が金属であることから、様々な形状の部材を使用することが可能となり、部材耐久性も大幅に向上するため、工業的な実施容易性が向上し、製造コストも大幅に下げることができる。
本発明の参考実験例1~3、参考比較実験例1~2、及び実施例1で用いた窒化処理のための装置の概略図。 本発明の実施例1及び比較例1で用いた結晶成長装置の概略図。
 以下、本発明について説明する。以下に記載する構成要件の説明は、本発明の実施態様の一例であり、本発明はこれらの実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
I.原料および溶媒を含む溶液または融液を作成する工程
 原料および溶媒を含む溶液または融液を作成する工程とは、反応容器に原料および溶媒を入れ、不活性ガス雰囲気下で溶媒を加熱溶融して溶液または融液を作成する工程である。当該溶液または融液を作成する工程は、結晶製造装置内で行ってもよい。
 前記溶媒を加熱溶融させる温度は通常200~1500℃であり、400~1000℃が好ましい。また、溶媒を加熱溶融させる時間は通常1~100時間であり、1~10時間が好ましい。
 (原料)
 前記周期表第13族金属窒化物の製造方法で用いられる原料として、本発明では特に限定はされないが、例えば、周期表第13族金属元素を含む物質、窒素元素を含む物質、並びに周期表第13族金属元素および窒素元素を含む化合物などをあげることができる。また、複数種の原料を組み合わせて使用してもよい。
 前記周期表第13族金属元素を含む物質としては、例えば、金属ガリウム、金属アルミニウムおよび金属インジウムなどの金属単体のほか、GaAlおよびGaInなどの周期表第13族金属合金を挙げることができる。
 前記窒素元素を含む物質としては、例えば、NガスおよびNHガスなどのガスの他、LiN、NaN、KN、Mg、Ca、BaおよびSrなどのアルカリ金属またはアルカリ土類金属の窒化物を挙げることができる。
 周期表第13族金属元素および窒素元素を含む化合物としては、例えば、GaN、AlNおよびInNなどの周期表第13族金属窒化物の他、AlGaN、InGaNおよびAlGaInNなどの周期表第13族金属合金の窒化物、並びにLiGaN、CaGa、CaGaN、BaGaおよびMgGaNなどのアルカリ金属またはアルカリ土類金属と周期表第13族金属との複合窒化物を挙げることができる。
 上記の中でも、アルカリ金属またはアルカリ土類金属と周期表第13族金属との複合窒化物は、後述する溶媒としての溶融塩に溶解した場合に、Naフラックス法などのアルカリメタル金属法に比べて、周期表第13族金属窒化物結晶が生成するために十分な量のNを溶液または融液中に含ませることができるため好ましく、中でもLiGaNは、後述する溶融塩への溶解度が高く、かつ比較的合成しやすいため、特に好ましい。
 原料の形態としては、特に限定はされない。固体の原料については、粉末状、粒状および塊状のいずれでもよい。例えば、LiGaNの粒状原料は、秤量が容易であり、かつ溶液を混合した場合に原料が液中を舞い上がらないため好ましい。もちろん、液体の原料を使用しても良く、例えば、金属ガリウム等の常温で固体の原料が、反応温度で液体になっても構わない。
 溶液または融液中の原料合計の濃度は、通常0.0001mol%~99.9mol%であり、好ましくは0.001mol%~10mol%、さらに好ましくは0.001mol%~0.1mol%である。
 (溶媒)
 本発明で用いられる溶媒としては、特に限定はされない。例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、ヨウ化リチウム、ヨウ化ナトリウムおよびヨウ化カリウムなどのアルカリ金属ハロゲン化物;塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム、ヨウ化カルシウムおよびヨウ化バリウムなどのアルカリ土類金属ハロゲン化物などの溶融塩;窒化リチウム、窒化ナトリウムおよび窒化カリウムなどのアルカリ金属窒化物;窒化マグネシウム、窒化カルシウム、窒化ストロンチウムおよび窒化バリウムなどのアルカリ土類金属窒化物;ガリウム、リチウム、ナトリウムおよびカリウムなどの金属の融液を用いることができる。これらの溶媒は、単独で用いてもよいし、任意の組み合わせ、かつ任意の量比で用いることができる。
 上記溶媒の中で、原料として前述したLiGaNなどの複合窒化物を用いる場合に、これを溶解するために好ましい溶媒は、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、塩化カルシウム、塩化バリウム、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、臭化リチウム、臭化カリウム、臭化セシウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カルシウムおよびヨウ化バリウムなどの周期表第17族元素を含む金属ハロゲン化物の溶融塩、並びにこれらの金属ハロゲン化物の混合溶融塩である。混合溶融塩を用いる場合は、2種類以上の塩を別々の固体として反応系内に導入し、加熱溶融させて作成することも可能であるが、共晶塩を用いる場合であれば、それを加熱溶融させて作成することが、系内の均一性の観点から望ましい。
 前記溶融塩に水等の不純物が含まれている場合は、反応性気体を吹き込んで予め溶融塩を精製しておくことが望ましい。反応性気体としては、例えば、塩化水素、ヨウ化水素、臭化水素、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、塩素、臭素およびヨウ素等を挙げることができ、溶媒として塩化物の溶融塩を用いる場合には、反応性気体として特に塩化水素を用いることが好ましい。
 (不活性ガス雰囲気)
 不活性ガスの種類としては特に制限はないが、例えば、ヘリウム(He)、窒素(N)、アルゴン(Ar)等が好適に使用される。また、反応容器の中に酸素や水分を選択的に吸収するスキャベンジャーの役割を果たす物質(例えば、チタンなどの金属片)を同伴させてもよい。
II.周期表第13族金属窒化物結晶を成長させる工程
 この工程は、結晶製造装置内で、原料および溶媒を含む溶液または融液を反応容器に充填し、加熱保持することで周期表第13族金属窒化物結晶を成長させる工程である。
 (結晶成長方法)
 本発明における結晶を成長させる方法は、大きくは液相エピタキシャル法(Liquid Phase Epitaxy)に該当する。液相エピタキシャル法の中では、さらに数種類の結晶成長方法があるが、本発明はこれらの中から任意に方法を選定して用いることができる。
 具体的には、フラックス法で主に用いられている温度差(Gradient Transport)法、徐冷(Slow Cooling)法、温度サイクル(Temperature Cycling)法、るつぼ加速回転(Accelerated Crucibl Rotation Technique)法、トップシード(Top-Seeded Solution Growth)法、溶媒移動法およびその変形である溶媒移動浮遊帯域(Trabeling-Solvent Floating-Zone)法並びに蒸発法などを用いることができる。また、これらの方法を任意に組み合わせて用いることもできる。
 (温度および時間)
 周期表第13族金属窒化物結晶を成長させるための温度は、通常200~1500℃であり、好ましくは400~1000℃、さらに好ましくは、600~800℃である。また、周期表第13族金属窒化物結晶を成長させるための反応時間は、通常1~5000時間であり、好ましくは10~1000時間である。
 (種結晶)
 本発明の製造方法では、周期表第13族金属窒化物結晶または基板を結晶成長のためのシード(種結晶)として用いることが好ましい。シードの形状は特に制限されず、平板状であっても、棒状であってもよい。また、ホモエピタキシャル成長用のシードであってもよいし、ヘテロエピタキシャル成長用のシードであってもよい。
 具体的には、例えば、気相成長させたGaN、InGaNおよびAlGaN等の周期表第13族金属窒化物の種結晶を挙げることができる。また、例えば、サファイア、シリカ、ZnOおよびBeO等の金属酸化物、SiCおよびSi等の珪素含有物並びにGaAs等の気相成長等の基板として用いられる材料を挙げることもできる。
 前記シードの材料は、本発明で成長させる周期表第13族金属窒化物結晶の格子定数にできるだけ近いものを選択することが好ましい。棒状の種結晶を用いる場合には、最初に種結晶部分で成長させ、次いで水平方向にも結晶成長を行いながら、垂直方向に結晶成長を行うことによってバルク状の結晶を作製することもできる。
 (周期表第13族金属窒化物結晶)
 本発明の製造方法により製造する周期表第13族金属窒化物としては、例えば、通常、B、Al、GaおよびIn等の周期表第13族元素の単独金属の窒化物(例えば、GaN、AlNおよびInN)が挙げられ、合金族の窒化物(例えば、GaInNおよびGaAlN)も含まれる。本発明の製造方法は、このうち、特に窒化ガリウムの結晶を得る場合に好適である。
 本発明の製造方法においては、表面に安定な窒化物層が形成された反応容器に原料と溶媒を充填し、不活性ガス雰囲気下で原料および溶媒を加熱溶融させて溶液または融液を作成し、加熱保持することで結晶成長を行うことができる。
 この場合、より高品質の周期表第13族金属窒化物結晶を得るために、できるだけ水や酸素の混入を回避すべきである。従って、原料、溶媒およびこれらの混合物中の含有酸素原子量を、通常5重量%以下、好ましくは2重量%以下、特に好ましくは0.5重量%以下に留めることが好ましい。
 また、原料および溶媒として吸湿性のものを使用する場合は、充填前に加熱脱気するなどして十分乾燥し、かつ、各成分の混合、充填についても、酸素および水分を極力排した不活性ガス雰囲気下で速やかに行うことが好ましい。
 (圧力)
 本発明の製造方法を実施する上で、圧力範囲に特に制限はなく、気相の圧力をより高圧とした場合でも本発明を適用することは可能であるが、実用的には気相圧力は100MPa以下とすることが好ましい。
III.部材
 本発明における部材とは、例えば、反応容器、種結晶保持棒、攪拌翼、バッフルおよびガス導入管等、反応容器とそれに付随するものを広く指すものとする。当該部材は結晶成長に供する溶液または融液と接触することがあるため、該部材の材質は、周期表第4族~6族元素[チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)およびタングステン(W)]から選ばれる少なくとも1の金属を含む。
 中でも、後述する窒化物層の形成工程が容易となることから、周期表第4族元素(Ti、ZrおよびHf)から選ばれる少なくとも1がより好ましい。さらには、前記周期表第4族元素の中で特に加工性に優れるTiおよびZrが最も好ましい。
 また、かかる部材は90重量%以上が前記周期表第4族~6族元素から選ばれる少なくとも1を含む金属で構成されていることが好ましく、99重量%以上が前記周期表第4族~6族元素から選ばれる少なくとも1を含む金属で構成されていることがさらに好ましい。さらには、90重量%以上が前記周期表第4族元素を含む金属で構成されていることが特に好ましい。
 部材中に含まれる前記周期表第4族~6族元素から選ばれる少なくとも1以外の不純物は特に限定されないが、例えば、周期表第4族~6族から選ばれる少なくとも1以外の金属元素からなる金属および合金、並びにこれらの金属元素の酸化物、窒化物および炭化物などを挙げることができる。
 また、前記部材は、その表面に、周期表第4族~6族元素から選ばれる少なくとも1の窒化物を含む窒化物層を含む。該窒化物層は、周期表第4族~6族元素から選ばれる少なくとも1の金属(X)の窒化物X(i、j>0)を含むことが好ましい。
 前記窒化物Xは、標準生成自由エネルギーΔG が0未満であり、腐食性の高い溶液や融液中であっても非常に安定であり、溶液または融液中に含まれる窒化成分や金属成分に前記部材が腐食されなくなるため、好ましい。
 前記窒化物Xを構成する金属元素Xは、周期表第4族~6族元素から選ばれる少なくとも11であれば、部材を構成する主元素Z(Zは周期表第4族~6族元素から選ばれる1)と同じ元素であってもよいし異なる元素であってもよい。後述の窒化処理により容易に窒化物層を形成することができる点から、XとZは同一元素であることが好ましい。
 また、前記窒化物Xの厚みは安定であれば特に限定されるものではないが、通常10nm~1mm程度であり、好ましくは100nm~100μm、さらに好ましくは1μm~10μmである。
 (窒化物層の形成工程)
 本発明において、窒化物層の形成工程とは、前記部材の表面に窒化物層を形成する工程のことを指し、その形成手法は形成される窒化物層が安定なものであれば、特に限定はされない。
 具体的な窒化物層の形成手法として、PVD法(Physical Vapor Deposition)およびCVD法(Chemical Vapor Deposition)などの蒸着法を用いることもできるし、別途窒化物を作成しておいてこれを部材表面に張り合わせて窒化物層を形成することもできる。
 また、部材表面そのものを窒化処理することにより、該部材表面に窒化物層を形成させることもできる。本発明においては、部材の形状が制限されず、かつ比較的容易に窒化物層を形成できる理由から、部材表面そのものを窒化処理する窒化物層形成手法がより好ましい。
 なお、あらかじめ部材表面を窒化処理して該部材表面に窒化物層を形成しておくことが好ましく、結晶を成長させる工程の前にあらかじめ部材表面を窒化処理しておくのがより好ましく、原料および溶媒を含む溶液または融液を作成する工程の前にあらかじめ部材表面を窒化処理しておくのが特に好ましい。
 部材表面の窒化処理方法は、表面に形成される窒化物層が安定であれば特に限定はされず、100~1500℃、好ましくは700℃以上の窒素雰囲気下において加熱保持することで、前記部材表面に安定な窒化物層を形成することができる。さらには、アルカリ金属窒化物やアルカリ土類金属窒化物などを窒化剤として使用して窒化処理を行うことも可能である。
 具体的には例えば、好ましくは200~1500℃、より好ましくは600~800℃の窒素下で該部材を加熱保持することで部材表面に安定な窒化物層を形成することができる。具体的には、例えば、700℃以上の窒素雰囲気下や200℃以上のアンモニア雰囲気下において前記部材を加熱保持する。
 なお、例えば窒素雰囲気下とする場合は、好ましくは1~10000cm/min、より好ましくは10~1000cm/minでNガスを流通させて窒素雰囲気下とすることが好ましい。
 また、好ましくは100~1500℃、より好ましくは400~800℃下でアルカリ金属窒化物およびアルカリ土類金属窒化物の少なくとも1を窒化剤として使用して部材表面に窒化物層を形成することも可能である。より好ましくは、アルカリ金属ハロゲン化物およびアルカリ土類金属ハロゲン化物の少なくとも1と前記アルカリ金属窒化物およびアルカリ土類金属窒化物の少なくとも1との混合融液中に保持することで、安定な窒化物層を形成することができる。
 また、前記原料および溶媒を含む溶液または融液を作成する工程および周期表第13族窒化物結晶を成長させる工程と同様の条件下で前記部材を保持することで、簡便に窒化処理を行なうこともできる。例えば、反応容器に原料と溶媒を充填し、不活性ガス雰囲気下で溶媒を加熱溶融させて溶液または融液を作成し、前記溶液または融液を前記部材に接触させて、通常1~200時間、好ましくは30~100時間加熱保持することにより窒化処理を行うことができる。
 ここで、溶液または融液の組成、溶液または融液を作成する反応温度および時間、並びに溶液または融液中で部材を加熱保持する温度条件を、原料および溶媒を含む溶液または融液を作成する工程および周期表第13族窒化物結晶を成長させる工程における条件と同様の条件とすることができる。
IV.結晶製造装置
 本発明の結晶製造装置とは、原料および溶媒を含む溶液または融液から周期表第13族金属窒化物結晶を成長させて周期表第13族金属窒化物結晶を得るための製造装置を指す。少なくとも、周期表第13族金属窒化物結晶の成長を行なう工程は前記結晶製造装置内で実施する。また、原料を溶媒に溶解して溶液または融液を作成する工程は前記結晶成長装置内で実施してもよいし、結晶成長装置外で実施してもよい。
 前記結晶製造装置は、前記部材の他、前記溶液または融液と直接接触しない、前記部材を収納するための容器、バルブおよびシール材等から構成される。かかる結晶製造装置内に設置されている前記部材は、周期表第4族~6族元素から選択される少なくとも1の金属を含み、前記部材表面は周期表第4族~6族元素から選ばれる少なくとも1の窒化物を含む窒化物層を含む。また、本発明において前記部材を収納するための容器は、例えば、石英製ガラス管およびステンレス製のオートクレーブなどでも良い。
 (半導体デバイスの製造方法)
 本発明の製造方法は、半導体デバイスの製造方法における周期表第13族金属窒化物結晶を製造する工程に用いることができる。その他の工程における原料、製造条件および装置は一般的な半導体デバイスの製造方法で用いられる原料、条件および装置をそのまま適用できる。
(参考実験例1) Ti製反応容器の窒化処理
 Ti製反応容器の表面を窒化処理することについて、表面に形成される窒化物TiN(ΔGf 0=-309.3kJ/mol)の安定性等を確認するため、以下の実験を行った。
 図1を用いて説明する。Ti製反応容器104(外径22mm、内径18mm、高さ18mm)の中に、本発明の周期表第13族金属化合物結晶の製造方法の一例と同様の条件とすることを目的として、Arボックス内で、窒化作用を有する原料101であるLiGaN0.2g、並びに溶媒102としてLiCl1.94gおよびNaCl0.06gを、順次投入した。次に、Ti製反応容器104を位置固定用の容器(図示せず)を介して石英製反応管105に入れた上で、これをArボックスから取り出した。
 次に、石英製反応管105を電気炉111に固定した後、真空ポンプを用いて石英製反応管内を減圧状態とした。その後、バルブ109を開き、ガス導入管110からNガスを導入し石英製反応管内をN雰囲気とした後、バルブ107を開き、ガス排気管106を介して、Nガスを100cm/minで流通させた。
 その後、電気炉111を用いて、Ti製反応容器104の内部が室温から745℃になるまで1時間かけて昇温し、LiClおよびNaClを溶融させた後、745℃で136.5時間保持し、Ti製反応容器104の内壁表面を窒化させた。
 窒化を行った後、電気炉による加熱を停止して自然冷却し、内壁表面を窒化させたTi製反応容器を石英製反応管から取り出した。そして、反応容器の内部に固着しているLiClおよびNaClを温水で溶かし、純水で反応容器内を洗浄した後、反応容器を乾燥させた。
 内壁表面を窒化させたTi製反応容器の重量を測定したところ、窒化処理の前後で、+15.7mgの重量増加が認められた。かかる窒化処理によって、Ti製反応容器の内壁表面には強固な窒化物が形成されており、腐食などは全く認められなかった。
 なお、その後、さらに同様な操作を繰り返して反応容器に対して窒化処理を行っても、窒化処理の前後で重量増加は認められなかった。このことにより、窒化処理を行ったTi製反応容器の内壁表面は、その後同様の操作を実施しても窒化による変化を受けず、きわめて安定な窒化物が表面に形成させていることが確認された。
(参考実験例2) Zr製部材の窒化処理
 Zr製部材の表面を窒化処理することについて、表面に形成される窒化物ZrN(ΔGf 0=-8.6kJ/mol)の安定性等を確認するため、Zr片をテスト用部材112として用いて以下の実験を行った。
 すなわち、縦20mm、横10mm、厚さ1mmのサイズのZr片を用い、以下の条件(本対比実験の効果を確認する上で本質的な差ではない)以外は、参考実験例1と同様にして、Zr製部材の窒化処理を行った。
 条件:
 ・Yからなる反応容器104(外径31mm、内径25mm、高さ180mm)を用いた。
 ・位置固定用容器(図示せず)を用いなかった。
 ・窒化作用を有する原料101であるLiGaN1.0gを用いた。
 ・溶媒102としてLiCl9.7gおよびNaCl0.3gを用いた。
 ・LiClおよびNaClを溶融させた後、745℃での保持時間を85.5時間とした。
 ・窒化処理を2回行った(前記保持時間は1回目が85.5時間、2回目が43時間)。
 表面を窒化させたテスト用部材のZr片について、窒化処理1回目と窒化処理2回目のZr片それぞれの重量を測定したところ、窒化処理の前後の重量変化はそれぞれ、+3.8mg、+1.2mgの重量増加が認められた。かかる窒化処理によって、Zr片の表面には強固な窒化物が形成されており、腐食などは全く認められなかった。
 このように、窒化処理を行ったZr製部材の表面には、安定な窒化物が形成されていることが確認された。
(参考実験例3) Ti含有量90%(重量比)の部材の窒化処理
 Ti含有量90%(重量比)の部材の表面を窒化処理することについて、表面に形成される窒化物の安定性等を確認するため、以下の実験を行った。
 すなわち、Tiが90%、AlとVが合計で10%(重量比)含まれる、総表面積10cmのねじの形状をもつTi含有材料をテスト用部材112として用い、LiCl及びNaClを溶融させた後の745℃での保持時間を65時間として窒化処理を2回行ったこと以外は、参考実験例2と同様にして、Ti含有量90%(重量比)の部材の窒化処理を行った。
 表面を窒化させたテスト用部材のTi含有材料について、窒化処理1回目と窒化処理2回目のTi含有材料それぞれの重量を測定したところ、窒化処理の前後の重量変化はそれぞれ、+1.9mg、+1.3mgの重量増加が認められた。かかる窒化処理によって、Ti含有部材の表面には強固な窒化物が形成されており、腐食などは全く認められなかった。
 このように、窒化処理を行ったTi含有部材の表面には、安定な窒化物が形成されていることが確認された。
(参考実験例4) Ta製部材の窒化処理
 Ta製部材の表面を窒化処理することについて、表面に形成される窒化物TaN(ΔG =-218.9kJ/mol)の安定性等を確認するため、Ta片をテスト用部材112として用いて、以下の実験を行った。
 すなわち、縦15mm、横7mm、厚さ0.1mmのサイズのTa片を用い、以下の条件(本対比実験の効果を確認する上で本質的な差ではない)以外は参考実験例1と同様にして、Ta製部材の窒化処理を行った。
 条件:
 ・Tiからなる反応容器104(外径34mm、内径30mm、高さ200mm)を用いた。
 ・位置固定用容器(図示せず)を用いなかった。
 ・溶媒102を用いなかった。
 ・窒化作用を有する原料101を用いず、窒化剤としてNガス(流量100cm/min)を用いた。
・ 昇温した後、保持温度850℃にて66時間保持した。
・ 窒化処理は1回のみ実施した。
 表面を窒化させたテスト用部材のTa片について、窒化処理前後の重量を測定し比較したところ、窒化処理後では+1.1mgの重量増加が認められた。このように、高温のNガスを窒化剤として用いて窒化処理を行ったTa製部材の表面には、安定な窒化物が形成されていることが確認された。
(参考実験例5) Mo製部材の窒化処理
 Mo製部材の表面を窒化処理することについて、表面に形成される窒化物MoN(ΔG =-50.3kJ/mol)の安定性等を確認するため、Mo製の小容器をテスト用部材112として用いて、以下の実験を行った。
 すなわち、外径10mm、内径9mm、高さ15mmの容器形状のMo部材を用い、以下の条件(本対比実験の効果を確認する上で本質的な差ではない)以外は参考実験例1と同様にして、Mo製部材の窒化処理を行った。
 条件:
 ・Tiからなる反応容器104(外径34mm、内径30mm、高さ200mm)を用いた。
 ・位置固定用容器(図示せず)を用いなかった。
 ・溶媒102としてLiCl14.4g。
 ・窒化作用を有する原料101を用いず、窒化剤としてMg0.05gを用いた。
 ・昇温した後、保持温度745℃にて150時間保持した。
 ・窒化処理は1回のみ実施した。
 表面を窒化させたテスト用部材のMo製容器について、窒化処理前後の重量を測定し比較したところ、窒化処理後では+1.9mgの重量増加が認められた。このように、アルカリ土類金属窒化物であるMgを窒化剤として用いて窒化処理を行ったMo製部材の表面には、安定な窒化物が形成されていることが確認された。
(参考比較実験例1) Y製部材の窒化処理
 Y製部材の表面を窒化処理することについて、参考実験例1~3と比較するため、Y片をテスト用部材112として用いて以下の実験を行った。
 すなわち、直径8mm、厚さ4mmのサイズの円柱状のY片を用い、以下の条件(本対比実験の効果を確認する上で本質的な差ではない)以外は、参考実験例2と同様にして、Y部材の窒化処理を行った。
 条件:
 ・LiClおよびNaClを溶融させた後、745℃での保持時間を55時間とした。
 ・窒化処理は、参考実験例1と同様に1回とした。
 上記処理を行ったテスト用部材のY片の重量を測定したところ、処理の前後の重量変化は-40mgの重量減少が認められた。かかる処理によって、表面が腐食されていることが確認された。このように、Y片をテスト用部材に用いた場合は、窒化処理が良好に進行せず、むしろ部材が融液中の窒化成分や金属成分等によって損傷を受けることがわかった。
(参考比較実験例2) Pt製部材の窒化処理
 Pt製部材の表面を窒化処理することについて、参考実験例1~3と比較するため、Pt製ワイヤーをテスト用部材112として用いて以下の実験を行った。
 すなわち、直径0.5mm、長さ1.5cmのサイズのPtワイヤーを用い、以下の条件(本対比実験の効果を確認する上で本質的な差ではない)以外は、参考実験例2と同様にして、Pt製部材の窒化処理を行った。
 条件:
 ・LiClおよびNaClを溶融させた後、745℃での保持時間を24時間とした。
 ・窒化処理は、参考実験例1と同様に1回とした。
 上記処理を行った後のPtワイヤーは、手で触れるだけでぼろぼろに崩れるほどに激しく腐食を受けていることが確認され、重量減少は明らかであった。このように、Ptワイヤーをテスト用部材に用いた場合は、窒化処理が良好に進行せず、むしろ部材が融液中の窒化成分や金属成分等によって大きな損傷を受けることがわかった。
[実施例1] Ti製反応容器の窒化処理とGaNの結晶成長
 (窒化処理工程)
 以下、図1を用いて説明する。Ti製反応容器104(外径23mm、内径19mm、高さ50mm)の中に、本発明の周期表第13族金属化合物結晶の製造方法の一例と同様の条件とすることを目的として、Arボックス内で、窒化作用を有する原料101であるLiGaN0.58g、並びに溶媒102としてLiCl5.63gおよびNaCl0.17gを順次投入した(NaCl濃度は3重量%)。
 次に、Ti製反応容器104を位置固定用の容器(図示せず)を介して石英製反応管105に入れた上で、これをArボックスから取り出した。次に、石英製反応管105を電気炉111に固定した後、真空ポンプを用いて石英製反応管内を減圧状態とした。
 その後、バルブ109を開き、ガス導入管110からNガスを導入し石英製反応管内をN雰囲気とした後、バルブ107を開き、ガス排気管106を介して、Nガスを100cm/minで流通させた。その後、電気炉111を用いて、Ti製反応容器104の内部が室温から745℃になるまで1時間かけて昇温し、LiClおよびNaClを溶融させた後、745℃で60時間保持し、Ti製反応容器104の内壁表面を窒化させた。
 窒化を行った後、電気炉による加熱を停止して自然冷却し、内壁表面を窒化させたTi製反応容器を石英製反応管から取り出した。そして、反応容器の内部に固着しているLiClおよびNaClを温水で溶かし、純水で反応容器内を洗浄した後、容器を乾燥させた。Ti製反応容器の内壁表面には強固な窒化物が形成されており、腐食などは全くないことを確認した。
 (結晶成長工程)
 以下、図2を用いて説明する。上記窒化処理後のTi製反応容器104(外径23mm、内径19mm、高さ50mm)を再度Arボックス内に入れ、反応容器104内に、窒化作用を有する原料101であるLiGaN0.58g、並びに溶媒102としてLiCl5.63gおよびNaCl0.17gを順次投入した(NaCl濃度は3重量%)。
 次に、Ti製反応容器104を位置固定用の容器(図示せず)を介して石英製反応管105に入れた。次に、タングステン(W)製の種結晶保持棒108に、Ta製のワイヤー103を用いてGaN種結晶100(5mm×10mm、厚み300μm。非極性面)を結び付けたものを、石英製反応管内に差し込んだ後、石英製反応管をArボックスから取り出した。
 次に、石英製反応管を電気炉111に固定した後、真空ポンプを用いて石英製反応管内を減圧状態とした。その後、バルブ109を開き、ガス導入管110からNガスを導入し石英製反応管内をN雰囲気とした後、バルブ107を開き、ガス排気管106を介して、Nガスを100cm/minで流通させた。
 その後、電気炉111を用いて、Ti製反応容器104の内部が室温から745℃になるまで1時間かけて昇温し、LiClおよびNaClを溶融させた後、まず745℃で70時間保持した。その後、745℃から720℃まで1時間で液温を下げ、種結晶100を融液中に入れ、種結晶の回転速度が20rpmとなるように種結晶保持棒を回しながら、720℃にて168時間保持し、種結晶上にGaNの結晶成長を行った。
 結晶成長後、GaN結晶が成長した種結晶を融液から抜き出し、その後電気炉による加熱を停止してから、自然冷却した。その後、種結晶を石英反応管内から取り出し、表面に付着したLiClおよびNaClを温水で溶かし、純水で洗浄した後、乾燥させた。
 その後、種結晶の重量を測定したところ、+1.9mgの重量増加が認められた。また、結晶成長部のX線回折測定を行ったところ、(102)面におけるX線ロッキングカーブの半値幅は、44.3(arcsec)であり、高品質なGaN結晶が得られたことが確認された。また、(100)面におけるX線ロッキングカーブの半値幅は、44.8(arcsec)であり、ここでも同様に高品質なGaN結晶が得られたことが確認された。
[実施例2] Zr製反応容器の窒化処理とGaNの結晶成長
 Zr製反応容器104(外径34mm、内径30mm、高さ200mm)を用い、かつ以下の条件(本対比実験の効果を確認する上で本質的な差ではない)とした以外は、実施例1と同様にして、GaNの結晶成長を行った。
 (窒化処理工程)
 条件:
 ・位置固定用容器(図示せず)を用いなかった。
 ・窒化作用を有する原料101としてLiGaN1.44gを用いた。
 ・溶媒102としてLiCl14.4gを用いた。
(結晶成長工程)
 条件:
 ・位置固定用容器(図示せず)を用いなかった。
 ・窒化作用を有する原料101としてLiGaN1.44gを用いた。
 ・溶媒102としてLiCl10.1gおよびNaCl4.3g(NaCl濃度は30重量%)を用いた。
 ・LiClおよびNaClを溶融させた後、まず745℃で7時間保持し、その後、種結晶100を融液中に入れ、種結晶の回転速度を100rpmとしながら、745℃にて91時間保持した。
 窒化処理工程後、Zr製反応容器の内壁表面には強固な窒化物が形成されており、腐食などは全くなかった。また、結晶成長後の種結晶の重量を測定したところ、+4.1mgの重量増加が認められ、さらに結晶成長部のX線回折測定を行ったところ、(100)面におけるX線ロッキングカーブの半値幅は46.7(arcsec)であり、Zr製反応容器を用いた場合も高品質なGaN結晶が得られたことが確認された。
[比較例1] Y製反応容器を用いた場合のGaNの結晶成長
 Y製反応容器104(外径31mm、内径25mm、高さ180mm)を用い、窒化処理工程を一切省略し、かつ、以下の条件(本対比実験の効果を確認する上で本質的な差ではない)とした以外は、実施例1と同様にして、GaNの結晶成長を行った。
 条件:
 ・位置固定用容器(図示せず)を用いない。
 ・窒化作用を有する原料101としてLiGaN2.0gを用い、溶媒102としてLiCl6.8gおよびNaCl0.2gを用いた。
 ・LiClおよびNaClを溶融させた後、まず750℃で42時間保持し、その後、750℃から745℃まで1時間で液温を下げ、種結晶100を融液中に入れ、種基板は回転させずに745℃にて298時間保持した。
 種結晶の重量を測定したところ、実施例1に比べて成長時間が長いこともあり、+9.8mgの重量増加があった。しかしながら、結晶成長部のX線回折測定を行ったところ、(102)面におけるX線ロッキングカーブの半値幅は、220.3(arcsec)であり、結晶品質は、実施例1のGaN結晶に及ばないことが確認された。また、(100)面におけるX線ロッキングカーブの半値幅は、195.7(arcsec)であり、ここでも同様に結晶品質は、実施例1のGaN結晶に及ばないことが確認された。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年6月4日出願の日本特許出願2009-135350に基づくものであり、その内容はここに参照として取り込まれる。
 本発明により、部材表面が溶液中成分に侵食されることなく、周期表第13族金属窒化物結晶を成長させることができるので、溶液中の組成を適切に制御することができ、かつ高品質な窒化物結晶を得ることができる。また、材質が金属であることから、様々な形状の部材を使用することが可能となり、部材耐久性も大幅に向上するため、工業的な実施容易性が向上し、製造コストも大幅に下げることができる点で有用である。
100 種結晶(GaN)
101 原料(LiGaN
102 融液もしくは溶媒(LiCl-NaCl)
103 ワイヤー(Ta製)
104 反応容器
105 石英製反応管
106 ガス排気管
107 バルブ
108 種結晶保持棒(W製)
109 バルブ
110 ガス導入管
111 電気炉
112 テスト用部材

Claims (22)

  1.  原料および溶媒を含む溶液または融液を作成する工程、および結晶製造装置において前記溶液または融液中で周期表第13族金属窒化物結晶を成長させる工程を含む、周期表第13族金属窒化物結晶の製造方法において、前記溶液または融液が接触する前記結晶製造装置の部材が周期表第4族~6族元素から選ばれる少なくとも1の金属を含み、前記部材表面に周期表第4族~6族元素から選ばれる少なくとも1の窒化物を含む窒化物層を含むことを特徴とする周期表第13族金属化合物結晶の製造方法。
  2.  前記部材表面をあらかじめ窒化処理することで、前記部材表面に前記窒化物層を形成することを特徴とする請求項1に記載の周期表第13族金属化合物結晶の製造方法。
  3.  前記窒化物層が周期表第4族元素の窒化物を含むことを特徴とする請求項1または2に記載の周期表第13族金属化合物結晶の製造方法。
  4.  前記部材が周期表第4族元素の金属を含むことを特徴とする請求項1~3のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
  5.  前記部材の90重量%以上が周期表第4族金属であることを特徴とする請求項4に記載の第13族金属化合物結晶の製造方法。
  6.  前記周期表第4族金属がTiおよびZrの少なくとも1であることを特徴とする請求項3~5のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
  7.  前記部材が反応容器、撹拌翼、種結晶保持棒、バッフルおよびガス導入管の少なくとも1である請求項1~6のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
  8.  前記窒化処理が窒素下で前記部材を加熱保持する工程である請求項2~7のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
  9.  前記窒化処理が窒化剤を用いることを特徴とする請求項2~8のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
  10.  前記窒化剤がアルカリ金属窒化物およびアルカリ土類金属窒化物の少なくとも1であることを特徴とする請求項9に記載の周期表第13族金属化合物結晶の製造方法。
  11.  前記原料がアルカリ金属またはアルカリ土類金属と周期表第13族金属との複合窒化物であることを特徴とする請求項1~10のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
  12.  前記アルカリ金属またはアルカリ土類金属と周期表第13族金属との複合窒化物がLiGaNであることを特徴とする請求項11に記載の周期表第13族金属化合物結晶の製造方法。
  13.  前記溶媒がアルカリ金属ハロゲン化物であることを特徴とする請求項1~12のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
  14.  前記アルカリ金属ハロゲン化物が塩化リチウムおよび塩化ナトリウムの少なくとも1であることを特徴とする請求項13に記載の周期表第13族金属化合物結晶の製造方法。
  15.  前記原料および溶媒を含む溶液または融液を作成する工程および周期表第13族金属窒化物結晶を成長させる工程と同様の条件下で、前記窒化処理することを特徴とする請求項2~14のいずれか1項に記載の周期表第13族金属化合物結晶の製造方法。
  16.  原料および溶媒を含む溶液または融液から周期表第13族金属窒化物結晶を成長させて周期表第13族金属窒化物結晶を得るための製造装置であって、前記溶液または融液が接触する前記製造装置内の部材が周期表第4族~6族元素から選ばれる少なくとも1の金属を含み、かつ、前記部材の表面に周期表第4族~6族元素から選ばれる少なくとも1の窒化物を含む窒化物層を含むことを特徴とする周期表第13族金属化合物結晶の製造装置。
  17.  前記部材表面をあらかじめ窒化処理することで、前記部材表面に前記窒化物層を形成することを特徴とする請求項16に記載の周期表第13族金属化合物結晶の製造装置。
  18.  前記窒化物層が周期表第4族元素の窒化物を含むことを特徴とする請求項16または17に記載の周期表第13族金属化合物結晶の製造装置。
  19.  前記部材が周期表第4族元素を含む金属を含むことを特徴とする請求項16~18のいずれか1項に記載の周期表第13族金属化合物結晶の製造装置。
  20.  前記部材の90重量%以上が周期表第4族金属であることを特徴とする請求項19に記載の周期表第13族金属化合物結晶の製造装置。
  21.  前記周期表第4族金属がTiおよびZrの少なくとも1であることを特徴とする請求項16~20のいずれか1項に記載の周期表第13族金属化合物結晶の製造装置。
  22.  前記部材が反応容器、撹拌翼、種結晶保持棒、バッフルおよびガス導入管の少なくとも1であることを特徴とする請求項16~21のいずれか1項に記載の周期表第13族金属化合物結晶の製造装置。 
PCT/JP2010/059468 2009-06-04 2010-06-03 周期表第13族金属化合物結晶の製造方法及び製造装置 WO2010140665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10783447A EP2439317A1 (en) 2009-06-04 2010-06-03 Process and apparatus for production of crystals of compound of metal belonging to group-13 on periodic table
JP2011518498A JPWO2010140665A1 (ja) 2009-06-04 2010-06-03 周期表第13族金属化合物結晶の製造方法及び製造装置
US13/311,217 US20120125255A1 (en) 2009-06-04 2011-12-05 Method and apparatus for producing crystal of metal nitride of group 13 of the periodic table

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-135350 2009-06-04
JP2009135350 2009-06-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/311,217 Continuation US20120125255A1 (en) 2009-06-04 2011-12-05 Method and apparatus for producing crystal of metal nitride of group 13 of the periodic table

Publications (1)

Publication Number Publication Date
WO2010140665A1 true WO2010140665A1 (ja) 2010-12-09

Family

ID=43297798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059468 WO2010140665A1 (ja) 2009-06-04 2010-06-03 周期表第13族金属化合物結晶の製造方法及び製造装置

Country Status (5)

Country Link
US (1) US20120125255A1 (ja)
EP (1) EP2439317A1 (ja)
JP (1) JPWO2010140665A1 (ja)
KR (1) KR20120028897A (ja)
WO (1) WO2010140665A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052691A (ja) * 2011-10-21 2017-03-16 三菱化学株式会社 GaN結晶
US10538858B2 (en) 2014-03-18 2020-01-21 Sciocs Company Limited Method for manufacturing group 13 nitride crystal and group 13 nitride crystal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304792B2 (ja) * 2008-08-29 2013-10-02 新日鐵住金株式会社 SiC単結晶膜の製造方法および装置
JP6623969B2 (ja) * 2015-08-26 2019-12-25 豊田合成株式会社 Iii族窒化物半導体単結晶の製造方法
US9932688B2 (en) * 2015-08-26 2018-04-03 Toyoda Gosei Co., Ltd. Method for producing group III nitride semiconductor single crystal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002152A (ja) * 2002-02-22 2004-01-08 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法
JP2005112718A (ja) 2003-09-18 2005-04-28 Mitsubishi Chemicals Corp 13族窒化物結晶の製造方法
JP2006265069A (ja) 2005-03-25 2006-10-05 Ngk Insulators Ltd 単結晶育成用の反応容器および単結晶の育成方法
JP2008201653A (ja) * 2007-02-22 2008-09-04 Mitsubishi Chemicals Corp 結晶成長速度制御方法、化合物結晶とその製造方法、および半導体デバイスの製造方法
JP2008214126A (ja) * 2007-03-02 2008-09-18 Toyoda Gosei Co Ltd 半導体結晶の製造方法
JP2009135350A (ja) 2007-12-03 2009-06-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002152A (ja) * 2002-02-22 2004-01-08 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法
JP2005112718A (ja) 2003-09-18 2005-04-28 Mitsubishi Chemicals Corp 13族窒化物結晶の製造方法
JP2006265069A (ja) 2005-03-25 2006-10-05 Ngk Insulators Ltd 単結晶育成用の反応容器および単結晶の育成方法
JP2008201653A (ja) * 2007-02-22 2008-09-04 Mitsubishi Chemicals Corp 結晶成長速度制御方法、化合物結晶とその製造方法、および半導体デバイスの製造方法
JP2008214126A (ja) * 2007-03-02 2008-09-18 Toyoda Gosei Co Ltd 半導体結晶の製造方法
JP2009135350A (ja) 2007-12-03 2009-06-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052691A (ja) * 2011-10-21 2017-03-16 三菱化学株式会社 GaN結晶
US10538858B2 (en) 2014-03-18 2020-01-21 Sciocs Company Limited Method for manufacturing group 13 nitride crystal and group 13 nitride crystal

Also Published As

Publication number Publication date
US20120125255A1 (en) 2012-05-24
KR20120028897A (ko) 2012-03-23
JPWO2010140665A1 (ja) 2012-11-22
EP2439317A1 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5665094B2 (ja) n型III族窒化物系化合物半導体
JP6020440B2 (ja) 窒化物結晶の製造方法
JP5888208B2 (ja) 窒化物結晶の製造方法
JP2007290921A (ja) 窒化物単結晶の製造方法、窒化物単結晶、およびデバイス
WO2010140665A1 (ja) 周期表第13族金属化合物結晶の製造方法及び製造装置
WO2012176318A1 (ja) 窒化物単結晶の製造方法及びそれに用いるオートクレーブ
JP5888242B2 (ja) 半導体結晶の製造方法、結晶製造装置および第13族窒化物半導体結晶
JP6074959B2 (ja) Iii族窒化物結晶及びその製造方法
JP4881553B2 (ja) 13族窒化物結晶の製造方法
WO2018042705A1 (ja) Iii族窒化物微結晶凝集体の製造方法、窒化ガリウム微結晶凝集体の製造方法、iii族窒化物微結晶凝集体およびスパッタリングターゲット
JP4908467B2 (ja) Iii族窒化物系化合物半導体結晶の製造方法
JP5573225B2 (ja) 第13族金属窒化物結晶の製造方法、該製造方法により得られる第13族金属窒化物結晶および半導体デバイスの製造方法
JP2010105903A (ja) 第13族金属窒化物結晶の製造方法および半導体デバイスの製造方法
JP2013203652A (ja) 窒化物単結晶の製造方法
JP2013056821A (ja) Iii族窒化物結晶の製造方法
JP2011256055A (ja) 第13族金属窒化物結晶の製造方法、該製造方法によって得られた第13族金属窒化物結晶、半導体デバイス、および半導体デバイスの製造方法
JP2012214331A (ja) 第13族窒化物結晶の製造方法
JP2006248795A (ja) Iii族窒化物単結晶およびその成長方法
JP2013116839A (ja) 周期表第13族金属窒化物結晶の製造方法
JP6192956B2 (ja) 窒化物単結晶の製造方法
JP2013100208A (ja) 周期表第13族金属窒化物半導体結晶の製造に使用する部材の選定方法、及び周期表第13族金属窒化物半導体結晶の製造方法
JPWO2012176318A1 (ja) 窒化物単結晶の製造方法及びそれに用いるオートクレーブ
JP2013100207A (ja) 周期表第13族金属窒化物半導体結晶の製造に使用する部材の再生方法、及び周期表第13族金属窒化物半導体結晶の製造方法
WO2013147097A1 (ja) 窒化物単結晶の製造方法
JP2013184875A (ja) 周期表第13族金属窒化物結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518498

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117028786

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010783447

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE